186 research outputs found

    Development of FPGA based Standalone Tunable Fuzzy Logic Controllers

    Get PDF
    Soft computing techniques differ from conventional (hard) computing, in that unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft computing is the human mind and its ability to address day-to-day problems. The principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Evolutionary Computation (EC), Machine Learning (ML) and Artificial Neural Networks (ANNs). This thesis presents a generic hardware architecture for type-I and type-II standalone tunable Fuzzy Logic Controllers (FLCs) in Field Programmable Gate Array (FPGA). The designed FLC system can be remotely configured or tuned according to expert operated knowledge and deployed in different applications to replace traditional Proportional Integral Derivative (PID) controllers. This re-configurability is added as a feature to existing FLCs in literature. The FLC parameters which are needed for tuning purpose are mainly input range, output range, number of inputs, number of outputs, the parameters of the membership functions like slope and center points, and an If-Else rule base for the fuzzy inference process. Online tuning enables users to change these FLC parameters in real-time and eliminate repeated hardware programming whenever there is a need to change. Realization of these systems in real-time is difficult as the computational complexity increases exponentially with an increase in the number of inputs. Hence, the challenge lies in reducing the rule base significantly such that the inference time and the throughput time is perceivable for real-time applications. To achieve these objectives, Modified Rule Active 2 Overlap Membership Function (MRA2-OMF), Modified Rule Active 3 Overlap Membership Function (MRA3-OMF), Modified Rule Active 4 Overlap Membership Function (MRA4-OMF), and Genetic Algorithm (GA) base rule optimization methods are proposed and implemented. These methods reduce the effective rules without compromising system accuracy and improve the cycle time in terms of Fuzzy Logic Inferences Per Second (FLIPS). In the proposed system architecture, the FLC is segmented into three independent modules, fuzzifier, inference engine with rule base, and defuzzifier. Fuzzy systems employ fuzzifier to convert the real world crisp input into the fuzzy output. In type 2 fuzzy systems there are two fuzzifications happen simultaneously from upper and lower membership functions (UMF and LMF) with subtractions and divisions. Non-restoring, very high radix, and newton raphson approximation are most widely used division algorithms in hardware implementations. However, these prevalent methods have a cost of more latency. In order to overcome this problem, a successive approximation division algorithm based type 2 fuzzifier is introduced. It has been observed that successive approximation based fuzzifier computation is faster than the other type 2 fuzzifier. A hardware-software co-design is established on Virtex 5 LX110T FPGA board. The MATLAB Graphical User Interface (GUI) acquires the fuzzy (type 1 or type 2) parameters from users and a Universal Asynchronous Receiver/Transmitter (UART) is dedicated to data communication between the hardware and the fuzzy toolbox. This GUI is provided to initiate control, input, rule transfer, and then to observe the crisp output on the computer. A proposed method which can support canonical fuzzy IF-THEN rules, which includes special cases of the fuzzy rule base is included in Digital Fuzzy Logic Controller (DFLC) architecture. For this purpose, a mealy state machine is incorporated into the design. The proposed FLCs are implemented on Xilinx Virtex-5 LX110T. DFLC peripheral integration with Micro-Blaze (MB) processor through Processor Logic Bus (PLB) is established for Intellectual Property (IP) core validation. The performance of the proposed systems are compared to Fuzzy Toolbox of MATLAB. Analysis of these designs is carried out by using Hardware-In-Loop (HIL) test to control various plant models in MATLAB/Simulink environments

    Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management

    Get PDF
    Marine diesel engines operate in highly dynamic and uncertain environments, hence they require robust and accurate speed controllers that can handle the encountered uncertainties. Type-2 Fuzzy Logic Controllers (FLCs) have shown that they can handle such uncertainties and give a superior performance to the existing commercial controllers. However, there are a number of computational bottlenecks that pose as significant barriers to the widespread deployment of type-2 FLCs in commercial embedded control systems. This paper explores the use of parallel hardware implementations of interval type-2 FLC as a means to eradicate these barriers thus producing bespoke co-processors for a soft core implementation of a FPGA based 32 bit RISC micro-processor. These co-processors will perform functions such as fuzzification and type reduction and are currently utilised as part of a larger embedded interval Type-2 Fuzzy Engine Management System (T2FEMS). Numerous timing comparisons were undertaken between the co-processors and their sequential counterparts where the type-2 co-processors reduced significantly the computational cycles required by the type-2 FLC. This reduction in computational cycles allowed the T2FEMS to produce faster control responses whilst offering a superior control performance to the commercial engine management systems. Thus the proposed co-processors enable us to fully explore the potential of interval and possibly general type-2 FLCs in commercial embedded applications. © 2007 IEEE

    A Novel Programmable CMOS Fuzzifiers Using Voltage-to-Current Converter Circuit

    Get PDF
    This paper presents a new voltage-input, current-output programmable membership function generator circuit (MFC) using CMOS technology. It employs a voltage-to-current converter to provide the required current bias for the membership function circuit. The proposed MFC has several advantageous features. This MFC can be reconfigured to perform triangular, trapezoidal, S-shape, Z-Shape, and Gaussian membership forms. This membership function can be programmed in terms of its width, slope, and its center locations in its universe of discourses. The easily adjustable characteristics of the proposed circuit and its accuracy make it suitable for embedded system and industrial control applications. The proposed MFC is designed using the spice software, and simulation results are obtained

    Hardware Realization of Interval Type 2 Fuzzy Logic Controller

    Get PDF
    Form the publication of Prof. Loftis’ fuzzy set theory and linguistic approach, fuzzy logic has become one of the major research topic for researchers. The type 1 fuzzy logic controller has already been used in many areas such as consumer electronics, defense, aerospace engineering etc. This type 1 fuzzy system does not model the fuzziness of the membership function or in other terms it does not deal with uncertainty very well. The control problems where more accuracy is needed, type 1 fuzzy system unable to satisfy their requirements. If a type 2 fuzzy controller is designed, it will have great application in control industry. Type 2 fuzzy system can deal with fuzziness in the decisions or in the membership functions. Membership functions are the decisions of an expert. This inclusion of uncertainty in the design will give us much better control behavior. The design and hardware realization of interval type 2 fuzzy logic controller is aim of this work. The way of design or methods of design much more important as it will give a clear understanding to the reader

    On Design and Implementation of Generic Fuzzy Logic Controllers

    Get PDF
    Soft computing techniques, unlike traditional deterministic logic based computing techniques, sometimes also called as hard computing, are tolerant of imprecision, uncertainty, and approximation. The primary inspiration for soft computing is the human mind and its ability to address day-to-day problems. The primary constituents of soft computing techniques are Artificial Neural Network, Fuzzy Logic Systems, and Evolutionary Computing. This thesis presents design and implementation of a generic hardware architecture based Type-IMamdani fuzzy logic controller (FLC) implemented on a programmable device, which can be remotely configured in real-time over Ethernet. This reconfigurability is added as a feature to existing FLCs in literature. It enables users to change parameters (those drive the FLC systems) in real-time and eliminate repeated hardware programming whenever there is a need. Realization of these systems in real-time is difficult as the computational complexity increases exponentially with an increase in the number of inputs. Hence challenge lies in reducing the Rulebase significantly such that the inference time and the throughput time is perceivable for real-time applications. To achieve these objectives, a modified thresholded fired rules hypercube (MT-FRHC) algorithm for Rulebase reduction is proposed and implemented. MT-FRHC reduces the useful rules without compromising system accuracy and improves the cycle time in terms of fuzzy logic operations per second (FzLOPS). It is imperative to understand that there are over sixty reconfigurable parameters, and it becomes an arduous task for a user to manage them. Therefore, a genetic algorithm based parameter extraction technique is proposed. This will help to develop a course tuning and provide default parameters that can be later fine-tuned by the users remotely through the Web-based User Interface. A hardware software codesign architecture for FLC is developed on TI C6748 DSP hardware with Sys/BIOS RTOS and seamlessly integrated with a webbased user interface (WebUI) for reconfigurability. Fuzzy systems employ defuzzifier to convert the fuzzy output into the real world crisp output. Centroid of Area (CoA) method is most widely used defuzzification method for control applications. However, the prevalent method of CoA computation is based on the principle of Riemann sum which is computationally complex. A vertices based CoA (VBCoA) defuzzification method is introduced. It has been observed that the proposed VBCoA method for COA computation is faster than the Riemann sum based CoA computation. A code optimization technique, exclusive to TI DSPs, is implemented to achieve memory and machine cycle optimization. The WebUI is developed in accordance to a client–server model using ASP.NET. It acquires fuzzy parameters from users, and a server application is dedicated to handling data communication between the hardware and the server. Testing and analysis of this hardware G-FLCS has been carried out by using hardware-in-loop test to control various system models in Simulink environment which includes water level control in a two tank system, intelligent cruise control system, speed control of an armature controlled DC motor and anti-windup control. The performance of the proposed G-FLCS is compared to Fuzzy Inference System of Matlab Fuzzy Logic Toolbox and PID controller in terms of settling time, transient time and steady state error. This proposed MT-FRHC based G-FLCS with VBCoA defuzzification implemented on C6748 DSP was finally deployed to control the radial position of plasma in Aditya Tokamak fusion reactor. The proposed G-FLCS is observed to deliver a smooth and fast system response

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Mission Aware Energy Saving Strategies For Army Ground Vehicles

    Get PDF
    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is on, gear is on neutral position, the vehicle is stationary, and the alternator powers the systems. The proposed energy saving strategy for silent surveillance mission minimizes unnecessary battery discharges by controlling the power states of systems according to the mission needs and available battery capacity. Initial experiments show that the proposed approach saves 3% energy when compared with the baseline strategy for one scenario and 1.8% for the second scenario. The proposed energy saving strategy for normal surveillance mission operates the engine at fuel-efficient speeds to meet vehicle demand and to save fuel. The experiment and simulation uses a computerized vehicle model and a test bench to validate the approach. In comparison to vehicles with fixed high-idle engine speed increments, experiments show that the proposed strategy saves fuel energy in the range of 0-4.9% for the tested power demand range of 44-69 kW. It is hoped to implement the proposed strategies on a real Army ground vehicle to start realizing the energy savings

    Fuzzy Logic Based Hardware Accelerator with Partially Reconfigurable Defuzzification Stage for Image Edge Detection

    Get PDF
    In this paper, the design and the implementation of a pipelined hardware accelerator based on a fuzzy logic approach for an edge detection system are presented. The fuzzy system comprises a preprocessing stage, a fuzzifier with four fuzzy inputs, an inference system with seven rules, and a defuzzification stage delivering a single crisp output, which represents the intensity value of a pixel in the output image. The hardware accelerator consists of seven stages with one clock cycle latency per stage. The defuzzification stage was implemented using three different defuzzification methods. These methods are the mean of maxima, the smallest of maxima, and the largest of maxima. The defuzzification modules are interchangeable while the system runs using partial reconfiguration design methodology. System development was carried out using Vivado High-Level Synthesis, Vivado Design Suite, Vivado Simulator, and a set of Xilinx 7000 FPGA devices. Depending upon the speed grade of the device that is employed, the system can operate at a frequency range from 83 MHz to 125 MHz. Its peak performance is up to 58 high definition frames per second. A comparison of this system’s performance and its software counterpart shows a significant speedup in the magnitude of hundred thousand times
    corecore