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1

CHAPTER 1 INTRODUCTION

1.1 Introduction

Technology is advancing in transportation, manufacturing, entertainment, security, and

communication areas. However, the energy required to operate them is slowly diminishing.

This threatens national security as well as human lives on earth. Since the technology is

affordable, its usage is widespread globally. As usage grows, the demand for energy increases

rapidly. Therefore, saving energy or minimizing its consumption is very important.

Natural fuel such as crude oil stores energy that can be extracted to perform many ac-

tivities on earth. Therefore, fuel energy is a basic necessity for the modern world. On the

contrary, the quadrupled automotive vehicle usage has increased consumption of fuel energy

in terms of petrol and diesel has peaked. Ground vehicles are used for either commercial

(or passenger) or military applications. Army, commercial, and passenger ground vehicles are

almost identical in engine, transmission, and electrical generator characteristics. However, the

Army ground vehicles seem to embed numerous electronic systems namely, large radio com-

munications, computers, weapons, mine detecting, and surveillance systems. These systems

demand more electrical energy (load) during military missions than the systems used in the

normal operations of a commercial or passenger vehicle. Fig. 1 and Fig. 2 show an example

of a commercial passenger vehicle and an Army ground vehicle with its systems, respectively.

Current and future electrical demands can exceed energy generation and storage capabilities

of an Army ground vehicle [1] [2]. The increased electrical energy consumption requirements

of the vehicle increase fuel consumption. Refueling is a major concern on battle fields. Ac-

cording to a defense science board report [3] [4], a department of defense has spent nearly

$13.6 billion on petroleum fuel, and 3.8 billion kWh of electricity, which is 78% of the total

energy consumption by the federal government. Therefore, saving energy in Army ground

vehicles is very important.
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Fig. 1. Passenger vehicle: example electrical systems.

Fig. 2. Army vehicle: example electrical systems
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Fig. 3 shows the electrical energy demand of ground automotive vehicles for a family

of vehicles namely, passenger vehicles, commercial vehicles (e.g., buses, trucks), and Army

vehicles. The Army ground vehicles seem to have more electrical energy demand than other

vehicles. The voltage requirements vary between different the families of vehicles. The range

is between 12 and 28 volts. Fig. 4 shows the corresponding horsepower demands on the

engine to meet the electrical needs of the vehicle. Many different architectures are available

to allow engines to generate electricity in a vehicle. However, the range information in the

figures assumes that an alternator is used to generate electricity and a pulley is used to transfer

mechanical energy from the engine to the alternator.

Fig. 3. Electrical energy demands range

The main objective of this dissertation research is to develop strategies to save energy

while meeting the electrical needs of conventional Army ground vehicles during stationary

surveillance missions. The strategies should be aware of mission requirements, provide appro-
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Fig. 4. Engine horsepower demands range

priate energy saving approaches and also meet the electrical demands of the vehicle. Section

1.2 through Section 1.5 describes the background for the proposed dissertation research and

Section 1.7 discusses the problem statement.

1.2 Army Ground Vehicles

Army is one of the military divisions specialized in land warfare. In a given war mission,

the war zone is very hostile, the terrain is unknown and the soldiers have to perform several

critical complex activities to defeat enemy forces. To carry out a mission, the Army uses many

types of ground vehicles namely, combat, tactical, medical, reconnaissance, fire support, and

ammunition carrying vehicles. The Army ground vehicles have multiple electronic devices,

weapons, and computing resources to aid in a mission. Normally, the ground vehicles carry

soldiers to the battle field and also allow them to conduct specific operations to meet the

mission requirements. Fig. 5 shows an example of an Army ground vehicle along with its

electronic systems.

UNCLASSIFIED: Distribution A. Approved for Public Release
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Fig. 5. Army ground combat vehicle example.

A typical Army ground vehicle uses a diesel engine, a drivetrain, an automatic transmission,

a belt-driven alternator, batteries, and electrical systems. During stationary operations of a

vehicle, an engine is either on and is in neutral gear or it is completely turned off. If the engine

is off, the batteries within the vehicle have to supply power to the systems. If the engine is

on, it consumes fuel and drives an alternator to generate electricity that powers the systems.

Unnecessary battery discharges and in-efficient operation of the engine increases the energy

consumption of the vehicle.

1.3 Mission Awareness

The Army performs several battle and surveillance missions to protect people and defend

countries against enemies. Most of the time, the Army uses ground vehicles to conduct mission

activities. An example mission scenario can be viewed as two soldiers performing operations

in an Army ground vehicle using computer workstations, surveillance systems, video cameras,

radio communication systems, a weapon, and a vehicle master computer. Fig. 6 shows an

example of the activities conducted during a sample mission scenario.

UNCLASSIFIED: Distribution A. Approved for Public Release
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Fig. 6. A sample mission scenario activities.

Some examples of tasks of a mission are capturing activities of enemy forces, recording

significant events and diagnostics information of systems, communicating with other Army

ground vehicles, firing at the enemy forces, and conducting surveillance activities. The fre-

quency of these activities is somewhat random and is completely dependent on the mission

conditions. A mission scenario influences the usage of systems and electrical power generation

requirements of the vehicle. The fuel consumption of the vehicle has a direct dependency on

the systems electrical energy requirements. Therefore, awareness of how the soldiers conduct

a mission using the systems in the vehicle allows researchers to develop techniques to mini-

mize electrical energy requirements,to save fuel energy in Army ground vehicles, and to extend

mission time. Fig. 7 shows an example of mission tasks.
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Fig. 7. A sample mission activities.

1.4 Energy Saving Strategy

This dissertation research focuses on electrical and fuel energy saving strategies for Army

ground vehicles. The saving strategy is an approach used in the systems to minimize their

energy consumption. In the current literature, researchers have developed and implemented

several electrical energy saving strategies for electronic devices, wireless sensor networks, com-

puting resources, and fuel energy saving strategies for automotive systems such as an engine.

Although these approaches are reusable, they have limited application diversity. Some of the

example strategies are as follows:

• Dynamically transition an electrical energy consuming system to a lower power con-

sumption mode based on its activity level to save electrical energy

• Operate an automotive engine based on the road type and traffic conditions to save fuel

energy

UNCLASSIFIED: Distribution A. Approved for Public Release
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Fig. 8 shows the growth in fuel consumption by the military per soldier/day. The growth

and the predictions for the future is very high. Similarly, the growth in crude oil price as

shown in Fig. 9 is also rising. Efficient mission aware energy saving strategies is necessary for

the Army. Chapter 2.2 discusses some of the recent energy saving strategies developed for

aforementioned systems. The source for the pictures in Fig. 1, Fig. 2, Fig. 3, and Fig. 4 are

from the world wide web.

Fig. 8. Fuel consumption growth in military [2].

1.5 Energy Saving Strategy In Stationary Army Ground Vehicles

Armies conduct training exercises and surveillance missions of long durations and using

stationary ground vehicles in the following two modes:

• Silent: The engine is turned off and a shared battery powers all the on-board systems

for extended hours. Soldiers cannot recharge the battery due to the risk of enemy forces

identifying the vehicle if the engine is running. Duration of a mission depends on the

battery capacity.

• Normal: The engine is turned on and a low engine speed (idle) coupled with a low alter-

nator speed generates electricity to power all the systems for extended hours. Increased

UNCLASSIFIED: Distribution A. Approved for Public Release
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Fig. 9. Crude oil price growth [2].

electrical consumption of the systems let the engine control unit to change the engine

speed to a next high-idle RPM, a situation that is less energy efficient.

The soldiers use multiple on-board systems to perform mission activities as shown in Fig.

6. The systems require electricity for their continuous operation. The process of electricity

generation in a stationary Army ground vehicle is a physical phenomenon between the on-

board electrical systems, engine, and the alternator. An engine consumes fuel energy and

generates mechanical energy (torque) to operate an electrical machine such as an alternator

to generate electricity. Excess energy is stored in a battery for future uses. To provide modern

technology and to meet mission demands, the number of systems on an Army vehicle continues

to increase. To meet growing energy requirements, the military invests in research to increase

electric energy generation inside the vehicles. Although it is very important for the vehicle to

increase its generation capability, manufacturers should also focus their attention on saving

energy by minimizing consumption inside a vehicle i.e., more efficient use of energy.

The following energy saving strategies are required to meet the electrical energy require-

ments of the two surveillance mission modes as well as to save fuel energy:
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• Silent surveillance mode: Minimize unnecessary battery discharges by dynamically con-

trolling the power states of systems according to mission needs and available battery

capacity. Chapter 4 focuses on this topic.

• Normal surveillance mode: Operate the engine at a fuel-efficient speed per unique

electrical demand by combining the engine and alternator performance/efficiency maps,

mission aware profiles of on-board systems electric current draw, and constraints of the

engine and the alternator. Chapter 5 focuses on this topic.

The energy saving strategies must address the following challenges of the Army ground vehicle:

• Space, weight, and integration cost constraints

• Legacy system upgrades

• Non-proprietary and open standards based solutions

• Technology obsolescence and time to integrate

This dissertation research addresses all the aforementioned challenges and proposes online

automatic approaches as energy saving strategies for Army ground vehicles. Chapter 4 and

Chapter 5 provides a detailed information about the proposed strategies.

1.6 Engine Control Unit

A modern engine uses a programmable Engine Control Unit (ECU) to control its oper-

ations in real time using multiple sensor inputs, a microprocessor, software, look-up tables,

performance maps, and a microcontroller. Many ECUs are proprietary and any significant

modifications to it are very costly. Some ECUs allow individual users to develop custom pro-

gram to obtain different behaviors of an engine. An ECU communicates with multiple sensors

via an in-vehicle Controller Area Network (CAN). Some example ECU functions are cruise

control, transmission control, idle speed control, and ignition control. A detailed case study

related to ECUs is available in the following article [5].
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1.7 Problem Statement

Major portions of a ground war and training exercises are spent on soldiers conducting

surveillance missions using stationary Army ground vehicles. The vehicles should minimize

their energy consumption and also meet the electrical energy requirements of a mission. How-

ever, the increasing electrical energy/power requirements of the systems to perform a mission

increase fuel consumption. Unlike commercial passenger vehicles, Army vehicles work in a

complex operational environment and they are subjected to large electric power demands with

a variation between 2 to 32 kilowatts. However, the vehicles have limited power generation

capability, especially when the vehicles are stationary, the engine is operating at idle speeds or

the engine is turned off and a shared battery powers the systems. Although an Army vehicle

is energy efficient, the efficiency does not meet the mission requirements. To support the

electrical energy requirements of a mission, a conventional Army vehicle operates in an energy

inefficient mode. Diminishing fuel energy availability and increased electrical energy consump-

tion requirements of Army ground vehicles mandate the need for energy saving strategies. The

strategy solutions should not be expensive, and they should meet size and weight requirements

of the vehicle.

1.8 Contributions

This dissertation research contributes the following novel elements for stationary Army

ground vehicles during surveillance missions:

• Theoretical models that represent operations and energy consumption behaviors of

surveillance missions.

• Mission aware online energy saving strategies for both silent and normal surveillance

missions.

• Simple and economical fuzzy logic approaches for:

– Feedback controller and an algorithm for an engine ECU to manipulate engine
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speeds based on the electrical load requirements.

– Representing engine and alternator performance maps.

– Deterministic algorithm for transitioning systems to their low power consumption

modes based on mission conditions.

1.9 Document Organization

• Chapter 1 introduces the concept of mission aware energy saving strategy and the need

for saving energy in Army ground vehicles.

• Chapter 2 describes the literature review of energy saving strategies of various systems

such as electronic systems, wireless sensor networks, and automotive vehicles.

• Chapter 3 describes the proposed theoretical models of surveillance missions of an Army

vehicle. These models are used to develop energy saving strategies for an Army ground

vehicle.

• Chapter 4 describes the proposed models of an on-line approach and a mission aware

energy saving strategy for silent surveillance missions of stationary Army ground vehicles.

It also describes the proposed fuzzy deterministic algorithm used by the proposed energy

saving strategy.

• Chapter 5 describes the proposed models of an on-line approach and a mission aware

energy saving strategy for normal surveillance missions of stationary Army ground vehi-

cles.

• Chapter 6 summarizes, concludes, and proposes future work for this dissertation.

• Appendices describe the author’s publications and other related material to provide

additional details of the research described in this document.

1.10 Conclusion

This chapter described the detailed background for the proposed dissertation research

and the need for saving energy in stationary Army ground vehicles. Army ground vehicles
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use several on-board electronic systems to conduct military missions. Increasing electrical

energy requirements of these systems increase fuel consumption, especially during stationary

surveillance operations of the vehicle. This chapter also introduced the concept of mission

aware energy saving strategies to minimize energy consumption in Army ground vehicles. The

next chapter discusses the existing energy saving techniques and their limitations for using

them in Army ground vehicles to save energy.
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CHAPTER 2 LITERATURE REVIEW

The previous chapter introduced the concept of mission aware energy saving strategy for

stationary Army ground vehicles. This chapter reviews existing energy saving strategies of

various systems such as electronic systems, wireless sensor networks, and automotive vehicles.

2.1 Introduction

In the literature, energy saving strategies are available in the following areas. However,

they are applicable to specific situations and not suitable for all applications.

• Elements: Logic gates and transistors

• Components: Processor, memory, microchips, and hard drives

• Systems: Computers, sensors, weapons, routers, switches, and consumer electronic

devices (hand held and other portable mobile devices)

• Networks: Data buses inside computers and sensors, power buses, network on chips,

distributed systems, and sensor networks

• Power generation and power distribution systems: Engines, alternators, and batteries

Energy saving strategies are normally developed as hardware or software based solutions. The

work performed in [6] - [11] describes the energy saving research for elements, components,

and systems. Although potential interest exists in these areas, implementing such low level

techniques are not economical for legacy systems in an Army vehicle. Section 2.2 reviews

the recent published energy saving research focusing on minimizing energy consumption. It

provides a background and a literature review.

A significant research has been done in Dynamic Power Management (DPM) for systems,

components, and networks such as sensor networks. A DPM minimizes a given system’s

power consumption by dynamically putting them to a lower consumption mode such as sleep

or hibernate. A detailed system level DPM is described in [12] with predictive and stochastic

optimum policies and its implementation details.
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A survey of energy efficient on chip communications [13] reveals a lot of circuit, system,

and network level on chip power efficient techniques. A Dynamic Voltage Scaling (DVS) is one

of the techniques used in embedded systems [14] to minimize power consumption. DVS lowers

a given component’s voltage when a given component is not needed for its peak performance.

By this scaling technique, the power/energy consumption is minimized when the component

is not active to perform high performance tasks. DVS implementation requires a design for

many voltage variations, and this complicates component designs.

Physical systems exhibit several properties that are difficult to comprehend from the func-

tional perspective. Therefore, several researchers perform experiments and gather data to

analyze and develop mathematical models to establish relationship between the inputs and

outputs of the system. However, in many cases, mathematical models using traditional ap-

proaches cannot be developed due to uncertainty and noise in the collected data. In this

situation, researchers normally utilize machine learning, artificial intelligence, or soft com-

puting techniques such as fuzzy logic [15], adaptive network fuzzy inference system [16],

neuro-fuzzy, and neural network [17].

2.2 Review

2.2.1 Energy Savings In Networked Systems

Several network level energy saving techniques are available in the research to save energy

in networked systems. Many researchers have published their research results for minimizing

power consumption in wired and wireless networks. Although most of the researches are not

focused primarily on military domain, they seem to find relevance in literature review. A group

of sensors connect together to form a network. Mature wireless technology is gaining a lot of

prominence in military vehicles such as an Army ground vehicle. The sensors perform many

tasks that feed information to the soldiers on a vehicle. The sensor nodes process the data

locally communicated. Many sensor nodes are battery operated and due to wireless media
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complexity an efficient energy management techniques are required to save energy. A typical

WSN node has a microprocessor, a communication system (e.g. radios), a sensing device,

and a battery power supply unit.

There is a concept called distributed systems i.e., a collection of computers connected to

a network. They provide an integrated computing environment for processing, sharing, and

coordinating user requested tasks. In a distributed system, any computer can have control

and hence there is no centralized control. For such systems energy consumption minimization

techniques can be applied.

Energy management techniques are widely used in WSNs and distributed systems to min-

imize their energy consumption. Currently, a lot of research has been done to minimize energy

consumption in different aspects of Wireless Sensor Networks(WSN). However, most of them

are not applicable to this dissertation research. This section discusses the applicable research

in this area. Wireless Sensor Networks (WSN) are gaining prominence in Army ground vehi-

cles and a survey [18] is available in the literature. Similar to WSNs, the distributed systems

provide an integrated computing environment for processing, sharing, and coordinating user

requested tasks.

To reduce energy consumption in WSNs, an Adaptive Sampling Algorithm (ASA)[19]

minimizes the frequency of radio transmissions. However, the signal frequency and noisy en-

vironments impacts the performance. In an active combat field, the sensors have to perform

actively and the operation requires minimum latency sensitivity and accurate signal recon-

struction, but this approach does not handle them. Although the radio usage are reduced, the

radios are not adapting to sleep mode to minimize its steady state power usage. Similar to

ASA, an adaptive Low-Power-Listening (LPL) MAC protocols [20] reduce idle listening with a

caveat of data losses. Unlike basic LPLs, the adaptive LPLs use lower duty cycles and energy

efficient MAC protocols.
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To save energy and to handle wireless traffic, a mechanism in [21] uses a positive or

negative traffic condition messages to let the base station to receive or be in sleep mode to

handle the traffic. During high traffic conditions, there is a possibility that too many messages

be sent. This technique does not seem to align a mobile station’s listening and message

transfer intervals. This approach saves energy in mobile stations but the base station and

other connected systems are still consuming energy. A doze timer solution in [22] minimizes

wakeup time and maximizes sleep time to reduce energy consumption. Doze timer allows

wireless stations to sleep until the timer elapses. To effectively implement this, a mandatory

idle timer has to elapse before the doze timer can be started. If the idle timer is too long,

there is a possibility that the doze timer may not be initiated.

A technique in [23] minimizes energy consumption of networked systems by powering off

or transitioning them to a lower power states based on the users living pattern or movements.

Although this is an interesting concept for home networks, it has a lot of complications to

use within an Army vehicle. The space within a vehicle is restricted and the occupants may

not leave their position for a long time. In this situation, there is no chance to minimize

consumption. A network traffic based low-power technique [24] reduces energy consumption

of a networked processor by identifying the minimum processing to handle a given task. Since

minimum processing elements are used, processor consumes less energy.

A DPM for WSN [25] switches sensor nodes to a sleeping state based on the work load

predictions. The sleep state time is static and it is node specific. Its value cannot be altered

dynamically in response to various other external conditions. Static solutions do not gain

consumption savings in an Army vehicle. In architecture for sensor nodes in [26] uses a

concept of dispatching, delaying or discarding energy consuming tasks if the power supply

unit determines that the system is running on the battery and waiting for renewable energy

availability. Dispatching tasks are completely dependent on the power state manager which

has no knowledge of anything else other than the available renewable energy. In a service
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specific power management solution [27], systems are assigned to a specific service. When a

given service is accessed by a user, the power is supplied to its associated systems. Assume

a given system’s power was turned off manually. If a service associated with this system is

invoked, the policy applied for this service automatically powers on all its associated systems

including the manually powered off device. This solution has no awareness of the manually

powered off systems.

A network based energy management in [28] uses energy events based on preconfigured

policies to save energy. However, the policies are rigid and a central process determines

when to exercise it on the networked systems. Configuring individual system’s policy is a

maintenance challenge and may disrupt the overall operations of a given system. There is no

flexibility in this solution to handle unidentified events e.g., a network request for the system

came in but the system was switched off per a configured policy. In an internet based wired

networks, node level network data traffic consumes a lot of power and energy.

A solution in [29] explains the reduction of energy consumption in networked systems

based on data traffic, data flow channels between paths and nodes, and network service

requirements. This solution is purely network load based; a network switch or a router is

powered off when there is a low network load is detected. The main savings comes from

dynamically selecting the network configuration which meets service requirements and uses

minimum power. But, this is always a challenging task and it requires prior knowledge of all

systems in the network. In an Army vehicle, systems are added ad-hoc and keeping up with

power aware network configuration is challenging.

Energy consumption in peer-to-peer (P2P) systems can be reduced using a minimum

power consuming server from a group of servers for executing a given process [30]. In an Army

vehicle, if video processing time is long and undefined, this approach cannot determine a best

sever to process it. The additional limitation is that the approach tends to allocate processes

to the minimum power consuming server until it is overloaded and then it allocates to the
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next minimum power consuming server. If most of the processes have the same computation

and power consumption laxity, then the cumulative power reduction may not be substantial.

In this technique, there is a situation where a single server executes all the processes other

severs are idle and consuming energy.

Energy minimization techniques for server systems are discussed in [31]. Unlike the ap-

proach in [30], a related work in [33], powers down servers if they are not being used to fulfil a

given process. A configuration based design in [32] balances network request messages based

on a pre-set configuration to save power.

To reduce energy consumption in wireless sensor networks, an approach in [34] uses a

set of timeframes to handle traffic. In other timeframes the WSN elements are sleeping to

save energy. In Army ground vehicles, defining an optimum timeframes to handle traffic is

the most complex part. This does not seem to address any possibility of data packet loss,

performance concerns (latency), or data delivery urgency.

Energy saving techniques for the electronic systems depend on the system’s idle time to

achieve energy savings. However, it is always challenging to determine when a system will be

idle and for how long. Incorrect workload estimation for a system impacts its performance and

the overall strategy. Silent surveillance varies from mission to mission and from one type of

combat vehicle to the other. A system in one vehicle exhibits a workload that is different than

the same system in a different CV. There is no availability of mission and CV specific historic

workload data for all the systems to model for silent surveillance. Therefore, the application

of stochastic approaches namely, Markovian [35] and hidden Markovian model based energy

management [36][37] [38] are very challenging to achieve.

To save energy in environmentally powered systems, an approach in [39] controls the

energy distribution to sensor nodes based on the sensor systems stability control. This tech-

nique has no ability to allow external factors to influence the energy saving of the systems.
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Moreover, it depends on the historic energy predictions.

2.2.2 In-Vehicle Energy Savings

In-vehicle power or energy management involves managing electric power generation and

distribution, and balancing the electric load requests from on-board systems. The ultimate goal

of the management approaches is to minimize energy consumption. Many proposed solutions

are available but each has a specific focus on certain elements of energy management namely,

strategies, energy management techniques, and power generation and distribution system

improvements. A survey in [40] briefly introduces the concept of intelligent approaches in

automotives to save energy.

The energy minimization systems engineering approach in [41] uses a hybrid technology to

meet the high power demands and the increased requirements to stay operational during silent

surveillance operations. The approach focuses on fuel efficiency and better understanding of

energy/power consumption needs. The approach defines systems engineering values to each of

the development phases and recommends appropriate trade spaces to get a good fuel efficient

product. Although this meets the need for higher power generation with reduced impact on

operational performance, it seems to neglect the fact that the methods could be applied to

minimize in-vehicle power consumption to gain fuel efficiency and other heat related concerns

than thriving for more power generation.

An energy saving on-line neural network approach in [42] uses road type and traffic con-

ditions to management the power generation within the vehicle.A neural network interacts

with the ECU and determines the required torque to generate the demanding power needs.

This approach is not usefull during stationary operations of the vehicle. In a given combat

situation, if a vehicle is running at lower idle (< 800 RPM), it cannot compensate for any

required torque to produce additional power. So this solution is more suitable when the engine

UNCLASSIFIED: Distribution A. Approved for Public Release



21

is capable of running at required RPM and capable of producing required torque. This realized

power control is drive cycle dependent. There is no complexity discussed for the frequently

changing drive cycles. The solution assumes constant drive cycle for proposed power control.

An approach in hybrid electric vehicle [43] minimizes fuel consumption of the vehicle

by operating the engine at an optimal point by using an advanced alternator. This approach

focuses on the vehicles when they are moving. An another approach in an hybrid electric vehicle

uses a 3-D terrain preview [44] to manage the battery operations of the vehicle to save fuel. In

a stationary vehicle during a combat, the terrain might not change frequently and the vehicle

might not gain any fuel savings using this type of approach. Terrain preview alone cannot

provide substantial fuel savings while keeping all the systems operational at high performance.

This proposal has no alternative strategy to handle if the combat situation changes while the

battery is discharged and the engine has to stop to go on silent mode. In this approach, the

battery is discharged, engine is not running, the systems have no generated/stored power to

operate.

A controller approach in [47] saves fuel energy by automatically managing the operations of

an engine, propulsion, and power distribution. However, this approach is very slow and limited

due to the application of dynamic programming to extract required strategy information from

the control policies. Moreover, this approach is applicable only for hybrid electric vehicles.

Another controller approach in [48] manages the fuel savings in a vehicle with conventional

drive train by controlling the battery charges when the engine is efficiently operating. An

idle speed controller in [49] saves fuel by monitoring the operations of an engine and their

disturbances. A fuzzy logic rule based energy saving strategy in hybrid electric vehicles [50]

seem to save fuel and reduce emissions by applying suitable rule based control strategy.

However, the approach seem to focus on managing the battery operations and may not

meet the electrical demands of the vehicle.The approaches defined in this paragraph seem to

focus only on saving fuel. The main objectives of this dissertation are to save fuel and also
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to meet the electrical demands of the vehicle, and thereby extend mission time.

An approach in [51] uses a software to monitor and manage the power states of all the

networked systems in a vehicle. The main idea behind this approach is to balance the power

demands based on the vehicle’s capability to produce required energy. However, this approach

does not seem to reduce any energy consumption. Moreover, this approach does not seem

to save any energy. An artificial neural network approach in [52] tries achieve fuel economy.

However,this approach seem to sacrifice on the amount of torque produced. This will be an

impact for Army ground vehicles as they are power hungry.

As discussed in 2.2, significant research exists in the current literature to save energy in

these candidates. However, most of the systems on Army vehicles are proprietary and making

modifications to them are costly and time consuming. Moreover, modifying multiple systems

to achieve energy saving is not practical or economical. Therefore, efficient energy saving

strategies based on mission requirements using online and automatic computing techniques

must be developed to minimize the modifications of the systems of an Army vehicle. The ap-

proaches proposed in this dissertation address this need. Chapter 4 and 5 discusses additional

existing applicable energy saving literature.

In the literature, researchers [53], [54] recommend minimizing load disturbances and fuel-

injection inaccuracies to save fuel in stationary vehicles. On the other hand, the adaptive

algorithm [55] and hybrid control algorithm [56] approaches suggest operating the engines at

lower engine speeds to achieve fuel savings [57]. A study [58] proposes to incorporate known

idle speed constraints to obtain energy efficiency. Some researchers demonstrate fuel efficiency

in a stationary vehicle’s gasoline engine by efficiently controlling the operations of air valve

and spark advances [59]. Most of these approaches lack techniques to handle Army ground

vehicle’s large load variations. These methods may trigger engine stalls if the predefined

speeds cannot handle the demand. Moreover, these techniques require altering the physical

properties of the vehicle.
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2.3 Fuzzy Logic

Zadeh introduced the concept of fuzzy values to map human interpretation of uncertain

phenomenon using a natural language for instance, John is tall and Doe is short. In this

example, the terms ’tall’ and ’short’ are human interpretations of height. To conceptualize

the application of fuzzy values, Zadeh introduced fuzzy sets [60] and also proposed a fuzzy logic

approach [61] to handle them in real applications. A Fuzzy Logic System (FLS) for engineering

applications [62] provides a method to map non-linear inputs to a scalar output using a

fuzzification process, set of rules, an inference method, and a defuzzification components. An

FLS approximates vague phenomenon using fuzzy sets. Fuzzification is a process of mapping

a crisp input to a membership function. A set of rules are expressed in a natural language as

(2.1). where S= Speed and F= Fuel consumption. The terms HIGH and HOT are fuzzy sets

defined using the natural linguistic values. Inference is a method of aggregating the results

of each rules on the fuzzy inputs. Defuzzification is a process of mapping a fuzzy value into

a crisp output value. The article in [62] provides a detailed tutorial of FLS. The membership

characteristics of elements of a fuzzy set can be characterized using membership function

curves, namely, triangular, trapezoidal, bell-shaped, and Gaussian. Most of the fuzzy logic

applications use triangular characteristic curves due to their simple computations. Fig. 10

shows a triangular membership curve.

if S = HIGH then F = HIGH (2.1)

Fuzzy set theory provides union, intersection, and complement for fuzzy sets. They are

normally expressed using membership grades. Let X and Y be the two fuzzy sets defined

for an input I, and µX and µY be the membership grades for I. In this situation, the union

of X and Y using membership grades can be expressed as (2.2), the intersection can be

represented as (2.3), and the complement of X can be represented as (2.4). The union
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Fig. 10. A triangular membership characterization curve

operation is considered fuzzy OR and the intersection is considered fuzzy AND operation.

µX∪Y (I) = max(µX , µY ) (2.2)

µX∩Y (I) = min(µX , µY ) (2.3)

µX̄ = 1− µX (2.4)

Initial fuzzy logic models were purely rule based with if-then constructs. The rules contain

two parts i.e., antecedent and consequent. Both parts seem to contain fuzzy values. Several

new approaches are being worked in the literature and they all seem to go away from rule base

and trying adopt to a trial and error process to finalize the system approximation process.

Example of fuzzy logic applications can be found in the author’s previous work about using

fuzzy logic [63, 64, 65].

2.4 Factor Analysis

Factor analysis is a statistical approach [66] to reduce and summarize a large dataset with

many factors into fewer meaningful factors. It simultaneously analyzes the interrelationship

between multiple parameters of the dataset. When fewer factors are extracted from this pro-

cess, they seem to have dependencies on other parameters of the dataset. All the work is

performed mainly based on the correlation between the factors and the dependent variables.
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Factor analysis uses several factor extraction methods namely, principle component or maxi-

mum likelihood. They both seem to have different impacts on the factor extraction process.

However, it all depends on use of data for deriving meaningful factors. A survey of related

literature of principle component analysis is available in [66].

The important aspects of factor analysis is to make sure the dataset is reduced to minimal

dimension factors and the loadings on the factors are showing higher values for correlation for

the extracted factors. In general, there will be an n number of factors that are uncorrelated

to each other. Factor loadings are rotated using many different algorithms namely, Kaiser’s

Varimax rotation [67] to obtain higher fidelity in factor extractions. The Kaiser’s approach

extracts factors that have Eigenvalues of more than 1.

2.5 Conclusion

This chapter reviewed the current literature of energy saving approaches in networked

and distributed systems, and automotive ground vehicles. The approaches in distributed and

networked systems do not consider collaborated functions of the systems to minimize energy

consumption. Therefore, applying mission aware solutions to them are very difficult and

expensive. Energy consumption depends on mission conditions. However, no solution exists in

the literature to address mission aware strategies. Existing proposals in the literature address

additional power generation solutions than minimizing energy consumption in automotive

ground vehicles. Most of the energy saving strategies are applied to moving vehicles rather

than stationary vehicles. The approaches lack techniques to handle Army ground vehicle’s

large power demand variations. These methods may trigger engine stalls if the engine cannot

handle the demand. Moreover, most of the existing techniques require altering the physical

properties of the vehicle. Chapter 3 through Chapter 5 discusses additional limitations of the

existing approaches and propose solutions to save energy based on mission conditions.
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CHAPTER 3 THEORETICAL MODELS: SURVEILLANCE
MISSIONS

The previous chapter described the short falls of existing energy saving approaches in the

current literature. This chapter describes the proposed theoretical models to allow strategies

to save energy based on collaborated functions of systems in a network.

3.1 Introduction

Soldiers perform surveillance mission tasks in an Army ground vehicle using many systems

in a sequence. A system services work requests from multiple systems. No theoretical model

exists to represent surveillance mission behaviors. The three main entities of an Army ground

vehicle are a power generation system, a battery, and a finite number of systems. Fig. 6

illustrates an example of networked distributed systems to help soldiers perform a mission in an

Army ground vehicle. The power generation system manages the generation and distribution

of power to all electrically powered systems until the energy is available. The battery has

no recharging capability during silent mode of surveillance and the availability of fuel energy

is challenging for a normal mode of surveillance. The power generation system controls the

power supply of individual systems using a software controlled electric power switch. Each

system has its own power supply channel, which allows the power distribution system to

remotely turn the power supply of a system on or off on-demand without affecting the power

supply of any other systems. Separate wiring exists between the power distribution system

and other systems for electric power flow.

The behaviors of surveillance mission tasks can be somewhat random, and they tend to

cause systems to operate with unpredictable workloads. That is, the workload of a system may

increase or decrease throughout a mission with no predefined patterns established for it. Some

examples of tasks of a surveillance mission are capturing events of enemy forces and recording

significant events and diagnostics information of systems. In general, a surveillance task can be
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viewed as a workflow. The task can be broken into workflow steps where each system processes

each step sequentially. For example, for an “event recording” task, the workflow steps are the

following: Initiate (workstation), Record (recorder), and Store (computer). Soldiers can end

the task at any time according to their priorities. A system can also end the task at any time

depending on its internal logic. During surveillance, soldiers and automatic sensors use systems

to initiate and manage tasks. Critical systems can sense hostile situations and even fires a

weapon, whereas non-critical systems record and perform general tasks, namely, diagnostics,

storage, and backup. Critical systems have strict latency and availability requirements when

compared to non-critical systems. For the purposes of this document, a system can be a

computer, video camera, or weapon.

Fig. 11 and Fig. 12show sample network setups with some sample systems that is normally

used within an Army ground vehicle to communicate data between the systems.

This chapter describes the following proposed theoretical models to represent surveillance

missions. These models can be used to develop mission aware energy saving strategies:

• Chapter 3.2: collaborated system model to determine the systems interactions online

throughout a mission

• Chapter 3.3: systems usage algorithm to determine the systems usage online throughout

a mission

• Chapter 3.4: surveillance energy consumption model to calculate the energy consump-

tion of the systems and the available energy online during a mission

3.2 Collaborated System Model

Consider an example surveillance scenario where two soldiers perform a mission in an Army

vehicle using one dedicated workstation per soldier. The vehicle has a surveillance system and

two video cameras attached to the exterior of the vehicle. The vehicle is also equipped with

two radios, a weapon, and a vehicle master computer with a hard drive. A central power
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Fig. 11. Sample network setup

generation system supply power to the systems. The vehicle has a local area network with all

the aforementioned systems connected to it. Table VII lists the systems used in the sample

surveillance scenario and Table I lists the commands, their predecessor commands, and the

systems that service them. Fig. 6 illustrates the systems and the commands serviced by the

sample surveillance scenario and Fig. 13 shows a sample flow of commands executed in the

sample surveillance scenario. The sequence of execution is complex and can take any sequence

depending on the mission situation.

Fig. 6 also illustrates an example of the collaborated system model. It has a finite set

UNCLASSIFIED: Distribution A. Approved for Public Release



29

Fig. 12. Sample network setup with additional systems.

S of number of networked systems as shown in equation 3.1 where i = 1 to n number of

systems in the set S.

S =
{
si
}

(3.1)

An ith system si of the set S performs a task by issuing a command to itself or to a pth

system sp of the set S by sending work requests to it. Let C in equation 3.2 be the set of all

the commands used in an Army vehicle, where j = 1 to m commands in the set C.
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Fig. 13. An example command execution flow for a sample scenario.

C =
{
cj
}

(3.2)

Let Sc be a set of ordered pairs of a system and a set of commands it services i.e., Ci
s in

equation 3.3 of an ith system si, where Ci
s is the subset of the set C, and i = 1 to n systems

in the set S.

Sc =
{(
si, Ci

s

)}
(3.3)

An ith system si issues a command cj to itself or to multiple systems by sending work

requests to them. The systems service the requests and complete the command. The fre-

quency of issuing a command cj depends on the operational scenarios. At any time, multiple

systems may issue same commands to a single system. For example, a radio and workstation

can send store command to a computer.

Each command cj can have 0 to k predecessor commands, for example, a system can
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issue a store command only after a record video or a record events command. Conversely,

a capture video command may not have any predecessor commands.

Let X be a set of ordered pairs of a command cj and a set of its predecessor commands

N j in equation 3.4, where N j is the subset of the set C, and j =1 to m commands of the

set C.

X =
{(
cj, N j

)}
(3.4)

Let a system si services cj commands, where i = 1 to n systems and j = 1 to m

commands. Let each command cj have k predecessor commands. Let xl be the number of

times systems serviced an lth predecessor command of cj. Let λj be the total number of

times the systems service predecessor commands of cj. λ for a command cj is as shown in

equation 3.5. At a given time, a system can service multiple instances of the same command.

λj =
k∑
l=1

xl |0 ≤ λj <∞ (3.5)

Consider a scenario in which four systems s1, s2, s3, and s4 use four commands c1, c2,

c3, and c4. Assume that c2, c3, and c4 are the predecessor commands of c1. Assume s1

services c1, and any of the three systems s2, s3, and s4 issues c1 to s1; s2 services c2, s3

services c3, and s4 services c4. For example, at a given time, the s3 might have serviced c3

10 times, s4 might have serviced c4 five times, and s1 might have serviced c1 four times.

In this example, s3 has serviced c3 more than what s1 has serviced c1. The reason may be

that systems might not have issued command c1. It is possible to infer that the predecessor

commands of a command cj control the frequency of cj. Using this type of systems usage

during a scenario, it is possible to estimate the frequency of commands a system serviced over

a period of time compared to how many times the predecessor commands of each command

have been serviced. In this example, based on the number of times the c2, c3, and c4 have
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been serviced, it is possible to determine how many times c1 has been serviced compared to

the sum of the number of times that c2, c3, and c4 have been serviced. This ratio is defined

as the servicing rate β in equation 3.6 of a command cj of a system si, where yj is the total

number of times si serviced a command cj.

βcj =
yj

λj
|0 ≤ βcj < 1 (3.6)

The β value of an ith system si can be expressed using the equation 3.7, where z is the

total number of commands that si services i.e., the set Ci
s.

βsi =

∑z
j=1 βcj

z
|0 ≤ βsi < 1 (3.7)

The workload of an ith system can be characterized using the value of βsi . The βsi value

of an ith system varies between 0 and 1 to indicate the degree of its busyness. If βsi is 1

then the system is very busy. If βsi is 0, then it is idle. The values between 0 and 1 indicate

proportionate levels of busyness. Let βpci be the average servicing rate in equation 3.8 of 1

to p systems that services 1 to f predecessor commands of the commands that the ith system

services. The value of βsd can be calculated using the equation 3.7.

βpci =

∑p
d=1 βsd

p
|0 ≤ βpci < 1 (3.8)

Section 3.3 discusses an algorithm to compute the total servicing, sleeping, and idle time

of a system based on the details of the all commands it services.

3.3 Systems Usage Algorithm

Algorithm 1 can capture the following details of each system since the beginning of a

surveillance mission.
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• The start, end, and elapsed time of a servicing instance of each command

• The start, end, and elapsed time of each idle instance

• The start, end, and elapsed time of each sleeping instance

• The total elapsed servicing time

• The total elapsed idle time

• The total elapsed sleeping time

Although capturing these details is an overhead task, the implementation of MAESS and

other functions of the mission can use this information. The algorithm, in turn, is implemented

as a centralized or distributed solution.

The Algorithm 1 assumes four power states for a system, namely, active, idle, sleep, and

powered off. A system services multiple commands in its active state. In the idle state, it

awaits new commands. Furthermore, it does not service commands in its sleeping and powered

off states. A system in its idle state can service any commands it receives. However, a sleeping

or powered off system has to transition to its active state prior to servicing any commands.

The algorithm assumes the time to transition between states of a system is negligible.

Let an ith system experience k number of idle instances, where tl is the elapsed time in

seconds of an lth instance where l = 1 to k instances. Let tiidle be the total idle time of an

ith system in equation 3.9.

tiidle =
k∑
l=1

tl (3.9)

Let an ith system experience a number of x sleeping instances, and let tm be the elapsed time

in seconds of an mth instance where m = 1 to x instances. Let tislp be the total sleeping time

of an ith system in equation 3.10.

tislp =
x∑

m=1

tm (3.10)

Let an ith system experience a number y of powered off instances and tn be the elapsed time

in seconds of a yth instance where n = 1 to y instances. Let tipwroff be the total powered off
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time of an ith system in equation 3.11.

tipwroff =

y∑
n=1

tn (3.11)

Let ti be the total servicing time in seconds in which an ith system is powered on and servicing

commands in equation 3.12, where T i is the total time of a mission.

ti = T i − (tiidle + tislp + tipwroff ) (3.12)

3.4 Surveillance Energy Consumption Model

Energy can be represented as shown in equation 3.13, where P is the power in Joules

(J)/Second (s) and t is the time during which the power is consumed in seconds (s). If P is

not a constant, then E will be
t∫

0

Pdt.

E = f(P, t) = P ∗ t (3.13)

Let Es be the initial energy available in the battery at the beginning of a surveillance

mission. The battery power can be represented as equation 3.14, where V is the voltage of

the battery, and I is the current of the battery.

P = V ∗ I (3.14)

Es can be represented as equation 3.15, where Iamp−hr is the capacity of the battery in

ampere hours, and V is the voltage of the battery.

Es = V ∗ Iamp−hr ∗ 3600 (3.15)
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Algorithm 1 Systems Usage Algorithm

comment: cj ε C and si ε S

for each cj serviced do
cj ← ID of cj

si ← ID of the system servicing cj

Stj ← start time of cj

Etj ← end time of cj

comment: current elapsed time of the command.

Eltj ← Etj − Stj
store (cj, si, Stj, Etj, Eltj)

end for
comment: Instances of idle/sleeping/powered off states

for each instance of sleeping/idle/powered off of si do
si ← ID of of system
Sti ← start time of an instance
comment: First instance of a servicing command since sti

Eti ← start time of first instance of a command
comment: elapsed time of current instance.

Elti ← Eti − Sti
if si idle then

instid = IDLE
else if si sleeping

instid = SLEEP
else

instid = PWROFF
end if
store (si, Sti, Eti, Elti, instid)

end for
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TABLE I
COMMANDS SERVICED BY THE SYSTEMS

ID Command Servicing Predecessor
System IDs Command IDs

c1 Initiate s1, s2 N/A
c2 Do nothing s1 - s8 N/A
c3 Acquire Target s3 c1, c15

c4 Store Target s9 c3

c5 Transmit Target s6,s7 c3,c6

c6 Read Target s9 c1, c15

c7 Acquire Video s4,s5 c1,c15

c8 Store Video s9 c7

c9 Transmit Video s6,s7 c7,c10

c10 Read Video s9 c1,c15

c11 Fire (Shoot) s8 c3,c7, c15

c12 Store Fire Information s9 c11

c13 Read Fire Information s9 c1

c14 Transmit Fire Information s6,s7 c11, c13

c15 Receive Transmission s6,s7 N/A
c16 Store Transmission s9 c15

TABLE II
SYSTEMS CURRENT CONSUMPTION

ID System Active Idle Sleeping
Current Current Current

(Amperes) (Amperes) (Amperes)
s1 Work Station 1 8.8 3.0 0.4
s2 Work Station 2 8.8 3.0 0.4
s3 Surveillance System 7.0 4.0 0.7
s4 Video Camera 1 2.0 1.2 0.05
s5 Video Camera 2 2.0 1.2 0.05
s6 Radio 1 5.5 2.5 0.2
s7 Radio 2 5.5 2.5 0.2
s8 Weapon 4.0 1.5 0.5
s9 Vehicle Master Computer 12.4 4.5 1.5

Let Et be the total energy consumed at a given time since the beginning of a mission. It

is represented as shown in equation 3.16, where ti, tiidle, and tislp are the total time spent by

an ith system since the beginning of a mission in its active, idle, and sleep states, respectively.
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I i, I iidle, and I islp are the currents consumed in amperes by an ith system in its active, idle, and

sleep states, respectively. V i, V i
idle, and V i

slp are the voltages at an ith system in its active,

idle, and sleep states, respectively. n is the total number of systems used in the mission. tiidle,

tislp, and ti can be calculated using the equation 3.9, 3.10, and 3.12, respectively.

Et =
n∑
i=1

tiI iV i +
n∑
i=1

tiidleI
i
idleV

i
idle +

n∑
i=1

tislpI
i
slpV

i
slp (3.16)

The assumption is that the soldiers use a defect free battery for each surveillance mission

to be safe and have successful missions. In this case, the discharge characteristics of the

battery follow the manufacturers’ published data.

Let Ee be the remaining energy in the battery at a given time as shown in the equation

3.17, where ϕ is the constant energy loss. This research assumes it as 5%. The actual value of

ϕ for practical implementations be calculated by measuring the real discharge characteristics

of the battery and then finding the Root Mean Square (RMS) error of the calculated energy.

Ee = Es − (Et + ϕEt) (3.17)

Let En be the energy level of the battery at which it warns a vehicle to end the surveillance and

return to recharging mode by turning on the engine and escaping the battle zone. Table VII

lists some of the current draws of the systems. The size and weight of the vehicle influences

the energy consumption of the vehicle when it is mobile. However, during surveillance, the

vehicle is stationary and the engine is not operating. Due to this, size and weight impacts of

the vehicle on the system’s energy consumption are negligible.

3.5 Conclusion

This chapter described the proposed theoretical models that represent uncertain behav-

iors of a surveillance mission using servicing rate of a system and its energy consumption.
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The proposed models include surveillance, collaborated system, systems usage algorithm, and

surveillance energy consumption models. The proposed models can be applied to any col-

laborated systems such as sensor networks, data centers, and event driven systems. The

energy management strategies discussed in Chapters 4 and 5 describes the application of

these theoretical models to save energy in stationary Army ground vehicles.

3.6 Disclaimer

Disclaimer: Reference herein to any specific commercial company, product, process, or

service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States Government or

the Department of the Army (DoA). The opinions of the authors- expressed herein do not

necessarily state or reflect those of the United States Government or the DoA, and shall not

be used for advertising or product endorsement purposes.
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CHAPTER 4 SILENT SURVEILLANCE: ENERGY SAVING
STRATEGY

The previous chapter described the surveillance mission theoretical models to allow strate-

gies to save energy based on collaborated functions of systems in a network. This chapter

describes the application of the theoretical models, and the mission aware energy saving strat-

egy for silent surveillance missions of a stationary Army ground vehicle.

4.1 Introduction

Electrical energy requirements of Army ground vehicles namely, Combat Vehicle (CV)

during silent surveillance missions are growing [68]. The main reason for this growth is the

increase of electrically powered in-vehicle systems, namely Command, Control, Communica-

tions, Computers, Intelligence, Surveillance and Reconnaissance devices [3]. During silent

surveillance, CVs are stationary and their engines are off while a shared battery power all the

systems for extended hours [69]. The soldiers cannot recharge the battery frequently due to

the risk of enemy forces identifying the CV if the engine were running.

In a silent surveillance mission, soldiers perform collaborative tasks using a network of

multiple systems. Long duration silent surveillance is challenging to achieve due to various

vendor specific systems with their unique energy management approaches. To address this

shortfall, a basic Energy Saving Strategy (ESS) in a CV allows users to control the circuit

breakers to power systems on or off as needed to manage the limited power. During stressful

mission conditions, the users may not have the patience to perform this process for long time.

Therefore, a mission based online and automatic single ESS is necessary for optimizing the

battery usage of the collaborative systems of a CV.

A CV can use advanced energy storage systems [70] [4] and additional energy systems [2]

[1] to fill the energy gap. However, the integration of new energy storage systems to thousands

of military vehicles is costly and time consuming. In addition, the integration has to overcome

UNCLASSIFIED: Distribution A. Approved for Public Release



40

the size and weight constraints of the CV. In the literature, a large number of ESS techniques

are discussed, but they are typically useful in a single user environment or standalone systems

such as a computer, a hand held device, or a sensor with their own dedicated batteries. Each

system uses its own unique proprietary ESS solution and is costly to modify them to meet the

silent surveillance needs.

Energy saving techniques for the electronic systems depend on the system’s idle time to

achieve energy savings. However, it is always challenging to determine when a system will be

idle and for how long. Incorrect workload estimation for a system impacts its performance and

the overall strategy. Silent surveillance varies from mission to mission and from one type of

combat vehicle to the other. A system in one vehicle exhibits a workload that is different than

the same system in a different CV. There is no availability of mission and CV specific historic

workload data for all the systems to model for silent surveillance. Therefore, the application

of stochastic approaches namely, Markovian [35] and hidden Markovian model based energy

management [36][37] [38] are very challenging to achieve.

Mission aware ESS can use Dynamic Voltage Scaling [71] and Dynamic Power Manage-

ment [12] techniques to reduce the energy consumption of a system by controlling the voltage

and energy state transitions, respectively. However, accurate management depends on the fi-

delity of the workload determination of a system, specifically the idle time. Extensive research

work exists in workload prediction based ESS. A survey in [12] summarizes many adaptive,

heuristic, and stochastic based ESS approaches for real-time embedded systems. Although

most of these approaches seem relevant, the solutions are based on historical data, which is

very difficult to obtain for silent surveillance.

The novel techniques in the literature, namely static time-out [7], renewal theory [72],

adaptive learning tree [73], and a sliding window and an interpolation technique [74] handle the

challenges introduced by the earlier approaches of dynamic power management and dynamic

voltage scaling. However, they are too analytical and complex for implementations within a
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CV, especially when handling non-deterministic workloads of mission activities. The events

based on configurable management policies [75] can reduce energy waste. Nevertheless, the

policies seem to be rigid for the purposes of silent surveillance. Configuring policies for

individual systems creates a larger maintenance footprint and disrupts operations during a

mission. A Rulebased ESS described in [76] optimizes the renewable energy supply within

the space station. However, this approach seems to have issues for load scheduling activities

for any events which are less than 12 hours. Lithium-ion based capacitors [77] can be used

as a power source for the CVs but, they require power infrastructure redesigns inside a CV.

A battery management system in [78] manages the power inside an unmanned aerial vehicle

using Li-ion batteries. Conversely, this approach seems to require a special power bus and

hardware for power conversion, which may be challenging to work within a CV’s environment.

The Mission Aware System Level Power management technique [79] for ESS in radios use

mission scenarios that are extracted from static mission profiles. An approach in [46] extracts

sequences of events and road types from a static mission plan. It mainly uses the information

to optimize the power demand prediction of a vehicle during a mission. A mission-aware

approach described in [80] provides a static scheduling scheme to manage power in embedded

systems. However, this technique works on known static mission data prior to starting a

mission. These approaches ignore the impact of dynamically changing mission profiles and

the interactions between multiple systems. Moreover, the approaches in [79] and [80] have

no online capabilities.

To the best knowledge, none of the published ESS research in the literature addresses

the impacts of collaborative interactions of multiple systems on the workload characteristics

of a given system. This is mainly due to the lack of theoretical models needed to understand

silent surveillance or collaborative functions. Moreover, no published research deals with the

ESS of a CV for silent surveillance missions, especially to handle the uncertain phenomena of

silent surveillance. To address the aforementioned shortfalls of developing an ESS based on
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systems usage during a mission, this research proposes the following:

• Theoretical models and algorithms to represent silent surveillance namely, silent surveil-

lance Model, Collaborated Systems Model, Systems Usage Algorithm, and the silent

surveillance Energy Consumption Model

• Mission Aware Energy Saving Strategy (MAESS) for silent surveillance missions of a

CV using the above theoretical models

The MAESS transitions systems to their appropriate power consumption states online

to optimize their energy consumption based on the mission activities and the estimation of

energy available in the battery of a CV.

The MAESS maximizes the duration of a silent surveillance mission with minimal impacts

to operational performance and systems availability. In addition, it ensures the battery has a

predefined threshold energy remaining to restart the CV to escape from the battlefield before

recharging the battery. Since silent surveillance is complex and challenging, the MAESS

optimizes the systems usage and minimizes the battery discharges according to mission needs,

and maximizes the availability of systems to obtain longer successful missions.

This document is organized as follows. Section 4.2 introduces the proposed MAESS. Sec-

tion 4.3 describes the theoretical foundations of the silent surveillance phenomena. The details

in Section 4.3 form the basis of a solution for the MAESS. Section 4.6 discusses the computer

simulation and experiment results of the MAESS using sample silent surveillance scenarios.

Section 4.7 describes implementation approach for the proposed enery saving strategy in a

real vehicle setup. Section 4.8 concludes this chapter.

4.2 MAESS

The high-level MAESS for silent surveillance missions of a CV includes these activities:

• Online Monitoring of activities of a mission, determination of systems usage, and the
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corresponding energy consumption

• Calculation of the amount of energy left in the battery to determine whether to continue

or end the mission

• Determination of the systems that must be transitioned to powered off, powered on,

and sleep states to optimize the energy consumption and to achieve a successful mission

The MAESS controls the electrical power states of the systems according to the needs of the

silent surveillance mission without affecting the operational performance and availability of

the systems until the battery has sufficient energy to continue the mission, thus minimizing

unnecessary battery discharging. For simplicity, the MAESS assumes the energy consumption

of transitioning systems between different power states, and the time they take to transition

are minimal.

In explaining the MAESS, this research uses example operational data. The implementa-

tion of the MAESS in a real environment shall use the appropriate operational data, namely

commands, systems, and their actual energy consumption values. The authors propose and

discuss the following theoretical models and algorithm for the MAESS:

• Section 4.3.1: silent surveillance model for the operational environment of the MAESS

• Section 4.3.2: collaborated system model to determine the systems interactions online

throughout a mission

• Section 4.3.3: systems usage algorithm to determine the systems usage online through-

out a mission

• Section 4.3.4: silent surveillance energy consumption model to calculate the energy

consumption of the systems and the available energy online during a mission

• Section 4.3.5: MAESS System model and an algorithm to implement the MAESS using

silent surveillance model, collaborated system model, systems usage algorithm, and

silent surveillance energy consumption model
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4.3 System Models

This section describes the theoretical formulations of the silent surveillance phenomena

using multiple elements or behaviors of silent surveillance. The details of this section provide

a basis for the MAESS for silent surveillance missions of a CV.

4.3.1 Silent Surveillance Model

Chapter 3.1 describes the details of this section.

4.3.2 Collaborated System Model

Chapter 3.2 describes the details of this model.

4.3.3 Systems Usage Algorithm

Chapter 3.3 describes the details of this model.

4.3.4 Silent Surveillance Energy Consumption Model

Chapter 3.4 describes the details of this model. For the systems hosted in a CV, the

vendors typically publish the values for the current draws and voltages of the systems in

active, idle, and sleeping states. An in-house experimental data validates the published values

for various systems. The implementation of the MAESS uses the values of Table VII and the

equation 3.16 to determine the actual power consumption values for each system at its active,

idle, and sleeping states. The voltage values of the systems vary between 8 to 28 volts. The

battery voltage is normally between 24 to 28 volts. Operating temperatures have an impact on

the battery’s discharge and electrochemical characteristics. The temperature ranges between
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-60 F to and 194 F. In general, the military vehicles use battery management systems to

measure the state of charge or state of energy of a given battery. The implementation of

the MAESS can use this information to determine appropriate power state transitions for the

on-board systems. The size and weight of the CV influences the energy consumption of the

vehicle when it is on the move. However, during silent surveillance, the vehicle is stationary

and the engine is not operating. Due to this, size and weight impacts of the vehicle on the

system’s energy consumption are negligible.

4.3.5 MAESS System Model and Algorithm

To explain the MAESS, this section assumes a limited number of systems, commands,

rules, and operational characteristics for silent surveillance. The actual implementation varies

as silent surveillance characteristics change. However, the approach remains the same. Section

4.6 discusses the off-line simulation of the MAESS using a sample silent surveillance scenario

with example systems and commands.

The MAESS system model uses the theory discussed in Section 4.3 and its elements are

as follows:

• S: A finite set of system IDs in a CV i.e., j = 1, 2, 3....n, where n > 0

• C: A finite set of command IDs used in a silent surveillance mission i.e., c = 1, 2,

3....m, where m > 0

• X: A finite set of command IDs and their associated predecessor command IDs of each

command as shown in equation 3.4 used in a silent surveillance mission. This depends

on the systems and the commands used in a CV during silent surveillance.

• Sc: A finite set of system IDs and the commands they execute as shown in equation

3.3 for each system used in a silent surveillance mission. This depends on the systems

and the commands used in a CV during silent surveillance.
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• βsj : The servicing rate of a system j based on the equation 3.7

• βpcj : The average servicing rate as shown in the equation 3.8 of 1 to p systems that

services 1 to f predecessor commands of the commands that the jth system services

• Et: Energy consumed by the systems based on the equation 3.16

• Ee: The silent surveillance energy consumption as shown in the equation 4.1. It is the

modified version of the equation 3.17. The modification includes the addition of the

value of ϕ variable. It is assumed to be 0.05 (5%).

Ee = Es − (Et + 0.05Et) (4.1)

• En: The energy threshold to end the mission based on the equation 4.2, where Es is

the energy of the battery at the beginning of a mission based on the equation 3.15.

En = 0.2 ∗ Es (4.2)

• Algorithm 1: The operation of storing the details of the commands serviced, and the

instances of idle, powered off, and sleeping instances of each systems

• Algorithm 2: The operation of MAESS using the theoretical model elements above

Analytical mathematical models for MAESS require certain assumptions and constraints. How-

ever, the complexity of a silent surveillance mission and the resulting non-deterministic usage

of systems complicate the formulation of mathematical models. Moreover, silent surveillance

has no predefined or certain phenomenon.

During silent surveillance missions, the servicing rate of systems may change over a

period of time; the energy level of the battery is dependent on it. Characterizing and modeling

this for silent surveillance missions using traditional mathematical techniques such as algebra

and calculus is a complex task.
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In general, mission experts express the servicing rate of systems using natural linguistic

terms, namely low, high, and medium. These terms are context dependent; for example,

the servicing rate of 0.5 seems low to one soldier, but it may appear high for another soldier

on a different mission. Therefore, it is a very complex and time-consuming process to develop

a solution for MAESS using just the traditional mathematical models.

To address this complexity and shortcoming, the author of this research proposes to use

a Fuzzy Logic System (FLS) [81] and fuzzy sets [60]. To the best of the authors’ knowledge,

there is no concept of an FLS-based MAESS. An FLS provides if-then fuzzy rules based models

using the knowledge of the silent surveillance missions. Algorithm 2 illustrates the operational

MAESS. The MAESS uses the proposed Fuzzy Deterministic Inference Algorithm (FIA) to

determine the systems that need power state transitions. The Section 4.4 describes details.

Silent surveillance has peak and steady-state electrical load profiles depending on the type

of CV and systems used in a given mission. Most of the profiles are based on the known mission

scenarios. However, due to security reasons, mission scenarios are not readily available for all

the cases. In many situations, the energy density and electro-chemical property of the battery

has a great dependency on how it behaves to meet the electrical consumption requirements of

the systems. Therefore, the MAESS implementation shall use the electro-chemical property

as one of the inputs for determining the appropriate capacity of the battery to meet the

electrical needs of the CV. As an additional remedy, the soldiers could be trained to handle

mission scenario specific energy shortfall.

The systems usage algorithm can capture commands processed by all the applicable sys-

tems in a CV. Using the data collected by this algorithm, the MAESS algorithm processes

actions for one system at a time for any number of systems. However, the implementation

can run with multiple instances of the MAESS to process more systems concurrently. Based

on this capability and no dependency on the number of systems it can handle, the MAESS

approach is easily scalable.
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Algorithm 2 MAESS Algorithm

comment: cj ε C and sj ε S

Es ← determine from the equation 3.15;
En ← determine from the equation 4.2;

for each cj serviced do
DB1 ← use Algorithm1 to store details of cj;

end for
for each instance of a sleeping/idle/powered off of sj do

inst← sleeping/idle/powered off instance of sj;
DB2 ← use Algorithm1 to store inst details;
if inst is IDLE then

βsj ← determine from the equation 3.7;
βpcj ← determine from the equation 3.8;
Et ← determine from the equation 3.16;
Ee ← determine from the equation 4.1;
if Ee ≤ En then

Power off sj;
else

comment: Decision for sj using FLS Rules and inference.

Dj ←FLS Inference (Et, βsj , βpcj);
end if
if Dj = Sleep then

Send sj to sleep mode;
else if Dj = off then

Send sj to powered off mode;
else

Send sj to active mode;
end if

end if
end for
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4.4 Fuzzy Deterministic Inference Algorithm

The synthesis of any sensor data is required based on the time and pattern of the data.

For example, in the engine compartment, the rate of change of temperature may increase,

decrease or stay at the same level for a particular length of time. In this case, the intelligent

system must monitor the temperature readings over a time period from the sensor and analyze

the patterns. The rate of change can take values that are greater than zero. In general, subject

matter experts express the data values in subjective terms, namely, low, medium, and high

values. There is no precise definition for the values of low or high. Therefore, the traditional

analytical techniques lack approaches to handle subjective linguistic terms. An intelligent

system and a new approach is necessary to collect the required data and synthesis them to

take actions. Moreover, the system must handle linguistic definitions of the rate of change of

values.

Fuzzy logic [61] provides a reasoning mechanism for synthesizing vague and uncertain

linguistic parameters. In the literature, fuzzy logic has been used in multiple different areas.

However, they use either rule based heuristics or analysis of histograms and images. Most

of all the fuzzy logic applications in the literature seem to use the Mamdani approach for

designing a rule based system. The Mamdani approach allows users to express fuzzy rules of

a system using linguistic terms. Therefore, the experts tend to define the rules using natural

language and it increases the complexity of a rule base. As the rule base increases, the memory

space and computations required to process them increases. In addition, they all use output

membership functions for approximation and it requires more memory and computations.

The work described in [82], [83] proposes rule reduction approaches to achieve compu-

tational efficiency. On the other hand, the authors seem to introduce complex algorithms

for reducing the rules and creating a new set of membership functions from them. The ap-

proaches described in [82], [83] complicate the subject matter experts to define new rules or
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modify the existing rules. Conversely, singleton fuzzy set approaches in [84] and [85] provide

a model for using real numbers in the consequent part of a fuzzy rule, and lets the fuzzy

inference approximate the output based on the combined weighted average of all the rule

antecedents. However, they require defining multiple fuzzy singletons or real numbers to ob-

tain the results. The weighted averages may not be the output the system is expecting to

perform some actions. Therefore, additional processing or memory is required before using

the output results. The approaches defined in [86] and [87] also follow the similar approxi-

mation approaches and require defining multiple real numbers or fuzzy singletons. None of

these approaches have approximation methods for producing a deterministic output using one

real number or a fuzzy singleton, for example, outputting a deterministic value of 0.25 or 0.5

depending on the implication of the appropriate rule antecedents.

A fuzzy non-controller type of system processes fuzzy inputs and produces a deterministic

output. The output is non-fuzzy and it can have multiple deterministic values based on the

rules implication. This type of system is required for taking any deterministic actions. The

author proposes a novel Fuzzy Deterministic Inference Algorithm (FIA). The algorithm must

be simple with less memory and computation requirements. It must minimize the complexity

of future rule modifications. In addition, it must aid in implementing an electronic chip using

simple architecture and minimal number of logic elements. The FIA works well with most of

the non-controller type applications that use fuzzy inputs and require a deterministic output.

The FIA is an extension and alternative to the fuzzy singleton algorithm. The weighted

average approach of the traditional Mamdani singleton method requires more processing and

is more time consuming as the number of fuzzy rules increase. Therefore, the proposed FIA

provides a an algorithm that requires less storage space, and is more efficient to synthesize

fuzzy inputs and to produce a deterministic output. An application of the proposed FIA is

available in the author’s previous work [88].

The model is expressed as shown in (4.3). Let k be the expected output of a fuzzy system,
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J be the output matrix based on the m rules of the system, xi be the ith row number of the

output of the J matrix, and yij be the jth column number of the ith row of the output of the

J matrix. Where i = 1 to n rows and j = 1 to m columns of the output matrix J . The FIA

assumes that the rule implication aggregation uses fuzzy OR operator.

k = J(xi, yij) (4.3)

The value of xi can be calculated using (4.4). Let I1 be the value of the first input variable

of the system, µp1 and ap1 be the corresponding membership grade and output coefficient

of the pth linguistic input membership function (fuzzy set), respectively. Where p = 1,2,..,n

linguistic input membership functions of the first input variable. The value of µp1 can be

calculated using (5.12).

Fig. 14. Mamadani rules approach for the engine compartment

Let V be the vector of membership grades (µ) of membership functions of the 1st in-

put variable, and Va be the vector of output coefficients of the corresponding membership

functions. Let z be the index of maximum µ i.e., µmax1 (4.6) of the 1st input variable in V .

xi = Va(z) (4.4)

V (p) = (µp1(I1)) (4.5)
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µmax1 = max(V (p)) (4.6)

The value of yij can be calculated using (4.7). Let Il be the value of lth input variable

of the system where l = 2 to X inputs, µpl and apl be the corresponding membership grade

and output coefficient of the pth linguistic input membership function (fuzzy set) of the lth

input, respectively where p = 1,2,..,n linguistic input membership functions. The value of µpl

can be calculated using (5.12).

Let Wl be the vector of membership grades (µ) of membership functions of the lth input.

Let Wal be the vector of output coefficients of the corresponding membership functions of

the lth input. Let zl be the index of maximum µ i.e., µmaxl (4.9) of the lth input in Wl.

yij =
X∑
l=2

Wal(zl) (4.7)

Wl(p) = (µpl(Il)) (4.8)

µmaxl = max(Wl(1),Wl(2), ...,Wl(p)) (4.9)

The FIA implementation procedure is as follows:

Step#1: Arrange fuzzy if-then rules in a matrix format as shown in Fig. 14. Let J be

the n X m output matrix consisting of all the outputs for the unique combinations of the

membership functions, where n is the number of rows and m is the number of columns.

Step#2: Identify unique linguistic outputs in J and assign unique numbers starting from

1. Let λ bet the total number of unique outputs. Replace all the linguistic output variables
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in J with the assigned unique numbers 1,2,3..,λ. Let αij be the assigned output number for

the ith row and jth column of J .

TABLE III
UNIQUE OUTPUT LINGUISTIC VARIABLES

Variable Assigned Number
Normal 1
Idle 2
Sleep 3

Step#3: For each input in J , assign a unique number to each unique linguistic in-

put variable using an increment of one starting from one. Fig. 16 illustrates an example

assignment.

Step#4: Let ϑj be the total number of linguistic input variables in the jth column that

have no output coefficients and θj be the total number of linguistic input variables that have

output coefficients. Let ai be the output coefficient of a linguistic input variable where i is 1 to

θj. Determine delta output coefficient ξj using (4.10) and assign it to all the linguistic input

variables that have no output coefficients in the jth column. If any of the remaining columns

have any linguistic input variables in the same positions as the jth column, then assign their

output coefficients with the output coefficients of the corresponding linguistic input variables

in the jth column. For example, assume that 1st column has low and high linguistic input

variables, and 0.33 and 1.35 be the output coefficients of low and high linguistic variables,

respectively. Assume 3rd column has low and medium, and 4th column has medium and

high linguistic input variables. In this situation, the low variable in 3rd column gets 0.33, and

the high value in the 4th column gets 1.35. Repeat Step#4 for all the remaining columns to

make sure all the linguistic input variables have output coefficients. After performing all the

assignments, the final matrix looks as shown in Fig. 15 and Fig. 16.
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ξj =

j −
θj∑
i=1

ai

ϑj
| j = 1, 2, 3...m columns (4.10)

Step#5: Let ϑk be the total number of linguistic input variables in the kth row that

have no output coefficients and θk be the total number of linguistic input variables that have

output coefficients. Let ai be the output coefficient of a linguistic input variable where i is

1 to θk. Determine delta output coefficient ξk using (4.11) and assign it to all the linguistic

input variables that have no output coefficients in the kth row. Since a row can have only

input variable, repeat Step#5 for all the remaining rows to make sure all the linguistic input

variables have output coefficients. After performing all the assignments, the final matrix looks

as shown in Fig. 15 and Fig. 16.

ξk =

k −
θk∑
i=1

ai

ϑk
| k = 1, 2, 3...n rows (4.11)

Fig. 15. Engine compartment rule matrix with output coefficients.

Step#6: As shown in (4.12), let N be the total number of inputs of an a system.

Let Ii be the vector of all the numerically assigned linguistic input variables of the ith input
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Fig. 16. Battery compartment rule matrix with output coefficients.

(Step#3), where i = 1, 2, 3..., N . Let λi be the total number of linguistic input variables of

the ith input. Let ai be the output coefficient of the ith linguistic input variable. Based on

(4.12), the engine and battery compartment linguistic input variables of the IDSPF can be

represented as (4.13) and (4.14), respectively.

Ii(N)(N) = (1, 2, .., λi)(a1, a2, ..aN) | i = 1, 2, 3..., N (4.12)

ITe(3) = (1, 2, 3)(1, 2, 3)

IM(3) = (1, 2, 3)(1, 2, 3) (4.13)

ITb(3) = (1, 2, 3)(1, 2, 3)

II(3) = (1, 2, 3)(0.5, 3.5, 6.5)

IV (3) = (1, 2, 3)(0.5, 1.5, 2.5) (4.14)

The output matrix J (Fig. 15 and Fig. 16), equations (4.13), and (4.14) serve as the

knowledge for inferring the output of a fuzzy system. The following equations serve as the

FIA engine: (5.12), (4.3), and (4.7).
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4.5 Simulation and Experiment Setup

Experiments were conducted in a battery lab to test the discharge characteristics of a lead

acid battery while meeting the electric current demands for two silent surveillance mission

scenarios. The demand was simulated using a centrally controlled cycler circuits system

that has multiple current and voltage profiles. The cycler was controlled using software and

electrical load profiles. The test was conducted in multiple temperature conditions. The

following setups were used for the various temperature conditions:

• A water bath setup for testing the battery discharges at 25 and 40o Centigrade tem-

perature. In this setup, a 14 volt battery was immersed in the temperature controlled

water bath. The water bath was used to change the temperature environment for the

battery. The water bath can run from 13 to 71o Centigrade temperature. Normally, a 15

minute transition time was taken to transition from high to low temperature. However,

20 to 30 minutes were taken to transition from low to high temperature depending on

the volume of water in the bath. The battery core takes six hours to reach to 0 or 40o

Centigrade temperature and 12 hours for −18 and −60o Centigrade. Fig. 17 shows the

water bath setup.

• A Thermotron chamber for testing the battery discharges at −10o Centigrade. The

Thermotron runs between −50 to −100o Centigrade.

The simulation was conducted for two mission scenarios using a custom random workload

generator for the sample systems used in the study. The computer simulation was conducted

for a scenario for two hours per ESS type namely, MAESS and baseline ESS. Based on the

simulation data, for a scenario, two load profiles were extracted, one with MAESS and the

other one with the baseline ESS. Fig. 18 and Fig. 19 show the load profiles used in the

experiment. The discharge characteristics of the battery were tested using the load banks

created from the simulated load profiles. To simulate the silent surveillance conditions, the
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Fig. 17. Battery testing setup.

Fig. 18. Scenario 1 load profile.

battery charging was disabled during the testing. Due to the constraints of the lab at the

time of testing, the load profile values were halved. Table IV lists the battery type and the

temperatures used in the experiment. Section 4.6 describes the validation results.
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Fig. 19. Scenario 2 load profile

TABLE IV
BATTERY CHARACTERISTICS USED IN THE EXPERIMENT

Battery Temperature Voltage
Type (o Centigrade) (Volts)

Lead-Acid 25 12 - 14
Lead-Acid 40 12 - 14
Lead-Acid -10 12 - 14

4.6 Results and Discussions

The MAESS transitions a system to a lower power consuming state based on the ratio of

servicing rate of a system and its predecessor systems, and the availability of battery power.

The MAESS performs minimal state transitions and ensure systems availability based on the

mission needs. On the contrary, the existing approaches described in Section 4.1 transition a

system based on its predetermined idle patterns and power consumption penalty of a transition.

Therefore, the systems may undergo multiple unnecessary transitions that affect the systems

availability. On the other hand, the systems may stay powered on for a long time.

Table V lists the total current draws from the systems per scenario for the two ESS types.

The MAESS approach seems to consume 3.41% less current than the baseline ESS for the

scenario 1 and 2.2% less for the scenario 2. The battery experiment results are shown in Table

VI. The energy consumption seem to vary with the temperature. In all the three temperature
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conditions, the MAESS approach seems to consume less energy than the baseline ESS for

the scenario 1 scenario 2. Fig. 20 and Fig. 21 graphically illustrates the different energy

consumption for the two scenarios at various temperatures.

TABLE V
TOTAL SYSTEMS CURRENT DRAW PER MISSION SCENARIO

Scenario Duration Baseline ESS MAESS MAESS Savings
Number (Minutes) (Amperes) (Amperes) (%)

1 120 869 839.3 3.41
2 120 917.9 897.7 2.2

TABLE VI
ENERGY CONSUMPTION AT DIFFERENT TEMPERATURES.

Scenario Duration Temperature Baseline ESS MAESS MAESS
Number (Minutes) (o Centigrade) (Watt-Hour) (Watt-Hour) Savings(%)

1 120 25 584.20 566.70 3
2 120 25 607.3 596.6 1.8

1 120 40 588 572 2.8
2 120 40 610.8 599.5 1.9

1 120 -10 566.6 561.5 0.9
2 120 -10 599.4 589.6 1.7

Fig. 20. Scenario 1 battery test results
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Fig. 21. Scenario 2 battery test results

Fig. 22. Silent mode: sequences and events
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4.7 Implementation Approach

The experimental setup is always different from real implementation in a live vehicle.

Unlike experimental laboratory, the real vehicle lacks all the instrumentation to validate all

the results. Therefore, most of the validation experiments are performed in a lab set up and

the strategy is implemented on a real vehicle based on the lab results.

Fig. 23. In-vehicle network architecture context

An implementation procedure of the proposed energy saving strategy is as follows:

• Develop software to implement the proposed algorithms using C, C++, Java, or Matlab

programming languages

• Host the software in a simple computer that has a microprocessor and two physical

interfaces namely, Ethernet and CAN. Most of the Army ground vehicles may have

Ethernet and CAN networks to communicate among the systems in the vehicle. To

obtain data information to successfully implement the approach, an efficient in-vehicle
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Fig. 24. Proposed in-vehicle network architecture

network is required. Fig. 23 and Fig. 24 proposes an architecture.

• Connect the simple computer to the vehicle network for communicating with the systems

and the ECU

• Allow the software version of the algorithms to communicate with appropriate systems

to achieve energy savings using either CAN or Ethernet protocols

• Use a current measuring sensor near the alternator to measure the current draw from

the systems. The sensor shall have a CAN interface to communicate with the CAN bus

• Provide a software function for the driver to switch between the normal operation and

the energy saving operation

Fig. 22 shows a schematic of the sequence of events and operations of a conventional

Army ground vehicle after implementing the proposed energy saving strategy to save battery

energy when the engine is off and the vehicle is stationary. The operation of the proposed
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energy saving algorithms in a real vehicle is as follows for silent surveillance mission of the

vehicle:

• Driver turns the engine off and the vehicle is not moving. The battery supplies power

to the systems

• The energy saving algorithm software monitors the systems usage constantly and tran-

sitions systems to their power saving mode based on the mission conditions and their

busyness servicing requests.

• This process ends when the battery state of charge is not sufficient to continue the

mission. The driver starts the vehicle to recharge the battery or to escape from the

battle field

4.8 Conclusion

This chapter described the proposed mission aware energy saving strategy for silent surveil-

lance missions of a stationary Army ground vehicle. The computer simulations and a battery

test show that the proposed approach minimizes battery discharge based on the needs of a

mission without affecting the operational performance of the systems. Therefore, it extends

the duration of a silent surveillance mission that results in a successful mission. Experiments

show that the proposed approach consumes 3% less energy than the baseline approach for

one scenario and 1.8% less for the second scenario. The implementation can either be a cen-

tralized or distributed solution. The proposed centralized solution of the approach minimizes

the modifications to the existing systems. Therefore, the implementation cost is minimal.

Since the approach can handle any number of systems, it is a flexible and scalable solution.

The next chapter describes the mission aware energy saving strategy for normal surveillance

missions of a stationary Army ground vehicle.
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4.9 Disclaimer

Disclaimer: Reference herein to any specific commercial company, product, process, or

service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States Government or

the Department of the Army (DoA). The opinions of the authors- expressed herein do not

necessarily state or reflect those of the United States Government or the DoA, and shall not

be used for advertising or product endorsement purposes.
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CHAPTER 5 NORMAL SURVEILLANCE: ENERGY SAVING
STRATEGY

The previous chapter described the application of surveillance mission theoretical models,

and the mission aware energy saving strategy for silent surveillance missions of a stationary

Army ground vehicle. This chapter describes the mission aware energy saving strategy for

normal surveillance missions of a stationary Army ground vehicle.

5.1 Introduction

Energy savings in stationary Army ground vehicles is the primary goal of the proposed

research in this section. Fuel-energy savings is critical for extending mission time. Additionally,

energy saving is a mandatory requirement for the military due to their major consumption

requirements [3]. A Defense Science Board report [3] triggered the development of alternative

energy sources namely, fuel cell, and high capacity electric storage [2] systems. However, they

require expensive and time-consuming implementations for combat vehicles.

During warfare, soldiers use multiple systems to perform extended hours of mission in

stationary combat vehicles. The missions require a continuous supply of electricity to operate

on-board systems. However, stationary vehicle engines operate at fixed idle speed and meet

limited vehicle power demands. In many cases, the power requirements of the mechanical

accessory systems are somewhat constant. In contrast, increased electrical consumption of

the systems changes the load on the alternator and the engine. The Engine Control Unit

(ECU) reacts to the change and injects fuel accordingly or changes the engine speed to a

high-idle RPM, a situation that is less energy efficient. Furthermore, engines may stall if the

demand is more than a given speed can handle.

For military surveillance missions, the combat vehicles operate in stationary modes as

a power generator for long durations. The inefficient engine speeds during the stationary

operations of the engine increase fuel consumption. Therefore, energy efficiency in stationary
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vehicles is very important for the Army combat vehicles. The proposed research focuses on

operating the engine of an Army ground vehicle such as a stationary Combat Vehicle (CV)

at electrical load specific fuel-efficient engine speeds rather than at predefined high-idle RPM

increments to meet the demands. Stationary vehicles provide power to operate on-board

mechanical and electrical systems. However, the non-stationary vehicles provide power to

propulsion as well as on-board systems.

The process of electricity generation in a stationary CV is a physical phenomenon be-

tween the on-board electrical systems, engine, and the alternator. Thus, most of the existing

techniques focus on altering or enhancing the physical properties of this behavior. However,

it is possible to experiment and observe the phenomena, and capture data points to develop

mathematical or heuristic models. Researchers can use the models to optimize this procedure

for achieving fuel efficiency while meeting the electrical demands. Developing a true model

to represent this physical process is a complex task for traditional mathematical methods.

To avoid this intricacy, researchers focus on heuristic approaches. Nevertheless, the current

literature lacks heuristic approaches to improve fuel efficiency of stationary CVs and also to

meet the on-board systems electrical needs. The proposed research addresses this gap.

In the literature, researchers [53], [54] recommend minimizing load disturbances and fuel-

injection inaccuracies to achieve fuel efficiency in stationary vehicles. On the other hand, the

adaptive algorithm [55] and hybrid control algorithm [56] approaches suggest operating the

engines at lower RPMs to achieve fuel economy [57]. A study [58] proposes to incorporate

known idle speed constraints to obtain energy efficiency. Some researchers demonstrate fuel

efficiency in a stationary vehicle’s gasoline engine by efficiently controlling the operations of

air valve and spark advances [59]. Most of these approaches lack techniques to handle CV’s

large load variations. These methods may trigger engine stalls if the predefined speeds cannot

handle the demand. Moreover, these techniques require altering the physical properties of the

vehicle.
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Several heuristic fuel efficiency techniques, such as fuzzy logic [90],[91], [92] and neural

networks [42], [93] focus on manipulating the energy storage and power split strategies. An-

other research study [46] uses a machine learning approach to achieve fuel economy while

meeting the power demands of a non-stationary vehicle. A study [43] proposes to use an en-

ergy management strategy to minimize energy losses in the operation of an alternator, engine,

and battery system to achieve fuel-efficiency.

All the aforementioned and similar approaches in the literature require alterations of the

dynamic properties of the non-stationary vehicles to achieve fuel economy. Introduction of

bi-directional power converter and additional energy storage [94] can lead to better fuel ef-

ficiency during stationary operations of a CV. On the other hand, an additional converter

and energy storage has cost, weight, and space constraints. A fuzzy logic controller [95] in a

hybrid electrical vehicle controls the engine to operate at fuel-efficient regions based on power

demands. However, this approach works only on hybrid electric vehicles due to the presence

of a high-voltage battery.

A high-idle speed control method [96] uses fixed idle speed increments to meet the de-

mands and to minimize fuel consumption. Another system [97] switches the idle speeds

between 600 RPM to 1100 RPM using a timer based solution. These approaches do not

determine fuel-efficient idle speeds to meet the needs. Moreover, a human element is also

involved in the decision process, a situation that leads to inefficient engine speeds. A system

and a method [98], which is closest to the proposed approach uses an optimal speed adjuster

to meet the power demand and to achieve fuel savings. However, this approach uses only

the relationship between the generator speed and the demand. It does not incorporate the

engine’s fuel efficiency properties.

Many existing high-idle speed controllers do not handle the engine and alternator maxi-

mum output capacity, combined power demand from the alternator and the mechanical ac-

cessory systems, and engine’s and alternator’s performance characteristics to achieve fuel
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savings in stationary vehicles. Moreover, the existing approaches depend on the alternator

and engine types. To the best knowledge, no approach exists in the literature that deals with

achieving fuel-efficiency in stationary CVs and meeting the electrical demands of the vehicle.

The following distinct contributions differentiate the proposed methodology from the existing

techniques:

• An on-line Fuzzy Logic System (FLS) based Mission Aware Soft Computing Fusion

(MASCF) algorithm as a feedback controller to approximate a fuel-efficient engine speed

per unique electrical demand by combining the followings:

– Engine and alternator performance/efficiency maps

– Mission aware profiles of on-board systems electric current draw

– Engine and alternator constraints

• FLS models of alternator and engine performance characteristics

This chapter is organized as follows: Section 5.2 describes the theoretical MASCF system

model, and Section 5.3 describes the MASCF solution architecture and the algorithm. Section

5.4 describes the simulation and experiment setup. Section 5.5 presents the computer simu-

lation and experiments results. Section 5.6 describes an approach to implement the proposed

solution. Section 5.8 concludes this chapter.

5.2 MASCF System Model

The MASCF approach addresses a conventional stationary CV that has a diesel internal

combustion engine, a drivetrain, an automatic transmission, a belt-driven alternator, batteries,

and electrical systems. During stationary operations of a CV, the systems’ electrical demands

put a load on the alternator. The alternator and mechanical accessory systems put a combined

load on the engine. The engine spends fuel and produces the mechanical power to operate

the automotive systems and the alternator. The alternator produces the necessary current

output to meet the on-board systems demand.
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In a stationary CV without the MASCF approach, the ECU operates the engine at a

predefined speed ωeng to meet the energy demand. If the load power exceeds the maximum

capacity of the engine at a given ωeng, the engine stalls. If a given speed is not able to

meet the vehicle needs, the driver or the ECU will increase ωeng to a next predefined high-idle

RPM. The new ωeng may not be fuel-efficient to meet the demand. Section 5.2.1 provides

the system model with a theoretical background for realizing the MASCF approach. Section

5.3 describes the MASCF solution architecture and the algorithm.

5.2.1 Theoretical model

The fuel efficiency Se of a given ωeng is shown in (5.1), where Fc is the fuel consumption

of the engine to produce power at the given ωeng. The minimum value of Se among various

combinations of ωeng and the power produced, determines the fuel-efficient ωeng for a given

engine load torque Teng.

Se =
Fc

f(Teng, ωeng)
(5.1)

The expression of the Teng is as shown in (5.2). The values of automotive systems torque

Tauto change with the ωeng, the value of alternator torque Talt is a function of the on-board

systems electric current consumption demand Is, and the alternator speed ωalt. The alternator

speed depends on the engine speed. This study assumes a constant horsepower requirements

from the mechanical accessory systems Hauto, a 20% of Talt and Tauto values to cover the

losses, and a pulley ratio of 1:3 between the engine and the alternator.

Teng = 3.2f(Is, 3ωeng) + 1.2(
Hauto

ωeng
) (5.2)

Fc at a given ωeng can be represented as (5.3). If the engine can operate at ωeng that
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has lower values of Se to meet the demand Is, the fuel efficiency can be improved.

Fc = Se ∗ f(Teng, ωeng) (5.3)

Current measuring sensors can be used to determine the total electrical load Is of the

vehicle. As an alternate approach, based on the author’s previous work [99], systems total Is

can be determined using the expression shown in (5.4) and the Systems Usage Algorithm [99],

where I islp= 1 to n sleeping systems, I iidl 1 to n idle systems, and I iact 1 to n active systems

current consumption values in a CV. Table VII shows an example of current draws of several

CV’s systems. The idle systems accept work requests and immediately fulfils the requests.

However, the sleeping systems have to transition to active mode before fulfilling any requests.

Is =
n∑
i=0

I islp +
n∑
i=0

I iidl +
n∑
i=0

I iact (5.4)

Fig. 25. Example engine BSFC map
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Fig. 26. Example alternator performance map

Engine experiments of various combinations of ωeng and Teng allows the development of

an engine efficiency map. An example is as shown in Fig. 25. Similarly, a combination ωalt

and Is load allows developing an alternator performance map that can represent the Talt that

the alternator puts on the engine to generate a given Is at a given ωalt. An example alternator

efficiency map is shown in Fig. 26. By combining the information in the performance maps,

and estimated Is values, it is possible to approximate a fuel-efficient ωeng by identifying the

combination of lowest Fc and its associated ωeng that can meet the demand. In the literature,

multiple look-up tables and linear interpolation techniques are used to approximate values from

a map data. However, creating look-up tables for MASCF is complex and time consuming.

Section 5.3 presents the proposed novel FLS models and MASCF algorithm to handle this

situation.

An FLS [100] based system maps non-linear inputs to a scalar output using fuzzy sets [62],

a fuzzification process, a set of rules, an inference method, and a defuzzification processes. A
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fuzzification process maps a crisp input to a membership function. A set of rules in natural

language provide an approximation model. In the example rule (5.5), I = current, S =

engine speed, and F = fuel consumption. The terms high, medium, and low are fuzzy

sets. An inference process aggregates the results of each rules, and a defuzzification process

maps a fuzzy value into a crisp output value. Mathematically, a fuzzy set X in an universe

of discourse Y is defined as (5.6). The µX is a membership degree between (0,1) of value y

in a fuzzy set X.

if I = low & S = medium then F = medium (5.5)

X = {(y, µX (y)) |y ∈ Y } (5.6)

Fig. 27. Example maximum engine torque output

Sugeno-Takai [101] based FLS models for estimating the Teng and Fc are shown in (5.7)

and (5.8), respectively. Ri
alt (5.9) and Ri

eng (5.10) are fuzzy rule bases for evaluating Teng

and Fc, respectively. Aj, Bj,Cj and Dj are membership functions for the alternator speed,
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current consumption demand, engine speed, and engine torque demand, respectively. wi is

the degree of fulfillment of an ith rule in and j= 1 to 3.

Teng = 3.2(

9∑
i=1

wiR
i
alt

9∑
i=1

wi

) + 1.2(
Hauto

ωeng
) (5.7)

Fc =

9∑
i=1

xiR
i
eng

9∑
i=1

xi

(5.8)

Ri
alt : if ωalt = Aj & Is = Bj then T ialt = f(ωalt, Is) (5.9)

Ri
eng : if X

i then F i
c = f(ωeng, Teng) (5.10)

where X i : ωeng = Cj & Teng = Dj

The input membership functions Aj and Bj use a triangular membership curve. The

fuzzification of inputs using these functions are expressed in (5.11)[101]. Similarly, the input

membership functions Cj and Dj uses the generalized Bell membership functions (5.12)[101].

The s, c, and e are the start, center, and end range of a fuzzy set, respectively. µF (a) is the

membership grade and a is the input value to be fuzzified. The membership grade of a is

zero at s and e, but at c the membership grade of a is 1. The values between s and e have

different grades of membership based on the values of a and function expressions (5.11) and

(5.12).
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µF (a) = max(min(
a− s
c− a

,
e− a
e− c

), 0) (5.11)

µF (a) =
1

1 + |a−e
a
|2c

(5.12)

Fig. 26 and Fig. 27 show that a given alternator and engine has output limits at a given

ωeng and ωalt, respectively. Therefore, these limits should be part of the ωeng approximation

to meet the demand Is. Sugeno-Takai [101] based FLS models for estimating the Temax

and Imax are shown in (5.13) and (5.16), respectively. Ri
meng (5.14) and Ri

malt (5.16) are

fuzzy rule bases for evaluating ωeng and ωalt, respectively. The xi is the degree of fulfillment

of an ith rule in (5.14), and j= 1 to 3. The input membership functions Ej and F j use a

triangular membership curve and the fuzzification of inputs using these functions are expressed

in (5.11)[101].

Temax =

3∑
i=1

xiR
i
meng

3∑
i=1

xi

(5.13)

Ri
meng : if ωeng = Ej then T iemax = f(ωeng) (5.14)

Imax =

3∑
i=1

xiR
i
malt

3∑
i=1

xi

(5.15)

Ri
meng : if ωalt = F j then I imax = f(ωalt) (5.16)
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Fig. 28. The MASCF system architecture

5.3 MASCF Solution Architecture

The schematic of the MASCF solution architecture is shown in Fig. 28 and it has the

following high-level processes:

• Monitor the electrical systems usage within a CV and estimate Is

• Approximate Talt that the alternator will put as a load on the engine to meet Is

• Determine Teng based on the torque demands Talt and Tauto

• Approximate ωeng that can generate Teng or more with a minimal Fc value

In addition to the proposed fuzzy system several other technologies such as adaptive neuro

fuzzy, neural network, and factor analysis methods. However, the process was too complicated

and time consuming. Moreover, those approaches did not provide good results. The simple

fuzzy systems seem to provide good results than the other approaches. Appendix section

shows some of the discussions about them.

The MASCF solution architecture elements are as follows:

UNCLASSIFIED: Distribution A. Approved for Public Release



76

5.3.1 Fuzzy Engine Torque Estimator (FETE)

The FETE is the implementation FLS model of (5.7), (5.9), and (5.11). The inputs are

the Is and ωeng, and the output is the Talt that the alternator puts on the engine to meet the

demand. The FETE is implemented based on the alternator performance experimental data as

shown in sample Fig. 26. The fuzzy rules are derived based on the distribution of experiment

data. The torque distribution and the fuzzy rules of the FETE FLS model are represented in

Fig. 29 and Fig. 30, respectively. Fig. 31 and Fig. 32 show the fuzzy membership functions

used in the FETE for the alternator speed and current demand inputs, respectively. The

MASCF algorith uses the FETE model for calculating the Teng value for a given load Is.

Fig. 29. Fuzzy torque distribution of FETE FLS model.
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Fig. 30. Fuzzy rules for the FETE FLS model.

Fig. 31. Alternator speed input membership functions of FETE model.

5.3.2 Fuzzy Fuel Consumption Estimator (FFCE)

The FFCE is the implementation FLS of (5.8), (5.10), and (5.12). The inputs to this

model are the Teng and the ωeng. The output is the Fc of the engine to meet demand. The

FFCE is implemented based on the engine fuel consumption and torque efficiency experimental

data. Fig. 25 shows an example efficiency map. The fuzzy rules are derived based on the

distribution of experimental data. Fig. 33 and Fig. 34 represents the fuel consumption map

and the fuzzy rules of the FFCE FLS model. Fig. 35 and Fig. 36 show the fuzzy membership

UNCLASSIFIED: Distribution A. Approved for Public Release



78

Fig. 32. Current demand input membership functions of FETE model.

functions used in the FECE for the engine speed and engine torque demand inputs, respectively.

Fig. 33. Fuzzy consumption distribution of FFCE FLS model.
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Fig. 34. Fuzzy rules for the FFCE FLS model.

Fig. 35. Engine speed input membership functions of FECE model.

5.3.3 Systems Current Consumption Table (SCCT)

This table stores the current draws of each of the on-board systems in a CV. Table VII

shows an example. This table is used by the MASCF algorithm to calculate the total electricity

demand of the systems.
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Fig. 36. Engine torque input membership functions of FECE model.

5.3.4 Fuzzy Maximum Alternator Output Estimator (FMAOE)

The FMAOE is the implementation FLS model of (5.15), (5.16), and (5.11). The input

to this model is the alternator speed. The output is the maximum current the alternator can

generate at a given alternator speed. The FMAOE is implemented based on the experimental

data as shown in Fig. 26.

5.3.5 Fuzzy Maximum Engine Torque Estimator (FMETE)

The FMETE is the implementation FLS of (5.13), (5.14), and (5.11). The input to this

model is the engine speed. The output is the maximum torque the engine can generate at a

given engine speed. The FMETE is implemented based on the experimental data as shown in

Fig. 27.
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TABLE VII
EXAMPLE SYSTEMS CURRENT DRAWS IN AMPERES

System Active Idle Sleeping
Current Current Current

(Amperes) Amperes Amperes
Work Station 8.8 3.0 0.4

Surveillance System 7.0 4.0 0.7
Video Camera 2.0 1.2 0.05

Radio 5.5 2.5 0.2
Weapon 4.0 1.5 0.5

5.3.6 MASCF Algorithm

Fig. 37 shows the overall context of all the MASCF algorithm. It consists of an engine,

ECU, alternator, Fuzzy feedback controller, and sensors. The sensors connected to the engine

are used for defining power-fuel consumption-emissions metric. Fig. 38 shows the expanded

diagram of the feedback controller that is used to control the engine speed to achieve fuel

savings. The inputs to this controller are measured current and engine speed.

Fig. 37. MASCF system context.

The MASCF algorithm interacts with the FETE, FFCE, FMAOE, FMETE, and SCCT

components and approximates the fuel-efficient ωeng based on the current consumption de-

mand of the systems. The Algorithm. 3 shows the detailed steps. The estimated ωeng value is
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Fig. 38. Fuzzy feedback controller.

sent to the ECU to operate the engine at that speed. Unique combinations of the estimated

demand and approximated engine speed are stored in the memory for reuse when the ECU

encounters the already calculated engine speed for a given demand. This temporary storage

reduces the computations if the engine needs to meet the known demands for multiple times.

The algorithm is a feedback controller to the ECU. Fig. 39 shows the communications be-

tween the different elements to execute the MASCF algorithm and run the engine fuel efficient

speed to save fuel. Fig. 40 describes the context of the proposed energy saving strategy for

normal surveillance missions.

Fig. 39. Fuzzy feedback controller.
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Algorithm 3 MASCF Algorithm
ωeng ← 0;
Feng ← 0;
Hauto ← Mechanical systems′ constant horsepower;
Rmin ← Minimum engine RPM ;
Rmax ← Maximum engine RPM ;
Rinc ← RPM Increment;
Is ← Estimate demand using (5.4);
if SpeedInMemory(Is) then
ωeng ← getSpeedFromMemory(Is);

end if
if ωeng == 0 then
w1 ← Rmin;
while w1 <= Rmax do
Imax ← Approximate using FMAOE (w1 ∗ 3);
if Is <= Imax then
Comment: Engine torque calculation
Talt ← Approximate using FETE (w1 ∗ 3, Is); Tauto ← Hauto/w1;
Teng ← 3.2(Talt) + 1.2Tauto;
Comment:Fuel consumption calculation
Tmax ← Approximate using FMETE (w1);
if Teng <= Tmax then
Fc ← Approximate using FFCE (w1, Teng);
if Feng == 0 || Fc <= Feng then
Feng ← Fc;
ωeng ← w1;

end if
end if

end if
w1 ← w1 + Rinc;

end while
end if
return ωeng;
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Fig. 40. Data map of the MASCF algorithm.

5.4 Simulation and Experiment Setup

To validate the proposed MASCF approach for normal surveillance missions, simulation

and experiments were conducted. The experiments were to test the fuel savings characteristics

of a conventional diesel engine while meeting the electric current demands. The simulation and

the experiment used two engine configurations namely, a baseline engine with MASCF, and

an engine with three high-idle RPM increments (800,1200, and 1600). The simulation used

an Autonomie based Matlab/Simulink vehicle model. Table VIII shows the major parameters

of the vehicle configuration used for the simulation and experiments. Fig. 41 shows the

experiment setup used. The setup consists of an engine connected to a dynamometer with

no alternator, and a CAN bus manager,and data acquisition system.

The experiments used the electrical load profiles based on the Action Maneuver Battle Lab
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TABLE VIII
DIESEL ENGINE VEHICLE MODEL PARAMETERS

Parameter Value
Maximum Engine power 261 kW
Maximum Engine RPM 2700

Maximum Alternator Output 28 kW (at 77o F)
Maximum Alternator RPM 8000

Engine to Alternator Pulley Ratio 1:3
Mechanical accessories power 35-45 kW

(UAMBL) and Combined Arms and Support Task Force Evaluation Model (CASTFOREM)

mission scenarios [104]. Table VII shows the example systems and their current draws. The

simulation and experiments were conducted using the common load profiles of mission sce-

narios. Table IX shows the load profile with an assumption of 28 V voltage for electricity

distribution. The automotive systems such as fuel pump is driven by the engine. Therefore,

in addition to electrical demands, the experiments had to assume automotive power loads of

35 kW. Since the stationary vehicle performance was being tested, the propulsion power de-

mands were assumed to be 0. Based on the alternator efficiency curves, the electrical output

generated from the alternator was assumed to be at 80% efficiency of the mechanical energy

input.

TABLE IX
POWER DEMANDS FOR THE MISSION SCENARIOS

Total Power
(kW)

44
48
54
57
60
62
69

For accurate instrumentation and measurement, the alternator was offline and a dyno with

a torque sensor was used for experiments. The experiments used the estimated torque values
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for determining the amount of water to flow through the dynamometer to simulate the power

load on the engine. A user interface was used to input the required engine speed and torque

values for the engine to run without the algorithm. Fuel consumption, torque produced, and

engine speed readings were captured from a user screen. Horsepower value was calculated

using the measured engine speed and the torque values. Calculated horsepower value was

specified using the user interface to activate the proposed algorithm and to run engine with

the algorithm identified engine speed. Fuel consumption, torque produced, and engine speed

readings were captured again. The power demand (kW) is calculated based on the measured

engine speed and torque for both the options. These readings have the columns of power

(kW) and fuel consumption for with and without the proposed algorithm. The readings were

plotted as shown in Fig. 42, the graph 1 with the proposed algorithm is better than the graph

2 without the proposed algorithm. Hence there is energy savings.

The validation environment used a controlled ambient temperature as well as a high tem-

perature conditions for the fuel and air inlets, coolant, and intake manifold air. The experi-

ments validated the MASCF approach using two types of fuel, induced failures, fuel pressure,

and two fuel temperatures. To protect the confidentiality of the results and proprietary data,

this dissertation research does not describe the fuel types used in the test.

5.5 Results and Discussion

Fig. 42 and Fig. 43 show the experimental results of the proposed MASCF approach when

compared with the baseline vehicle configuration without the proposed algorithm. This test

results were for normal ambient temperature of 77o F. During the experiments, for the tested

power demand, the engine configuration with the MASCF approach consumed an average of

24.30 pounds/hour fuel. The engine configuration with fixed high-idle RPM increments and

no MASCF consumed an average of 24.74 pounds/hour fuel. The baseline engine stalled for

most of the tested loads and could not meet the vehicle demands. The MASCF approach was
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Fig. 41. Test bench setup:engine, CAN Bus manager, and data acquisition

at 0 - 4.9% more efficient than the vehicle configuration that had three fixed high-idle RPM

increments for the tested power loads of 44 - 69 kW. Fig. 44 shows the actual fuel consumed

vs. predicted. Although there are differences, the overall idea of predicted fuel savings is to

determine the fuel efficient engine speed. The difference is due to the dynamic environment

of the actual engine setup vs. simulation.

Based on the engine results and the other engine experiments, Fig. 45 shows the efficiency
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Fig. 42. Experiment results of the engine experiments

points of an engine at various RPMs and horsepower demands. The Brake Specific Fuel

Efficiency (BSFC) indicates the amount of fuel spent while producing an unit horsepower.

Lower the efficiency point for a given RPM, higher the fuel savings.

During the fuel map experiments, the fuel types, fuel temperature, induced failures, and

fuel pressure influenced different Teng values than the MASCF estimated values. Therefore, the

engine power had different actual values. This behavior of the engine affects the performance

of the MASCF approach. Future work in this area addresses these impacts and modifies the

solutions to handle these concerns. For the fuel type 1, Fig. 46 shows the different power

generated at the same RPM for two different temperatures i.e., 77o F and 120o F. Similarly,

for the fuel type 2, Fig. 46 shows the different power generated at the same RPM for two

different temperatures i.e., 77o F and 120o F.

During the fuel map experiments, the induced failures and fuel pressure also influenced

different Teng values than the MASCF estimated values. Therefore, the engine power had
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Fig. 43. Experiment results in terms of percentage savings

different actual values. This behavior of the engine affects the performance of the MASCF

approach. Future work in this area addresses these impacts and modifies the solutions to

handle these concerns. For induced failures, Fig. 48 shows the different power generated at

the same RPM than the engine with no induced failures. Similarly, for the fuel pressure, Fig.

49 shows the different power generated at the same RPM than the engine with no induced

failures. These behaviours were mainly observed at higher RPMs.

The MASCF approach stores the frequently estimated ωeng for a given Is and reuses it to

minimize the computation. Therefore, it will improve the execution time of the calculations.

5.6 Implementation Approach

Experimental setup is always different from real implementation in a live vehicle. Unlike

experimental laboratory, the real vehicle lacks all the instrumentation to validate all the results.
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Fig. 44. Predicted vs. actual fuel savings.

Therefore, most of the validation experiments are performed in a lab set up and the strategy

is implemented on a real vehicle based on the lab results. An implementation procedure of

the proposed energy saving strategy is as follows:

• For a given engine, perform engine experiments and determine fuel consumption values

for various horsepower and RPM ranges. Normally, engine and dynamometer setup is

used to conduct such experiments.

• Similarly perform alternator experiments and determine the electricity generated for

various horsepower and RPM ranges.

• Based on the engine experiments, collect the data for torque (lb-ft), fuel consumption

(lb/hr), RPM, and horsepower. Similarly, based on the alternator experiments, collect

the data for torque (lb-ft), electricity generated (amperes), and RPM, and horsepower.

• Based on the engine and alternator experiments data develop the fuzzy models as
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Fig. 45. Fuel map of a given engine.

described in Chapter 5.3.

• Develop MASCF algorithm software using C, C++, Java, or Matlab programming lan-

guages.

• Host the software in a simple computer that has a microprocessor and two physical

interfaces namely, Ethernet and CAN. Most of the Army ground vehicles may have

Ethernet and CAN networks to communicate among the systems in the vehicle.

• Connect the simple computer to the vehicle network for communicating with the systems

and the ECU

• Modify the Engine Control Module (ECM) software to receive engine speed input from

the CAN bus and to operate the engine at that speed. Since the manufacturer ECM

code is proprietary, In a real implementation, a custom ECM software will be developed.

• Allow the software version of the algorithms to communicate with appropriate systems
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Fig. 46. Fuel type1: temperature impacts on engine power generation

Fig. 47. Fuel type2: temperature impacts on engine power generation

to achieve energy savings using either CAN or Ethernet protocols

• Use a current measuring sensor near the alternator to measure the current draw from
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Fig. 48. Induced failures impacts on the engine power generation

Fig. 49. Fuel pressure impacts on engine power generation

the systems. The sensor shall have a CAN interface to communicate with the CAN bus

• Provide a software function for the driver to switch between the normal operation and
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the energy saving operation

Fig. 50. Normal mode: sequences and events

Fig. 50 shows a schematic of the sequence of events and operations of a conventional

Army ground vehicle after implementing the proposed energy saving strategy to save fuel

when the engine is on and the vehicle is stationary. The custom software communicating

with the ECM is a feedback controller to maintain the engine speeds according to the mission

needs. The operation of the proposed energy saving algorithms in a real vehicle is as follows

for normal surveillance mission of the vehicle:

• Driver starts the engine and shifts the gear position to either park or neutral. In this

situation, the vehicle is not moving.

• The engine drives the alternator to generate electricity. The alternator supplies power

to the systems
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• The current measuring sensor measures the current drawn from the systems and inputs

the measured value to the CAN bus

• The energy saving algorithm software (feedback controller) reads the current sensor

input value, approximates a fuel efficient engine speed value and inputs it into the CAN

bus

• The ECU reads the engine speed value from the CAN bus and operates the engine at

that speed to save fuel and also to meet the demands of the vehicle

• This process continues if the current speed is not sufficient to meet the demand as well

as to saving fuel

5.7 Summary

Fig. 51. Line diagram of the MASCF context
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The line diagram in Fig. 51 contains an engine, ECU, alternator, dynamometer (dyno),

electrical load, and current, engine speed, and fuel consumption measuring sensors. The load

is different from non Army ground vehicles. The author has designed a controller (C) that

is shown in this diagram. The inputs to the controller are measured electric current (3) and

engine speed (16C)values . The diagram of the controller is shown along with a plant (P) and

feedback loop. As shown in the figure, the controller has four fuzzy systems namely, Fuzzy

Engine Torque Estimator (FETE), Fuzzy Fuel Consumption Estimator (FFCE), Fuzzy Maxi-

mum Alternator Output Estimator (FMAOE), and Fuzzy Maximum Engine Torque Estimator

(FMETE). The fuzzy systems are modeled based on the measured values of engine torque,

engine speed, engine fuel consumption, current, alternator speed, and alternator torque.

During real operations of the vehicle, inputs to the FETE are the measured (during run

time) values of alternator produced electric current (3) and engine speed (16C), and the output

is the approximated alternator torque value. Inputs to the FFCE are the approximated values of

engine speed and torque, and the output is a approximated value of engine fuel consumption.

Input to the FMAOE is the approximated value of alternator speed and the output is the

approximated value of maximum electric current that the alternator can generate. Input to

the FMETE is the approximated value of engine torque and the output is the approximated

value of maximum engine torque. The author has written the proposed algorithm using a

Matlab program that uses FETE, FMAOE, FMETE, and FFCE fuzzy systems. The algorithm

calculates the engine torque and determines the engine speed value(14) that the engine needs

to run to save fuel. The algorithm is stored in a small computer as shown in the figure. The

algorithm communicates with ECU through CAN bus to control the speed of the engine.

For accurate instrumentation and measurement, the alternator was offline and a dyno with

a torque sensor was used for experiments. A user interface was used to input the required

engine speed and torque values for the engine to run without the algorithm. Fuel consumption

(18), torque produced (20), and engine speed(16C) readings were captured from a user screen.
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Horsepower value was calculated using the measured engine speed and the torque values.

Calculated horsepower value was specified using the user interface to activate the proposed

algorithm and to run engine with the algorithm identified engine speed. Fuel consumption

(18), torque produced (20), and engine speed(16C) readings were captured again. The power

demand (kW) is calculated based on the measured engine speed and torque for both the

options. These readings have the columns of power (kW) and fuel consumption for with and

without the proposed algorithm. The readings were plotted as shown in Fig. 42, the graph

1 with the proposed algorithm is better than the graph 2 without the proposed algorithm.

Hence there is energy savings.

5.8 Conclusion

This chapter described the proposed MASCF approach for saving energy in stationary

Army ground vehicles while conducting normal surveillance mission. The application of the

MASCF to the ECUs makes engines more efficient than just being a fuel burning machine.

The MASCF approach meets the electrical demands of the CV that are within the maximum

capacity of the engine and the alternator without stalling the engine. Based on the experiment

results, fusing multiple efficiency maps of the engine and alternator using a soft computing

approach is beneficial for optimization of engine operations. The results show that the MASCF

method consumed 0 - 4.9% less fuel than the CVs with fixed RPM increments for the tested

power demands of 44 - 69 kW. However, the results depend on the constraints, namely, fuel

type, fuel temperature, and engine failures. Additional research is in progress to address these

concepts. Chapter 6.3 describes the future work in this area. The next chapter concludes this

dissertation research.

5.9 Disclaimer

Disclaimer: Reference herein to any specific commercial company, product, process, or

service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
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or imply its endorsement, recommendation, or favoring by the United States Government or

the Department of the Army (DoA). The opinions of the authors- expressed herein do not

necessarily state or reflect those of the United States Government or the DoA, and shall not

be used for advertising or product endorsement purposes.
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CHAPTER 6 SUMMARY AND CONCLUSION

The previous chapters described the author’s work in detail. This chapter summarizes,

proposes additional future work, and then concludes this dissertation research.

6.1 Introduction

The author of this dissertation research proposed mission aware energy saving strategies

for Army ground vehicles. The author also proposed FIA algorithm and fuzzy models to

represent engine and alternator performance data. In addition to this, the author also pro-

posed collaborated system model to understand the surveillance mission activities. Section 6.2

summarizes this dissertation and Section 6.3 proposes future work for the proposed solutions.

6.2 Summary

Chapter 1 described the detailed background for the proposed dissertation research and

the need for saving energy in stationary Army ground vehicles. Army ground vehicles carry

several electronic systems to conduct military missions. These systems demand electricity to

operate and to conduct mission operations. The demand for the energy varies between 1 to

32 kW. As the electrical energy demand increases, fuel consumption of the vehicle increases.

Army surveillance missions and training exercises use ground vehicles for major portions of their

operations. Energy saving is very important for the Army to achieve successful missions and

to minimize cost. Therefore, to address this need and to provide a solution to save energy,

the author of this dissertation research explored the energy saving strategies for stationary

Army ground vehicles. The goal was to save energy and to balance the electrical needs of the

vehicle.

Chapter 2 described the review of related work in energy saving solutions in networked

and distributed systems, and automotive ground vehicles. The approaches in distributed and

networked systems do not consider collaborated functions of the systems to minimize energy
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consumption. Therefore, applying mission aware solutions to them are very difficult and

expensive. Energy consumption depends on mission conditions. However, no solution exists in

the literature to address mission aware strategies. Existing proposals in the literature address

additional power generation solutions than minimizing energy consumption in automotive

ground vehicles. Most of the energy saving strategies are applied to moving vehicles rather

than stationary vehicles. The approaches lack techniques to handle Army ground vehicle’s

large power demand variations. These methods may trigger engine stalls if the engine cannot

handle the demand. Moreover, most of the existing techniques require altering the physical

properties of the vehicle. The proposed solutions in this dissertation have addressed these

gaps and introduced the concept of mission aware energy saving strategies for stationary

Army ground vehicles.

Chapter 3 described the theory and its associated models to represent surveillance mission

operations. Surveillance missions are complex and random. To address the mission aware

energy saving strategies for Army ground vehicles, this dissertation research has proposed

novel theoretical models namely, surveillance, collaborated system, systems usage algorithm,

and surveillance energy consumption models. These models can be applied to any collaborated

systems such as sensor networks, data centers, and event driven systems.

Chapter 4 and 4.4 described proposed mission aware energy saving strategy for silent

surveillance missions of a stationary Army ground vehicle and FIA, respectively. The strategy

minimizes battery discharges based on mission conditions without degrading the performance

of the mission. The minimized battery discharge extends the duration of a mission. The

computer simulations and a battery test show that the proposed approach minimizes battery

discharge based on the needs of a mission without affecting the operational performance of

the systems. Therefore, it extends the duration of a silent surveillance mission that results

in a successful mission. The proposed energy saving strategy applies the surveillance mission

models and the proposed FIA.
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Chapter 5 described the energy saving strategy for normal surveillance missions. The

proposed energy saving strategy for normal surveillance missions saves fuel energy in stationary

Army vehicles. The application of this approach runs the engines efficiently during normal

stationary surveillance missions. The approach balances energy demands of the vehicle without

stalling the engine. The rule-based fuzzy efficiency maps of the engine and alternator is

beneficial for the optimization of engine operations. Performance of the proposed approach

depends on the constraints namely, fuel type, fuel temperature, and engine failures.

Several approaches such as fuzzy logic, adaptive neuro fuzzy, neural network, and factor

analysis were studied and analyzed for the proposed solutions. However, complications and

limitations of several approaches hinder their application to the mission aware energy saving

strategies of Army ground vehicles. The simple fuzzy logic based solution perform better than

other complicated and time consuming approaches.

6.3 Future Work

The previous chapters described the proposed energy saving strategies for stationary Army

ground vehicles. This section describes the possible future work to enhance the applicability

of the proposed solutions.

Electro-chemical Properties and Energy Savings

This section describes the future work to understand the impacts of electro-chemical

properties of a battery on energy savings. Chapter 3 and Chapter 4 introduced the concept

of mission awareness and its application to an energy saving strategy for silent surveillance

missions. This dissertation research studied the application of the proposed strategy for two

common silent surveillance mission scenarios. For each scenario, the study used a lead acid

type of battery. The performance of different battery chemistries vary. Future work related

to this topic can be to conduct experimentation for multiple electro-chemical batteries. In
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addition, the future work can understand the energy savings behavior in multiple different

silent surveillance mission scenarios. The information can be used to optimize the proposed

strategy to handle any battery type. The energy saving strategy for silent surveillance mission

is validated using a simulation setup and a battery laboratory. The future work can be to

implement it on a mock up of real vehicle setup including the software controlled power

distribution system.

Battery Temperature and Energy Savings

This section describes the future work to understand the impacts of temperature of a bat-

tery on energy savings. Chapter 4 introduced the energy saving strategy for silent surveillance

missions. This dissertation research studied the application of the proposed strategy for two

common silent surveillance mission scenarios. For each scenario, the study used three temper-

ature ranges i.e., 25, 40, -10 o Centigrade. The performance of different battery chemistries

can vary depending on temperature variations. Battery performance degrades in cold tem-

peratures and it can be dangerous at high temperatures. Both the chemical property and

the temperature are very important factors that can significantly change energy consumption

behaviors of a battery. Future work related to this topic can be to conduct experimentation for

multiple temperature ranges. In addition, the future work can understand the energy savings

behavior in multiple different silent surveillance mission scenarios. The information can be

used to optimize the proposed strategy to handle any temperature ranges. The energy saving

strategy for silent surveillance mission is validated using a simulation setup and a battery lab-

oratory. The future work can be to implement it on a mock up of real vehicle setup including

the software controlled power distribution system.
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Power Budgets and Energy Savings

In Army ground vehicles, electronic systems use electrical power to operate. The power

budgets for different surveillance mission scenarios must be developed. For the budget for

each scenario, the overall power consumption will consist of peak, average, and low power

cycles. Each storage media will exhibit different properties in meeting a power budget scenario.

Some electro-chemical property of a battery has great energy density but its voltage supply

rapidly falls off at certain points of the battery being drained, other electro-chemistries behave

differently in those scenarios. Some rechargeable electro-chemistries perform better than

others when they are placed under high power loads. In applications and scenarios where

there is a limited amount of stored energy and priorities need to be placed on maintaining

a reserve of energy stored for emergency situations, Energy Management Systems must take

into consideration both the energy source properties of the energy storage device as well

as the consumption properties of the various loads. In future work, the energy strategy

implementation can include the various available electro-chemistries as a parameter to manage

the behavior of the battery to the various power budget scenarios. The implementation of

this approach has challenges in the electrical distribution system. Therefore, the future work

must understand the electrical infrastructure before implementing it on any platforms.

Fuel Type and Temperature and Energy Savings

Chapter 5 introduced the concept of using alternator and engine performance map to

develop fuzzy models to propose an energy saving strategy for normal surveillance missions.

The current work was validated using an engine-dynamometer setup. The future work in this

area can be to apply the results of the experiment and implement it on a real vehicle setup

using an intelligent implementation architecture and an electronic chip that represents the

solution. Chapter 5 also introduced the concept of mission aware energy saving. However,
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the proposed solution for the normal surveillance mission has a major dependency on fuel type,

fuel temperature, and engine failures. In this dissertation, these items were not addressed in

detail. The future work in this area can be to investigate and resolve the impacts of these

elements on the real implementation of the vehicles. The future work can also leverage

the results of the proposed solutions to extend them to different engine or alternator types.

Additionally, the future work can understand the implications of extending this research to

police cruisers and other vehicle platforms where multiple systems are operated while the

vehicle is stationary.

Mission Planning

Chapter 3 introduced the collaborated system model and other related theoretical models

of surveillance missions. Chapter 4 discussed the application of these models to energy saving

strategies. Future work in this area can extend the results to optimize other functionalities

of the Army ground vehicles namely, mission planning, mission performance, and workflow

management. This dissertation research addresses energy saving algorithms for stationary

Army ground vehicles during surveillance missions. However, the future work could provide

features to allow mission planners to simulate possible mission scenarios before the actual

missions and provide soldiers training to handle unexpected situations under power constraint.

Pipelined Fuzzy Controller

Chapter 4 and Chapter 5 proposed energy saving strategies using a normal fuzzy controller.

In the future, it can be extended to develop pipelined fuzzy controller. Pipeline approach re-

duces the execution time and increases the performance of the proposed algorithms. However,

it complicates the controller design due to timing and interrupt constraints of the CAN bus.

The vehicle architecture has to consider all the possible constraints of the pipelined approach
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and develop solutions to handle them.

Power - Fuel Consumption - Emissions Metric

Development of energy efficient automotive products such as alternators and batteries are

challenged due to the lack of published engine metrics. To obtain the necessary performance

information, the vendors perform their own experiments of the engine. However, the Power-

Fuel Consumption-Emissions (PFE) of an engine varies from one RPM to the other. In

addition, at a given RPM, the PFE of an engine varies from one manufacturer to the other.

Therefore, a single measure is required to represent the engine PFE at various RPMs. To

address this shortfall, the future work performs research related to relative engine PFE metric.

The PFE metric can leverage the algorithms defined in [105, 106, 107]. Engine experiments

provide a data set for defining the metric. However, the data is multidimensional due to

multiple sensor inputs. A statistical approach such as factor analysis can be used to derive

interrelationship between the sensor data to a common set of factors to develop relative engine

PFE metric. Chapter 2.4 introduced the concept of factor analysis. The metric can represent

a common measurement for engine performance. This information can be used to compare

multiple engines at a given RPM or performance of an engine at different RPMs. For example,

for a given RPM X, assume an engine A has a -10 relative engine PFE metric value and engine

B has -5. Engine A seems to have less negative impact on the overall engine PFE. Therefore,

between the two, engine A is a better choice than engine B at RPM X. The metric enables the

comparison of multiple engines at a given RPM. This aids the designers to choose appropriate

efficient RPMs or the engines while developing fuel efficient products. The concept of relative

PFE metric is to provide a single measure of PFE values of an engine. The relative PFE

metric arranges the PFE values all RPMs or engines in the increased PFE impact in relation

to each other. For a given RPM, if the relative PFE value is greater than any other RPM,

the overall engine PFE increases at that RPM. This metric can be used as a tool early in the
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product design phase to understand the impact of each RPM or the engine on the product’s

fuel efficiency.

Non Stationary Vehicle and Energy Savings

The proposed strategies are currently studied for stationary vehicles. Similar approaches

can be easily extended to a moving vehicle also. However, there are additional constraints

hinder the application of this approach to a mobile vehicle. The future work can address those

challenges and develop an universal algorithm to handle both stationary and non stationary

vehicles. When the vehicle is moving, the size and weight of the vehicle significantly affect

the energy consumption of the vehicle. The size and weight of the vehicle should be included

in the future algorithms to handle a moving vehicle’s energy savings. The size and weight

are very important factors that can significantly change energy consumption of a vehicle. In

addition to size and weight constraints, the approach should take into account of transmission

impacts.

6.4 Conclusion

In conclusion, the silent surveillance mission aware energy saving strategy for Army ground

vehicles saves 3% energy in comparision to the baseline approach for one type of mission

scenario and 1.8% for the second type of mission scenario. Similarly, the normal surveillance

mission aware energy saving strategy saves fuel energy in the range of 0 - 4.9% when compared

with the baseline approach. The work described in this dissertation has proposed several future

problems to enhance the proposed solutions.
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APPENDIX A

Fuzzy Logic

The figures below show some of the snapshot of the fuzzy systems proposed in this

dissertation. Fig. 52 and Fig. 53 shows the fuzzy inference model of the alternator efficiency

and engine efficiency, respectively. Input and output membership variables are shown in the

pictures.

Fig. 52. Fuzzy inference system for alternator efficiency.

Fig. 53. Fuzzy inference system for engine efficiency.

Fig. 54, Fig. 55, Fig. 56 shows the fuzzy inference process for a sample input for alternator

efficiency, engine efficiency, and engine maximum torque fuzzy models, respectively.
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Fig. 54. Fuzzy inference for alternator efficiency.

Fig. 57 and Fig. 58 shows the fuzzy surface view for maximum engine torque, and

maximum alternator current, respectively.

MASCF Matlab Code

function readFuzzyEngines()

Location of all the fuzzy inference engines

fuzpath = ’./FuzzyEngines/’;

global AMap MASCF MXTrq MxCur;

Read the fuzzy inferences. This will be stored as global variables so that the GUI can use
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Fig. 55. Fuzzy inference for engine efficiency.
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Fig. 56. Fuzzy inference for maximum engine torque.

Fig. 57. Surface viewer for the fuzzy max engine torque.

it without reading the files frequently.

AMap = readfis(strcat(fuzpath,’AlterMap’));

MASCF= readfis(strcat(fuzpath,’MASCFFuzzy’));

MXTrq=readfis(strcat(fuzpath,’MaxTorqueRPM’));

MxCur=readfis(strcat(fuzpath,’MaxCurrentARPM’));
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Fig. 58. Surface viewer for the fuzzy max alternator current.

return;

function findFuelEfficientRPM(handles)

global Espeed Efuelcon ETorque;

global AMap MASCF MXTrq MxCur;

global Hauto Rmin Rmax Rinc Is Teng;

engSpeed=0;

F=0;

Hauto = str2num(whatsThePopupValue(handles.Autohppopup));

Rmin = str2num(whatsThePopupValue(handles.MinRPMpopup));

Rmax = str2num(whatsThePopupValue(handles.MaxRPMpopup));

Rinc = str2num(whatsThePopupValue(handles.RPMIncpopup));

Is = str2num(whatsThePopupValue(handles.Demandpopup));
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Iter = Rmin;

if strcmp(get(get(handles.uipanel4,’SelectedObject’),’Tag’),’rdodataacq’)

Hauto = str2num(get(handles.edtHorsepower,’string’));

Is = str2num(get(handles.edtDemand,’string’));

end

while(Iter<=Rmax)

validate if the input is beyond range end beyond range Engine torque calculation

Talt = (evalfis([Iter*3, Is],AMap))/1.356;

if Talt <0

Talt = Talt*(-1);

end Approximate Talt using FETE (Is; w13);

Tauto = (Hauto * 5252)/Iter;

Teng = 3.2*(Talt) + 1.2*(Tauto);

Fuel consumption calculation. Determine if a given rpm can handle Teng

Imax = evalfis(Iter*3,MxCur);

if Imax > Is

Tmax = evalfis(Iter,MXTrq);

if Teng<=Tmax

Fc = evalfis([Iter Teng], MASCF);

if F==0 || Fc <=F

F = Fc;

engSpeed = Iter;
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etoruq = Teng;

end

end

end

Iter = Iter + Rinc;

end

Espeed = engSpeed;

Efuelcon = F;

ETorque = etoruq;

Adaptive Neuro Fuzzy Inference System (ANFIS)

Fig. 59. ANFIS approach: fuzzy consumption distribution.

ANFIS Matlab Code

This code is used to develop an ANFIS model to determine the fuel effficient engine speed

using ANFIS.
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TABLE X
ANFIS: ENGINE SPEEDS AND FUEL CONSUMPTION

Current MASCF MASCF Baseline Baseline High-idle High-idle
Draw (RPM) (lb/hr) Engine Engine RPM RPM

(Amperes) (RPM) (lb/hr) Increments Increments
(lb/hr)

350 800 16.6 800 24.87 800 24.87
400 850 17.7 800 (stalls) (stalls) 1200 36.12
450 950 18.5 800 (stalls) (stalls) 1200 33.29
500 1150 20 800 (stalls) (stalls) 1200 30.43

Fig. 60. ANFIS approach: fuel consumption distributionI.

Fig. 61. ANFIS approach: fuel consumption distributionII.
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List of all the data used for the ANFIS modeling. The last column is the output.

anfisdatanames = str2mat(’Current’,’Alternator Torque’,’Automotive Torque’,’Engine Torque’,’Engine

Speed’,’Fuel Consumption’);

Load the data used for the modelling.

load MASCFNeuroFuzzy.mat;

database = MASCFNeuroFuzzy;

Separate the training and check data from the main data set

trainingdata = database(1:2:end,:);

checkingdata = database(2:2:end, :);

start with three inputs

inputindex = [1 4 5];

newtrndata = trainingdata(:, [inputindex, size(trainingdata,2)]);

newchkdata = checkingdata(:, [inputindex, size(checkingdata,2)]);

Create the Fuzzy Inference System

firstfis = genfis1(newtrndata, 5, ’gbellmf’); [firstfistrainout trnerror stepsize finalfirstis chker-

ror] = anfis(newtrndata, firstfis, [100 nan 0.01 0.5 1.5], [1,1,1,1], newchkdata, 1);

[a, b] = min(chkerror);

plot(1:100, trnerror, ’g-’, 1:100, chkerror, ’r-’, b, a, ’ko’);

title(’Training (green) and checking (red) error curve’);

xlabel(’Epoch numbers’);
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ylabel(’RMS errors’);

Analyzing the ANFIS Model

a = getfis(finalfirstis,’Numinputs’)

for i=1:a

finalfirstis = setfis(finalfirstis, ’input’, i, ’name’, anfisdatanames(inputindex(i),:));

end

finalfirstis = setfis(finalfirstis, ’output’, 1, ’name’, anfisdatanames(end,:));

gensurf(finalfirstis);

Factor Analysis

The engine experimental data set had 10 sensor input values. A statistical factor analysis

approach was used to reduce the data set to seek the minimum number of underlying correlated

factors. Factor loadings in 62 - 63 show how much a particular variable contributes to the

extracted factor. If the contribution of variable towards a factor is more influential, the loadings

value will be high. If it is less influential then the value will be small. Based on the loadings

factors can be labelled.

Fig. 62. Unrotated factor loadings and communalities

Based on the factor analysis, five factors seem to cover 98.2 % of the covariances. How-
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Fig. 63. Rotated factor loadings and communalities- Varimax rotation

Fig. 64. Rotated five factor loadings and communalities- Varimax rotation

ever, it did not choose torque as one of the variables with high influence. Without a torque,

it is not possible to determine the speed.

Another factor analysis algorithm was used to determining three factors to represent the

engine data:

• In a given engine and dynomometer setup, run the engine at several RPMs in increments

of 100 starting from an idle RPM until engine’s maximum speed. At each RPM,measure

the maximum horsepower the engine generated, fuel consumption, and emissions data.

• Populate the measured data in an input file If .

• Read the input file If and perform factor analysis using Kaiser’s Varimax rotation and

principle component extraction method and determine the rotated factor loadings (Rfl),

variance (Vf ), and inverse of correlation (Cinv) matrices for three factors. Name the

three factors as horsepower , fuel consumption, and emission. Define a matrix consisting
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of Varimax rotated factor loadings.

• Based on the inverse of correlation matrix Cinv and factor loadings matrix compute a

transformation matrix Tm based the equation 6.1

Tm = Cinv ∗Rfl (6.1)

• Compute a normalized matrix Nin of the input file If

The algorithm was leveraging the work performed by [105, 106, 107]. The algorithm starts

with collecting engine experiment data and applying factor analysis process to find the most

three factors that represent the underlying structure of the entire dataset. The Table XIV

shows the first output of the factor analysis in terms of correlation coefficients to represent the

bivariate relationship between different sensor data values of engine RPMs. The factor analysis

with principle component extraction and Varimax rotation produced three distinct factors to

represent data from the six sensors. Table XIII shows the three factors along with its rotational

loading. The three factors used were the horsepower, fuel consumption, and emissions. Factor

one consists of engine RPM and torque, factor two consists of fuel consumption, and factor

three consists of emission sensor data. With the factor analyzed data, there was no easy way

to determine fuel efficient engine speed based on inputs.

Artificial Neural Network (ANN)

Fuzzy System as a Communication Network

Fuzzy modeling is based on human expertise of the system behavior using rule based

techniques. There are a lot of fuzzy modeling methods exists in the literature. They are

very successful in applying to the modern control applications. However, they require precise

understanding of the subject matter for modeling the systems efficiently. To gain such ex-

pertise, many researchers perform several iterations of trial and error methods to understand
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TABLE XI
NORMALIZED INPUT DATA

RPM Torque Fuel Consumption Emission1 Emission2 Emission3
0.265 0.545 0.187 0.831 1.000 1.000
0.302 0.593 0.221 1.000 0.989 0.991
0.340 0.631 0.260 1.000 0.989 0.991
0.378 0.673 0.306 1.000 0.989 0.991
0.415 0.700 0.383 0.781 0.989 0.991
0.453 0.773 0.456 0.717 0.989 0.993
0.491 0.853 0.525 1.000 0.989 0.996
0.529 1.000 0.622 1.000 0.990 0.991
0.566 0.999 0.656 1.000 0.990 0.990
0.604 0.994 0.695 1.000 0.990 0.990
0.642 0.989 0.727 1.000 0.990 0.991
0.679 0.968 0.764 1.000 0.990 0.991
0.717 0.958 0.799 1.000 0.990 0.991
0.755 0.928 0.818 1.000 0.990 0.992
0.793 0.915 0.851 1.000 0.986 0.989
0.830 0.887 0.872 1.000 0.986 0.991
0.868 0.872 0.911 1.000 0.990 0.989
0.906 0.866 0.944 1.000 0.990 0.990
0.981 0.781 1.000 1.000 0.990 0.993
1.000 0.599 0.831 1.000 0.993 0.989

TABLE XII
EIGENVALUES

var Eigenvalue
1 3.371168117
2 1.038246862
3 0.685012571
4 0.616937539
5 0.286626525
6 0.002008386

the different rules that exhibit the behavior of producing the required outputs. This is a time

consuming process. Moreover, if the rules need to be changed or added, then the whole

system has to be revisited. Retrofitting the model may become complex.

Machine learning techniques such as neural network and ANFIS perform several iterations

of learning the input and output data in various forms and generate a model. This model can

be used to populate the output based on the inputs. Although this method is quite popular,
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TABLE XIII
VARIMAX ROTATATION LOADINGS THREE FACTORS

Horsepower Fuel Consumption Emission
0.89965 0.06679 0.32771
0.57437 0.61431 -0.07030
0.94299 0.22514 0.22559
0.24966 0.16863 0.87113
-0.05128 -0.91610 -0.17758
-0.25689 -0.65817 -0.49794

TABLE XIV
CORRELATION MATRIX AND EIGENVALUES

corr1 corr2 corr3 corr4 corr5 corr6
1 0.385465199 0.958822846 0.428832457 -0.231654889 -0.493846274

0.385465199 1 0.62184277 0.368903276 -0.460463005 -0.396964303
0.958822846 0.62184277 1 0.451486502 -0.324474362 -0.500071296
0.428832457 0.368903276 0.451486502 1 -0.297033205 -0.449819239
-0.231654889 -0.460463005 -0.324474362 -0.297033205 1 0.629170858
-0.493846274 -0.396964303 -0.500071296 -0.449819239 0.629170858 1

TABLE XV
EIGENVECTOR MATRIX WITH THREE LOADINGS

evec1 evec2 evec3 evec4 evec5 evec6
0.443656 -0.498002 -0.016187 0.333202 -0.181667 -0.640995
0.390365 0.106211 -0.522200 -0.651790 0.298745 -0.222627
0.484058 -0.408302 -0.201507 0.077899 -0.123506 0.732838
0.355028 0.001777 0.787407 -0.484738 -0.137265 0.011390
-0.340665 -0.668771 0.161267 -0.164845 0.619003 0.018598
-0.417582 -0.356012 -0.201056 -0.442643 -0.678593 -0.045126

the learning aspect of the process is very time consuming and the model output is purely

dependent on the availability and fidelity of the data used for the learning.

Irrespective of the technique used, all models developed from the experimented data

will have some inputs, calculations, and outputs to predict or determine the behavior of

a system it represents. To the best knowledge of the authors, none of the techniques in

the literature describe the system as a model of communication network of inputs, outputs,

and calculations. This type of representation assists researchers to understand and analyze
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Fig. 65. ANN approach: ANN model validation.

the model for further optimization. Existing models generated from the previously discussed

methods cannot be visualized for understanding its properties without going through complex

analysis. Moreover, it requires complete knowledge of the data and the methods used to

generate that model. Therefore, this section propose a novel method of representing the

system model as a communication network using fuzzy set theory.

Fig. 69 shows the proposed fuzzy system as a network. The steps below describes

the process of creating one. A fuzzy system can be represented as a communication networ.

However, after analysis, this approach seem to be ineffective to represent bigger fuzzy problem.

Therefore, no further development were performed.
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Fig. 66. ANN approach: ANN model training.

• Let S be a system represented as a communication network N of y nodes.

• Let N has a source and a destination node that represent the fuzzy function of a system

as a series of possible communication paths between them. A communication path is

the path between the source and the destination nodes of a network. A path can have

one - many intermediate nodes known as hop points. The communication between two

hop points is a hop communication.

• Let N has Hi communication paths between the source and the destination nodes, where

i = 1 to p paths.

• Let X1, X2,...Xn are the inputs of S that represent the hop communications in N.
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Fig. 67. ANN approach: ANN model regression testing

• Let Mij represents the jth fuzzy membership function of an ith hop communication,

where i=1...n hop communications and j=1 to m membership functions of an ith hop

communication.

• Let µij represent the fuzzy membership value of an ith hop communication and jth

membership function. The membership value depends on the type of jth membership

function. A typical membership function can be a Triangular, Gaussian, or Bell shaped

curve.

• Each hop communication between the two hop points of N represents a fuzzy hop max

function. Let Hfi be the fuzzy hop max function of all the membership values of an
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Fig. 68. ANN approach: ANN model error

ith hop communication i.e., Hfi = max (µij) where i=1...n and j=1 to m membership

functions of an ith hop communication. For example, if a hop communication X1 has

three membership functions M11, M12, and M13, then Hf1 = max (µ11, µ12, µ13).

• Each communication path between the source and the destination nodes of N repre-

sents a fuzzy path min function. Let Pfi be the fuzzy path min function of all hop max

functions of an ith communication path i.e., Pfi = min (Hfi) where i=1...n hop com-

munications. For example, if a communication path Pf1 has two hop communications

then Pf1 = min (Hf1, Hf2)

• Let FN represents the Fuzzy network function of system S. It can be expressed as follows:
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Fig. 69. A fuzzy system as a communication network

– FN = max (Pfi) where i=1 to p communication paths. For example, if a network

has three communication paths, then FN = max (Pf1, Pf2, Pf3).

• The output of FN can be obtained using the defuzzification method (yet to be identified).

Fuzzy State Space

A fuzzy system can be represented as a state space expression. However, in this section,

only a tipper type of problem has been investigated. This can be easily extended to the problem

described in this dissertation. However, after analysis, this approach seem to be ineffective to

represent bigger fuzzy problem. Therefore, no further development were performed.

x = AX(t) +BU(t) (6.2)

y = CX(t) +DU(t) (6.3)

where X(t) is a n by 1 matrix representing the n states, U(t) represents the m inputs

matrix, and y represents the output matrix. The matrices A (n by n), B (n by 1), and C (1
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by n) determine the relationships between the state and input and output variables. D matrix

is the feedback and assumed to be zero matrix for fuzzy problems.

The fuzzy state space model of tipper problem has three outputs, B and D matrices are

0:

Cheap tip = PoorService OR RancidFood (6.4)

Average tip = GoodService (6.5)

Generous tip = ExcellentService OR DeliciousFood (6.6)

Based on the above three outputs, the state vectors can be extracted as shown in (6.7),

the output matrix y is as shown in (6.8).

X =

Service rend

Food qual

Restaurant location

(6.7)

y =


Cheap T ip

Average T ip

Generous T ip

 (6.8)

For the fuzzy problem of tipper, the matrix A can be extracted based on the equations

(6.4) - (6.8).

A =


Poor OR Good OR Excellent 0 0

Rancid OR Delicious 0 0

0 0 1

 (6.9)
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For the fuzzy problem of tipper, the matrix C can be extracted based on the equations

(6.4) - (6.8).

C =


Poor Rancid 0

Good 0 0

Excellent Delicious 0

 (6.10)

The state equation (6.2) is rewritten based on the equations (6.4) - (6.8) in in (6.12)


Service

Food

location

 =


Poor OR Good OR Excellent 0 0

Rancid OR Delicious 0 0

0 0 1




Service rend

Food qual

Restaurant location

+

[
0

]

(6.11)

The output equation (6.3) is rewritten based on the equations (6.4) - (6.8) in (6.12)


CheapT ip

AverageT ip

GenerousT ip

 =


Poor Rancid 0

Good 0 0

Excellent Delicious 0




Service rend

Food qual

Restaurant location

+

[
0

]
(6.12)
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APPENDIX B

Materials and Methods

Source of Materials

The author collected the background data for this research by conducting extensive liter-

ature review of published papers in Defense Advanced Research Projects Agency (DARPA),

Army Research Laboratories (ARL), Defense Technical Interchange Center (DTIC), Army

Research Institute (ARI), IEEE, ACM, and SAE journals.

Method

Fig. 70 describes the methodology used for the research. The figure explains in various

steps of conducting and validating research. The numbers on the figure shows the order of

execution. In step 1 through 7, the author collected the materials required for the research

and developed algorithms. In Step 8 through 14, the author conducted and validated the

research proposal and results. The author worked in a loop in steps 1 through 4a until the

document findings were sufficient to conduct research and to propose new approaches. In

steps 8 through 14, the author again worked in a loop until the proposed approaches are

valid and verified. In step 10, the author worked on labs with pertinent instrumentation for

conducting experiments and acquiring the raw data. Chapter 4 and Chapter 5 describes the

related lab setup. In this step, the author also built analytical models to validate the results

theoretically. In step 11, the author conducted experiments, and in step 13 and 14, the author

analyzed the results and revised the proposed approaches.
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Fig. 70. Research methodology of this dissertation
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APPENDIX C

Journal Publications:
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engine and battery compartments of hybrid electric vehicles,”Advances in fuzzy systems,

vol. 2012.

• M. S. Dattathreya, H. Singh, “Mission aware energy efficiency in stationary combat

vehicles,” Pending decision from the IEEE Trans. Aerospace and Electronic systems,

2012.

• M. S. Dattathreya, H. Singh,“Silent-watch and energy management strategy in combat

vehicles,” Pending decision from the IEEE Trans. Aerospace and Electronic systems,

2012.

Conference Publications and Presentations:

• M. S. Dattathreya, H. Singh, “A novel approach for combat vehicle mobility definition

and assessment,” SAE 2012 conference publication and presentation, 2012

• M. S. Dattathreya, “Intelligent approaches in improving in-vehicle network architecture

and minimizing power consumption in combat vehicles,” Wayne State Seminar,2012

• M. S. Dattathreya, H. Singh, “A survey of intelligent computing techniques for energy

management in automobiles,” ASCOT 2012 Internal Conference,2012

• M. S. Dattathreya, H. Singh, “Software reliability prediction for army vehicle,” 2011

GVSETS Conference, 2011

• M. S. Dattathreya, H. Singh, “Army vehicle software complexity prediction metric-five

factors,” 2010 WorldCom Conference, 2010
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Patents:

• M. S. Dattathreya, US Patent 8,112,323, “Procurement requisition processing method

and system,” 2012
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reviewing a component requirements document and for recording approvals thereof,”
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• M. S. Dattathreya, US Patent 7,493,334, “System and method for handling invalid

condition of a data element,” 2009

• M. S. Dattathreya, US Patent 7,493,334, “System and method for validating data
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method and apparatus in a catalog procurement system,” 2008

• A. Coleman, M. S. Dattathreya, US Patent App. 12/327,478, “Method and system for

processing requisitions,” 2008

• M. S. Dattathreya, W. P. Shaouy, R. T. White, US Patent App. 12/017,075, “System

and method for verifying an attribute in records for procurement application,” 2008

• M. S. Dattathreya, H. Singh, T. Meitzler,“Detection and elimination of potential fire in

engine and battery compartments of hybrid electric vehicles,”, 2012 (pending submission

to US patents office.)

Poster Display and Presentation:

• M. S. Dattathreya, H. Singh,“Mission aware energy saving strategy for stationary com-

bat vehicles,” 2013 Wayne State Graduate Exhibition, 3rd prize winner.
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Fuel energy is a basic necessity for this planet and the modern technology to perform

many activities on earth. On the other hand, quadrupled automotive vehicle usage by the

commercial industry and military has increased fuel consumption. Military readiness of Army

ground vehicles is very important for a country to protect its people and resources. Fuel

energy is a major requirement for Army ground vehicles. According to a report, a department

of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions.

On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy

in Army ground vehicles is very important.

Army ground vehicles are embedded with numerous electronic systems to conduct mis-

sions such as silent and normal stationary surveillance missions. Increasing electrical energy

consumption of these systems is influencing higher fuel consumption of the vehicle. To save

energy, the vehicles can use any of the existing techniques, but they require complex, expen-

sive, and time consuming implementations. Therefore, cheaper and simpler approaches are

required. In addition, the solutions have to save energy according to mission needs and also

overcome size and weight constraints of the vehicle. Existing research in the current literature

do not have any mission aware approaches to save energy.
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This dissertation research proposes mission aware online energy saving strategies for sta-

tionary Army ground vehicles to save energy as well as to meet the electrical needs of the

vehicle during surveillance missions. The research also proposes theoretical models of surveil-

lance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic

algorithms. Based on these models, two energy saving strategies are proposed for silent and

normal surveillance type of missions. During silent mission, the engine is off and batteries

power the systems. During normal surveillance mission, the engine is on, gear is on neutral

position, the vehicle is stationary, and the alternator powers the systems.

The proposed energy saving strategy for silent surveillance mission minimizes unnecessary

battery discharges by controlling the power states of systems according to the mission needs

and available battery capacity. Initial experiments show that the proposed approach saves 3%

energy when compared with the baseline strategy for one scenario and 1.8% for the second

scenario. The proposed energy saving strategy for normal surveillance mission operates the

engine at fuel-efficient speeds to meet vehicle demand and to save fuel. The experiment and

simulation uses a computerized vehicle model and a test bench to validate the approach. In

comparison to vehicles with fixed high-idle engine speed increments, experiments show that

the proposed strategy saves fuel energy in the range of 0-4.9% for the tested power demand

range of 44-69 kW. It is hoped to implement the proposed strategies on a real Army ground

vehicle to start realizing the energy savings.
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