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ABSTRACT 

Digital image in their raw form requires an excessive amount of storage capacity. Image 

compression is a process of reducing the cost of storage and transmission of image data. The 

compression algorithm reduces the file size so that it requires less storage or transmission 

bandwidth. This work presents a new color transformation and compression algorithm for the 

Bayer color filter array (CFA) images. In a full color image, each pixel contains R, G, and B 

components. A CFA image contains single channel information in each pixel position, 

demosaicking is required to construct a full color image. For each pixel, demosaicking constructs 

the missing two-color information by using information from neighbouring pixels. After 

demosaicking, each pixel contains R, G, and B information, and a full color image is constructed. 

Conventional CFA compression occurs after the demosaicking. However, the Bayer CFA image 

can be compressed before demosaicking which is called compression-first method, and the 

algorithm proposed in this research follows the compression-first or direct compression method. 

The compression-first method applies the compression algorithm directly onto the CFA data and 

shifts demosaicking to the other end of the transmission and storage process. The advantage of the 

compression-first method is that it requires three time less transmission bandwidth for each pixel 

than conventional compression.  

 

Compression-first method of CFA data produces spatial redundancy, artifacts, and false high 

frequencies. The process requires a color transformation with less correlation among the color 

components than that Bayer RGB color space. This work analyzes correlation coefficient, standard 

deviation, entropy, and intensity range of the Bayer RGB color components. The analysis provides 

two efficient color transformations in terms of features of color transformation. The proposed color 

components show lesser correlation coefficient than occurs with the Bayer RGB color components. 

Color transformations reduce both the spatial and spectral redundancies of the Bayer CFA image. 

After color transformation, the components are independently encoded using differential pulse-

code modulation (DPCM) in raster order fashion. The residue error of DPCM is mapped to a 

positive integer for the adaptive Golomb rice code. The compression algorithm includes both the 

adaptive Golomb rice and Unary coding to generate bit stream. Extensive simulation analysis is 

performed on both simulated CFA and real CFA datasets. This analysis is extended for the WCE 

(wireless capsule endoscopic) images. The compression algorithm is also realized with a simulated 
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WCE CFA dataset. The results show that the proposed algorithm requires less bits per pixel than 

the conventional CFA compression. The algorithm also outperforms recent works on CFA 

compression algorithms for both real and simulated CFA datasets. 



iv 

 

ACKNOWLEDGEMENTS 

 

I would like to start by praising the almighty God, Allah, the creator of the havens and the earth. 

Special thanks to my supervisor, Professor Khan A. Wahid. In his supervision and proper 

guidance, I was able to acquire complete knowledge and skill in image compression algorithm and 

their implementation. His encouragement for hard-work always motivates me in the field of 

learning.  

I would like to thank Professor Anh Dinh, Professor Francis Bui, Professor Seok-Bum Ko and 

Professor Khan A. Wahid for giving me the opportunity to take excellent courses at the University 

of Saskatchewan. I would also like to thank Shahed Khan Mohammed for the inspiration and 

knowledge sharing.  

Finally, I would like to thank my family for their love, encouragement and support. 

  



v 

 

TABLE OF CONTENTS 

PERMISSION TO USE ........................................................................................................... i 

ABSTRACT ............................................................................................................................ ii 

ACKNOWLEDGEMENTS ................................................................................................... iv 

LIST OF TABLES ................................................................................................................. ix 

LIST OF FIGURES ................................................................................................................ x 

ABBREVIATIONS AND SYMBOLS ................................................................................. xii 

Chapter 1 INTRODUCTION .......................................................................................................... 1 

1.1 Research background ....................................................................................................... 2 

1.2 Design challenges ............................................................................................................. 4 

1.2.1 Direct compression of a CFA image ......................................................................... 4 

1.2.2 Design implementation ............................................................................................. 5 

1.3 Thesis objectives .............................................................................................................. 5 

1.4 Thesis outline ................................................................................................................... 5 

Chapter 2 OVERVIEW OF AN IMAGE COMPRESSION .......................................................... 6 

2.1 Lossless compression ....................................................................................................... 6 

2.2 Lossy compression ........................................................................................................... 6 

2.3 Overview of Bayer CFA .................................................................................................. 7 

2.4 Color transformation ........................................................................................................ 9 

2.4.1 Color transform: RGB............................................................................................... 9 

2.4.2 Color transform: YCbCr .......................................................................................... 10 

2.4.3 Color transform: Bayer GrRBGb ............................................................................. 10 

2.4.4 Color transform: Y1Y2CbCr .................................................................................... 13 

2.4.5 Color transform: YDgCoCg ...................................................................................... 14 

2.4.6 Color transform: YLMN ......................................................................................... 16 



vi 

 

2.5 Feature parameter of color transformation ..................................................................... 17 

2.5.1 Entropy ....................................................................................................................... 17 

2.5.2 Standard deviation ...................................................................................................... 18 

2.6 Transform coding ........................................................................................................... 18 

2.6.1 Discrete cosine transform (DCT) ............................................................................ 18 

2.6.2 Discrete wavelet transform (DWT) ........................................................................ 19 

2.7 Line coding ..................................................................................................................... 19 

2.8 Image coder .................................................................................................................... 19 

2.8.1 Source encoder ........................................................................................................ 19 

2.8.2 Entropy encoder ...................................................................................................... 20 

2.9 Compression ................................................................................................................... 20 

2.9.1 JPEG-LS: DCT-based image coding standard ........................................................ 20 

2.9.2 JPEG-2K ................................................................................................................. 21 

2.9.3 LCMI: Lossless compression of mosaic image ...................................................... 21 

2.9.4 CMBP compression ................................................................................................ 22 

2.9.5 HP: Hierarchical prediction .................................................................................... 23 

Chapter 3 PROPOSED COMPRESSION DESIGN ..................................................................... 25 

3.1 Four channel color transformation ................................................................................. 25 

3.1.1 YCMCECF color transformation .............................................................................. 28 

3.1.2 YCDCMCO color transformation .............................................................................. 29 

3.1.3 Feature evaluation of color components parameter ................................................ 30 

3.1.3.1 Dynamic intensity of color components ................................................................... 31 

3.1.3.2 Correlation comparison ............................................................................................. 33 

3.1.3.3 Standard deviation comparison ................................................................................. 34 

3.1.3.4 Entropy comparison .................................................................................................. 36 



vii 

 

3.1.4 Prediction gain comparison..................................................................................... 37 

3.1.5 Lossless color transformation ................................................................................. 38 

3.2 Structure separation ........................................................................................................ 39 

3.2.1 YCMCECF component structure separation ............................................................. 39 

3.2.2 YCDCMCO component structure separation ............................................................ 40 

3.3 Prediction model ............................................................................................................ 40 

3.4 Encoding......................................................................................................................... 42 

3.4.1 Unary coding .............................................................................................................. 42 

3.4.2 Golomb Rice coding ................................................................................................... 43 

3.4.3 Adaptive Golomb Rice coding ................................................................................... 44 

3.5 Compression result ......................................................................................................... 45 

3.6 Summary ........................................................................................................................ 49 

Chapter 4 PERFORMANCE EVALUATION ............................................................................. 50 

4.1 Introduction ......................................................................................................................... 50 

4.2 Evaluation parameters ......................................................................................................... 50 

4.2.1 Peak signal to noise ratio ............................................................................................. 50 

4.2.2 Compression ratio ........................................................................................................ 51 

4.2.3 Structural similarity index............................................................................................ 52 

4.3 Performance evaluation ...................................................................................................... 53 

4.3.1 Natural image ............................................................................................................... 54 

4.3.2 WCE image .................................................................................................................. 58 

4.3.2.1 Performance parameters PSNR and SSIM ............................................................... 59 

4.3.2.2 Performance of compression..................................................................................... 60 

4.4 Summary ............................................................................................................................. 61 

Chapter 5 HARDWARE IMPLEMENTATION .......................................................................... 62 



viii 

 

5.1 Introduction ......................................................................................................................... 62 

5.2 Hardware architecture ......................................................................................................... 62 

5.2.1 Color transformation module ....................................................................................... 62 

5.2.2 Multiplexer/De-Multiplexer ......................................................................................... 63 

5.2.3 Memory ........................................................................................................................ 64 

5.2.4 Prediction module ........................................................................................................ 64 

5.2.5 Control unit .................................................................................................................. 64 

5.2.6 Encoder module ........................................................................................................... 64 

5.3 Results and comparison ...................................................................................................... 64 

5.3.1 Hardware cost .............................................................................................................. 65 

5.4 Summary ............................................................................................................................. 65 

Chapter 6 CONCLUSION AND FUTURE WORK ..................................................................... 67 

6.1 Conclusion .......................................................................................................................... 67 

6.2 Future work ......................................................................................................................... 68 

REFERENCES ............................................................................................................................. 69 

APPENDIX A ............................................................................................................................... 74 

A.1 Published journals .............................................................................................................. 74 

A.2 Submitted journals ............................................................................................................. 74 

APPENDIX B ............................................................................................................................... 75 

 



ix 

 

LIST OF TABLES 

Table 3-1: Average value of correlation coefficient ..................................................................... 26 

Table 3-2: Average standard deviation for different Bayer CFA datasets.................................... 35 

Table 3-3: Comparison of entropy of different color transformation of CFA images.................. 36 

Table 3-4: Average image quality index with different bit length for KODAK Dataset ............. 39 

Table 3-5: Number of operations per pixel required for various prediction model ...................... 41 

Table 3-6: Bit rate of proposed compression algorithm using Unary coding for each color 

component of YCDCMCO color transformation in BPP. ............................................................... 42 

Table 3-7: proposed compression algorithm using Golomb Rice Coding for each color component 

of YCDCMCO color transformation in BPP ................................................................................... 44 

Table 3-8: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for Kodak dataset in BPP. ................................................................................... 46 

Table 3-9: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for Olympus-EP1 dataset in BPP. ....................................................................... 47 

Table 3-10: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for real CFA dataset in BPP. ............................................................................... 48 

Table 3-11: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for D90 dataset in BPP........................................................................................ 48 

Table 4-1: Bit rate of different compression algorithms for KODAK dataset in BPP. ................ 55 

Table 4-2: Comparison of bit rate of different compression algorithms for Olympus E-P1 dataset 

in BPP ........................................................................................................................................... 56 

Table 4-3: Comparison of bit rate of different compression algorithms for REAL CFA images in 

BPP. .............................................................................................................................................. 57 

Table 4-4: Comparison of different compression algorithms for the D90 dataset in BPP. .......... 57 

Table 4-5: Bit rate for different WCE image compression algorithms for KID dataset in BPP... 61 

Table 5-1: Hardware comparison of different compression algorithms for Bayer CFA images .. 65 



x 

 

LIST OF FIGURES 

Figure 1-1: General block diagram of an image compression ........................................................ 1 

Figure 1-2 Bayer Color Filter Array pattern ................................................................................... 2 

Figure 2-1: Illustration of digital color imaging systems for conventional CFA image compression.

......................................................................................................................................................... 7 

Figure 2-2 Illustration of digital color imaging systems for alternate CFA image compression. .. 8 

Figure 2-3: RGB color image in (a) and RGB color components R, G, and B in (b), (c), and (d) 

respectively ................................................................................................................................... 10 

Figure 2-4: YCbCr color image (a) and Y, Cb, and Cr components in (b), (c), and (d) respectively.

....................................................................................................................................................... 10 

Figure 2-5: Human Color receptor relative sensitivity (Photograph adapted from Photobit) ...... 11 

Figure 2-6: Image sensor capturing Bayer filter image pixel in raster order fashion (Photographs 

adapted from Photobit) ................................................................................................................. 12 

Figure 2-7: Bayer color filter array image GrRBGb components ................................................. 12 

Figure 2-8: Color components of Y1 Y2CbCr for Bayer CFA image ............................................ 14 

Figure 2-9: YDgCoCg color components for Bayer CFA image ................................................... 15 

Figure 2-10: YLMN color components ........................................................................................ 17 

Figure 2-11: Block diagram JPEG-LS .......................................................................................... 21 

Figure 2-12: JPEG-2000 Block diagram....................................................................................... 21 

Figure 2-13: Efficiency of representing Bayer pattern mosaic image in wavelet domain ............ 22 

Figure 2-14: Block Diagram of CMBP compression algorithm (a) Compression (b) De-

compression .................................................................................................................................. 23 

Figure 2-15: Block diagram of Hierarchical Prediction Model .................................................... 24 

Figure 3-1: Block diagram of the proposed algorithm.................................................................. 25 

Figure 3-2: Dynamic range of intensity of Bayer CFA components (a-d) as Gr, R, B and Gb 

respectively. .................................................................................................................................. 27 

Figure 3-3: The YCDCMCO color components of CFA image ...................................................... 29 

Figure 3-4: The color components of YCDCMCO for CFA image................................................. 30 

Figure 3-5: Dynamic intensity range of proposed color transformation components of YCMCECF.

....................................................................................................................................................... 31 

Figure 3-6: Dynamic intensity of proposed color transformation components of YCDCMCO. ..... 33 



xi 

 

Figure 3-7: Average correlation value among the components of different color space for CFA 

datasets. ......................................................................................................................................... 34 

Figure 3-8: Prediction gain comparison with different color spaces ............................................ 38 

Figure 3-9: The structure separation from Bayer color transformations to the proposed YCMCECF 

color transformation. ..................................................................................................................... 39 

Figure 3-10: The structure separation from Bayer color transformation to YCDCMCO color 

transformation ............................................................................................................................... 40 

Figure 4-1 Reconstructed image PSNR value with number of extra bit in hardware 0, 1, 2, 3 bits 

in Figure a, b, c, and d respectively, for the proposed algorithm YCMCECF ................................ 51 

Figure 4-2 Reconstructed image SSIM index with a number of extra bits in hardware 0, 1, 2, 3 bits 

in Figure a, b, c, and d respectively, for the proposed algorithm YCMCECF. ............................... 53 

Figure 4-3: (a) original WCE image and (b) CFA WCE images .................................................. 58 

Figure 4-4 Simulated CFA image generation ............................................................................... 59 

Figure 4-5: The WCE image performance of a reconstructed image using 0, 1, 2, and 3 extra bits 

in the hardware a, b, c, and d, respectively. .................................................................................. 60 

Figure 5-1: Hardware Architecture of the Compression............................................................... 62 

Figure 5-2: Block diagram of color transformation module ......................................................... 63 

Figure B-1: KODAK dataset ........................................................................................................ 75 

Figure B-2: D90 dataset ................................................................................................................ 76 

Figure B-3: Real CFA dataset ....................................................................................................... 76 

Figure B-4: Standard image dataset .............................................................................................. 77 

Figure B-5: WCE KID dataset ...................................................................................................... 77 

Figure B-6: WCE KID simulated CFA dataset............................................................................. 78 



xii 

 

ABBREVIATIONS AND SYMBOLS 

 

BPP Bits per pixel 

CFA Color filter array 

CMOS Complementary metal oxide semiconductor 

CPSNR Color peak signal to noise ratio 

CR Compression ratio 

CT Color transformation 

DCT Discrete cosine transforms 

DWT Discrete wavelet transforms 

DPCM Delta pulse modulation  

FPGA Field programmable gate array 

HDL Hardware description language 

HP Hierarchical prediction 

HVS Human Visual System 

JPEG Joint Photographic expert group 

MEP Median edge prediction 

MSE Mean square error 

RGB Red green blue 

SSIM Structural similarity 

 

 

 



1 

 

Chapter 1 INTRODUCTION 

In this era of the Internet, the transmission and storage of image data is a necessary part of 

technology. Image data is widely used in every aspect of modern life such as social media, 

communication, advertising, remote diagnosis and analysis, medical imaging, and security 

surveillance. Considering the huge number of image applications, the corresponding raw data 

requires huge storage capacity. For images to be stored or transmitted, they must be compressed. 

Image compression reduces the size of an image, providing the exact image or degraded version 

of the image as needed and lessening the required bandwidth, reducing transmission time, 

decreasing network congestion, and lowering costs. The most widely used method for image 

compression is shown as block diagram in Figure 1-1.  

 

Source
 image data

Predictor Encoder

Predictor Decoder

Compressed
 image data

Compressed
Image data

Store
Or transmit

Reconstructed
Image data

 

Figure 1-1: General block diagram of an image compression 

 

A popular low-cost method in digital image processing is the Bayer CFA image, which has a 

reputation for decreasing transmission bandwidth, reducing storage, and saving energy. Bayer 

CFA is a single sensor digital image, which contains RGB information in a Bayer pattern, as shown 

in Figure 1-2 [1]. A Bayer filter mosaic is a color filter array for arranging RGB color filters on a 

square grid of photo sensors. The specific pattern of color filters is used in most of the single-chip 

digital image sensors to create a color image. The Bayer color filter pattern contains 50% green, 

25% red and 25% blue. Therefore, the Bayer pattern has two green (Gr, Gb) pixels, one red (R) 

pixel and one blue (B) pixel in a 2 x 2 square block which is also called RGrBGb, GrRGbB, or 

RGrGbB. The Bayer array measures the G image on a quincunx grid and the R & B images on 

rectangular grids. The G image is measured at a higher sampling rate because the human eyelid is 
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sensitive to medium wavelengths that, correspond to the G portion of the spectrum.  In each pixel 

position, there is single-channel information; therefore, information for the other two channels are 

interpolated from the neighboring pixel position.  

 

 

Figure 1-2 Bayer Color Filter Array pattern 

 

A full color image is generated from the captured data by demosaicking method. The generated 

color image is compressed using different compression algorithms, such as JPEG, JPEG-LS, or 

JPEG2000, before storage or transmission. The compression algorithm can be applied before the 

demosaicking step. This method is more popular than the conventional compression method.  

 

1.1 Research background 

Since the discovery of the CFA image, different studies have been conducted on the design of the 

CFA compression algorithm. This section discusses previous works on the design of this 

algorithm. The compression in RGB color space of a CFA image has spectral redundancy, spatial 

redundancy, artifacts, and false high frequencies [3] – [10]. Koh [4] shows that Bayer RGB color 

components are not suitable for compression-first method. Therefore, the focus of the current work 

is on the color transformation of the CFA image. 

 

In CFA image compression, compression is usually carried out after the demosaicking process. 

Therefore, three color components are realized with the compression algorithm which needs more 

transmission bandwidth and processing cost. The compression can also be performed before the 

demosaicking process [3] – [11]. This compression-first method saves two-thirds of transmission 
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bandwidth. Although the compression-first (direct compression) of CFA data is efficient, it has 

limitations with existing encoding methods.  Koh [4] shows that the compression-first method of 

CFA data with JPEG introduces poor quality images. In [4], composite peak signal to noise ratio 

(CPSNR) defined as Eqn. 1.1 is used to measure the quality of the image.  

 

 
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255
10log
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( , , ) ( , , )
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k
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I i j k I i j k
MN 

 
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  
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 



          (1.1) 

 

Here, Iin and Iout are the input and output images respectively. M and N are the dimension of each 

color channel, i and j are the locations of the pixel in color plane k.  

The value of CPSNR for the conventional compression method is 33.37~db, and for directly 

compressed CFA data using JPEG, it is 30.04~db. The image is distorted in the compression-first 

method due to the high correlation among the three-color planes. The high frequency data in the 

image, does not allow high compression ratio for JPEG compression. This result demonstrates that 

the Bayer-patterned CFA data is not suitable for compression-first method using JPEG. To resolve 

this problem with the compression-first method of CFA data using the JPEG, Koh [4] and Ortega 

[10] proposed three methods: structure rearranging, filtering, and conversion. The rearranging 

structure method is differently proposed in [4] and [10]. This method merges the odd and even 

columns of the image. As all the even columns are shifted one pixel to the left and all the zero 

columns removed, false high frequencies are created in the reconstructed image. To reduce the 

false high frequencies generated by merging the two columns, [11] explains that the quincunx grid 

can be visualized as two interlaced frames of a scene and that by de-interlacing these frames, a 

smoother image is obtained. The structure separation method separates the quincunx array into 

two arrays. Another approach is to use the low-pass filter to process CFA data. As the CFA image 

contains more high frequency components than a full color image, therefore the compression 

produces artifacts. The high frequencies can be removed by applying low-pass filters. A third 

approach is conversion. Koh [4] uses the color conversion for the CFA data to reduce the artifacts. 

The structure and filter methods are applied after the conversion of the RGB to a different color 

space. Koh applied the color conversion by considering a 2 x 2 block of a Bayer pattern into a 2 x 

2 of YulYlrCbCr. He represented the color conversion matrix from RGB to YCbCr as shown in Eqn. 
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1.2. The conversion method is used with the structure or low-pass filter methods. Ortega, Toi and 

Koh used conversion rather than CFA RGB color space for the compression algorithm. The 

conversion is an efficient step in the Bayer CFA compression algorithm.  
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ul ul

lr lr

b

r

Y G

Y G

C B

C R

       
       
        
         
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         (1.2) 

 

An efficient color transformation is a necessary step for CFA compression algorithm. In the current 

work, two different new CFA color conversions are proposed for the compression algorithm and 

new color transformations are proposed by analyzing the features of the RGB color components.  

Wireless capsule endospy (WCE) images shows better performance with these features of color 

transormation [25][26]. The previous research discusses the wireless capsule endoscpy (WCE) 

compression for the Bayer CFA image [13] – [14]. The YLMN compression algorithm uses 

compression-first method and a new YLMN color transformation [13]. The correlation among the 

color components is relatively high in [13]. Therefore, the compression performance needs to be 

improved to save the transmission bandwidth and power for the WCE system. 

 

1.2 Design challenges 

This work focuses on the design of an efficient compression algorithm that has limited bandwidth, 

is low power, is low cost, and shows good performance. The design of the proposed efficient 

compression algorithm has experienced several challenges, including the compression-first 

method of the CFA image, image compatibility, and the implementation of the design. 

 

1.2.1 Direct compression of a CFA image  

The compression-first method of a CFA image is a widely used technique to save power and 

transmission bandwidth in image processing. The compression is applied after the demosaicking 

of the CFA image in the conventional method. As discussed earlier, it requires higher storage or 

transmission bandwidth and power. Therefore, the compression algorithm shifts the demosaicking 

stage to after transmission or storage. This compression algorithm is simpler than conventional 
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algorithm. It is efficient with bandwidth and removes the high computation of demosaicking. 

Compression-first method is not efficient with the JPEG or JPEG-2000 compression algorithm. 

As discussed earlier, it causes redundancies, artifacts, and discontinuities. The proposed work uses 

color transformation to resolve these issues.  

 

1.2.2 Design implementation 

The design implementation depends on memory usage, computational complexity and power. The 

computational complexity of the proposed work is simple and leads to low power consumption. It 

requires color transformation, a DPCM prediction model and adaptive Golomb rice coding. The 

design has the potential to be easily integrated with the existing image sensor. 

 

1.3 Thesis objectives 

The purpose of this thesis is to design an efficient image compression algorithm that works for 

both natural and WCE Bayer color filter array images. The major objectives are as follows: 

1. To improve the existing color transformation methods in CFA image compression for 

reducing the redundancy between different color components in CFA image and increasing 

the compression ratio. 

2. To develop a compression algorithm for both natural images and WCE images for a better 

compression performance for Bayer CFA. 

3. To improve the power and memory usage in the CFA compression algorithm with a simple 

color transformation, using only shifter and adder, the DPCM prediction model, adaptive 

Golomb rice coding, and unary coding. Hence, it reduces implementation cost.  

 

1.4 Thesis outline 

The thesis comprises six chapters. Chapter 2 provides an overview of image compression for the 

Bayer color filter array image by classifying types of image compression, presenting different 

color transformations, and describing different types of encoding and prediction models. Chapter 

3 describes in detail, the proposed compression design. Chapter 4 presents the performance of the 

compression design for different datasets. Chapter 5 describes the hardware design. Chapter 6 

summarizes the work’s accomplishment and provides recommendations for the future. 
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Chapter 2 OVERVIEW OF AN IMAGE COMPRESSION 

The design of an image compression algorithm is required to minimize the storage and 

transmission bandwidth cost. It reduces the processing power and transmission power on the 

transmission line. Therefore, image and video transmission on internet and server become 

significantly popular. It can reduce the image size without the significant degradation of the 

reconstructed image quality or with no degradation of reconstructed image. In this work, the design 

is focused on the efficient image compression for the power limited application. Wireless capsule 

endoscopy is one of the achievable applications. 

The basic technique of the compression is human visual system, which is sensitive to a limited 

bandwidth. The image sensor captures wide range of bandwidth. Therefore, it contains lot of 

redundancy. Image compression eliminates these redundancies and reduces the image size. Based 

on the process of removing redundancy, image compression can be classified into two categories, 

lossless and lossy compression. In this work, lossless image compression is designed to achieve 

low power and low complexity compression. 

 

2.1 Lossless compression 

Digital images contain lots of redundant information; thus, compression algorithm removes the 

redundancy and minimizes the storage space. If the compression algorithm is reversible such as it 

can reconstruct the original image, then it is called lossless image compression [15]. The lossless 

compression is mostly focused on de-correlation and entropy coding. De-correlation removes the 

spatial redundancy or inter-pixel redundancy. On the other hand, entropy coding removes the 

coding redundancy. Huffman coding, Arithmetic coding, and LWZ are widely used encoding 

method in lossless compression algorithm. Lossless compression is mostly used in high 

performance applications such as geophysics, telemetry, medical science etc.  

 

2.2 Lossy compression 

The image compression removes the redundant information; if the reconstructed image is not 

exactly the original image then it is called a lossy compression. The lossy compression is not 

reversible compression rather it loses image information, which cannot be recovered by the reverse 

process. Reconstruction of image approximates original image, therefore the quality measurement 
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of the image for the lossy compression is necessary. It degrades the image quality after 

compression. It provides with high compression ratio and often applied in video and image 

compression. When the quality of the image is not readily necessary rather then transmission 

bandwidth, a lossy compression is more suitable. Often it is applied for the surveillance camera 

for security purpose.  

 

2.3 Overview of Bayer CFA  

In most imaging systems, image compression is carried out after the demosaicking process. The 

compression algorithms are focused on three channel color images. Figure 2-1 shows the overall 

diagram of most widely used imaging system. When the compressed images are transmitted or 

stored from the image captured module, the connection between the two systems is bandwidth 

limited. This is the bottleneck of whole system performance. Therefore, efficient image 

compression methods are exercised to send less amount of data to the link and they are commonly 

applied after the demosaick operation [15]. 

 

In several previous works, alternative image compression algorithm is proposed as shown in 

Figure 2-2 [4] - [13]. 

 

Color Filter Array

Demosaic

Compression

Color Image

Decompression

Transmission 
Or storage

True RGB 
image

Image Sensor Monitor

 

Figure 2-1: Illustration of digital color imaging systems for conventional CFA image 

compression. 
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The key difference of this system is that it directly compresses CFA image and the demosaicking 

operation is completed after the decompression of the image data. By compressing the CFA data, 

the compression algorithm deals with only one third of the full image data. In conventional 

compression, three channel RGB images needs to be compressed where the demosaicking enables 

the redundancy of the image data. In this compression-first method, it does not have to deal with 

the redundancy information that are introduced with the color demosaicking, which provides with 

compression that is more efficient.  

 

In addition, CFA compression scheme reduces the computational burden to the decoder of the 

system. The decoder consumes more computational power and memory, which is being reduced 

by this CFA compression scheme. 

 

Color Filter Array

Compression

Color Image

Decompression

Transmission 
Or storage

True RGB 
image

Image Sensor Monitor

Demosaic

 

Figure 2-2 Illustration of digital color imaging systems for alternate CFA image compression. 

 

Many devices work in real time; therefore, those systems have very strong constraints in power 

and processing time. This alternate CFA compression scheme passes the whole de-mosaic stage 

to the other side and saves the power and processing time. This proposed pipeline has great 

advantage in minimizing the workload on power-limited image capturing module. 
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2.4 Color transformation 

Color transformation is a most important part of compression design in Bayer CFA image. In the 

compression design, color transformation can be lossless or lossy which also determines the type 

of compression. The color transformation does not compress the image directly rather it enhances 

the compression ratio by removing the redundancy among the color components. It separates the 

chrominance and luminance information of an image. Therefore, it enhances the prediction model 

and improves the residues error of the prediction model. To get further savings on the bandwidth, 

chrominance components could be subsampled to remove the spectral redundancy and it will 

become a lossy compression. In lossless compression, the quality of image should be same as the 

original therefore subsampling is not included in the lossless compression design. The standard 

color space of the Bayer image is GrRBGb. It is the most popular energy saving technique in digital 

image processing. It contains RGB information in Bayer pattern. The pattern contains two green 

pixels (G), one red (R) and one blue pixel (B). Therefore, the correlation among the color 

components in Bayer GrRBGb is high which reduces the performance of the compression design. 

The color transformation ensures the less correlation among the components. Therefore, the color 

transformation becomes the essential part of the compression design. There are several existing 

color transformations available in the literature. Each of them contains different usages and 

significance.     

 

2.4.1 Color transform: RGB  

Color machine vision systems generally capture images in the red, green, blue (RGB) color 

system as 24-bit images. Each color is allocated 8 bits, resulting 256 different values. RGB can 

be thought of as three grayscale images representing the light values of Red, Green, and Blue. 

Most graphics applications work in RGB. In case of compression, RGB color components 

contain spatial redundancy. Correlation coefficient is high in RGB color transformation. 

Therefore, RGB color transformation has a low compression ratio [55]. 
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(a) RGB 

 

(b) R 

 

(c) G 

 

(d) B 

Figure 2-3: RGB color image in (a) and RGB color components R, G, and B in (b), (c), and (d) 

respectively 

 

2.4.2 Color transform: YCbCr  

YCbCr color transform represents the human perception of color more closely than the standard 

RGB model used in computer graphics. Y is the luminance (brightness) component and Cb and Cr 

are the chrominance (color) components in YCbCr color transformation. The correlation among the 

YCbCr color components are lower than the RGB color space. It reduces the spatial redundancy 

in the image. It performs better in image compression [55].  

 

 

(a) YCbCr 

 

(b) Y 

 

(c) Cb 

 

(d) Cr 

Figure 2-4: YCbCr color image (a) and Y, Cb, and Cr components in (b), (c), and (d) respectively. 

 

2.4.3 Color transform: Bayer GrRBGb 

Bayer color filter array is a popular format for digital acquisition of color images [1]. The half of 

the total number of pixels are green, while a quarter of the total number of pixels is assigned to 

both red and blue. The reason behind the 50% of green pixels is the sensitivity of the human eye. 

Human eye is sensitive to light of a certain intensity range of wavelength. The average normal 
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sighted of human eye is most sensitive at wavelength of 555 nm; resulting in the fact that green 

light at this wavelength produces the impression of highest “brightness” compared to the other 

wavelengths, which is shown in Figure 2-5. Therefore, the green color has more contribution to 

the human eye rather than other color components. The popular Bayer pattern 2x2 block contains  

 

 

Figure 2-5: Human Color receptor relative sensitivity (Photograph adapted from Photobit) 

 

two green pixels, a blue and a red pixel. Three filter uses to capture the color information from the 

sensor. The color information can be obtained by using the color image sensor, which is covered 

with either a red, a green or a blue filter in a repeating pattern. This pattern of filters can vary but 

the widely adopted “Bayer” pattern is a repeating 2x2 arrangement. The pixel sequence of the 

image sensor comes out GRGRGR, etc., and then the other line is BGBGBG, etc. The Figure 2-6 

shows how the pixels are captured one by one. This is called the sequential RGB or sRGB. As 

each contains only one-color information therefore, the overall sensitivity of the color image 

sensor is less sensitive. In the other way around, it saves two third of pixel information. 
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Figure 2-6: Image sensor capturing Bayer filter image pixel in raster order fashion (Photographs 

adapted from Photobit) 

 

 

 

(a) B 

 

 

(b) Gb 

 

 

(c) Gr 

 

(d) R 

 

Figure 2-7: Bayer color filter array image GrRBGb components 
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There are several established demosaicking methods available to get the full color image from 

Bayer image. Each pixel generates other two-color information from their neighbor’s color 

information. The full color image is created from the demosaicking. 

 

2.4.4 Color transform: Y1Y2CbCr 

CFA images consist with four-color components. YCbCr color plane has three components [19]. 

The components are classified with two classes such as luminance component and chrominance 

component. The luminance information gives the grayscale image of the color image. On the other 

hand, the chrominance components hold the color information. Therefore, the Y component is 

sufficient to represent the black and white image, which is used in black and white television, and 

three components produce the color image, which is used in color television. There are several 

ways of converting Bayer RGB to YCbCr and the popular conversion of the YCbCr is that Y1 and 

Y2 can be represented with its samples on the quincunx grid where Gr and Gb are sampled 

respectively, Cb and Cr can be represented with samples on the interlacing grids respectively where 

B and R are sampled [11].  

 To convert the Bayer RGB to Y1Y2CbCr color transformation, following Eqn. 2.1 is used. 
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                                    (2.1) 

 

Where R, G, B are the red, green and blue components of Bayer RGB plane. 

To get back the Bayer RGB components from the Y1Y2CbCr transformation, following Eqn. 2.2 

is used. 
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The color components Y1, Y2, Cb, and Cr are shown in Figure 2-8.  

 

 

(a) Y1 

 

 

(b) Cb 

 

 

(c) Cb 

 

 

(d) Y2 

 

Figure 2-8: Color components of Y1 Y2CbCr for Bayer CFA image 

 

2.4.5 Color transform: YDgCoCg 

A new color space for Bayer images is described in [16]. The YDgCoCg color plane is similar to 

the Y1Y2CbCr as it is based on the luminance and chrominance. Y is the only luminance 
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components and all the other components Dg, Co, Cg carry the chrominance information of the 

Bayer image. The Y channel is an average of four components of the macro-pixel which contains  
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(a) Y 

 

 

(b) Dg 

 

 

(c) Co 

 

 

(d) Cg 

 

Figure 2-9: YDgCoCg color components for Bayer CFA image 
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50% green and 25% contribution of R and B. As the all other components contain chrominance 

information therefore, the gray level image has the value of Dg = Co = Cg = 0. Dg is the difference 

of green pixels and Cg is the excess green channel where the Co carries the orange channel 

information.  The direct and inverse transform matrices have only the value of 0, ¼, ½, or 1. 

Therefore, it has the less computational complexity and which uses the right shift operator only 

for the implementation. The Eqn. 2.3 and 2.4 are representing the direct and inverse transform of 

the YDgCoCg color plane respectively. The significance of each color components is shown in 

Figure 2-9. 

 

2.4.6 Color transform: YLMN 

The YLMN color transformation in Bayer CFA compression is efficient compare to Bayer RGB 

color transformation. In [13], YLMN is derived to exploit the inter-color correlation in CFA image. 

The YLMN color transform is lossless and it works directly in raster order fashion, which is 

efficient in implementation. The color transformation described mathematically in Eqn. 2.5 and 

2.6. 
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The color components of the YLMN are shown in Figure 2-10. 
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(a) Y 

 

(b) L 

 

(c) M 

 

(d) N 

Figure 2-10: YLMN color components 

 

2.5 Feature parameter of color transformation 

The color transformation performance depends on different parameter. Entropy, standard 

deviation, correlation and prediction gain are widely used feature parameter of color 

transformation. The definition of these parameters is discussed in this sub section. 

 

2.5.1 Entropy 

Image entropy is a quantity, which is measured to explain the business of an image. It also gives 

the amount of information, which must be coded by a compression algorithm. Low entropy image 

contains low contrast and a large number of similar intensity pixels. Consequently, it can be 

compressed to relatively small size. On the other hand, high contrast and a great deal of variation 

in intensity value from one pixel to another provide high entropy. Therefore, it cannot be 

compressed as much as low entropy images. The image entropy is calculated in the proposed 

algorithm using the Eqn. 2.7. 
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2i i

i

Entropy PLog P       (2.7) 

 

In the above expression, Pi is the probability that the difference between 2 adjacent pixels is equal 

to i.  

 

2.5.2 Standard deviation 

Standard deviation is a measure of the dispersion of a set of data from its mean. It is calculated as 

the square root of variance by determining the variation between each data point relative to the 

mean. If the data points are further from the mean, there is higher deviation within the dataset. The 

mathematical definition of standard deviation can be described as Eqn. 2.8. 

 

2
x

SD
N





                  (2.8) 

 

Where x is the intensity value of the image pixel, μ is the mean of image data set and N is the 

number total pixels in the image. 

 

2.6 Transform coding 

Transform coding is block based image data processing with an efficient de-correlation technique. 

Transform coding, first transforms the image from its special domain representation to a different 

type of representation using the existing transform methods, which produce transformed co-

efficient. The widely used transform methods are Discrete Cosine Transform (DCT) and Discrete 

Wavelet Transform (DWT).  

 

2.6.1 Discrete cosine transform (DCT) 

An image transforms from the discrete space domain to the discrete spatial frequency domain is 

called DCT transform [24]. DCT is orthogonal transform and it contains high-energy compacting 

capability. The image data is condensed into a relatively small number of transformed coefficient.  
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2.6.2 Discrete wavelet transform (DWT) 

The Discrete Wavelet Transform (DWT) is a very versatile signal-processing tool after Mallat 

proposed the multi-resolution representation of signals based on wavelet decomposition. Wavelets 

allow both time and frequency analysis of signals simultaneously because the energy of wavelets 

is concentrated in time and still possesses the wave-like (periodic) characteristics. As a result, 

wavelet representation provides a versatile mathematical tool to analyze transient, time-variant 

(non-stationary) signals that are not statistically predictable especially at the region of 

discontinuities – a feature that is typical of images having discontinuities at the edges. The DWT 

decomposes a digital signal into different sub-bands so that the lower frequency sub-bands have 

finer frequency resolution and coarser time resolution compared to the higher frequency sub-

bands. DWT is the basis of the new JPEG2000 image compression standard. DWT is 

computationally expensive to implement. 

 

2.7 Line coding 

The most common line coding is differential pulse coded modulation (DPCM). In DPCM, the 

current signal information is deducted from the previous signal information to create the residue 

error. Then the residue error is sent to the encoder to generate compressed bit stream. Line coding 

is computationally simple. It gives lossless compression and implementation cost is low. 

Therefore, low complexity and low-cost design uses line coding rather than transform coding.  

 

2.8  Image coder 

2.8.1 Source encoder 

Source encoder efficiently processes the output of digital source into a sequence of binary digits. 

A variety of linear transformations are developed using Discrete Cosine Transformation (DCT) 

and Discrete Wavelet Transformation (DWT). The encoder uses Discrete Fourier Transformation 

(DFT), Discrete Cosine Transformation (DCT) or Discrete Wavelet Transformation (DWT). Each 

of them has several advantages and disadvantages.  
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2.8.2 Entropy encoder 

An entropy encoder further compresses the values lossless to give better overall compression. It 

uses a model to accurately determine the probabilities for each value and produces an appropriate 

code based on these probabilities so that the resultant output code stream will be smaller than the 

input stream. The most commonly used entropy encoders are the Huffman encoder and the 

arithmetic encoder, although for applications requiring fast execution, simple run-length encoding 

(RLE) has shown very effective. The encoder depends on the range of the data. If the range of the 

data is small, then Unary coding, Golomb coding, Rice coding, Golomb rice coding and adaptive 

Golomb rice coding are fast and effective encoder. 

 

2.9  Compression 

There are several existing image compression algorithms available. Popular and widely used 

compression algorithms are described in this section. The performance of the proposed algorithm 

is compared with them in the later section. 

 

2.9.1 JPEG-LS: DCT-based image coding standard 

JPEG-LS is widely accepted image compression algorithm. It is prediction based algorithm. JPEG-

LS is simple and lower storage and computational requirement [21]. The block diagram of the 

JPEG-LS is shown in Figure 2-11. The prediction is computed based on the four neighbouring 

pixels as shown in Figure 2-11 (a, b, c and d). As neighbouring pixels in CFA are sampled from 

different color planes, they show varying level of pixel intensities. Therefore, direct compression 

of CFA image using JPEG-LS results in an inferior compression performance.  

There are several solutions to this issue and few of them already discussed in Chapter 1. Structure 

separation and rearrangement are the most popular modifications applied in the prior compression 

algorithm.  
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Figure 2-11: Block diagram JPEG-LS 

 

 

2.9.2 JPEG-2K 

The fundamental building blocks of a typical JPEG2000 encoder are shown in Figure 2-12 [22]. 

These components include pre-processing, DWT, quantization, arithmetic coding (tier-1 coding), 

and bit stream organization. The input image to JPEG2000 may contain one or more components. 

Although a typical color image would have three components (e.g., RGB or YCbCr), up to 16 384 

(214) components can be specified for an input image to accommodate multi-spectral or other 

types of imagery. 
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Figure 2-12: JPEG-2000 Block diagram 

 

2.9.3 LCMI: Lossless compression of mosaic image 

LCMI is focused on spectral de-correlation of spatially interleaved R, G, B samples [15]. It can 

remove the statistical redundancies in both spectral and spatial domains. LCMI uses wavelet 
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decomposition scheme, called Mallat wavelet packet transform for the de-correlation of the mosaic 

data. The coefficient of Mallat wavelet packet transform is compressed using adaptive Golomb 

rice coding technique.  

LL

LH HH

HL

 

Figure 2-13: Efficiency of representing Bayer pattern mosaic image in wavelet domain 

 

The wavelet Bayer pattern is shown in Figure 2-13. The Green channel is compressed by de-

interleaved transformation which is lossless. Red and Blue channels are sampled with JPEG-LS. 

Fast context based coefficient coding is applied to compress the integer wavelet coefficient. The 

performance of LCMI is compared with JPEG-LS and JPEG-2000. This codec outperforms the 

JPEG-LS and JPEG-2000 in both bit rate and speed. But now several existing methods outperform 

the LCMI.   

 

2.9.4 CMBP compression 

CMBP compression algorithm is focused on efficient prediction of neighbor pixel [9]. It exploits 

a context matching technique to rank the neighboring pixels. It has an adaptive color difference  
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Figure 2-14: Block Diagram of CMBP compression algorithm (a) Compression (b) De-

compression 

 

estimator to remove the color spectral redundancy for the red and blue pixels. The block diagram 

of CMBP compression is shown in Figure 2-14. The image data is encoded by adaptive Golomb 

rice code. The divisor of the Rice code is adjusted with the sample residue value of the pixels. The 

compression algorithm outperforms the JPEG-LS, JPEG-2000 and LCMI. The complexity of the 

context matching is higher than the other algorithm. The proposed algorithm is compared with 

CMBP. 

 

2.9.5 HP: Hierarchical prediction 

Hierarchical prediction and context modeling performs best in the state of the art [3]. It consists of 

hierarchical predictor and context adaptive arithmetic encoder. The block diagram of hierarchical 

prediction model is shown in Figure 2-15. In hierarchical prediction, the Bayer CFA image is sub-

sampled with two green, blue and red sub images. One green sub image is encoded by a 
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conventional grayscale encoder and then is used to predict the green pixels in the one. Both green 

sets are used to predict the reds. Then green and red pixels are used to predict the blue. The 

predicted values are used to find the magnitude of the prediction error. To further reduce the results 

bits, arithmetic adaptive encoding is applied. It performs better than the previously published 

works. 
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Figure 2-15: Block diagram of Hierarchical Prediction Model 
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Chapter 3 PROPOSED COMPRESSION DESIGN 

Image compression is the key component of image processing, and in the digital world, image 

compression is receiving increasing attention. Several criteria must be fulfilled in order to design 

an efficient image compressor. Bandwidth and power are the key constraints for compression 

design and implementation. The proposed compression algorithms are realized with two new color 

transformations: YCMCECF and YCDCMCO. Proposed algorithm 1 is developed with YCMCECF 

color transformation and proposed algorithm 2 is using YCDCMCO color transformation. The 

proposed algorithm block diagram is shown in Figure 3-1. 

 

Bayer 
Image

G

DPCM 
Prediction

Color 
Transform

R

B

G

Y

CM

CE

CF

Bit Stream

Unary 
Code

Adaptive 
Golomb 

Rice Code

 

Figure 3-1: Block diagram of the proposed algorithm. 

 

3.1 Four channel color transformation 

A color transformation is performed to improve the capability of an image compression design. 

Well-developed color transformation provides a good image compression. CFA image 

compression needs color transformation to be efficient [3], [4]. Therefore, the proposed 

compression design introduces YCMCECF and YCDCMCO color transformations. 

 

The motivation for color transformation is the correlation between the Bayer RGB color 

components, standard deviation and entropy in each component. A significant inter color 

redundancy exists between the color components in CFA images. In most of the designs, the error 

signals generated by the individual processing of color components using a prediction model 

remove the intra-color redundancy. These error signals still generate significant inter-color 
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redundancy. The average value of the correlation for different color transformation is shown in 

Table 3-1, using the KODAK, D90, Olympus-EP1, and real CFA data sets. The correlation 

coefficient shows that significant spectral redundancy exists in Bayer RGB color transformation. 

The correlation result shows that the color transformation removes the spectral redundancy where 

YDgCoCg performs better. On the other hand, the performance of prediction based image 

compression depends on the variance of error signals [49]. The independent encoding of the color 

component depends on the smoothness. Smooth color components give only small error variance 

and can be coded with fewer bits. Therefore, each component’s standard deviation and entropy is 

analyzed to obtain efficient color transformation. 

 

Table 3-1: Average value of correlation coefficient 

 GrRBGb YCbCr YDgCoCg YLMN YCMCECF YCDCMCO 

Correlation 0.8459 0.4068 0.1717 0.3556 0.3962 0.2553 
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Figure 3-2 shows the intensity value for each color component of Bayer RGB color space. The 

luminance component Y is the average of all the Bayer RGB components. The chrominance 

information can be generated as smoothly as possible from the difference between Bayer RGB 

color components. The luminance component stores mostly the information for green components; 
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therefore, we generate the CE component by differentiating the average of green components from 

the luminance component. CF stores the difference between luminance and blue information. 

 

 

(a) Gr 

 

(b) R 

 

(c) B 

 

(d) Gb 

Figure 3-2: Dynamic range of intensity of Bayer CFA components (a-d) as Gr, R, B and Gb 

respectively. 

 

The correlation between Gr and R is 0.9157, which is the maximum among the other correlation 

coefficients, hence, the difference between them is stored in the CM component. The correlation 

between CE and CF is high compared to correlation between CM and CF or CM and CF. On the other 

hand, the CO and CD components store the orange chrominance information which is the difference 

between the information for green components. The YCDCMCO color transformation is better for 



28 

 

spectral redundancy. The following section describes in detail the evaluation of each color 

component.  

 

3.1.1 YCMCECF color transformation 

The YCMCECF color transformation is adapted from the YEF color space which is a three-channel 

color space for the RGB full color image [25]. The proposed color space is a four-channel color 

space for Bayer color images. The YEF color space is suitable for WCE (wireless capsule 

endoscopic) image compression [26]. In WCE images, the pixel to pixel correlation is higher. In 

the Bayer images, each pixel contains single color information from RGB color space. If the green 

pixel is recorded, then the other two will be interpolated from the neighbor’s pixel value.  
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The color transformation is realized with Eqn. 3.1. The reversible matrix is shown in Eqn. 3.2, and 

the color components are shown in Figure 3-3. As can be seen, the color components in the Bayer 

images have higher correlation among Bayer RGB components. The motivation for the work is to 

develop a color space that will contain the lowest correlation among the color components. As a 

result, this proposed color space will provide the best compression for the Bayer color images. 
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(a) Y 

 

(b) CM 

 

(c) CE 

 

(d) CF 

Figure 3-3: The YCDCMCO color components of CFA image 

 

3.1.2 YCDCMCO color transformation 

As color transformation is a key feature of the compression algorithm [4] – [13], the proposed 

color transformation is extended using the better correlation among the Bayer color components. 

A different combination of components has been used for developing a four-channel color 

transformation such as R and Gb, Gr and B, (Gr + B) and (Gr + R). But comparison of the entropy, 

standard deviation and the overall compression shows that the proposed YCDCMCO color 

transformation is efficient. The comparison is shown in Table I. The YCDCMCO color 

transformation uses Eqn. 3.3 for the transformation and the reverse matrix of the YCDCMCO color 

transformation is show in Eqn. 3.4. 
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The color components of YCDCMCO are shown in Figure 3-4. 

 

 

(a) Y 

 

(b) CD 

 

(c) CM 

 

(d) CO 

Figure 3-4: The color components of YCDCMCO for CFA image 

 

3.1.3 Feature evaluation of color components parameter 

The evaluation of the above two-color transformation is measured based on each channel. The 

Bayer image contains the 2 x 2 macro block four-channel components known as Gr, R, B and Gb. 

The four components of the Bayer image are transformed into Y, CM, CE, CF and Y, CD, CM, CO 

color components. The reversible color transformation can be achieved using their reversible 

matrix. Each channel feature has been extracted for the comparison. The dynamic intensity 
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difference among the components defines the compression capabilities. Standard deviation and 

entropy of the components contributes to the compression design. Therefore, the dynamic 

intensity, correlation, standard deviation and entropy of the color components are analyzed to 

develop the color transformations.  

 

3.1.3.1 Dynamic intensity of color components 

The intensity of the color components is the visual assessment of the correlation among the 

components. The dynamic intensity range of the Bayer color image components is measured to  
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(c) CE 

 

(d) CF 

Figure 3-5: Dynamic intensity range of proposed color transformation components of YCMCECF. 
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find the correlation among the components. The dynamic range of the intensity of the Bayer four-

color components are shown in Figure 3-2.  

 

Among the Bayer color components, the data samples produced by the CFA are strongly 

correlated. The Bayer color components need a de-correlated transformation that will give data 

compaction and an efficient image compression. The proposed color transformation maps a set of 

original {Gr, R, B, Gb} values into one approximate luminance value and three new kinds of 

chrominance channels: {Y, CM, CE, CF} and {Y, CD, CM, CO}. The de-correlation can be visually 

detected from their intensity plot. The intensity of the proposed color components is shown in 

Figure 3-5 (a-d) and Figure 3-6 (a-d) for YCMCECF and YCDCMCO color transformation 

respectively. 

 

Figure 3-5 and Figure 3-6 show that, the dynamic range of intensity of the proposed color spaces 

is flat and the sample data are less correlated than the Bayer components. Each channel provides 

a dynamic range of intensity values. 

 

 

(a) Y 

 

(b) CD 
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(c) CM 

 

(d) CO 

Figure 3-6: Dynamic intensity of proposed color transformation components of YCDCMCO. 

 

The components are flat, which indicates that the compression quality of the design will be high. 

Maximum information is preserved in the luminance component, whereas the other three 

chrominance components contain less information. The motivation for the color transformation 

comes from the fact that the Bayer image exhibits a similar intensity distribution for this color 

transformation which becomes suitable for an efficient compression algorithm.  

 

3.1.3.2 Correlation comparison 

The correlation is measured to find the redundancy among the color components. The redundancy 

can be estimated using the following correlation Eqn. 3.5. 
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Where N, the number of image samples and X, Y color components. The average correlation value 

of the Bayer color components is shown in the Figure 3-7 along with the proposed methods.  
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Figure 3-7: Average correlation value among the components of different color space for CFA 

datasets. 

 

Bayer color components show an average correlation of 0.85 among the components where the 

proposed methods 1 and 2 give a correlation value of 0.3962 and 0.2553, respectively, among the 

components. The minimum correlation value provides the maximum compression in the design. 

The proposed color transformation provides a small correlation value, which will provide 

maximum compression.  

 

3.1.3.3 Standard deviation comparison 

The standard deviation of the proposed methods is calculated for the KODAK, Standard images, 

D90, real CFA and Olympus E-P1 datasets. It is a widely used parameter for the evaluation of the 

color transformation in terms of performance.  
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Table 3-2: Average standard deviation for different Bayer CFA datasets 

Color-space 
 

Standard deviation 
 

kodak D90 Standard real_CFA E-P1 

GrRBGb G 49.71 54.55 50.47 72.78 51.24 

R 48.60 54.55 44.87 72.89 57.59 

B 47.23 63.42 46.08 79.12 48.86 

G 50.14 54.56 50.09 72.54 51.24 

Y1Y2CbCr Y1 45.88 53.97 43.29 73.38 48.45 

Y2 46.12 53.97 43.24 73.26 48.45 

Cb 11.28 11.80 13.29 10.54 14.23 

Cr 12.67 12.02 18.25 7.63 17.61 

YDgCoCg Y 45.69 53.92 42.88 73.24 48.38 

Dg 20.17 8.50 21.80 13.19 9.46 

Co 36.50 41.77 48.18 27.27 37.82 

Cg 15.77 10.87 21.18 12.28 25.27 

YLMN Y 45.69 53.92 42.88 73.24 48.38 

L 22.14 21.56 27.49 15.05 19.69 

M 26.61 24.37 38.03 16.78 35.60 

N 23.97 23.92 26.92 22.26 28.87 

YCMCECF Y 45.69 53.92 42.88 73.24 48.38 

CM 3.38 3.10 4.79 2.14 4.49 

CE 3.95 2.73 5.30 3.08 6.33 

CF 6.90 7.91 8.70 5.84 7.39 

YCDCMCO Y 45.69 53.92 42.88 73.24 48.38 

CD 2.57 1.12 2.75 1.70 1.23 

CM 3.38 1.12 4.79 2.14 4.49 

CO 4.60 5.26 6.06 3.45 4.75 

 

The color transformation performance is also measured from the standard deviation and entropy 

of the color components. Lower value of the standard deviation and entropy gives good 

compression. Table 3-2 shows that the standard deviation for the proposed method provides the 

lowest value and the lowest value of each component is bold in the table. The Bayer color 

components has average standard deviation of 48.92, whereas the proposed methods 1 and 2 give 
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an average standard deviation of 14.98 and 14.06, respectively. The estimation of standard 

deviation shows that the proposed color spaces will provide good compression. 

 

3.1.3.4 Entropy comparison 

 

Table 3-3: Comparison of entropy of different color transformation of CFA images 

Color-space 
  Entropy 

  kodak D90 Standard real_CFA E-P1 

GrRBGb 

Gr 7.11 7.41 6.74 6.74 7.11 

R 7.11 7.42 6.74 6.79 7.36 

B 7.11 7.24 6.62 6.27 6.9 

Gb 7.12 7.41 6.73 6.74 7.11 

Y1Y2CbCr 

Y1 7.12 7.38 6.94 6.37 6.69 

Y2 7.13 7.38 6.93 6.37 6.69 

Cb 1.26 1.45 2.99 4.11 3.1 

Cr 3.38 3.82 4 3.58 5.38 

YDgCoCg 

Y 7.11 7.38 6.92 6.9 7.1 

Dg 2.95 2.38 3.1 2.52 2.53 

Co 5.48 5.34 5.01 2.07 6.26 

Cg 3.93 3.32 2.45 0.33 3.11 

YLMN 

Y 7.11 7.38 6.92 6.9 7.1 

L 4.81 4.71 4.45 2.06 5.42 

M 3.93 4.48 4.64 4.52 5.17 

N 5.15 4.78 3.54 0.62 4.78 

YCMCECF 

Y 7.11 7.38 6.92 6.9 7.1 

CM 1.54 1.24 1.33 0.56 0.93 

CE 1.42 1.35 2.8 3.23 2.19 

CF 3.78 3.67 3.24 0.98 4.01 

YCDCMCO 

Y 7.11 7.38 6.92 6.9 7.1 

CD 1.48 0.88 1.48 1.19 0.93 

CM 1.54 1.24 1.33 0.56 0.93 

CO 3.17 3.17 2.99 1.19 3.55 
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The luminance component Y has the similar entropy value of Bayer RGB components which 

indicates that the compression of this component will be like the other Bayer color components. 

The entropy values of the proposed YCMCECF and YCDCMCO color components are tabulated in 

Table 3-3 and the lowest value of each component is bold in the table.  

 

For the three chrominance components, the entropy value is less than it is for the other color 

components; hence, it takes less bits per pixel compares to the other components. The proposed 

methods outperform the other color components. The performance parameters of color 

transformation give good results for the proposed work in the state of the arts. The dynamic 

intensity, correlation value, entropy and the standard deviation show that proposed color 

transformations outperform the existing color transformation for compression algorithms. 

 

3.1.4 Prediction gain comparison 

The compression performance depends on the prediction model, as the accuracy of the prediction 

should be high. In previous work, several complex prediction models were used, such as template 

matching, hierarchical prediction [3], and context matching [6] in lossless CFA image 

compression. The disadvantages of these models are a higher memory requirement and 

computational complexity. Therefore, it is convenient to use a simple prediction model to increase 

the coding performance of the compression algorithm.  

 

The simple delta pulse coded modulation (DPCM) prediction model shows better performance in 

terms of computational complexity and lossless compression design in smooth images [19]. The 

comparison of the prediction model with different color transformation is shown in Figure 3-8. 

The proposed two-color transformations give the highest prediction gain in comparison with other 

widely used color transformations. This result signifies that the proposed color transformations 

will be efficient for the compression design with a DPCM prediction model. 
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Figure 3-8: Prediction gain comparison with different color spaces 

 

3.1.5 Lossless color transformation 

Color transformation needs to be fully reversible for lossless image compression [27]. The 

proposed color transformations can be made fully reversible by adding extra bits in the fraction 

parts along with integer 8 bits. Table 3-4 shows that each extra bit in the fraction parts gives better 

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity) index. Three extra bits in the 

fractional part makes the color transformation fully reversible.  

 

The hardware implementation will cost an extra three bits for making the proposed color 

transformation lossless. In terms of the compression performance, the proposed color 

transformations are developed as lossless in this work. Therefore, the proposed compression 

algorithm becomes a lossless compression design. 
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Table 3-4: Average image quality index with different bit length for KODAK Dataset 

Number of bits 

+ fractional part 

YCMCECF YCDCMCO 

Overall 

PSNR 

SSIM Overall 

PSNR 

SSIM 

8+0 41.15 0.9737 42.92 0.9819 

8+1 46.96 0.9921 47.96 0.9943 

8+2 52.37 0.9977 52.82 0.9980 

8+3 Inf 1.0000 Inf 1.0000 

 

3.2 Structure separation 

Structure separation is necessary for the Bayer color filter array images. The prediction is made 

from the neighbouring pixels, but the Bayer pattern does not contain the same color information 

at the neighbouring pixel. To obtain the same color components for the prediction, structure 

separation is necessary. 

 

3.2.1 YCMCECF component structure separation 

The input CFA image contains four color components {Gr, R, B, Gb} in each 2 x 2 macro block of 

CFA data. The structural separation is a necessary step for the compression algorithm because the 

compression-first of the CFA image is not efficient [13]. It has high artificial frequencies for the 

mosaic arrangement of the Bayer color pixels. 
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Figure 3-9: The structure separation from Bayer color transformations to the proposed YCMCECF 

color transformation. 
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As the CFA image is down sampled into four separate color channels, the proposed DPCM module 

was applied to each color component separately and, the structure separation was achieved by 

shifting G to the left and R and B to the right of the frame. The structural separation is shown in 

Figure 3-9 for the YCMCECF color transformation. The structural separation will give smooth data 

to be sampled by the DPCM module. 

 

3.2.2 YCDCMCO component structure separation 

The YCDCMCO color transformation is also processed with structure separation. Figure 3-10 

shows the different components of YCDCMCO color transform after structure separation. 
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Figure 3-10: The structure separation from Bayer color transformation to YCDCMCO color 

transformation 

 

3.3 Prediction model 

In the proposed compression design, the DPCM module was applied in a different order. Eqn. 3.6 

makes the prediction for all the columns except for the first column. To minimize the prediction 

error for the first column, Eqn. 3.7 is used to predict the error. Then the DPCM module sends the 

data to the encoder module. 

 

( , ) ( , ) ( , 1)dX i j X i j X i j                 (3.6) 

 

(1, ) (1, ) (1, 1)dX i X j X j                  (3.7) 
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The proposed color transformation provides de-interleaved sub images, which encode 

independently and give the optimal compression for the CFA images. 

 

2*M dX        (3.8) 

 

2* ( ) 1M abs dX                         (3.9) 

 

The prediction model is complex in HP [3], CMBP [9] and LCMI [15]. The proposed algorithm 

shows a better result with a simple modified prediction model. Therefore, the complexity is 

compared with the existing simple prediction models such as median edge prediction model 1 and 

2, YLMN [13], and so on.  

 

Table 3-5: Number of operations per pixel required for various prediction model 

Prediction Model ADD SHIFT CMP Total MEM 

MEP1 2 0 7 9 2 x Width 

MEP2 3 1 4 8 2 x Width 

DPCM 1 0 0 1 0 

YLMN 2.5 0 0 2.5 ½ x Width 

YCMCECF 2.5 1.5 0 4.0 1 x Width 

YCDCMCO 1.5 1 0 2.5 1 x Width 

 

The computational complexity is compared in Table 3-5 for the prediction model of the color 

transformations of YCMCECF and YCDCMCO. The proposed method offers the best result in 

comparison to the other methods, except for YLMN. DPCM hardware for color transformation 

requires 4 and 2.5 operation per pixel for YCMCECF and YCDCMCO respectively which is 

acceptable in consideration of complexity and compression results. 
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3.4 Encoding 

The adaptive Golomb rice encoding method is used in the proposed compression algorithm. Other 

encoding methods such as Huffman coding, LZW requires extra memory. In [50], LZW needs to 

build content addressable memory and store the coder dictionary [51]. In [52], Huffman coding is 

used for compression algorithm. Huffman table requires memory to implement the Huffman 

coding [53]. A DPCM and Wavelet based compression algorithm is discussed in [54]. It requires 

pixels in blocks which causes memory and Wavelet transform is computationally expensive. 

Proposed compression algorithm is built to minimize the complexity and lower the implementation 

cost. Considering the low complexity and low power design, Unary coding, Golomb Rice or 

adaptive Golomb Rice does not require any memory. Therefore, the performance of Unary 

encoding, Golomb rice coding and adaptive Golomb Rice coding has been evaluated with sample 

KODAK images, to minimize the design cost. 

 

3.4.1 Unary coding 

 

Table 3-6: Bit rate of proposed compression algorithm using Unary coding for each color 

component of YCDCMCO color transformation in BPP. 

Kodak Y CD CM CO Avg. 

1 16.31 5.80 5.75 6.31 8.54 

2 8.54 2.67 2.98 3.37 4.39 

3 7.39 2.17 2.41 2.80 3.69 

4 10.36 3.17 3.16 3.22 4.98 

5 17.73 6.04 6.04 6.56 9.09 

6 11.78 4.33 3.61 4.22 5.98 

7 9.21 2.77 2.70 2.85 4.38 

8 17.75 8.17 7.51 7.80 10.31 

9 9.04 3.12 2.98 3.15 4.57 

10 9.74 3.11 2.98 3.20 4.76 

Avg. 11.79 4.13 4.01 4.35 6.07 
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Unary coding is considered as representative of the natural number [46]. It represents the value as 

the number of 1s followed by a zero. The performance of the unary coding is shown in Table 3-6. 

Unary coding is special in the case of Golomb rice coding.  

 

Therefore, the proposed algorithm is also realized with Golomb rice coding which performs better 

than Unary coding. The value of k in the Golomb rice coding is set to 0 to obtain the Unary coding 

from the Golomb rice coding. 

 

3.4.2 Golomb Rice coding 

Golomb rice coding is a lossless data compression encoding method. The algorithm needs a 

constant of the power of 2 such as (2k) [48]. The Golomb rice code can be measured using Eqn. 

3.10 and 3.11. 

_
2k

M
quotient code                                             (3.10) 

_ _ 1code stream quotient code k                    (3.11) 

 

The pseudo code for the Golomb rice codes is described below. 

 

Golomb rice pseudo code: 

1. Select the value of k i.e. k = 2. 

2. For M, the number to be encoded 

a. Quotient = q = int[M/2k] 

b. Remainder = r = M modulo 2k 

3. Generate Code 

a. Code format: <Quotient Code> <Remainder Code> 

b. Quotient coded as unary code (q length string of 1 bits) and a 0 bit 

c. k bits are needed for remainder. 
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The proposed compression algorithm is realized with Golomb rice coding for YCDCMCO color 

transformation. The constant value of k is selected for 2. The compression bit rate is shown in 

Table 3-7. The compression bit rate is calculated for 10 sample CFA images. A further analysis of 

the encoding method is exercised to obtain the optimum encoding. Therefore, the adaptive Golomb 

rice is also evaluated in the proposed compression algorithm. Adaptive Golomb rice coding out-

performs the unary and Golomb rice coding for the proposed compression algorithm. 

 

Table 3-7: proposed compression algorithm using Golomb Rice Coding for each color 

component of YCDCMCO color transformation in BPP  

KODAK Y CD CM CO Avg. 

1 8.38 3.92 3.91 4.03 5.06 

2 4.87 3.22 3.27 3.35 3.68 

3 4.78 3.15 3.18 3.27 3.59 

4 5.60 3.32 3.31 3.32 3.89 

5 9.73 3.98 3.98 4.12 5.45 

6 6.18 3.59 3.42 3.55 4.18 

7 5.67 3.28 3.25 3.28 3.87 

8 10.79 4.59 4.41 4.45 6.06 

9 5.47 3.32 3.28 3.32 3.85 

10 5.71 3.31 3.28 3.34 3.91 

Avg. 6.72 3.57 3.53 3.6 4.35 

 

3.4.3 Adaptive Golomb Rice coding 

The encoder is based on the adaptive Golomb rice coding and unary coding. The energy of the 

residual signal is reduced by the proposed color transformation as well as by the DPCM prediction 

model which consider both the intra-spectral and inter-spectral redundancy. The JPEG_LS 

algorithm used adaptive Golomb rice coding [49], which is the same as the proposed encoding 

method. The proposed color components contain different characteristics and statistical properties. 

Therefore, each component is encoded separately using a single context.  
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A DPCM prediction model provides the residual signal which is mapped using the Eqn. 3.8 and 

3.9, respectively, for the positive and negative values. The mapping is necessary for the adaptive 

Golomb rice coding and unary coding which work for positive numbers only. Eqn. 3.8 and Eqn. 

3.9 provide positive value to the encoder input. Then the mapped residual is represented with a 

unary coding of the quotient, with Eqn. 3.10 as the prefix and with Eqn. 3.11 as the fixed length 

coding of the remainder. The parameter k is continuously updated based on the statistics of the 

signal by counting the number of occurrences (Nc) and accumulated errors (Ac). An optimum 

threshold value (NThreshold= 8) is used in the algorithm, which limits to the Nc and Ac by half of 

their current value. The resulted encoded bit stream is sent to the transmission line.  

The parameter k is updated with the following pseudo code. 

 

3.5 Compression result 

The proposed algorithm exercises the adaptive Golomb rice coding on both the YCMCECF and 

YCDCMCO color transformations for KODAK, D90, real CFA, Olympus-EP1. The compression 

results for KODAK, D90, real CFA, and Olympus-EP1 datasets are shown in Table 3-11, Table 

3-8, Table 3-9, and Table 3-10 respectively.  

 

k  0 

While Nc x 2k ≥ Ac  

 k  k + 1 

Update parameter Nc and Ac 

Nc  Nc + 1 

Ac  Ac + abs(M) 

If Nc > Nthreshold 

 Nc  Nc/2 

 Ac  Ac/2 
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Table 3-8: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for Kodak dataset in BPP. 

KODADK Y CM CE CF Avg. Y CD CM CO Avg. 

1 6.53 4.27 4.03 5.07 4.97 6.53 4.30 4.27 4.43 4.88 

2 5.03 2.81 2.79 3.73 3.59 5.03 2.53 2.81 3.09 3.36 

3 4.55 2.27 2.40 3.04 3.06 4.55 2.08 2.27 2.48 2.84 

4 5.30 2.81 2.90 3.53 3.63 5.30 2.82 2.81 2.88 3.45 

5 6.89 4.26 4.22 5.14 5.13 6.89 4.29 4.26 4.44 4.97 

6 5.32 3.00 3.33 4.01 3.91 5.32 3.32 3.00 3.35 3.74 

7 5.14 2.46 2.49 3.20 3.32 5.14 2.45 2.46 2.57 3.16 

8 7.00 4.50 4.06 5.28 5.21 7.00 4.71 4.50 4.62 5.21 

9 4.88 2.62 2.59 3.39 3.37 4.88 2.68 2.62 2.72 3.22 

10 5.20 2.66 2.60 3.53 3.50 5.20 2.75 2.66 2.80 3.35 

11 5.45 3.11 3.11 4.03 3.92 5.45 3.24 3.11 3.27 3.77 

12 4.65 2.38 2.51 3.24 3.19 4.65 2.39 2.38 2.56 2.99 

13 6.78 4.52 4.75 5.34 5.35 6.78 4.70 4.52 4.67 5.17 

14 6.12 3.45 3.63 4.52 4.43 6.12 3.67 3.45 3.78 4.25 

15 5.16 2.87 2.92 3.53 3.62 5.16 2.75 2.87 2.93 3.43 

16 4.71 2.42 2.68 3.36 3.29 4.71 2.62 2.42 2.71 3.12 

17 5.49 2.74 2.73 3.55 3.63 5.49 2.78 2.74 2.80 3.45 

18 6.14 3.71 3.84 4.53 4.55 6.14 3.81 3.71 3.78 4.36 

19 5.69 3.18 3.14 3.91 3.98 5.69 3.26 3.18 3.24 3.84 

20 4.20 2.36 2.62 3.33 3.13 4.20 2.42 2.36 2.66 2.91 

21 5.09 2.95 3.16 3.78 3.74 5.09 3.08 2.95 3.11 3.56 

22 5.76 3.34 3.32 4.19 4.15 5.76 3.35 3.34 3.41 3.96 

23 4.69 2.27 2.48 3.06 3.13 4.69 2.08 2.27 2.42 2.86 

24 6.31 3.72 3.50 4.51 4.51 6.31 3.84 3.72 3.77 4.41 

Avg. 5.50 3.11 3.16 3.95 3.93 5.50 3.16 3.11 3.27 3.76 
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Table 3-9: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for Olympus-EP1 dataset in BPP. 

E-P1  Y CM CE CF Avg. Y CD CM CO Avg. 

1 6.19 2.87 2.77 3.73 3.89 6.19 2.97 2.87 2.95 3.75 

2 5.91 2.50 2.14 3.21 3.44 5.91 2.55 2.50 2.62 3.40 

3 6.19 2.88 3.17 3.75 4.00 6.19 2.79 2.88 2.86 3.68 

4 5.85 2.66 2.99 3.43 3.73 5.85 2.49 2.66 2.58 3.40 

5 4.75 1.96 2.12 2.37 2.80 4.75 1.61 1.96 1.97 2.57 

6 6.06 2.71 2.61 3.50 3.72 6.06 2.98 2.71 2.68 3.61 

7 4.50 1.77 2.10 2.23 2.65 4.50 1.56 1.77 1.69 2.38 

8 6.78 3.70 3.55 4.50 4.63 6.78 3.90 3.70 3.74 4.53 

9 5.84 2.25 2.32 3.08 3.37 5.84 2.07 2.25 2.38 3.14 

10 5.87 2.66 2.29 3.41 3.56 5.87 2.85 2.66 2.70 3.52 

11 4.47 2.14 1.94 2.70 2.81 4.47 2.19 2.14 2.20 2.75 

12 3.40 1.75 1.60 2.13 2.22 3.40 1.61 1.75 1.78 2.13 

13 5.42 2.47 2.40 3.44 3.43 5.42 2.65 2.47 2.61 3.29 

14 5.35 2.44 2.22 3.34 3.34 5.35 2.51 2.44 2.59 3.22 

15 5.16 2.35 2.15 3.21 3.22 5.16 2.44 2.35 2.42 3.09 

16 5.40 2.33 2.30 3.36 3.35 5.40 2.46 2.33 2.49 3.17 

17 3.92 1.76 1.81 2.11 2.40 3.92 1.42 1.76 1.81 2.23 

18 4.23 2.00 2.03 2.33 2.65 4.23 1.59 2.00 2.03 2.46 

19 3.31 1.52 1.51 1.94 2.07 3.31 1.32 1.52 1.60 1.94 

20 3.70 1.68 1.60 2.09 2.27 3.70 1.48 1.68 1.74 2.15 

21 2.98 1.49 1.46 1.74 1.92 2.98 1.20 1.49 1.48 1.79 

22 3.56 1.69 1.59 2.07 2.23 3.56 1.42 1.69 1.66 2.08 

23 4.82 2.20 2.07 2.92 3.00 4.82 2.04 2.20 2.40 2.87 

24 4.09 1.85 1.85 2.29 2.52 4.09 1.64 1.85 1.91 2.37 

Avg. 4.91 2.23 2.19 2.87 3.05 4.91 2.16 2.23 2.29 2.90 
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Table 3-10: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for real CFA dataset in BPP. 

 Real 

CFA Y CM CE CF Avg. Y CD CM CO Avg. 

1 5.81 3.06 3.41 4.23 4.13 5.81 3.17 3.06 3.49 3.88 

2 5.80 3.18 3.51 4.25 4.18 5.80 3.30 3.18 3.55 3.96 

3 5.69 3.12 3.44 4.18 4.11 5.69 3.19 3.12 3.51 3.88 

4 4.94 2.34 2.58 3.38 3.31 4.94 2.34 2.34 2.60 3.05 

5 4.80 2.25 2.52 3.28 3.21 4.80 2.26 2.25 2.52 2.96 

6 4.95 2.61 2.87 3.16 3.40 4.95 2.76 2.61 2.44 3.19 

7 4.04 1.94 2.20 2.82 2.75 4.04 1.93 1.94 2.15 2.52 

8 3.96 1.90 2.15 2.77 2.69 3.96 1.90 1.90 2.10 2.47 

9 5.29 2.80 3.03 3.76 3.72 5.29 2.83 2.80 3.08 3.50 

10 5.28 2.79 3.03 3.75 3.71 5.28 2.83 2.79 3.08 3.49 

11 4.33 2.05 2.31 2.95 2.91 4.33 2.09 2.05 2.32 2.70 

12 4.30 2.03 2.30 2.93 2.89 4.30 2.07 2.03 2.31 2.68 

13 4.28 2.03 2.26 2.95 2.88 4.28 2.04 2.03 2.30 2.66 

14 4.56 2.24 2.50 3.23 3.13 4.56 2.28 2.24 2.56 2.91 

Avg. 4.86 2.45 2.72 3.40 3.36 4.86 2.50 2.45 2.72 3.13 

 

Table 3-11: Bit rate of proposed compression algorithm for YCMCECF and YCDCMCO color 

transformations for D90 dataset in BPP. 

 D90 Y CM CE CF Avg. Y CD CM CO Avg. 

1 4.65 1.78 1.77 2.65 2.71 4.65 1.60 1.78 2.03 2.51 

2 6.38 3.02 2.91 4.08 4.10 6.38 3.21 3.02 3.30 3.98 

3 4.58 2.11 1.98 2.88 2.89 4.58 1.98 2.11 2.37 2.76 

4 3.28 1.50 1.58 1.69 2.01 3.28 1.62 1.50 1.38 1.95 

5 4.48 1.95 1.83 2.43 2.67 4.48 2.04 1.95 1.97 2.61 

6 3.09 1.46 1.48 2.04 2.02 3.09 1.33 1.46 1.64 1.88 

Avg. 4.41 1.97 1.92 2.63 2.73 4.41 1.96 1.97 2.12 2.62 
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3.6 Summary 

The proposed color transformations show efficient features for the compression algorithm. The 

compression bit rate is measured at 3.05 bpp and 2.90 bpp for the Olympus-EP1 dataset for 

YCMCECF and YCDCMCO compression algorithms, respectively. The bit rate for kodak data set is 

3.93 bpp and 3.76 bpp, for real CFA 3.36 bpp and 3.13 bpp, and for D90 2.73 bpp and 2.67 bpp 

for the YCMCECF and YCDCMCO compression algorithms, respectively. The proposed 

compression algorithm is also extended for the WCE image features [28] – [39]. The proposed 

color transformations are developed considering the prediction variance. Therefore, a smooth 

image will perform better with the proposed color transformation. The inter pixel correlation of a 

color component is high in the WCE image; therefore, the proposed color transformation gives a 

high compression ratio. The DPCM module is simple, efficient, and has a low implementation 

cost. The encoding run length or arithmetic coding is costly to implement; on the other hand, the 

adaptive Golomb coding is efficient and the cost is low. The proposed compression algorithm is 

developed using all the above features for an efficient compression algorithm for a natural image 

and WCE image. The performance of the proposed compression is evaluated in chapter 4. 
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Chapter 4 PERFORMANCE EVALUATION 

4.1 Introduction 

An image compression technique introduces noise into the reconstructed image [47]; therefore, it 

is important to evaluate the quality of the image. The evaluation can be processed through the 

analysis of the statistical properties of the image [40]. This section describes these statistical 

properties for evaluating the compression algorithm. The objective of the evaluation of the image 

for the compression algorithm is to measure the peak signal to noise ratio (PSNR), compression 

ratio (CR), and structural similarity (SSIM) index. The tradeoffs between the quality and the 

compression ratio depend on the application. In medical applications, the quality of the image 

needs to be high. The proposed algorithm works as near lossless and lossless. A lossless 

compression provides PSNR value as infinity and SSIM index as 1.  

 

4.2 Evaluation parameters 

The evaluation parameters are measured to compare the compression algorithm. The widely used 

parameters are peak signal to noise ratio, the compression ratio, and the structural similarity index. 

The proposed algorithm is near lossless and lossless. The evaluation parameters are measured for 

the near lossless compression. 

4.2.1 Peak signal to noise ratio 

Peak signal to noise ratio (PSNR) is the most popular parameter for the quality measurement of 

the compressed image. The mathematical expression is shown in Eqn. 4.1.  

 

2

1010log
I

PSNR
MSE

                   (4.1) 

 

Where “I” is the intensity level of image pixels, the value of I is in the range of 0 to 255, and MSE 

is the Mean Square Error. The mathematical expression for MSE is in Eqn. 4.2. 

 

 1
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                                                       (4.2) 
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Where, A = Original image of size M × N, 

 B = Reconstructed image of size M × N. 

Figure 4-1 shows the PSNR comparison of near lossless image compression for the proposed 

algorithm YCMCECF.   

 

 

(a) PSNR 41.14 

 

(b) PSNR 46.87 

 

(c) PSNR 52.14 

 

(d) PSNR Inf 

Figure 4-1 Reconstructed image PSNR value with number of extra bit in hardware 0, 1, 2, 3 bits 

in Figure a, b, c, and d respectively, for the proposed algorithm YCMCECF 

 

4.2.2 Compression ratio 

The image compression technique is based on discarding unnecessary and regenerative image 

information from the original image. The measurement of discarded image information is 

necessary to make a good compression algorithm. The performance measurement is made through 

the compression ratio for a design. The compression ratio is a measurement of the reduction of the 

detail coefficient of the data. It can be described as Eqn. 4.3. 
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Discarded data
CR

Original data
                                                       (4.3) 

 

In lossless compression, CR is fixed for a certain image. Although in lossy compression, the CR 

can be varied to obtain a different quality of image. A lossy compression design can discard as 

much as details from the original image to obtain a higher compression ratio. The trade off for the 

high compression ratio is the poor quality of the reconstructed image. In DCT or DWT, the 

quantization table and scaling factor are the controlling parameters of the compression ratio. The 

compression design performance depends on the compression ratio. For lossless compression, it 

is expected to be as high as possible.  

 

4.2.3 Structural similarity index  

The SSIM is based on the assumption that the image signals are highly structured. The neighboring 

pixels are highly correlated. The correlation signifies information about the structure of the image 

in the visual perception [41]. Therefore, the image quality can be achieved from the SSIM 

measurement. The compression can distort the image structure. The reconstructed image can be 

analyzed with the SSIM index defined in Eqn. 4.4 [42] – [43].  
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C C

   

   

 


   
                        (4.4) 

 

Where, 

μA, μB, = mean intensities of original data A and reconstructed data B; 

σA, σB = standard deviation of original data A and reconstructed data B; 

C1, C2 = constant. The standard value of C1 and C2 are 0.01 and 0.03 respectively [42]. 
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(a) SSIM 0.9921 

 

(b) SSIM 0.9979 

 

(c) SSIM 0.9994 

 

(d) SSIM 1 

Figure 4-2 Reconstructed image SSIM index with a number of extra bits in hardware 0, 1, 2, 3 

bits in Figure a, b, c, and d respectively, for the proposed algorithm YCMCECF. 

 

The reconstructed image data can be achieved exactly as the original data for the lossless 

compression. If so, the SSIM index will be 1. The proposed algorithm YCMCECF is shown with 

the SSIM index comparison in Figure 4-2, with the reconstructed image using 0, 1, 2, 3 bits in 

hardware. 

 

4.3 Performance evaluation 

Performance evaluation is computed for the lossless proposed compression design. The proposed 

compression design is applied on the natural image and wireless capsule endoscopic image. In the 

proposed algorithm, the compression design is realized with both YCMCECF and YCDCMCO color 

transformations. The color transformations have been proposed to obtain the highest compression 

from the Bayer CFA images. In most of the research work, the CFA images are generated from 
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the full color images, which are analyzed after processing. The analysis does not provide the actual 

evaluation of the Bayer CFA images. Therefore, the proposed compression also uses the real CFA 

images.  

 

The results are compared with real CFA images and generated CFA images for the proposed 

methods. The performance evaluation of the proposed work has been carried out using the 

MATLAB tool. The standard dataset for the generated CFA images are KODAK (24 sample 

images) [44], Nikon D90 high resolution (6 sample images), and Olympus E-P1 (24 sample 

images). The real CFA images (14 samples) are evaluated in the proposed work. The purpose of 

the performance assessment of the compression algorithm was to measure the compression ratio. 

The high compression ratio is important parameter to save transmission power. 

 

4.3.1 Natural image 

The compression method 1 is developed with the YCMCECF color transformation while the 

YCDCMCO color transformation is used in compression method 2. Method 2 outperforms method 

1 in terms of compression.  The color transformation considering the minimum value of the 

correlation among the components, the standard deviation and entropy of the components and the 

efficient encoding of the prediction model provides the best compression design among the 

recently developed compression algorithms, such as JPEG-LS [21], JPEG2000 [22], LCMI [15], 

CMBP [9], and HP [3].  

 

The kodak is popular dataset for CFA images. Several comparisons have been carried out with the 

kodak dataset. The proposed method is compared with common JPEG-LS, JPEG2000, LCMI, 

CMBP, and HP. With the kodak dataset, the proposed compression method 2 provides 56.91%, 

33.24%, 30.05%, 22.87%, 20.74%, and 4.52% more compression than JPEG-LS, JPEG2000, 

LCMI, CMBP, and HP, respectively. The results, shown in Table 4-1, result shows that the best 

compression can be achieved for the kodak dataset from the proposed method 2 with the YCDCMCO 

color transformation. 
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Table 4-1: Bit rate of different compression algorithms for KODAK dataset in BPP. 

KODA

K 

JPEG-

LS [21] 

JPEG 

2K 

[22] 

LCMI 

[15] 

CMBP 

[9] 

HP 

[3] 

YLM

N [13] 
YCMCECF YCDCMCO 

1 6.40 5.81 5.82 5.48 5.44 6.86 4.97 4.88 

2 6.79 5.13 4.63 4.33 4.27 5.60 3.59 3.36 

3 5.88 4.22 3.97 3.75 3.68 4.95 3.06 2.84 

4 6.68 4.93 4.61 4.38 4.36 5.62 3.63 3.45 

5 6.47 5.95 5.86 5.41 5.34 7.06 5.13 4.97 

6 5.87 5.21 5.14 4.88 4.79 5.84 3.91 3.74 

7 5.97 4.50 4.30 3.96 3.84 5.31 3.32 3.16 

8 6.30 5.90 5.97 5.57 5.51 7.15 5.21 5.21 

9 5.07 4.39 4.32 4.19 4.12 5.41 3.37 3.22 

10 5.40 4.56 4.42 4.23 4.16 5.56 3.50 3.35 

11 5.37 4.99 4.95 4.68 4.63 5.88 3.92 3.77 

12 5.63 4.49 4.31 4.09 4.01 5.19 3.19 2.99 

13 6.75 6.37 6.50 6.14 6.07 7.22 5.35 5.17 

14 6.29 5.56 5.49 5.17 5.10 6.40 4.43 4.25 

15 6.32 4.66 4.40 4.10 3.98 5.56 3.62 3.43 

16 5.29 4.55 4.52 4.38 4.31 5.25 3.29 3.12 

17 4.97 4.55 4.50 4.29 4.23 5.65 3.63 3.45 

18 6.18 5.57 5.54 5.28 5.24 6.50 4.55 4.36 

19 5.47 4.91 4.90 4.71 4.65 5.96 3.98 3.84 

20 4.32 4.03 4.05 3.54 3.19 4.67 3.13 2.91 

21 5.47 5.04 4.98 4.80 4.70 5.74 3.74 3.56 

22 6.19 5.22 5.06 4.85 4.80 6.10 4.15 3.96 

23 6.83 4.53 3.96 3.85 3.76 5.09 3.13 2.86 

24 5.72 5.22 5.26 4.87 4.75 6.49 4.51 4.41 

Avg. 5.90 5.01 4.89 4.62 4.54 5.88 3.93 3.76 
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Table 4-2: Comparison of bit rate of different compression algorithms for Olympus E-P1 dataset 

in BPP 

E-P1 
JPEG-

LS [21] 

JPEG 

2K [22] 

LCMI 

[15] 

CMBP 

[9] 
HP [3] 

YLMN 

[13] 
YCMCECF YCDCMCO 

1 7.25 5.28 4.63 4.39 4.25 5.96 3.89 3.75 

2 5.93 4.61 4.16 4.06 3.89 5.55 3.44 3.40 

3 7.24 5.26 4.58 4.53 4.35 5.97 4.00 3.68 

4 7.24 5.04 4.29 4.24 4.06 5.63 3.73 3.40 

5 7.15 4.58 3.43 3.38 3.17 4.71 2.80 2.57 

6 6.23 4.92 4.53 4.39 4.26 5.89 3.72 3.61 

7 7.32 4.45 3.28 3.32 3.12 4.52 2.65 2.38 

8 7.47 5.73 5.23 5.06 4.93 6.62 4.63 4.53 

9 6.80 4.79 4.00 3.94 3.76 5.42 3.37 3.14 

10 5.93 4.57 4.28 4.19 4.06 5.70 3.56 3.52 

11 5.47 3.96 3.60 3.50 3.35 4.65 2.81 2.75 

12 4.60 3.30 3.04 3.00 2.83 3.88 2.22 2.13 

13 6.85 4.96 4.37 4.38 4.28 5.51 3.43 3.29 

14 6.01 4.52 4.21 4.18 4.08 5.35 3.34 3.22 

15 6.19 4.53 4.14 4.17 4.05 5.31 3.22 3.09 

16 6.94 4.91 4.28 4.19 4.20 5.43 3.35 3.17 

17 6.36 4.10 3.22 3.07 2.89 4.23 2.40 2.23 

18 6.81 4.30 3.48 3.25 3.05 4.50 2.65 2.46 

19 4.74 3.26 2.98 2.93 2.76 3.87 2.07 1.94 

20 5.00 3.42 3.14 3.03 2.85 4.04 2.27 2.15 

21 4.73 3.07 2.79 2.74 2.55 3.51 1.92 1.79 

22 4.59 3.30 3.07 2.97 2.79 4.01 2.23 2.08 

23 4.54 3.91 3.84 3.63 3.46 4.92 3.00 2.87 

24 5.45 3.77 3.37 3.19 2.99 4.35 2.52 2.37 

Avg. 6.12 4.36 3.83 3.74 3.58 4.98 3.05 2.90 
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Table 4-3: Comparison of bit rate of different compression algorithms for REAL CFA images in 

BPP. 

R 

CFA 

JPEG-

LS [21] 

JPEG 

2K [22] 

LCMI 

[15] 

CMBP 

[9] 

HP 

[3] 

YLMN 

[13] 
YCMCECF YCDCMCO 

1 6.42 5.39 5.26 5.00 4.90 6.10 4.13 3.88 

2 6.42 5.49 5.33 5.09 4.99 6.15 4.18 3.96 

3 6.56 5.39 5.23 5.00 4.90 6.07 4.11 3.88 

4 5.54 4.55 4.49 4.26 4.13 5.31 3.31 3.05 

5 5.52 4.45 4.39 4.17 4.04 5.20 3.21 2.96 

6 5.23 4.61 4.55 4.39 4.09 5.37 3.40 3.19 

7 4.81 3.81 3.70 3.61 3.36 4.49 2.75 2.52 

8 4.77 3.72 3.62 3.54 3.28 4.41 2.69 2.47 

9 5.50 4.74 4.71 4.47 4.27 5.53 3.72 3.50 

10 5.56 4.73 4.70 4.46 4.26 5.51 3.71 3.49 

11 4.85 3.97 3.95 3.74 3.53 4.72 2.91 2.70 

12 4.78 3.92 3.91 3.70 3.49 4.68 2.89 2.68 

13 4.61 3.86 3.87 3.68 3.45 4.68 2.88 2.66 

14 4.87 4.11 4.11 3.91 3.69 4.92 3.13 2.91 

Avg. 5.39 4.48 4.42 4.22 4.03 5.23 3.36 3.13 

 

Table 4-4: Comparison of different compression algorithms for the D90 dataset in BPP. 

D 90 
JPEG-

LS [21] 

JPEG 

2K [22] 

LCMI 

[15] 

CMBP 

[9] 
HP [3] 

YLMN 

[13] 
YCMCECF YCDCMCO 

1 4.93 3.95 3.68 3.66 3.54 4.74 2.71 2.51 

2 6.23 5.21 4.95 4.67 4.51 6.19 4.10 3.98 

3 4.87 3.82 3.69 3.52 3.40 4.69 2.89 2.76 

4 5.30 3.50 3.11 3.09 2.93 3.93 2.01 1.95 

5 5.00 3.84 3.49 3.35 3.18 4.45 2.67 2.61 
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6 4.40 3.35 2.94 2.84 2.67 3.45 2.02 1.88 

Avg. 5.12 3.95 3.64 3.52 3.37 4.57 2.73 2.62 

 

The real CFA images are used to evaluate the performance of the compression algorithms. As the 

raw CFA images do not have any pre-or post-processing, the actual compression performance can 

be achieved by comparing with the state of the art methods. Fourteen real CFA images with a 

resolution of 1024 x 768 are used for compression. The proposed method 2 requires the least bits 

per pixel. It uses 72.2%, 43.13%, 41.21%, 34.82%, 28.75% and 7.35% less bits than JPEG-LS, 

JPEG-2K, LCMI, CMBP, HP, and proposed method 1, respectively. The compression result of the 

real CFA images is shown in Table 4-3. The proposed method 2 also outperforms the other 

methods for the real CFA images. The proposed algorithm is compared for NIKON D90 (4288 x 

2848) and OLYMPUS E-P1 (4032 x 3024) high resolution datasets. The proposed algorithm uses 

only 2.62 bits per pixel for the NIKON D90 dataset and 2.90 bits per pixel for the OLYMPUS E-

P1 dataset, which are the lowest bits per pixel in the state of the arts. The results are compared in 

Table 4-4 and Table 4-2 for D90 and E-P1 datasets, respectively. 

 

4.3.2 WCE image 

The proposed algorithm is realized with 20 endoscopic images of different parts of the 

gastrointestinal tract. The original WCE and CFA WCE images are shown in Figure 4-3. The 

performances of different image compression algorithms are compared in Table 4-5.  

 

(a)  

 

(b)  

Figure 4-3: (a) original WCE image and (b) CFA WCE images 
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CFA iamge
Separated each 

component
Full color image

 

Figure 4-4 Simulated CFA image generation 

 

Figure 4-4 shows the process of generating a simulated WCE image from the RGB image. The 

proposed image compression provides two new color transformations for the Bayer CFA image. 

The motivation for the color transformation is to generate fewer correlated color components. On 

the other hand, WCE images have demonstrated inter pixel correlation [30] – [39]. Therefore, the 

proposed color transformations work more efficiently in WCE images. 

 

4.3.2.1 Performance parameters PSNR and SSIM 

 

 

(a) PSNR = 42.63, SSIM = 0.9689 

 

(b) PSNR = 48.50, SSIM = 0.9719 
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(c) PSNR = 54.18, SSIM = 0.9840 

 

(d) PSNR = Inf, SSIM = 1 

Figure 4-5: The WCE image performance of a reconstructed image using 0, 1, 2, and 3 extra bits 

in the hardware a, b, c, and d, respectively. 

 

The compression ratio for the WCE image is high in the state of the art. The performance parameter 

for the proposed near lossless image compression is shown in Figure 4-5. The number of extra bits 

in the hardware design gives better PSNR and SSIM indexes of the reconstructed image. 

 

4.3.2.2 Performance of compression  

The number bits per pixel is compared in Table 9 for lossless image compression. The performance 

of Bayer RGB color space in terms of compression is poor compared to all the other compression 

algorithms. The color components of Bayer RGB are not suitable for compression-first method as 

previously discussed.  

 

The YLMN compression algorithm is efficient in hardware design but it has a lower compression 

ratio than the proposed algorithm. The YDgCoCg compression algorithm performs better than the 

YLMN compression. The proposed YCMCECF and YCDCMCO compression algorithms use only 

2.55 BPP and 2.39 BPP respectively. It is showed that the performance of the proposed algorithms 

is better in the state of the art studies. 
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Table 4-5: Bit rate for different WCE image compression algorithms for KID dataset in BPP. 

  YDgCoCg [16] YLMN [13] YCMCECF YCDCMCO 

1 4.21 4.25 2.62 2.45 

2 4.07 4.13 2.50 2.32 

3 4.06 4.09 2.48 2.33 

4 4.10 4.17 2.53 2.42 

5 4.26 4.29 2.64 2.49 

6 4.26 4.31 2.67 2.50 

7 4.19 4.23 2.60 2.44 

8 4.38 4.41 2.75 2.60 

9 4.04 4.06 2.45 2.30 

10 4.29 4.31 2.71 2.53 

11 3.84 3.88 2.34 2.18 

12 4.03 4.05 2.47 2.29 

13 4.04 4.09 2.50 2.33 

14 3.97 4.02 2.43 2.25 

15 4.10 4.11 2.52 2.36 

16 4.07 4.09 2.48 2.33 

17 3.96 4.00 2.43 2.27 

18 4.14 4.18 2.61 2.40 

19 4.25 4.27 2.64 2.48 

20 4.22 4.26 2.65 2.46 

AVG 4.12 4.16 2.55 2.39 

 

4.4 Summary 

The performance of the proposed compression algorithm has been compared for both the natural 

image and the WCE image. This algorithm outperforms existing compression algorithm in terms 

of compression. The comparison is shown using the popular KODAK, D90, Olympus-EP1, real 

CFA for the natural image and the KID dataset for the WCE image [45]. 
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Chapter 5 HARDWARE IMPLEMENTATION 

5.1 Introduction 

The proposed algorithm is implemented in Verilog HDL language and simulated for functional 

verification. The design is synthesized with TSMC 65 nm CMOS technology. The important 

module of the design contains the color transformation module, prediction module and encoding 

module. The design is implemented in FPGA board. The design is implemented for the 640x640 

resolution, 8 bits per pixel Bayer images. The Block diagram of the hardware architecture is shown 

in Figure 5-1. The design is synthesized in Synopsys EDA tool, Design Compiler. The gate counts, 

area and power consumption are compared in Table 9.  

 

5.2 Hardware architecture 

The image pixels store in a file. Each pixel value is sent to the image compressor for processing. 

Hardware design model consists of six essential modules such as Color transformation module, 

Mux/De-Mux, Memory, Prediction module, Control unit and Encoder. The whole architecture is 

shown in Figure 5-1. 

 

DEMUX
IMG_DATA_BUS

IMG_DCLK

Memory

Color 
Transform

Prediction 
Module

Encoder

MUX
Control Unit

CODE_DATA

VALID

CODE_LEN

8 bit binary coder

 

Figure 5-1: Hardware Architecture of the Compression 

 

5.2.1 Color transformation module 

The color transformation module converts the color plane into the desired color plane. In this work, 

two color conversions are implemented in two different designs. The color conversions are 
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executed using the equations described in section 3.1.2 and 3.1.3. The color components are 

converted from Bayer RGB pixels to YCMCECF and YCDCMCO.  
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CLK DIV
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COUNTER
COLUMN 
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Memory Block
MUX

Memory 
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ADDER/SUBTRACT 
BLOCK

OUTPUT 
DATA
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Figure 5-2: Block diagram of color transformation module 

 

At each clock cycle one pixel is sent to the memory. When the second row of 2x2 block pixel starts 

then it converts the Bayer RGB four components to new color transformation using the pixel from 

the memory. After the execution of first block then it moves to next 2x2 block unit. The block 

diagram of the color transformation module is shown in Figure 5-2. Full image is transformed into 

YCMCECF and YCDCMCO color planes. 

 

5.2.2 Multiplexer/De-Multiplexer 

Multiplexer and de-multiplexer are used before and after the transformation unit. They control the 

access of the pixel entry to the transform unit. Multiplexer decides the pixel position status and 

send it to the right component of the design. If the pixel is in the first row, then it is being stored 

in the memory and if it is in the second row then after getting each odd pixel of the second row it 

executes the transformation. Therefore, the multiplexer is doing all the selection which module 

should be executed according to the pixel position.  
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5.2.3 Memory 

Memory unit is essential part of the design for storing the first row of the image pixels. When it 

starts getting the second row of the image then it passes the 4x4 block to the transformation unit. 

The memory is synthesized in the Synopsys dc_compiler. It also measures the power, frequency 

and area of the design.   

 

5.2.4 Prediction module 

The transformation unit sends the converted pixel value to the prediction unit. If it is the first pixel 

value, then the prediction module sends directly to the output of the value and stores the pixel 

value in a register. When the second pixel gets into the prediction module then it sends the 

difference between the two pixels’ value to the encoder module. Before it sends the difference 

value to the encoder, it does the mapping for the positive difference as even number by using the 

Eqn. 16 and negative difference value as positive odd number by using the Eqn. 17. 

 

5.2.5 Control unit 

Control unit is essential part of the whole design. It generates all the control signal of the 

compression algorithm. It generates the signal using combinational signals and it receives the 

clock, reset and enable as input of the unit. It controls the DEMUX output in different state of the 

design. And it generates signal for the MUX selection to give the correct output.  

 

5.2.6 Encoder module 

The Encoder module receives the DPCM output data and mapped the received data using the Eqn. 

16 and Eqn. 17 such that the negative data as odd and positive data as even. Then it uses the 

Golomb Rice Encoding to generate the output bit stream. The Encoder is built with shifter as it 

needs to be divided by the power of 2. It has the simple logical components in the design. 

 

5.3 Results and comparison 

The hardware is synthesized in the Synopsys DC compiler. It also simulated in the ModelSim-

Altera (10.1b) for the functional verification. Then we used the vcd file from the ModelSim to 

simulate the design in Quartus II (13.0sp1). The Cyclone IV FPGA family is selected for the 
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simulation. The maximum frequency of the design was 250MHz. The area, gate counts and power 

are calculated. The comparisons are shown with different design in Table 5-1.  

 

5.3.1 Hardware cost 

The critical part of the hardware design was to save the area and power. Synopsys DC compiler 

was used to synthesize the design and the frequency of the design was 250MHz. In comparison to 

the design of the others, the area and power are better than all of them except for the YLMN 

compression design [13] and trade-off is the result of the compression. Therefore, low complexity 

and better compression has been achieved in the proposed compression algorithm. It uses 640 x 

640 images where the power is very low.  

 

The power measurement is processed with 250 MHz frequency. The system consumes 1.74 mW 

power. The design consists of YCMCECF color transformation, simple prediction model, easy 

implementation encoder, therefore in terms of power and area it outperforms the other works with 

better compression result. 

 

Table 5-1: Hardware comparison of different compression algorithms for Bayer CFA images 

 [34] [36] [37] [41] [13] Proposed 

Process(nm) 180 180 180 180 65 65 

Frequency(MHz) 20-24 20 200 200 250 250 

Gate Counts (k) 19.5 50 11.57 5.54 3.78 5.2 

Memory(k) 17.5 29 15.2 10.2 2.93 5.74 

Normalized Area 3.75 9.62 2.92 1.07 0.73 1 

 

5.4 Summary 

The performance of the hardware design is compared in terms of gate counts, memory, area and 

power. The proposed algorithm outperforms all the existing compression algorithm except for the 

YLMN compression algorithm. Although the compression ratio for the YLMN is less than the 
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proposed algorithms. The tradeoff of using the less resource usage is the compression performance. 

On the other hand, the proposed algorithms show the best compression performance using the 

optimize resource usages. In consideration of the performance and optimize resource usages the 

proposed compression algorithms are the best CFA compression algorithm in the state of the art. 
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Chapter 6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this work, a low complexity lossless compression algorithm is proposed along with two new 

color transformations for the Bayer pattern CFA image. The proposed color transformation offers 

de-correlated color components for better compression. The color components only store the 

necessary information discarding the repeated information in the other components. The features 

of the color transformation are evaluated in the Chapter 3. The dynamic intensity, standard 

deviation, entropy and prediction gain indicates that the proposed color transformation is efficient 

color transformation compared to the Bayer RGB, YCbCr, YDgCoCg, and YLMN color 

transformation. 

 

The prediction gain for the DPCM model is calculated for the different color transformation which 

also gives better result for the proposed color transformation. Therefore, it is clear that the 

compression ratio will be better for proposed compression algorithm. Later in chapter 4 the results 

are compared among the different compression algorithm. The proposed algorithms are realized 

with simulated CFA image and real CFA image. The proposed method outperforms all the existing 

state of the arts algorithms. The average bit per pixel value of the Kodak dataset is 3.93 and 3.76 

for the YCMCECF and YCDCMCO respectively. 

 

In terms of the complexity, the proposed method uses DPCM prediction model, which is simpler 

than existing context models or existing prediction models. The adaptive Golomb Rice encoder is 

straightforward to implement. The hardware implementation cost is optimized for the resource 

usage. Although YLMN compression algorithm provides less implementation cost. It uses less 

memory than the proposed algorithm, therefore the area and power cost is less than the proposed 

algorithm. But YLMN is less efficient compared to the proposed compression algorithm in terms 

of compression ratio. The features of proposed color transformations are also efficient in the WCE 

image. The result shows that the proposed compression algorithm is also efficient for WCE system. 

Finally, the proposed algorithm with new two-color transformations provides better result and 

optimize hardware implementation cost than existing works. 

 



68 

 

6.2 Future work 

The following extensions of this work can be considered as future work: 

 The proposed algorithm uses DPCM prediction model for the simple implementation of 

the design. The performance of the compression can be improved further using a complex 

prediction model or different prediction model. 

 The adaptive Golomb rice is an efficient encoding method. Different encoding strategy can 

be applied to get better result.  

 The compression algorithm is considered to reduce the redundancy in a single frame. The 

consecutive frames contain more redundant information therefore better compression can 

be achieved reducing the frame to frame information. The color transformation can be used 

in the video compression. 

 The real-time prototype implementation can be developed for the wireless endoscopic 

image. The prototype can be used to see how the compression performs in the real world. 

 The hardware implementation can be improved. The proposed algorithm is using the 

optimize resources with the better compression ratio. The performance can be 

compromised to reduce the implementation cost. The power and area is more important 

than performance in some application.  
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Figure B-1: KODAK dataset 
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Figure B-2: D90 dataset 

 

 

.    

   

Figure B-3: Real CFA dataset 
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Figure B-4: Standard image dataset 

 

    

    

    

Figure B-5: WCE KID dataset 
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Figure B-6: WCE KID simulated CFA dataset 

 


