
Development of FPGA based Standalone
Tunable Fuzzy Logic Controllers

Bhaskara Rao Jammu

Department of Electronics and Communications Engineering
National Institute of Technology Rourkela

Development of FPGA based Standalone
Tunable Fuzzy Logic Controllers

Dissertation submitted in partial fulfillment

of the requirements of the degree of

Doctor of Philosophy

in

Electronics and Communications Engineering

by

Bhaskara Rao Jammu
(Roll Number: 511EC103)

based on research carried out

under the supervision of

Prof. Sarat Kumar Patra

and

Prof. Kamala Kanta Mahapatra

July, 2017

Department of Electronics and Communications Engineering
National Institute of Technology Rourkela

Department of Electronics and Communications Engineering
National Institute of Technology Rourkela

July 17, 2017

Certificate of Examination

Roll Number: 511EC103

Name: Bhaskara Rao Jammu

Title of Dissertation: Development of FPGA based Standalone Tunable Fuzzy Logic

Controllers

We the below signed, after checking the dissertation mentioned above and the official record

book (s) of the student, hereby state our approval of the dissertation submitted in partial

fulfillment of the requirements of the degree of Doctor of Philosophy in Department of

Electronics and Communications Engineering at National Institute of Technology Rourkela.

We are satisfied with the volume, quality, correctness, and originality of the work.

Kamala Kanta Mahapatra Sarat Kumar Patra
Co-Supervisor Principal Supervisor

Bidyadhar Subudhi Debiprasad Priyabrata Acharya
Member, DSC Member, DSC

Dayal Ramakrushna Parhi Indra Narayan Kar
Member, DSC External Examiner

Sukadev Meher Kamala Kanta MahaPatra
Chairperson, DSC Head of the Department

Department of Electronics and Communications Engineering
National Institute of Technology Rourkela

Prof. Sarat Kumar Patra
Professor

Prof. Kamala Kanta Mahapatra
Professor

July 17, 2017

Supervisors’ Certificate

This is to certify that the work presented in the dissertation entitled Development of FPGA

based Standalone Tunable Fuzzy Logic Controllers submitted byBhaskara Rao Jammu, Roll

Number 511EC103, is a record of original research carried out by him under our supervision

and guidance in partial fulfillment of the requirements of the degree of Doctor of Philosophy

in Department of Electronics and Communications Engineering. Neither this dissertation

nor any part of it has been submitted earlier for any degree or diploma to any institute or

university in India or abroad.

Kamala Kanta Mahapatra Sarat Kumar Patra
Professor Professor

Dedication

I dedicate my thesis to My Mother and My Child Taruni...

Signature

Declaration of Originality

I, Bhaskara Rao Jammu, Roll Number 511EC103 hereby declare that this dissertation

entitled Development of FPGA based Standalone Tunable Fuzzy Logic Controllers presents

my original work carried out as a doctoral student of NIT Rourkela and, to the best of my

knowledge, contains no material previously published or written by another person, nor

any material presented by me for the award of any degree or diploma of NIT Rourkela or

any other institution. Any contribution made to this research by others, with whom I have

worked at NIT Rourkela or elsewhere, is explicitly acknowledged in the dissertation. Works

of other authors cited in this dissertation have been duly acknowledged under the sections

“Reference” or “Bibliography”. I have also submitted my original research records to the

scrutiny committee for evaluation of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the Senate of NIT

Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

July 17, 2017

NIT Rourkela
Bhaskara Rao Jammu

Acknowledgment

I owe sincere gratitude to the ones who have contributed greatly to completion of this thesis.

First and foremost I would like to express my sincerest appreciation to my supervisor,

Prof. Sarat Kumar Patra, who has guided me throughout my Ph.D. thesis with his patience

and knowledge whilst allowing me to work in my own way. It was an honor for me

to work with him during my time at NIT Rourkela. I would also like to acknowledge

my co-supervisor, Prof. Kamala Kanta Mahapatra for his kind advice and inspiration.

“Agnyaana Timiraandhasya Gnyaana Anjana Shalaakayaa Chakshuhu Unmeelitam Yenam

Tasmai Sri Gurave Namaha ”.

I would like to thank Board of Research for Fusion Science and Technology (BRFST)

and Institute of Plasma Research, Gandhinagar for funding a major part of this research.

The author would like to extend his gratitude towards Dr. Govindarajan, Mr.J. J. Patel, Mrs.

Rachana Rajpal and Mr. Hitesh Patel of Institute of Plasma Research, Gandhinagar, for their

contributions to this project.

I am thankful to all the faculty members of Electronics and Communication Engineering

department for extending their valuable suggestions and help whenever I approached.

I would like to thank my friends Pallab, Bijay, Manas, Satyendra, Chitra, Varun, Mangal,

Govind, Rama Krishna, Tom, Srinivas, Sujeevan and others who were with me in the ups

and downs of my life during my Ph.D. work. I would like to extend gratitude to my seniors

Prasant, Karuppanan, Venkat, Rajesh, Kanhu, Trilochan, Yogesh, Manab and Dipak.

I would also like to thank Prof. B. Subudhi, Prof. D. P. Acharya, Prof. D. R. Parhi and

Prof. S. Meher for their innovative ideas and review during the entire duration of the project.

I do acknowledge the academic resources that I have received from NIT Rourkela. I also

thank the administrative and technical staff members of Electronics and Communication

Engineering Department for their in time support.

In addition, I thank Dr. K V L Raju, Dr. R. Ramana Reddy and colleagues of MVGR

College of Engineering for providing good workplace and encouragement. I also thank Dr.

vi

M. V. S. Sairam, Dr. N. Bala Subramanyam, Dr. N. Balaji, the faculty of GVP College of

Engineering and friends at JNTU Vizianagaram for their constant love and encouragement.

I take this opportunity to express my regards and obligation to my father whose support

and encouragement I can never forget in my life. I feel proud to acknowledge my father for

his throughout support and motivation in my career for whom I am today and always. I would

like to dedicate this thesis to my wife Nalini and my daughter Nikhila for their unconditional

love, patience, and cooperation.

Finally, there is no word to describe my gratitude toward my other family members for

their endless support and love during my life.

Jul 17, 2017

NIT Rourkela

Bhaskara Rao Jammu

Roll Number: 511EC103

Abstract

Soft computing techniques differ from conventional (hard) computing, in that unlike hard

computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In

effect, the role model for soft computing is the human mind and its ability to address

day-to-day problems. The principal constituents of Soft Computing (SC) are Fuzzy

Logic (FL), Evolutionary Computation (EC), Machine Learning (ML) and Artificial Neural

Networks (ANNs).

This thesis presents a generic hardware architecture for type-I and type-II standalone

tunable Fuzzy Logic Controllers (FLCs) in Field Programmable Gate Array (FPGA). The

designed FLC system can be remotely configured or tuned according to expert operated

knowledge and deployed in different applications to replace traditional Proportional Integral

Derivative (PID) controllers. This re-configurability is added as a feature to existing FLCs

in literature. The FLC parameters which are needed for tuning purpose are mainly input

range, output range, number of inputs, number of outputs, the parameters of the membership

functions like slope and center points, and an If-Else rule base for the fuzzy inference process.

Online tuning enables users to change these FLC parameters in real-time and eliminate

repeated hardware programming whenever there is a need to change. Realization of these

systems in real-time is difficult as the computational complexity increases exponentially

with an increase in the number of inputs. Hence, the challenge lies in reducing the rule base

significantly such that the inference time and the throughput time is perceivable for real-time

applications.

To achieve these objectives, Modified Rule Active 2 Overlap Membership Function

(MRA2-OMF), Modified Rule Active 3 Overlap Membership Function (MRA3-OMF),

Modified Rule Active 4 Overlap Membership Function (MRA4-OMF), and Genetic

Algorithm (GA) base rule optimization methods are proposed and implemented. These

methods reduce the effective rules without compromising system accuracy and improve the

cycle time in terms of Fuzzy Logic Inferences Per Second (FLIPS). In the proposed system

viii

architecture, the FLC is segmented into three independent modules, fuzzifier, inference

engine with rule base, and defuzzifier.

Fuzzy systems employ fuzzifier to convert the real world crisp input into the fuzzy

output. In type 2 fuzzy systems there are two fuzzifications happen simultaneously from

upper and lower membership functions (UMF and LMF) with subtractions and divisions.

Non-restoring, very high radix, and newton raphson approximation are most widely used

division algorithms in hardware implementations. However, these prevalent methods have

a cost of more latency. In order to overcome this problem, a successive approximation

division algorithm based type 2 fuzzifier is introduced. It has been observed that successive

approximation based fuzzifier computation is faster than the other type 2 fuzzifier.

A hardware-software co-design is established on Virtex 5 LX110T FPGA board. The

MATLAB Graphical User Interface (GUI) acquires the fuzzy (type 1 or type 2) parameters

from users and a Universal Asynchronous Receiver/Transmitter (UART) is dedicated to data

communication between the hardware and the fuzzy toolbox. This GUI is provided to initiate

control, input, rule transfer, and then to observe the crisp output on the computer. A proposed

method which can support canonical fuzzy IF-THEN rules, which includes special cases of

the fuzzy rule base is included in Digital Fuzzy Logic Controller (DFLC) architecture. For

this purpose, a mealy state machine is incorporated into the design. The proposed FLCs are

implemented on Xilinx Virtex-5 LX110T. DFLC peripheral integration with Micro-Blaze

(MB) processor through Processor Logic Bus (PLB) is established for Intellectual Property

(IP) core validation. The performance of the proposed systems are compared to Fuzzy

Toolbox of MATLAB. Analysis of these designs is carried out by using Hardware-In-Loop

(HIL) test to control various plant models in MATLAB/Simulink environments.

Keywords: Fuzzy Logic Controller1; FPGA2; GA3; UART4; HIL5.

Contents

Certificate of Examination ii

Supervisors’ Certificate iii

Dedication iv

Declaration of Originality v

Acknowledgment vi

Abstract viii

List of Figures xiv

List of Tables xviii

1 Background and Related Work 1

1.1 Fuzzy Logic Systems - An Overview . 2

1.1.1 Fuzzy Sets . 3

1.1.2 Fuzzy Set Operations . 5

1.2 Fuzzy Logic Controllers: Principles of Operation 6

1.3 Hardware Implementations of Fuzzy Logic Controllers 8

1.3.1 Analog Implementations of FLC 8

1.3.1.1 Dedicated Integrated Circuit based Analog FLCs 9

1.3.1.2 Programmable Integrated Circuit based Analog FLCs . . 10

1.3.2 Digital Implementations of FLC 10

1.3.2.1 Dedicated Integrated Circuit based Digital FLCs 12

1.3.2.2 Programmable Integrated Circuit based Digital FLCs . . 13

1.3.3 Generic Fuzzy Processors . 15

1.4 Standalone Tunable Digital FLCs . 18

1.5 Motivation of this Work . 19

1.6 Objective of this Work . 20

x

1.7 Problem Statement . 21

1.8 Outline of Thesis . 22

2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction 23

2.1 Introduction . 24

2.2 VLSI Architecture of FLC . 26

2.2.1 Fuzzifier . 27

2.2.2 Rule Base and Inference Engine 28

2.2.3 Defuzzifier . 30

2.3 FPGA Utilization Analysis . 32

2.4 2-Overlap Membership Function (2-OMF) Rule Reduction 33

2.4.1 2-OMF Method and its VLSI Architecture 33

2.4.1.1 Rule Reduction using 2-OMF method 33

2.4.1.2 VLSI Architecture . 35

2.4.1.3 Design Choices for Internal Modules 36

2.5 Modified 2-Overlap Membership Function With Rule Active (MRA2-OMF)

Rule Reduction . 40

2.6 Simulation Results and Performance Evaluation 43

2.7 Summary . 45

3 Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case
Rule Base Support 48

3.1 Introduction . 49

3.2 Special Case Rule Base . 50

3.3 Modified 3-OMF Rule Active (MRA-3OMF) and Modified 4-OMF Rule

Active (MRA-4OMF) Rule Reduction . 51

3.4 Configurable DFLC IP Core . 54

3.4.1 State Machine for Partial and Complete Rule Generation 59

3.4.2 Interfacing DFLC IP Core . 60

3.4.2.1 MATLAB GUI and Operation 62

3.4.2.2 DFLC IP Core Peripheral Connection to MicroBlaze

Processor . 62

3.5 Simulation Results and Analysis . 65

3.5.1 Test Plan . 70

xi

3.6 System Implementation and Validation . 70

3.7 Plasma Position Control in Nuclear Fusion Reactor 72

3.7.1 Aditya Tokamak System Modeling 75

3.8 Control Strategy . 77

3.8.1 Using PID Control . 77

3.8.2 Plasma Position Control in Aditya using FLC and DFLC 78

3.9 Summary . 80

4 Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based
Membership Function 82

4.1 Introduction . 83

4.2 Type 2 Fuzzy Logic Systems - An Overview 84

4.2.1 Type 2 Fuzzy Sets . 84

4.2.2 Type 2 Fuzzy Set Operations . 85

4.2.3 Type 2 Fuzzy Logic Controllers 86

4.3 Successive Approximation Type 2 Membership Function 86

4.4 Tunable Type 2 Fuzzy Logic Controller 90

4.4.1 Digital Architecture . 90

4.4.2 Tunable Parameters . 95

4.4.3 Inference Engine and Type Reducer 96

4.5 Results and Discussion . 97

4.6 Summary . 101

5 FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy
Logic Controller 102

5.1 Introduction . 103

5.2 System Architecture . 105

5.3 Rule Base Extraction . 107

5.3.1 Rule Base Initialization . 108

5.3.2 A Genetic Algorithm for Tuning of the Rule Base 109

5.3.2.1 Step1: Selection . 109

5.3.2.2 Step 2. Crossover . 109

5.3.2.3 Step3: Mutation . 111

5.3.2.4 Step4: Elitism . 113

xii

5.4 Rule Base Transmission . 113

5.5 Hardware Architecture of the FLC . 115

5.6 Validation of Proposed FLC in Practical Systems 118

5.6.1 Hang Data Function [2 input 1 output system] 121

5.6.2 Chaotic Time Series [4 input 1 output system] 122

5.6.3 Plasma Position Control in ADITYA TFTR 124

5.6.4 Simulation and Hardware Implementation 126

5.6.4.1 Simulation Parameters 127

5.6.4.2 Hardware Implementation 127

5.7 Summary . 128

6 Conclusion 130

6.1 Contributions of this thesis . 131

6.2 Limitations of this Work . 132

6.3 Future Research Directions . 133

References 135

xiii

List of Figures

1.1 Conventional sets to model the room temperature. 4

1.2 Fuzzy sets to model the room temperature. 4

1.3 The hardware structure of Triangular Membership Function 7

1.4 The Structure of Fuzzy Logic Controller 7

1.5 Classification of hardware implementations for fuzzy systems 9

1.6 FPGA Design Flow . 17

2.1 The Architecture of FLC in RTL (Register Transfer Level) 27

2.2 Calculation of membership values . 28

2.3 Pin Diagram of Fuzzifier . 28

2.4 Block Model of Mamdani Inference Engine 30

2.5 Pin Diagram of 2 input 1 output Rule Evaluator 31

2.6 Pin Diagram of 4 input 2 output Rule Evaluator 31

2.7 Logic Utilization of FLC on different FPGAs 32

2.8 2-OMF Rule reduction concept . 35

2.9 VLSI Architecture of 2-OMF Reduced Rule Base 37

2.10 Finite State Machine . 37

2.11 Rule address before mapping . 38

2.12 Circuit diagram of rule address generator for 2-OMF method 39

2.13 Rule Address Mapping . 39

2.14 MRA2-OMF method fractional values with different input variables. . . . 41

2.15 Circuit diagram of rule address generator for MRA2-OMF method 42

2.16 Complete RuleBase Memory . 42

2.17 Dependency of 2-OMF Reduction on Rule Base Structure. 43

2.18 FLC operation on Virex5LX110T Board 44

2.19 Comparative Analysis of Logic Utilization. 45

xiv

3.1 Less than 4 fuzzy membership functions overlapping at once 52

3.2 MRA3-OMF and MRA4-OMF fractional values with different input

variables. 53

3.3 System Model for IP and Fuzzy Validation of Inference IP Core 55

3.4 Memory Map to support different user configurations according to the

system specification . 56

3.5 Rule reduction methods supported according to the present architecture . . 57

3.6 The rule-sector outputs for 2-OMFs, 3-OMFs and 4-OMFs rule reduction

methods and all rules. 58

3.7 Finite State Machine to support special rule cases 60

3.8 Detailed Design block diagram of DFLC 63

3.9 GUI to Initiate and Compare DFLC with Fuzzy tool box 64

3.10 Configuration Register files of DFLC . 64

3.11 DFLC Peripheral Connection PLB Interface to Microblaze Processor 66

3.12 DFLC Peripheral to Microblaze Processor 67

3.13 Test Model for partial rule support . 67

3.14 Simulation waveform of partial rule support 68

3.15 Simulation waveform of single fuzzy statement 68

3.16 Test Model for repeated rule . 68

3.17 Continuous Data Transfer from DFLC to MATLAB 69

3.18 DFLC register updation from MB through PLB interface 69

3.19 The setup for Hardware-in-loop Testing for DFLC 71

3.20 Plant and Control output of 8 bit, 16 bit and MATLAB FLT test modes using

HIL for two tank water level system . 72

3.21 Plant and Control output of 8 bit, 16 bit and MATLAB FLT test modes using

HIL for ball and beam system . 73

3.22 Schematic of a tokamak . 74

3.23 Plasma Displacement inside Vacuum Chamber 74

3.24 Control Strategy for Aditya TFTR . 77

3.25 Simulink model of radial plasma position control in Aditya TFTR with PID

controller . 78

xv

3.26 Simulink model of radial plasma position control in Aditya TFTR with FLC

and DFLC . 79

3.27 Performance of various controllers in presence of disturbances in plasma

position . 81

4.1 Type 2 Fuzzy Set . 85

4.2 An Interval Type 2 Fuzzy Set . 87

4.3 Trapezoidal Type 1 and Type 2 Fuzzifiers 88

4.4 Basic operation of Type 2 Fuzzification 89

4.5 Basic function of membership circuit . 90

4.6 Algorithm flow of successive approximation 91

4.7 Design of membership circuit module . 91

4.8 Circuit Model of Lower Membership Function 92

4.9 Circuit Model of Upper Membership Function 92

4.10 Type 2 Fuzzifer Block . 93

4.11 Top Level Architecture of Type 2 FLC . 93

4.12 Type 2 FLC Memory Map to support different user configurations 94

4.13 MATLAB GUI to configure hardware Type 2 FLC 97

4.14 Functional simulation result of Successive Approximation Division method 98

4.15 Functional simulation result of SAIT2FLC 98

4.16 Simulink model of radial plasma position control in Aditya TFTR with FLC

and SAIT2FLC . 99

4.17 Performance of various controllers in presence of disturbances in plasma

position . 100

5.1 System Architecture of GA-FLC on FPGA 106

5.2 Rule Base Design . 109

5.3 Flow diagram showing the GA based optimization of the fuzzy rule base . . 110

5.4 Shape of membership functions before and after crossover 112

5.5 Reduced Rule Base with GA optimization 113

5.6 Designed GUI for FLC using uses MATLAB for rule transmission to FPGA

and computed value received from FPGA 115

5.7 Block Diagram of Fuzzy Inference Module 116

xvi

5.8 Calculation of membership values . 118

5.9 Process of fuzzy controller . 119

5.10 Defuzzification . 119

5.11 Block Diagrams of Fuzzy inference processing top module and fuzzifier,

inference and defuzzifier. 120

5.12 Hang function approximation with GA trained fuzzy system on FPGA . . . 122

5.13 GA-FLC versus ANFIS error plot . 123

5.14 Comparative plots between desired time series data, GA rulebase predicted

data, and GA-FLC on FPGA . 124

5.15 Radial Plasma Position Control of Aditya TFTR: HIL Simulation 125

5.16 Performance of various controllers in presence of disturbances in plasma

position . 126

5.17 The functional simulation waveform obtained by ISim 14.2. 128

5.18 Crisp Data output from FPGA using UART captured on the Chipscope - Pro

tool . 129

xvii

List of Tables

1.1 T-norm duals in fuzzy literature . 5

1.2 Dedicated IC based analog FLCs . 11

1.3 Dedicated IC based digital FLCs - parallel rules 14

1.4 Dedicated IC based digital FLCs - sequential rules 14

1.5 Programmable IC based digital FLCs - FPGAs 16

1.6 Major works on Generic FLCS . 18

2.1 Pin Description of Fuzzifier . 29

2.2 Computed Ncells with varying n and Overlaps 34

2.3 Implementation results for proposed methods 45

2.4 Comparison proposed methods with other FPGA Implementations 46

3.1 Rule search space for varying n and Overlaps 54

3.2 Control Signal Description to start different FLC programming options . . . 57

3.3 State Transition Table . 61

3.4 Hardware implementation: Comparison of all proposed methods 66

3.5 Test Plan to verify the functionality of DFLC on FPGA 70

3.6 List of Variables . 75

3.7 Characteristics of FLCs used in [1] and DFLCS 79

3.8 Comparison of performance parameters of PID, FLC [1], and DFLC with

MRA2-OMF, MRA3-OMF and MRA4-OMF Methods 80

3.9 Computational Complexity of all proposed methods 80

4.1 Comparison of performance parameters of FLC [1], and DFLC with

MRA2-OMF, SAIT2FLC with MRA2-OMF,MRA3-OMF,MRA4-OMF . . 99

4.2 Hardware Implementation: Comparison of proposed method SAIT2FLC

with DFLC . 101

xviii

4.3 Performance of Successive Approximation Based Type2 FLC with other

methods . 101

5.1 Memory Space . 107

5.2 Rule Base of simple FLC . 118

5.3 GA-FLC system manual to generate optimized rules for hang data function. 121

5.4 Hardware Implementation: Comparison of proposed methods 125

5.5 Comparison of performance parameters of PID, FLC [1], and DFLC with

MRA2-OMF, GA-FLC with MRA2-OMF 125

5.6 Device Utilization Summary . 128

xix

List of Notations

µ Membership function
µA Memebership function of fuzzy set A∩

T-norm operator. Basic operation includes Minimum,
Product, Lukasiewicz, etc. Operated on a vector∪
T-conorm operator. Basic operation includes Maximum,
Product, Lukasiewicz, etc

Ã Type 2 Fuzzy Set of A
Ā Upper membership function of Ã
Ã

′ Compliment of Type 2 fuzzy set Ã
Ncells Total rule dimension
FA Fraction of MRA2-OMF rules with 2-OMF rules
FRA Fraction of MRA2-OMF rules with Total rules
F3A Fraction of MRA3-OMF rules with 3-OMF rules
F3RA Fraction of MRA3-OMF rules with Total rules
F4A Fraction of MRA4-OMF rules with 4-OMF rules
F4RA Fraction of MRA4-OMF rules with Total rules
Dk kth Data point in the data set
Ci ith Cluster
dk,i Distance of Dk from Ri, i.e the cluster center Ci

t0 Start time of chaotic time series
Γ Shafranov parameter
µo Permeability of Vacuum
βp Poloidal beta
Ip Plasma current
Ic Coil and conductor current
Vc Control voltage
Bv Vertical magnetic field
li Internal inductance of plasma magnetic field
∆t Time interval of chaotic time series

xx

List of Acronyms

ADC Analog to Digital Converter
ASIC Application Specific Integrated Circuit
ASIP Application Specific Integrated Processor
CMOS Complementary Metal Oxide Semiconductor
COA Centroid of Area
COG Center of Gravity
DAC Digital to Analog Converter
DFLC Digital Fuzzy Logic Controller
DSP Digital Signal Processor
EDA Electronic Design Automation
EDK Embedded Development Kit
FIE Fuzzy Inference Engine
FF Flip Flop
FIS Fuzzy Inference System
FLC Fuzzy Logic Controller
FLT Fuzzy Logic Toolbox
FLCS Fuzzy Logic Control System
FLIPS Fuzzy Logic Inferences Per Second
FPAA Field Programmable Analog Array
FPGA Field Programmable Gate Array
FOU Footprint Of Uncertainty
FSM Finite State Machine
GA Genetic Algorithm
GA-FLC Genetic Algorithm based Fuzzy Logic Controller
GUI Graphical User Interface
GUIDE Graphical User Interface Design Environment
HDL Hardware Description Language
HIL Hardware In Loop
IC Integrated Circuit
IP Intellectual Property
ISE Integrated Software Environment
IT2FLC Iterative Type 2 Fuzzy Logic Controller
KM Karnik and Mendel
LMF Lower Membership Function
LUT Look Up Table
MB Micro Blaze
MF Membership Function

xxi

MFLIPS Mega Fuzzy Logic Inferences Per Second
MFG Membership Function Generator
MIMO Multi Input Multi Output
MRA2-OMF Modified Rule Active 2 Overlap Membership Function
MRA3-OMF Modified Rule Active 3 Overlap Membership Function
MRA4-OMF Modified Rule Active 4 Overlap Membership Function
OMF Overlapping Membership Function
PAMA Programmable Analog Multiplex Array
PC Personal Computer
PID Proportional Integral Derivative
PCI Peripheral Component Interconnect
PLB Programmable Logic Bus
PWM Pulse Width Modulator
RAM Random Access Memory
ROM Read Only Memory
RTL Register Transfer Level
SAIT2FLC Successive Approximation based Iterative Type 2 Fuzzy Logic Controller
SDK Software Development Kit
SFS Single Fuzzy Statement
SoC System on Chip
SM System Method
T1FLC Type 1 Fuzzy Logic Controller
T2FLC Type 2 Fuzzy Logic Controller
TB Test Bench
TFTR Tokamak Fusion Test Reactor
VLSI Very Large Scale Integration
UART Universal Asynchronous Receiver and Transmitter
UMF Upper Membership Function
WM Wu-Mendel
WS Work Station

xxii

Chapter 1

Background and Related Work

3

Preface
This chapter presents a brief discussion on some of the earlier works related to hardware
implementations of fuzzy systems. The fuzzy system, its working principle, and
the fundamental concepts are discussed. This chapter also addresses the issues of
re-configurability and generality of the existing fuzzy system designs. The limitations of
the current systems lead to the motivation for new work. The limitations along with the
challenges and research areas are depicted in this chapter. Finally, the workflow of the
present dissertation is summarized.

3

Chapter 1 Background and Related Work

“There are things known and there are things unknown, and in between are the doors of

perception.”

Aldous Huxley

Global technologies evolution triggered increasing complexity of applications leading

to new developments both in the industry and in the scientific research fields. Fuzzy

control methods represent rather a different approach to the problems of controlling these

complex nonlinear systems. Fuzzy logic and the theory of fuzzy sets are the results of

a broader comprehension of practical control problems and control actions performed by

human operators, which could not have been correctly interpreted by using classical bivalent

logic and conventional methods of automatic control. Fuzzy logic is a problem-solving

control system methodology that lends itself to implementation in systems ranging from

simple, small, embedded micro-controllers to large, networked, multi-channel PC or

workstation-based data acquisition and control systems. These can be implemented in

hardware, software, or a combination of both. Fuzzy Logic Controller (FLC) provides

an easy way to arrive at a definite conclusion based upon vague, ambiguous, imprecise,

noisy, or missing input information. The approach to control problems mimics how a

human being would make decisions. However, requiring precision in engineering problems

incurs a high cost and long time in development. Lotfi Askar Zadeh [2] described the

power of uncertainty and approximate reasoning over hard computing by illustrating how a

human mind works while parking a vehicle. T. Ross took the instance of traveling salesman

problem to exemplify similar point [3]. It is, therefore, possible for scientist or engineer to

contemplate the requirement for approximate reasoning and imprecision while considering

fuzzy logic to solve a problem. The prime desideratum is “how much imprecision can the

system tolerates”.

1.1 Fuzzy Logic Systems - An Overview

As a general principle, a good engineering theory should be capable of making use of all

available information effectively. For many practical systems, valuable information comes

from two sources: one source is human experts who describe their knowledge about the

2

Chapter 1 Background and Related Work

system in natural languages; the other is sensory measurements and mathematical models

that are derived according to physical laws. An important task, therefore, is to combine these

two types of information into system designs. To achieve this combination, a key question is

how to formulate human knowledge into a similar framework which will be used to formulate

sensory measurements and mathematical models. In other words, the fundamental issue is

how to transform a human knowledge base into a mathematical formula. Essentially, a fuzzy

system performs this transformation. To understand how this transformation is done, fuzzy

systems are studied. Fuzzy systems are knowledge-based or rule-based systems. The heart

of a fuzzy system is a knowledge base consisting of the so-called fuzzy IF-THEN rules.

A fuzzy IF-THEN rule is an IF-THEN statement in which some words are characterized

by continuous membership functions. Lotfi Askar Zadeh [4] defined these fuzzy sets and

membership functions as a class of objects with a continuum of grades of membership.

Such a set is characterized by aMembership Function (MF) that assigns to each object,

a grade of membership ranging from zero to one. Fuzzy logic is useful to the people

who are involved in research and development which includes engineers, mathematicians,

medical researchers, business analysts, and natural scientists. Indeed, the applications of

fuzzy logic can be found in many engineering and scientific works like washing machines,

vacuum cleaners, antiskid braking systems, unmanned automobiles, weather forecasting

systems, transmission systems, medical diagnosis and treatment plans, stock trading, etc.

1.1.1 Fuzzy Sets

There is an inherent impreciseness present in our natural language when we describe

phenomena that do not have sharply defined boundaries. Statements such as “Tom is

smart” and “Lorenzo is young” are simple examples. Fuzzy sets are mathematical objects

modeling this impreciseness. The fuzzy set theory provides mathematical tools for carrying

out approximate reasoning processes when available information is uncertain, incomplete,

imprecise, or vague. Conventional bivalent set theory, often known as a conventional set

theory, can be limiting in describing a ‘humanistic’ problem mathematically. For example,

Figure 1.1 illustrates bivalent sets to model room temperature.

The limiting feature of conventional sets is that they are mutually exclusive, and it is

impossible to have a membership of more than one set. Based on human perception, it is

an inaccurate model to define a transition from quantity ‘cool’ to ‘warm’ when one degree

3

Chapter 1 Background and Related Work

M
e
m
b
e
rs
h
ip
F
u
n
c
ti
o
n

o
C

CoolCold Warm Hot10-5 20 30 45

Figure 1.1: Conventional sets to model the room temperature.

centigrade of heat is added to the system. In the real world, the actual modeling occurs

with a smooth drift or transition from ‘cool’ to ‘warm’. This transition can be captured

more accurately by Fuzzy Set Theory. Figure 1.2 shows fuzzy sets quantifying the same

information which better describes this natural drift. Here, the association is modeled as a

triangular function. In fuzzy logic theory, the function which defines the association is called

as a membership function. Thereby, in fuzzy set theory, apart from the value of the variable,

the degree of association of the variable to the set is also captured.

M
e
m
b
e
rs
h
ip
F
u
n
c
ti
o
n

o
C

CoolCold Warm Hot10-5 20 30 45

Figure 1.2: Fuzzy sets to model the room temperature.

Mathematically, U be the universe of discourse, or universal set, which contains all the

possible elements of concern in each particular context or application. A fuzzy set A in U

may be represented as a set of ordered pairs of a generic element x and its membership value,

that is,

A = (x, µA(x))|x ∈ U (1.1)

4

Chapter 1 Background and Related Work

Table 1.1: T-norm duals in fuzzy literature

t-norm t-conorm Description
Min(µy,µx) Max(µy,µx) Min/Max
µyµx µy+ µx - µyµx Product/Probabilistic Sum
Max(0,µy+µx-1) Min(1,µy+ µx) Bold Union/Bounded Sum

where µA(x) is called “membership function” (or MF for short) for the fuzzy set A [4]. The

MF maps each element of X to a membership grade (or membership value) between 0 and

1.

A set is called support if {x|µA(x) > 0} and core if {x|µA(x) = 1}. The set can be

termed as normal if the core is nonempty, and fuzzy singleton if the support is single point

in U if µA(x)=1 [3].

Fuzzy mathematics provides the starting point and basic language for fuzzy systems and

fuzzy control. A fuzzy system operates on various fuzzy sets to provide a suitable output.

It is often required that these fuzzy sets are combined meaningfully. It is imperative that

there exists a commonality of operators between regular and fuzzy sets. These operators are

termed as aggregators [5].

1.1.2 Fuzzy Set Operations

Corresponding to ordinary set operations of the union (OR), intersection (AND) and

complement (NOT), fuzzy sets have similar operations, which were initially defined in

Zadeh’s seminal work [4]. The Zadeh defines these operations by considering µx and µy as

membership grade of two fuzzy numbers x and y, in a fuzzy set:

T (µx, µy) = min (µx, µy) (1.2)

S (µx, µy) = max (µx, µy) (1.3)

N (µx) = (1− µx) (1.4)

where t-norms (AND operators), s-norms (OR operators, also called as t-conorm) are termed

as triangular norms in fuzzy literature and N represents the negation. A short table of widely

used t-norm duals in fuzzy control applications is depicted in Table 1.1.

There are three major fuzzy complement operators which have been widely used in the

5

Chapter 1 Background and Related Work

literature [6]. These operators are;

1.Standard Complement: N (µx) = (1− µx)

2.Sugeno’s Complement: Ns (µx) =
1−µx

1+sµx

3.Yager’s Complement: Nw (µx) = (µx · µy)

where s is Sugeno’s constant and w is Yager’s constant.

1.2 Fuzzy Logic Controllers: Principles of Operation

Fuzzy logic controllers (FLCs) primarily depend on the controlled process and the demanded

quality of control. It provides a formal methodology to represent human’s heuristic

knowledge to control a system. By defining these fuzzy controllers, process control can

be implemented quickly and easily. For different applications, the control structures vary by

the number of inputs, outputs, membership functions, number of rules, and type of inference

engine or a method of defuzzification [7, 8]. The choice of these different fuzzy control

combinations is in the hands of designer for a particular problem. The most appreciable

feature of FLCs is its ability to manage complex control problems through the heuristic

rule-of-thumb strategies of the expert provided by fuzzy set theory, instead of using complex

differential equations to derive mathematical models of a process plant. This establishes the

power of FLCs in nonlinear control plant in recent times [2, 9–11].

Even though there are many analog fuzzy logic controllers in market [12, 13], most

of the fuzzy logic controllers have been implemented in digital form. The fuzzy logic

controllers discussed in this thesis belong to this group. Hence, the term Binary to Fuzzy

(B/F) conversion has been introduced. As inputs of a digital fuzzy controller are defined

over discrete universes of discourse with the finite number of elements (integers) obtained

after quantization of sensor signals (A/D conversion). The basic structure of fuzzy logic

controller is represented in Figure 1.4. It consists of the following modules:

i. Fuzzifier (B/F Conversion): Crisp input data or input data variable to the fuzzy control

system is mapped by a sets of the membership function, known as “fuzzy sets.”

The fuzzification is a process to convert these real variables into linguistic variables

or fuzzy variables. The realtime hardware representation of triangular membership

function with four MFs is presented in Figure 1.3.

ii. Rule Base: It stores a set of IF-THEN rules, which govern a typical fuzzy system. These

6

Chapter 1 Background and Related Work

Figure 1.3: The hardware structure of Triangular Membership Function

A/D Convereter D/A Convereter
From Sensor

To System

Input Fuzzifier
(Binary to Fuzzy)

Fuzzy Rule-Base

Inference
Engine

Output Defuzzifier
(Fuzzy to Binary)

Figure 1.4: The Structure of Fuzzy Logic Controller

rules usually are the expert’s linguistic description to achieve good control. These

rules describe the output dependence on the inputs, and they are mentioned in terms

of the MFs representing the inputs and outputs of the process plant.

iii. Inference Engine: It is a process of identifying rules to calculate the values of the

linguistic output variable. The inference step consists of two components:

a. Aggregation: It evaluates the IF part (condition) of the rules.

b. Composition: It evaluates the THEN part (conclusion) of the rules.

iv. Defuzzifier (F/B Conversion): It translates the conclusion of inference mechanism into

the substantive crisp controller output or actual inputs to the process plant.

7

Chapter 1 Background and Related Work

1.3 Hardware Implementations of Fuzzy Logic Controllers

The last two decades have been marked by a great evolution in the field of fuzzy logic to

address complex problems of economics [14–17], robotics [18–22], automobiles [23–27],

power electronics [28–30], chemical industry [31–34], aerospace [35–40], manufacturing

process [41–43], transportation [44–48] and many others [17, 49–54] for their superior

performance than the classical control techniques. Fuzzy logic uses the intuitive knowledge

and experience of the experts to achieve desired output action. Fuzzy logic provides a formal

way to convert this knowledge and experience using IF-THEN rules [55] and makes it

a fully structured control algorithm suitable for computer implementations. These factors

motivate the engineers to design and implement the fuzzy logic controllers for a wider range

of applications. Taking into account of difficulty in different hardware implementations these

are categorized by the following type of implementations:

a. Analog fuzzy implementations

b. Digital fuzzy implementations

c. Commercial processer based implementations

Each of these implementations can be further classified based on the target application

and aspect of system design. Different forms of FLC implementation is presented in

Figure 1.5, where dedicated integrated circuits are designed primarily to target single

control applications and built over ASIC with full custom analog, digital, and mixed signals.

Programmable integrated circuits based FLCs are developed in integrated circuits (ICs) that

can be reconfigured by the user. Commercial processors are using software application to

define the FLC system. Bell Labs AT&T has implemented its first digital fuzzy processing

[56] device in 1985 that runs at 80,000 FLIPS for a two input one output problem. Later an

analog fuzzy processor [57] was built using a bipolar transistor and the processor provided a

performance of 1 MFLIPS with defuzzification and 10 MFLIPS without the defuzzification.

These two works propelled research in fuzzy implementations using analog and digital

hardware with higher processing speed, lower silicon area, and lower power consumption.

1.3.1 Analog Implementations of FLC

One of the major advantages of the analog implementations for fuzzy processing is the

absence of Analog to Digital Converter (ADC) and Digital to Analog Converters (DAC)

8

Chapter 1 Background and Related Work

Figure 1.5: Classification of hardware implementations for fuzzy systems

since the analog implementations have a natural connection with different sensors or

actuators with either voltage mode or current mode.

1.3.1.1 Dedicated Integrated Circuit based Analog FLCs

There are four modes in which dedicated IC based FLC are implemented:

1. Current mode It is the most suitable architecture for fuzzy basic operations with

its advantages like low chip area and low power [58, 59], but suffers from the

disadvantage of fan-out limited to ’1’ and thus can only be connected to a single output.

2. Voltage mode Implementations of FLCs can support more than one input and output.

Yamakawa et. al. [60] proposed the first device in bipolar technology, which attained

the speed of inference engine at 1 µs (1 MFLIPS) and the defuzzification of 5

µs. To achieve higher speed and lower power consumption, Peters et. al. [61]

implemented analog FLC for the intelligent sensor using CMOS (2.4 µm) technology

attaining 2 MFLIPS speed. Marshall and Collins [62], in their design used a floating

gate subthreshold technique for FLC with 75 rules and achieved 500 µW power

consumption with less than 5 mm2 area. The potential disadvantage of this design

was its low speed of the order of KFLIPS.

3. Transconductance mode Circuits operate in transconductance mode where inputs are

in voltage and outputs are in current. Most of the circuits in voltage mode operate in

transconductance mode to obtain membership functions. These membership functions

9

Chapter 1 Background and Related Work

are based on differential pairs of transistors operating in strong or weak inversion [63,

64]. Operational Transconductance Amplifier (OTA) [65, 66] and capacitors for basic

blocks are used for the treatment of MFs in other designs.

4. Switched or circuit discretized mode incorporate programmability and accuracy in

FLCs analog implementations. These designs were introduced in fuzzy controller

implementation using switched capacitor techniques [67–69]. Even though these

circuits perform well in terms of speed, they had the demerit of high silicon area with

a design based on Op-Amps or comparators instead of transistors.

Table 1.2 presents the implementation reference of dedicated IC based FLCs, where

special attention has taken to increase the processing speed and restricted fuzzy parameters

with a static rule base.

1.3.1.2 Programmable Integrated Circuit based Analog FLCs

FLCs implemented on analog programmable ICs have not attracted engineers significantly,

some of the most relevant works with this technique include;

• Pierzchala et. al. [70] developed FLC on FPAA usage on multi-valued logic. FLC

implemented used m inputs, n rules with trapezoidal membership function.

• Amaraletal et. al. [71] relied on Programmable Analog Multiplex Array (PAMA) with

GA programming through PCI bus. With this GA code, FPAA was used to configure

the membership function.

• Ionita et. al. [72] implemented a Mamdani FIS system, an evolutionary algorithm has

been used for tuning the MFs.

1.3.2 Digital Implementations of FLC

Fuzzy systems and controls have made fast advancement in past decades. Owing to its

widespread usage in consumer electronics and industrial process control, implementation of

FLCs has been rigorously researched, and development in terms of implementation has been

popular. However, an increase in process complexity of the industrial plants is accelerating

demand for controllers with high computational speed, low complexity, easy deployment,

and lower development time in terms of design. In order to conform to the demand-supply

10

Chapter 1 Background and Related Work

Ta
bl

e
1.

2:
D

ed
ic

at
ed

IC
ba

se
d

an
al

og
FL

C
s

A
pp

lic
at

io
n

Ye
ar

In
In

M
Fs

Ty
pe

of
In

M
F

O
ut

O
ut

M
f

Ty
pe

of
In

M
F

N
o

O
fR

ul
es

D
ef

uz
z

Sp
ee

d
Te

ch
no

lo
gy

C
ur

re
nt

M
od

e
M

ax
.O

pe
ra

to
r

[5
8]

19
94

2
-

-
1

-
-

-
-

10
0

ns
C

M
O

S
1.

6
µ

m
EM

Fi
el

ds
[5

9]
19

94
2

-
-

1
-

-
9

-
10

M
FL

IP
S

C
M

O
S

2.
4
µ

m

Vo
lta

ge
M

od
e

G
en

er
ic

[6
0]

19
93

2
-

Tr
ia

ng
,T

ra
pe

z
1

-
Tr

ia
ng

n
C

O
G

1
M

FL
IP

S
EC

L-
EC

FL
A

ut
om

at
io

n
Se

ns
or

s
[6

1]
19

95
2

7-
7

B
el

l
1

7
-

13
C

O
A

2
M

FL
IP

S
C

M
O

S
2.

4
µ

m
G

en
er

ic
[7

3]
19

95
3

n-
n-

n
Tr

ia
ng

,T
ra

pe
z

1
7

-
4

C
O

G
0.

6
M

FL
IP

S
B

iC
M

O
S

2.
0
µ

m
M

ob
ile

R
ob

ot
[7

4]
19

96
3

3-
3-

3
Tr

ia
ng

,T
ra

pe
z

1
5

Si
ng

le
to

n
13

C
O

G
6

M
FL

IP
S

C
M

O
S

2.
4
µ

m
Se

ns
or

s
[6

2]
19

97
3

3-
5-

5
Tr

ia
ng

1
7

Tr
ia

ng
75

C
O

G
10

K
FL

IP
S

C
M

O
S

2.
0
µ

m

Tr
an

sC
on

du
ct

an
ce

M
od

e

M
F

G
en

er
at

io
n

[6
6]

19
91

3
-

Tr
ia

ng
1

-
-

-
-

82
ns

C
M

O
S

(S
PI

C
E

Si
m

)
M

ax
.I

np
ut

[6
3]

19
94

2/
3

-
-

1
-

-
-

-
10

0
ns

C
M

O
S

1.
6
µ

m
G

en
er

ic
[6

5]
19

95
2

-
Tr

ia
ng

1
9

si
ng

le
to

n
9

C
O

A
15

M
FR

PS
C

M
O

S
1.

6
µ

m
Se

ns
or

s
[6

4]
19

96
2

-
be

ll
5

-
si

ng
le

to
n

80
C

O
G

-
C

M
O

S
2.

0
µ

m

Sw
itc

he
d

M
od

e
G

en
er

ic
[6

8]
19

93
n

-
S&

Z
Sh

ap
ed

-
-

-
-

C
O

G
-

C
M

O
S-

G
en

er
ic

[7
5]

19
94

2
56

Tr
ia

ng
,T

ra
pe

z
4

28
-

32
C

O
G

16
M

FL
IP

S
C

M
O

S
0.

8
µ

m
C

on
tro

lle
rs

[6
7]

19
97

4
64

S,
Z,

Tr
ia

ng
&

Tr
ap

es
2

7
si

ng
le

to
n

16
W

ei
gh

te
d

Av
er

ag
e

85
K

FL
IP

S
C

M
O

S
1.

2
µ

m

11

Chapter 1 Background and Related Work

chain of the industry, FLCs have to be designed accordingly. A unique solution to fulfill

this growing market demand is to move to the digital platform. It is well known that digital

systems have high resistance to noise, temperature and voltage variations there by making

system robust. There are various digital platforms available to design and implementation

that reduces quick turnaround time. Although, systems created in digital hardware platforms

are not as fast as analog models still, a good system cycle time can be achieved which

provides sufficient throughput speed for the majority of the control problems.

1.3.2.1 Dedicated Integrated Circuit based Digital FLCs

FLC implementations on dedicated ICs are concentrated on the structure of fuzzy rules. Also,

structure depends on the rules executed in parallel or sequential manner. The subsequent

execution of rules used RAM for the storage of rules. Hence the speed is dependent on the

parameters like the number of rules, the number of inputs, and number of MFs. In parallel

execution, the rules are executed in parallel at the cost of extra LUT for the implementation of

MFs with the help of rules stored in ROM. Table 1.3 and Table 1.4 illustrates the work done

in these implementations, and these implementations are fixed for a particular application,

limited rule base, set to its membership functions, inputs, and outputs. Some of the notable

designs include,

• Eichfeld et.al. [76] reported a four-input and single-output FLC with 4096 fuzzy rules

with 8 MFs each. However, the system operated only on two overlapping MFs and

used singleton type of MFs for output.

• Watanabe et. al. [77] developed FLC in 0.7 µm CMOS process. The system achieved

high performance due to its parallel architecture. The FLCs evaluates 64 rules, but

this design too used two overlapping MFs method. Also, if four inputs are used the

rules are limited by 64.

• Huang et. al. [78] presented a fuzzy inference processor designed in CMOS 0.35 µm

process. This design used trapezoidal membership function with fixed rule base.

• Falchieri et. al. [79] designed one of the most flexible structures for FLCs in the

literature. This device, however, does not discuss the speed of performance.

• Javadi et. al. [80] design provided a new fuzzification method for hardware on 0.13μm,

but it was only applicable to piece-wise linear MFs.

12

Chapter 1 Background and Related Work

1.3.2.2 Programmable Integrated Circuit based Digital FLCs

In this classification, Field Programmable Gate Arrays (FPGAs) outperforms its predecessor

Complex Programmable Logic Devices (CPLDs) since the latter is limited with its logic and

function density. Hence there are not many CPLD based FLCs reported in the literature. On

the other hand, FPGA provides a number of advantages like re-configurability, short time

to market, customization, parallelization, flexibility in design. FLC process is programmed

through Hardware Description Language like VHDL (Very high speed integrated circuit

Hardware Description Language) or Verilog. Some of the notable developments on FPGAs

for fuzzy logic implementations are reported in Table 1.5. Some of the important designs

are,

• Hongguo Sun et. al. [88] presented a fuzzy PID design on CPLD for PWM trigger

pulse generation to a full bridge inverter and a chopper circuit. It implemented a

two-input one-output FLCs with fixed rule base and rigid MFs.

• Jingyan Xue et. al. [89] presented a novel methodology to design a fuzzy reasoning

based expert system on CPLD for fault diagnosis. Similar to the previous design, this

too implemented FLCs with fixed rule base and rigid MFs.

• Adhavan et. al. [90] countered the problem of a non-uniform variance of the torque

developed in a vector controlled permanent magnet synchronous motor by introducing

an FIS implemented on an FPGA. The authors have reported that the heuristic

knowledge-based fuzzy logic control system (FLCS) has reduced the torque ripple

to 1.81%.

• Benzekri et. al. [91] reported PD approximated FLCS developed on Cyclone II

FPGA to control a dual axis sun tracking system. The simple rules developed with

human knowledge have been found to be successful in reducing chip count, cost and

development time of the controller significantly.

• Santos and Ferreira [92] implemented a multi-state FLCS on Virtex-II FPGA and

NI Compact R10−9002 to control servo- pneumatic actuation systems. They showed

significant performance gain in terms of the steady state error, overshoot and settling

time.

13

Chapter 1 Background and Related Work

Ta
bl

e
1.

3:
D

ed
ic

at
ed

IC
ba

se
d

di
gi

ta
lF

LC
s-

pa
ra

lle
lr

ul
es

A
pp

lic
at

io
n

Ye
ar

In
In

M
Fs

Ty
pe

of
In

M
F

O
ut

O
ut

M
f

Ty
pe

of
In

M
F

N
o

O
fR

ul
es

D
ef

uz
z

Sp
ee

d
Te

ch
no

lo
gy

G
en

er
ic

[8
1]

19
89

4(
4b

it)
-

Tr
ia

ng
,tr

ap
ez

2(
6b

it)
-

-
51

C
O

A
58

0
K

FL
IP

S
C

M
O

S
1
µ

m
N

av
ig

at
io

n
[7

7]
19

91
4(

6b
it)

64
A

ny
Sh

ap
e

2
(6

bi
t)

-
-

51
C

O
G

15
0

K
FL

IP
S

C
M

O
S

1
µ

m
G

en
er

ic
[8

2]
19

96
4(

4/
6

bi
t)

-
Tr

ia
ng

,tr
ap

ez
2(

4/
6b

it)
-

Tr
ia

ng
-

A
ny

-
C

M
O

S
1
µ

m
G

en
er

ic
[8

3]
19

97
4(

8
bi

t)
7-

7-
7-

7
(6

bi
t)

A
ny

Sh
ap

e
1

(8
bi

t)
8

(6
bi

t)
-

64
C

O
A

86
M

FR
PS

C
M

O
S

0.
7
µ

m
A

re
a

re
co

gn
iti

on
[7

9]
20

02
2

(7
bi

t)
8-

8
A

ny
Sh

ap
e

1
(7

bi
t)

12
8

(7
bi

t)
-

64
Su

ge
no

33
.3

M
FL

IP
S

C
M

O
S

0.
35

µ
m

G
en

er
ic

[7
8]

20
05

2(
8b

it)
N

o
Li

m
it

Tr
ap

ez
1(

8b
it)

64
(8

bi
t)

C
ris

p
64

C
O

G
7

M
FL

IP
S

C
M

O
S

0.
35

µ
m

Fu
zz

ifi
ca

tio
n

[8
0]

20
13

N
n

A
ny

Sh
ap

e
m

-
-

-
-

-
C

M
O

S
0.

15
µ

m

Ta
bl

e
1.

4:
D

ed
ic

at
ed

IC
ba

se
d

di
gi

ta
lF

LC
s-

se
qu

en
tia

lr
ul

es

A
pp

lic
at

io
n

Ye
ar

In
In

M
Fs

Ty
pe

of
In

M
F

O
ut

O
ut

M
f

Ty
pe

of
In

M
F

N
o

O
fR

ul
es

D
ef

uz
z

Sp
ee

d
Te

ch
no

lo
gy

G
en

er
ic

[7
6]

19
92

4(
5b

it)
7-

7(
3b

it)
Tr

ia
ng

,tr
ap

ez
1(

5b
it)

7(
3b

it)
Tr

ia
ng

,tr
ap

ez
40

96
C

O
G

-
C

M
O

S
0.

6
µ

m
G

en
er

ic
[8

4]
19

95
25

6(
6b

it)
7-

7
(3

bi
t)

A
ny

Sh
ap

e
64

(6
bi

t)
7(

3b
it)

C
ris

p
16

,3
84

C
O

G
10

M
FR

PS
C

M
O

S
1
µ

m
G

en
er

ic
[8

5]
19

98
4(

8
bi

t)
7-

7
Tr

ia
ng

,tr
ap

ez
1(

16
bi

t)
25

5
A

ny
24

01
C

O
G

0.
48

M
FR

PS
C

M
O

S
1
µ

m
R

ad
ar

[8
6]

19
98

2(
8

bi
t)

4
(6

bi
t)

Tr
ap

ez
1

(8
bi

t)
4

-
4

C
O

G
10

0
K

FL
IP

S
C

M
O

S
1
µ

m
A

ir
C

on
di

tio
n

[8
7]

20
05

3
(8

bi
t)

5-
4-

5
G

au
ss

ia
n

2
(8

bi
t)

9
(7

bi
t)

Si
ng

le
to

n
25

Su
ge

no
-

C
M

O
S

0.
35

µ
m

14

Chapter 1 Background and Related Work

• Messai et. al. [93] reported an FLC to seek maximum power point deliverable by a

photovoltaic (PV) module using measures of PV voltage and current.

• Schrieber et. al. [94] presented an interval type- II FLCS implemented on a Xilinx

Spartan 6 FPGA utilizing DSP48AI slices for different linear and non-linear modules.

• Tamukoh et. al. [95] reported a new technique of bit shift based fuzzy inference

method for efficient digital hardware implementation. They applied the proposed

design on a Virtex-II FPGA for a self-organization relationship network.

These designs depict that the realization of FLCs on FPGA development platform is fast and

efficient. However, most of these designs are application specific. It is important to realize

that the speed achieved by these designs depends on the fuzzy parameters chosen for the

particular application. Hence, the fuzzy parameters are fixed in all implementations. Field

tunability and the rule reduction other than overlapping membership function are required

in these implementations to enable users to change control parameters in real-time and to

increase inference processing time. The Xilinx FPGA flow diagram is presented in Figure

1.6, where the design is first captured using a high-level language like Verilog or VHDL.

Then the RTL is synthesized by using synthesis tool to create netlist file. Using the user

constraint file (UCF) the implementation stage produces bit stream called bit file that is used

to configure FPGA.

1.3.3 Generic Fuzzy Processors

Whenever the speed of operation is not critical, designers choose a software programming on

general purpose processors. These are straightforward and widespread architectures present

low running speed at low cost. Some of the notable designs include:

• Binfet and Wilamowski [104] designed a FLC on 8-bit µC 68HC711E9, from

Motorola. The FLC supported three types of MFs Triangular, Trapezoidal, and

Gaussian. It presents two defuzzification processes: Zadeh and Takagi-Sugeno (T-S).

• Nhivekar et. al. [105] proposed an FLC for a temperature control system using a µC

Atmega8 from Atmel. They considered a single input and single output problem with

the number of input MFs (Triangular) as 5, the number of output MFs (Triangular) as

5 and weighted average defuzzification method.

15

Chapter 1 Background and Related Work

Ta
bl

e
1.

5:
Pr

og
ra

m
m

ab
le

IC
ba

se
d

di
gi

ta
lF

LC
s-

FP
G

A
s

Ye
ar

A
pp

lic
at

io
n

In
pu

ts
In

pu
tM

Fs
O

ut
pu

ts
O

ut
pu

tM
Fs

N
o

O
fR

ul
es

D
ef

uz
zi

fie
r

Sp
ee

d
D

ev
ic

e
19

95
C

on
tro

lle
r

[9
6]

2(
6

B
it)

3-
3

(T
ria

ng
)

1
(8

bi
t)

9(
si

ng
lto

n)
9

C
O

G
1.

67
M

FL
IP

S
SC

40
08

19
96

C
A

D
Tr

uc
k

C
on

tro
l

[9
7]

2(
8

B
it)

5-
5

(T
ria

ng
)

1
(8

bi
t)

5(
Tr

ia
ng

)
11

M
O

A
1.

25
M

FL
IP

S
X

C
40

06
20

01
C

ar
Pa

rk
in

g
[9

8]
2(

8/
10

/1
2

bi
t)

5-
7

(T
ra

p/
Tr

ia
ng

)
1

(8
/1

0/
12

bi
t)

7(
si

ng
lto

n)
35

W
A

M
33

3/
27

7/
22

2
K

FL
IP

S
FL

EX
10

K
20

06
C

0-
Pr

oc
es

so
r

[9
9]

2(
8

B
it)

3-
3

(T
ria

ng
)

1
(8

bi
t)

9(
si

ng
lto

n)
9

C
O

G
2.

5
M

FL
IP

S
X

C
3S

20
0E

20
06

G
en

er
al

[1
00

]
2(

6
B

it)
7-

7
(T

ria
ng

)
1

(6
bi

t)
5(

si
ng

lto
n)

9/
49

M
O

M
2.

85
,0

.9
2

M
FL

IP
S

X
C

2S
20

0E
20

06
C

lim
at

e
C

on
tro

l
[1

01
]

4(
12

B
it)

7-
7

(T
ria

ng
)

2(
12

bi
t)

7(
Tr

ia
ng

)
16

C
O

A
77

K
FL

IP
S

A
54

SX
32

A
(A

ct
el

)
20

08
B

it
se

ria
lA

rth
m

at
ic

[1
02

]
2(

6
B

it)
3-

3
(T

ria
ng

)
1

(8
bi

t)
9(

si
ng

lto
n)

9
C

O
G

5.
26

M
FL

IP
S

EP
1S

80
B

95
6C

6
20

10
M

ob
ile

R
ob

ot
s

[1
03

]
2(

12
B

it)
9-

9
(T

ra
p/

Tr
ia

ng
)

1
(1

2b
it)

9(
si

ng
lto

n)
81

C
O

G
1.

2M
FL

IP
S

Sp
ar

ta
n

3E
20

11
M

PP
T

[9
3]

2(
16

B
it)

5-
5

(T
ria

ng
)

1
(1

6b
it)

9(
si

ng
lto

n)
-

C
O

A
-

EP
2C

35

16

Chapter 1 Background and Related Work

Functional Simulation
Verification

Design Entry
(Verilog or VHDL)

Synthesis
(Third Party Tools)

Synthesis
(Xilinx XST)

Translate

Map

Place and Route

Timing Analysis

Configuration

Implementation

bit file

NGC File
OR

EDIF file

UCF File

Figure 1.6: FPGA Design Flow

• Eskandarin et. al. [106] proposed a fuzzy instantaneous power theory to

improve conventional p-q theory dynamic performance and implemented it on a

TMS320F28335 DSP device.

• Rafa et. al. [107] implemented a new FLCS design on DS1104 DSP to solve coupling

problem in vector control of induction motor. With the absence of current regulators

this fuzzy vector control of the induction motor provided a low-cost system.

• Pallab Maji [108] designed and implemented generic FLCS as part of his Ph.D. thesis,

Where the author developed G-FLCS and fine-tuned the fuzzy parameters with the aid

of software framework on the design, which was implemented using a DSP that works

with a sequential code.

17

Chapter 1 Background and Related Work

Table 1.6: Major works on Generic FLCS

Year Speed (in FLIPS) Platform Features
Output MFs I/O Input MFs Overlaps Rules Evaluated

1995 0.63M BiCMOS 2 µm Singleton(7) 2-1 11 2 4
1996 48-122 R3000A RISC - - - 2 51
2005 15.87M CMOS 0.35 µm Singleton(7) 2-1 3 2 9
2007 16.6M CMOS 0.35 µm Singleton(7) 2-1 4 2 16
2008 5.5K FPGA Singleton(5) 2-1 8 2 64
2010 11K FPGA Singleton(5) 2-1 5 2 25
2011 16.6M CMOS Singleton(7) 2-1 4 2 16
2014 15M CMOS 0.35 µm Singleton(7) 2-1 5 2 25
2015 NA CMOS 0.35 µm Singleton 2-1 4 2 16

• Okumus et. al. [109] reported on FLCS design implementation using TMS320F2812

DSP device to control a brushless DC motor and compared the result with HB current

controller. The heuristic knowledge based FLC was found to perform extensively well.

• Gai et. al. [110] used a TMS320C6713 DSP device to implement a fuzzy based Haar

wavelet feature extraction technique to classify successfully and detect a counterfeit

banknote.

There are many more DSP based FLC designs that have been successfully implemented

in various control applications. It can be readily inferred that the development of DSP-based

FLC is easy compared to FPGA [111–113]. However, since the parallel architecture can be

implemented on FPGA as compared to sequential processing of DSP, to achieve execution

speed in inference process, the FPGA platform is preferred in FLC implementations than the

DSP platform.

1.4 Standalone Tunable Digital FLCs

Standalone Tunable Digital Fuzzy Logic Controller (STFLC) systems are standalone and

remotely tunable fuzzy logic control devices. These devices are developed on Field

Programmable Gate Arrays such that they can be easily interfaced with various process

plants. The primary characteristic of this type of hardware includes programmability in run

time. These devices accept fuzzy parameters from the users externally through some user

interfaces or programmable pins.

STFLC designs are mostly crippled by their operational speed and hence they are

generally forced to operate under reduced functionalities. Some of the prime FPGA-based

designs from various vendors have been surveyed and tabulated in Table 1.6. The table also

18

Chapter 1 Background and Related Work

lists the fuzzy parameters reported in these designs. The following observations have been

summed up after analyzing these designs.

• It can be observed, that majority of these designs use singleton MFs at the output to

reduce computational complexity. Centroid of area (COA) method, when applied to

singleton, which is commonly known as weighted average defuzzification method,

yields far low computational complexity. However, unlike COA, weighted average

does not compute the area under the curve produced from the fuzzy outputs [3]. It

can be observed that COA presented in (1.5)

Y ∗ =

∫
µc(y)ydy∫
µc(y)dy

(1.5)

can be reduced to weighted average as depicted in (1.6).

Y ∗ =

∑
µc(y) · y∑
µc(y)

(1.6)

where, Y ∗ represents the crisp output computed from output fuzzy set µc(y) and output

support membership function value y.

• These designs use a stringent rule reduction technique, where only two overlapping

memberships have been considered.

• These systems evaluate very few rules to improve computational speed. The reduction

in the number of rules with only two overlapping membership functions does not

provide desired performance in terms of accuracy of the system for many applications.

• In general, these systems cannot be remotely tuned. Some of these devices have MFGs

for tuning MFs but the rule base remains static and the performance is limited to two

inputs.

These limitations motivate research in hard-core tunable FLC devices on programmable

hardware, where multifarious control over the system can be obtained by varying different

control parameters with modest computational complexity.

1.5 Motivation of this Work

PID controllers have been widely used in industrial applications even though they are

inherently linear and provide a sluggish response. They generally do not provide the

19

Chapter 1 Background and Related Work

desirable performance to control nonlinear process plants. Their modeling requires a

thorough knowledge of system dynamics, and the tuning process is quite complicated. Fuzzy

Logic Controllers (FLCs) provide an imprecision based control approach characterized

by fast and reliable methods. FLCs architecture can be developed over on Application

Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), and general

purpose processors. Of these, the fuzzy digital hardware based on FPGA becomes the most

significant development due to

1. Its ability to reconfigure or reprogram

2. High integration density

3. Parallel structures

4. Low time to market

With these features, the execution time can be dramatically reduced allowing

FPGA-based FLC to reach the level of performance of their analog counterparts without

their drawbacks (parameter drifts, lack of flexibility). Besides, an FPGA-based FLC can be

adapted in runtime to the needs of the plant by dynamically reconfiguring it. Hence, the main

motivation of the work is to develop DFLC system with reduced complexity for real-time

system.

1.6 Objective of this Work

Based on the motivation for the work, the objectives of the thesis can be considered as

follows:

• The primary objective of this research is to design and realize a standalone tunable

fuzzy logic controller system on a programmable hardware that can be used for a

variety of applications without offline reprogramming.

• Development of a configuration memory map to support the specifications of FLC on

flexible hardware.

• Designing the FLC system with the maximum configurable FLC parameters and

incorporating fine tuning of fuzzy parameters while the system is in operation.

20

Chapter 1 Background and Related Work

• Development of rule reduction techniques with their effect on final latency of FLC.

• FLC parameters which need tuning are mainly input range, output range, the number of

inputs and number of outputs, the parameters of the membership function like slope

and center point of the triangular membership function, If-Else rule base for fuzzy

inference process. The flexibility in the system is provided with appropriate tuning

for single-input-single-output system or multi-input-multi-output system.

• To handle rule uncertainties, Type 2 FLC outperforms its predecessor Type 1 FLC.

This triggers the development of a standalone tunable Type 2 FLC. The successive

approximation based method for type 2 FLC is chosen to improve the overall

performance in terms of speed.

• Generation of Genetic Algorithm (GA) based optimized fuzzy rule base and

incorporate the flexibility in to the FPGA design. This tunes the FLC parameters

and makes the FLC system a self-tuned rule-optimized Multi-Input and Multi-Output

(MIMO) Fuzzy Logic Controller.

It becomes a challenging task when run-time tunability and flexibility in operation is

combined with the standalone mode of operation. Therefore, the architecture of traditional

FLC is required to be altered in such a way that, the data integrity and operational

methodology remains consistent even after incorporating the above-mentioned features.

1.7 Problem Statement

The limitations of the existing generic FLC designs, as defined in Table 1.6, motivated the

research in developing a hard-core STFLC device on FPGA hardware with online tuning,

where multifarious control over the system can be obtained with modest computational

complexity. However, this design is extremely challenging owing to following conditions.

• Since the proposed design is expected to command a large number of fuzzy parameters;

it is imperative to develop an interactive interface for guiding users to input fuzzy

parameters.

• It is also a known fact that human beings are prone to make errors while handling

large data. Therefore, an automated system has to be deployed which will extract

coarse fuzzy parameters from a large input-output dataset.

21

• The significant challenges in designing such a system lies in managing an

exponentially growing rule base. Therefore, development of a suitable rule reduction

technique is required which will generate the desired output consuming minimum

cycle time.

• It is observed that the fuzzification module in Type 2 FLCs is computationally quite

complex. A desirable Type 2 fuzzifier scheme with low computation time is essential

to achieve a dependable system cycle time that is relevant to the majority of control

applications.

1.8 Outline of Thesis

The thesis is presented in 6 chapters. Following this chapter on introduction, the remaining

thesis is organized as follows:

Chapter 2 presents the VLSI architecture of 4 input 2 output system and describes

proposed modified rule active 2 overlap membership function (MRA-2-OMF) rule reduction

technique.

Chapter 3 presents Modified rule active 3 overlap membership function (MRA-3-OMF)

and Modified rule active 4 overlap membership function (MRA-4-OMF) to improve the

control accuracy. It explains the design architecture and develops the backbone of proposed

Digital Fuzzy Logic Controllers (DFLCs). The structure includes a MATLAB based user

interface for users to program fuzzy parameters in the DFLCs. Special state machine is

proposed in hardware to support special case rule base.

Chapter 4 presents Type 2 Fuzzifier based on successive approximation method.

Wu-Medal inference method is used here for type reduction. Digital Iterative Type 2 Fuzzy

Logic Controller (DIT2FLC) is implemented with the rule reduction and special case rule

base support, which were proposed in Chapter 2 and Chapter 3.

Chapter 5 presents rule-optimized Multi-Input and Multi-Output (MIMO) fuzzy logic

controller on field programmable gate arrays. The design of membership functions in the

rule base is made with the aid of genetic algorithm.

Chapter 6 provides conclusion on research work and provides the scope of future work.

The limitations of this research are also elaborated in this chapter.

Chapter 2

VLSI Architecture of Fuzzy Logic
Controller with Rule Reduction

3

Preface
In this Chapter, a new VLSI architecture is presented for a generic FLC limited to quad-input
and dual-output with maximum seven fuzzy membership functions for each input. The
design approach is based on classical three-stage implementation process which includes
fuzzification, rule inference, and defuzzification cores. As per the specifications derived in
this chapter, the proposed FLC can take a maximum of four inputs with seven membership
functions, the rule base comprises of 2401 (74) rules. To minimize the complexity, Two
Overlap Membership Functions (2-OMF) rule reduction VLSI architecture is suggested to
bind the number of rules to 16 (24). A Modified Rule Active 2-OMF (MRA2-OMF) rule
reduction technique is subsequently proposed to reduce the rules further. Here, the rule
inference is implemented for seeking the maximum frequency of operation for targeted
Virtex 5 LX110T FPGA. The simulation results obtained with Xilinx ISIM show satisfactory
results for all test vectors. Analysis of design is carried out by the Xilinx ISE environment.
The performance of the proposed system has been compared with FPGA resources and
number of FLIPS in hardware.

3

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

2.1 Introduction

For application purposes, the FLC can be divided into two classes:

a. General-purpose fuzzy processor with specialized fuzzy computations.

b. Dedicated fuzzy hardware for specific applications.

The general-purpose fuzzy processor has been implemented on various platforms, such as:

• Computers (PC or WS)

• Processors (µP, µC, digital signal processor (DSP), or transputers;

• Lookup table (digital memory devices).

The relatively simple architecture and the processing algorithm of the FLC naturally lead

to straightforward implementations in dedicated hardware. A desirable FLC hardware

has two requirements: flexibility and high speed. The general-purpose fuzzy processor

can be implemented quickly with flexibility. But, the architecture provides sub-optimal

performance, while the dedicated fuzzy hardware requires long development time and can

be used restrictively, but offer high performance in terms of operational speed.

In this Chapter, a basic VLSI architecture of the FLC (Figure 1.4) is presented, which

opens up with the limitations of FLCs on FPGA resources. When the FPGA based system

is used for implementing the desired FLC, all possible design solution can be tested due

to the reusability of the FPGA. Often, a hardware implementation of the FPGA-based

system is supported by many existing EDA tools for modeling, synthesis, verification, and

implementation. The major advantage of using the EDA tools is that the same hardware

description language code for modeling can be directly used for synthesis, verification,

and implementation. Also, the general architecture of the FLC is invariant except for the

change in the number of input and output variables, the number of fuzzy terms, the type

of membership functions and its parameters, the bit resolutions, and the control rule base

according to the applications. Therefore, it is essential to create the VERILOG code of the

desired FLC from the design specifications. The FPGA-based implementation of controllers

can efficiently answer current and future challenges of this field. Among them the following

can be quoted,

24

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

1. Decrease in the cost of implementation for at least three reasons. The use of an

architecture based on the specific needs of the algorithm to implement, the application

of highly advanced and specific methodologies for improving implementation time,

which is also called as “time to market”, and the expected development in VLSI design

that will allow integrating a full control system with its analog interface in a single chip,

also called System-on-a-Chip (SoC).

2. Confidentiality, a particular architecture of a system cannot be easily duplicable.

3. Embedded system implementing with a large number of constraints in application

areas like aircraft applications with limited power consumption, thermal consideration,

reliability, and single event upset protection.

4. Improvement of control performance in terms of execution time. The execution

time can be dramatically reduced by designing dedicated parallel architectures,

allowing FPGA-based controllers to reach the level of performance of their analog

counterparts without their drawbacks (parameter drifts, lack of flexibility). Besides,

an FPGA-based controller can be adapted in runtime altering to the needs of the plant

through dynamic reconfiguring it.

5. FPGA’s are the only reprogrammable, digital platforms which combine:

• Logic design

• Micro-Processing and computer architecture

• Digital Signal Processing (DSP)

• Multi-Gbps communications

6. FPGAs provide I/O flexibility which allows new concepts to be quickly verified

This chapter introduces a novel rule reduction technique Modified Rule Active 2 Overlap

Membership Functions. This technique improves the accuracy of existing overlap based

rule reduction method. Fast inference time is an important feature of the overlap based

rule reduction technique. The proposed system has achieved to increase the accuracy by

increasing the inference time.

25

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

2.2 VLSI Architecture of FLC

For the practical applications of fuzzy logic system, the following constraints have been

applied to reduce hardware complexity of the FLC and improve the FLC’s control

performance.

1. The observed inputs of the FLC are crisp and can be quantized into a finite number of

levels.

2. Symmetric triangular membership function is used at output variable.

3. Both membership values and widths of constituent membership functions are used to

compute an accurate crisp value.

The implementation specifications of the FLC are as under:

• Number of input variables (m) = Maximum of 4;

• Number of output variable (n)= Maximum of 2;

• Number of membership functions per input variable (p) = (7 Max);

• Number of membership functions per output variable (q) = (7 Max);

• Range of input and output variables (r) = 8bit/16bit= 256/65536 intervals;

• Discourse of membership functions (d) = 8bit/16bit = 256/65536 intervals;

• Resolution of membership values (R) = 1/256 (for bus width =8) or 1/65536 (for bus

width =16);

• Implication and Aggregation Model is mamdani;

The VLSI architecture of the above specified FLC with four inputs and two outputs with

the Test Bench (TB) is presented in Figure 2.1. The system comprises of fuzzifier which

converts the real world input called crisp input to fuzzy variables. In this architecture 8/16

bit (the bus width is parameterized) bus line is used to supply the inputs. There are four

fuzzifier blocks for each of the four inputs. The input fuzzified variable is given to rule base

module with interface control signals. Rule base uses Min-Max Inference mechanism. The

detailed design procedure for rule base module is presented in this section. Defuzzifier uses

26

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.1: The Architecture of FLC in RTL (Register Transfer Level)

the rule base output with centroid method to provide crisp data as output. For testing, fuzzy

input data is generated randomly by random generator and the checker checks the defuzzified

output with expected output.

The design of each module in FLC is elaborated in this section with its pin diagram, pin

description, necessary equations, and logical timing diagrams.

2.2.1 Fuzzifier

The fuzzifier module computes membership values for given input, the membership function

for each input. The fuzzification operation involves calculating the abscissa for a given

line and ordinate. It returns membership values between 0 and 1 for crisp input values

provided in any range. Therefore, a divider is designed and implemented to find the slope

(µ) from (2.1). The divider uses a faster version of the non-restoring division algorithm

involving shifting the divisor to the right while checking the difference with the dividend.

The fuzzification block accepts an 8/16 bit crisp digital data and generates fuzzified output

each of 8/16 bit width corresponding to the membership functions used. There are different

forms of memberships functions associated with each input and output response. In this

design symmetrical triangular membership function has been used to define inputs and

outputs to reduce hardware complexity.

The fuzzifier checks if the inputs are in range for calculation. If it lies beyond the

extremes of the triangle, then the membership values are calculated as zero as shown in

Figure 2.2. Else the output would be calculated using the divider as per the following

27

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.2: Calculation of membership values

Figure 2.3: Pin Diagram of Fuzzifier

equations,

If Input≥ Point1 and Input ≤ Point2

µ =
Input− Point1

Point2− Point1
(2.1)

And if Input ≥ Point2 and Input ≤ Point3

µ =
Input− Point2

Point3− Point2
(2.2)

Pin details for the fuzzifier block are presented at Figure 2.3, where inputs and outputs are

labeled. The input-output pin descriptions are described in detail in Table 2.1.

2.2.2 Rule Base and Inference Engine

The block model of the rule evaluator along with fuzzifier output is shown in Figure 2.4

for Mamdani Inference Engine. A two input system design is used to explain the operation

here, for its simplicity. The rule evaluator model is the second stage of the fuzzy logic model.

This block provides the decision on the inputs to which output is to be chosen. This design

consists of two memories. One memory is user programmable where a user can program

the rule base using expert experience in that particular application, and another memory to

28

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Table 2.1: Pin Description of Fuzzifier

Pin Name Direction Size Description

Clock Input 1 Synchronous Clock

Reset Input 1 Asynchronous Reset

ValidIn Input 1 Valid Signal for input crisp digital data

Data Input 8/16 8 or 16 bit Crisp Data

Membership Input 56/112 56/112 bit data for 7 membership
functions with 8/16 bit size each

ValidOut Output 1 Valid signal for fuzzified data

FU1 Output 8/16 Fuzzy data for membership degree 0

FU2 Output 8/16 Fuzzy data for membership degree 1

FU3 Output 8/16 Fuzzy data for membership degree 2

FU4 Output 8/16 Fuzzy data for membership degree 3

FU5 Output 8/16 Fuzzy data for membership degree 4

FU6 Output 8/16 Fuzzy data for membership degree 5

FU7 Output 8/16 Fuzzy data for membership degree 6

store the minimum values of corresponding seven membership functions of two inputs. In

this design, memories have been chosen to utilize the memory blocks in the FPGA and to

reduce the logic count and corresponding delay and power dissipation. The two input fuzzy

inference system has 49 rules, since two inputs each having seven membership functions

translates to 72 combinations of rules. From the enable signal of fuzzifier, there is an address

generator block where it reads data from rule memory. The Max Function finds the maximum

value out of all minimum values stored in minimum finding memory. This function runs in

parallel for all seven output membership functions. Here 49 clocks are consumed for the

address generations and corresponding memory reading. The two input one output Inference

Engine pin details is presented in Figure 2.5. The physical structure of the fuzzy rule base

is expressed as

Rl : IF X1 is M
l
1 and X2 is M

l
2...and Xn is M

l
n THEN Y is Nl (2.3)

Where, X1, X2, ... Xn are the input variables and Y is the output variable. M l
n and Nl

are linguistic values represented as fuzzy subsets of the respective universe of discourse Ui

and V at input and output respectively.

For a four input two output system, the input output pin details of Inference Engine are

29

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.4: Block Model of Mamdani Inference Engine

shown in Figure 2.6. The number of rules used in this design is 47 = 2401 rules. The choise

of Sugeno Inference Engine (SIE) for inference engine model is also examined, Where SIE

hardware needs more parameters to program and ultimately SIE consumes more area than

mamdani inference engine. Hence in this thesis all solutions are analyzed using Mamdani

Inference Engine.

2.2.3 Defuzzifier

The defuzzifier converts fuzzy inference output values into the crisp output. There exist

different methods for defuzzification. The center of gravity method has been chosen for

this work. Defuzzifier consists of fuzzy mean module and division module. Multiplication

and addition operation are computed in fuzzy mean module and division operations are

implemented by division module. The inputs to the fuzzy mean module are rulebase fuzzy

output set and membership elements. The centroid method is also known as the “center of

gravity” or “area method”. It obtains the center of area (x∗) occupied by a fuzzy set. The

relationship to find the x∗ is given by

x∗ =

∑n
i=1 xiµ(xi)∑n
i=1 µ(xi)

(2.4)

30

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.5: Pin Diagram of 2 input 1 output Rule Evaluator

Figure 2.6: Pin Diagram of 4 input 2 output Rule Evaluator

31

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

2.3 FPGA Utilization Analysis

The developed architecture of an FLC is coded in VERILOG Hardware Descriptive

Language. Different Xilinx FPGAs are compared for logic utilization in Figure 2.7, here

slice registers utilization is presented in Figure 2.7a, Slice LUTs utilization is in Figure 2.7b

and fully used LUTs utilization in Figure 2.7c. From these graphs, it can be readily observed

that the area utilization of different FPGA’s is limited to 50%. It is also very hard to add

software interface to this FLC with the available logic left, since these soft cores occupy at

least 50% of FPGA logic. So here is a need for rule reduction algorithm to be implemented.

So that, the four inputs system with seven membership functions can be reduced from 47

=2402 rules to manageable amount. This can further reduce the memory utilization, number

of min, max functions inside the hardware thereby leading to the lower resource utilization.

In the following section, modified VLSI architecture is proposed to minimize the resource

utilization.

(a) Percentage Utilization of Slice Registers in
different FPGAs values

(b) Percentage Utilization of Slice LUTs on
different FPGAs

(c) Full Utilized LUT Flip Flops on different
FPGAs

Figure 2.7: Logic Utilization of FLC on different FPGAs

32

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

2.4 2-Overlap Membership Function (2-OMF) Rule
Reduction

Once membership functions are defined for input and output variables in an FLC, a control

rule base can be developed to relate the output actions of the controller to the observed inputs.

This phase is known as the inference or a rule definition portion of the fuzzy logic. For a

system with m = number of membership functions and N = number of inputs, Nm rules can

be created to define the actions of the fuzzy logic controller. This section discusses VLSI

architecture for reduced rule base module for a generalized fuzzy logic controller with the

specifications identified in the earlier section.

2.4.1 2-OMF Method and its VLSI Architecture

2.4.1.1 Rule Reduction using 2-OMF method

Majority of the fuzzy logic inferences uses Mamdani model [114–116]. Where, all FLC

modules use conventional search space for the rules, which make the system performance

slow down. Kalaykov et. al. [117] states that the 2-OMF significantly reduces the search

space for rules which contribute the FLC output. The condition for this 2-OMF method is that

the system parameters should be defined in such a way that no more than two overlaps occur

in input search space. However, this rule reduction method is constrained by anticipating

fixed number of overlaps that affects the controller performance. It is also characterized by

a layered parallel architecture of the fuzzy inference. Moreover, it reduces the dependency of

processing time on the number of inputs of the fuzzy system while dependence on the number

of rules and fuzzy partitioning of all variables are completely eradicated. A 4 input FLC is

considered, Where the input variable x(t) = [x1(t), x2(t), x3(t), x4(t)] are fuzzified them

using membership functions results in the following matrices. The degree of membership

U(t) =

U11 U12 U13 U14 U15 U16 U17

U21 U22 U23 U24 U25 U26 U27

U31 U32 U33 U34 U35 U36 U37

U41 U42 U43 U44 U45 U46 U47

33

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

The fired fuzzy set indexes

I(t) =

I11 I12 I1NOver

1

I21 I22 I2NOver
2

I31 I32 I3NOver
3

I41 I42 I4NOver
4

Where NOver

i , i=1, 2, 3, 4 is the number of overlaps in membership functions. The Inference

mechanism derives the control action according to the fuzzy rule base

RJ : if x1 = I1J and x2 = I2J and x3 = I3J and x4 = I4J then y = VJ (2.5)

Where, VJ = [V1, V2, V3, V4, V5, V6, V7] is the output term set for control action. x(t) forms

the input space and x1(t), x2(t), x3(t), x4(t) are the linguistic values of the input space.

The maximum number of cells for a generalized system, where each cell corresponds to a

linguistic value of the control action.

Ncells =
n∏

i=1

NOver
i (2.6)

Where, n = Number of crisp inputs. So the maximum number of rules that the system defined

in section 2.2, with 4 inputs and 7 maximum overlaps has rule dimension of Ncells = 74 =

2401 rules. If the uncertainty has the boundary between two sets the resulting rule dimension

is Ncells = 24 and the other points computation is not essential. This scenario is presented in

Figure 2.8, When the crisp inputs vary (Values x∗
1 and x∗

2), it fires at most two fuzzy sets

and results 2-OMF cannot have more than four rules. Hereby, 2-OMF will take values from

first column of Table 2.2 depending on the system inputs.

Table 2.2: Computed Ncells with varying n and Overlaps

n = 1 n = 2 n = 3 n = 4

Overlaps = 2 2 4 8 16

Overlaps = 3 3 9 27 81

Overlaps = 4 4 16 64 256

Overlaps = 5 5 25 125 625

Overlaps = 6 6 36 216 1296

The processing of all rules as presented in section 2.2 is not essential, since these rules

have negligible contribution to the final result and consume considerable computation time.

34

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.8: 2-OMF Rule reduction concept

Hence, the VLSI architecture is modified according to the 2-OMF method by limiting the

fuzzy sets participating in the inference.

From (2.6) a set of Ncells containing up to n antecedents usually characterize the fuzzy

output. If all the variables are present in each rule, the maximum number of fuzzy rules can

be derived is

Ntotal =
n∏

i=1

NOver_Max
i (2.7)

where NOver_Max
i = number of maximum membership functions, For 2-OMF OverMax = 2

and the maximum number of 2-OMF rules can be derived is

N2OMF =
n∏

i=1

N2
i (2.8)

The fraction F2OMF of 2-OMF rules with total rules is

F2OMF =

∏n
i=1N

2
i∏n

i=1N
Over_Max
i

(2.9)

2.4.1.2 VLSI Architecture

Once membership functions are defined for input and output variables, a control rule base

can be developed to relate the output actions of the controller to the observed inputs. This

35

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

phase is known as the inference or a rule definition portion of the fuzzy logic. This section

presents the VLSI Architecture of the 2-OMF reduced rule base module for a generalized

fuzzy logic controller with the specifications defined in section 2.2.

The modified VLSI architecture is presented in Figure 2.9 includes the following five

principal units:

• Rule selector unit selects non-zero fuzzy term set.

• An address generator unit generates an address to read the appropriate rule.

• Rule base memory unit stores the user defined rules. run-time programmability is

supported to program rulebase at any interval of time.

• An inference engine unit which performs with approximate reasoning by associating

input variables with fuzzy rules. The inference engine unit performs mamdani

min-max implication operation and sugeno inference mechanism. It calculates the

degree of applicability of all rules selected from the rule base memory by the address

generator.

• The CPU registers unit is used to store fuzzified values for four input variables,

inference output values, and register to program number of inputs and number of

membership functions (tuning parameters).

The results are stored in the CPU registers for defuzzification process. Subsequently, a

Finite State Machine (FSM) as shown in Figure 2.10 within the FPGA controls the entire

process for all modules.

2.4.1.3 Design Choices for Internal Modules

As discussed in the section 2.2, the rule base is filled with 2401 rules, and the user loads this

data in the addresses 0 to 2400. To read the appropriate rule for non-zero fuzzified values it

needs to generate matching addresses with its index numbers.

The rule index values segregated from the rule selector for each non-zero membership

value are directed to the module Rule Address Generator. This module generates the rule

addresses from the index number, where the address is made with index binary numbers

000, 001, 010, 011, 100, 101, and 110. The binary value “111” is an invalid number since the

maxim membership functions programmed are 7. The module generates an ‘InvalidAddress’

36

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.9: VLSI Architecture of 2-OMF Reduced Rule Base

Figure 2.10: Finite State Machine

37

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.11: Rule address before mapping

signal if one of index value is equal to the binary value “111”. ‘NoOfInputs’ signal is used

to find number of addresses to be generated. If ‘NoOfInputs’ is four, the address generated

are 16 else if ‘NoOfInputs’ are three, then the address generated are 8, and for two inputs

addresses are 4. If the inference is of Sugeno model address generation depends on the

‘Ready’ signal generated in FSM.

Let us assume that a fuzzy rule contains 2-OMF values of input x1 fired with fuzzy sets

I11 and I12, x2 fired with fuzzy sets I22 and I23, x3 fired with fuzzy sets I34 and I35, x4

fired with fuzzy sets I45 and I46. To read the corresponding consequent of the rule, the rule

addresses are generated as in Figure 2.11. Address generator module does the mapping of

rule addresses received from rule address generator module to exact memory location which

is from address 00H to address 960H. At each stage, the addresses are generated by the input

configuration values. The circuit to generate these addresses is presented in Figure 2.12. In

this circuit, based on the number of inputs programmed as 1, 2, 3, or 4 the corresponding

DATAA, DATAB, DATAC, or DATAD of MUX is selected to make the reduced rule address.

The mapping of addresses using index address with rule base memory address is shown in

Figure 2.13.

It is evident from this design that the rule search space for Fuzzy Inference Engine

(FIE) using 2-OMF is reduced drastically from Ntotal rules to N2OMF rules. There are two

significant drawbacks identified in 2-OMF method. The first one is in its extraction when the

total number of rules programmed is less than 2-OMF rules. Let us assume that the complete

rules scheduled are P and P < N2OMF then the unnecessary rules that are part in FIE are

N2OMF–P . These extra rules increase the latency by N2OMF–P clocks and resulting in

38

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.12: Circuit diagram of rule address generator for 2-OMF method

Figure 2.13: Rule Address Mapping

39

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

slower performance. The second one is, when P ≥ N2OMF in specific cases these N2OMF

rules may not contribute in the inference. Modified Rule Active 2-Overlap Membership

Function (MRA2-OMF) is proposed in the next section to identify these conditions and

reduce the rule search space further. Next section elaborates this concept more in detail

along with its implementation details.

2.5 Modified 2-Overlap Membership Function With Rule
Active (MRA2-OMF) Rule Reduction

In the design of FLC architecture, it is analyzed the inference processing in stages. This

analysis optimizes inference processing times and guides the designer in choosing the

inference architecture. The analysis is presented in two directions. The first, application

of 2-OMF method on inference processing once the input variables are fixed. The second,

thrust is identifying the rules that make a contribution to the output (rules that are active).

Usually, these rules constitute a small percentage of the complete rules but can make their

impact on processing speed. The combination of 2-OMF rule reduction with active rules led

to the definition of a computational model that reduce the search space of rule set there by

reduces the computational time.

If I iK is the consequent derived from rule RK by truncating conclusion, IK at θk (the

kth rule degree of truth), can obtain consequent I . I results from applying all the rules

throughout the union of all I iK with 1 < K < Ntotal. If the degree of activation θk is null,

I iK is also null, i.e. in each element, the degree of membership is null in the universe of

discourse. Consequently, all these rules with degree of null activation do not contribute to

the final fuzzy set I . The number of these rules is

NMRA2−OMF =
n∏

i=1

N2
i −Nnull (2.10)

The fraction FA of MRA2-OMF rules with 2-OMF rules is

FA =

∏n
i=1N

2
i∏n

i=1 N
2
i −Nnull

(2.11)

and the fraction FRA of MRA2-OMF rules with total rules is

FRA =

∏n
i=1N

Over
i∏n

i=1N
Over
i −Nnull

(2.12)

40

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

(a) FA for 4 input variables (b) FA for 3 input variables

(c) FA for 2 input variables (d) FRA for 4 input variables

(e) FRA for 3 input variables (f) FRA for 2 input variables

Figure 2.14: MRA2-OMF method fractional values with different input variables.

According to the specification, with 4 inputs, each input with a fuzzy set of 7, the F2OMF

equals to 0.0066 and FA, FRA are presented in Figure 2.14 for each Nnull. Where Figure

2.14a, Figure 2.14b, Figure 2.14c, and Figure 2.14d, Figure 2.14e, Figure 2.14f are

plotted for the configurable input parameter values 4, 3, and 2 respectively. Even when a

fuzzy process does not comprise all the rules, the number of MRA2-OMF rules reduces to

a much lower numbers. Thus processing all the rules is not necessary, because these rules

make no contribution to the final result, and they consume computing time leading to slow

performance.

Figure 2.15 presents the modified design of the reduced rule generation by considering

active rules fired from the rule set. In the case of 2-OMF it is found that there were 16 rules,

41

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Figure 2.15: Circuit diagram of rule address generator for MRA2-OMF method

Figure 2.16: Complete RuleBase Memory

42

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

but if the rule set only has 6 active rules, then the qualified rules to fire should be 6 and

effectively reduce the total number of rules from 16 to 6 and further reduces the input-output

time. Here the Rule Active RAM stores the reduced rules by comparing the Overlap Indexes

with the effective rule address formed by each rule. The inference module processes these

reduced rule addresses for its execution.

(a) 4 input MF Value (b) 3 input MF Value (c) 2 input MF Value

(d) 4 input MF Index (e) 3 input MF Index (f) 2 input MF Index

Figure 2.17: Dependency of 2-OMF Reduction on Rule Base Structure.

2.6 Simulation Results and Performance Evaluation

In this section, the performance of proposed MRA2-OMF rule reduction technique is

compared with 2-OMF rule reduction method and complete rule base implementation

using simulation results. Xilinx ISIM 14.5 simulator was used here to simulate all three

architectures. A complete rule base set is presented in Figure 2.16, Where the blue lines

43

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

(a) Fuzzy Operation using 2-OMF Method

(b) Fuzzy Operation using MRA2-OMF Method

Figure 2.18: FLC operation on Virex5LX110T Board

shows address of the rule base and 3 bit value shows the index of consequent. Figure 2.17

shows reduced rule membership values with its index numbers of 2-OMF rule sets.

Using the Chipscope pro Analyzer [118] the FLC operation with 2-OMF method is

compared with the MRA2-OMF is presented in Figure 2.18. The Logic utilization

comparison in Figure 2.19 shows the computational area has been reduced considerably

by using the 2-OMF method and MRA2-OMF methods. The final implementation results

are summarized in Table 2.3. From this, it is observed that the MRA2-OMF method provides

superior implementation in terms of chip area and cycle time than 2-OMF method.

Thus with a 16-bit data path, the 2-OMF DFLC is capable of handling 7.2 to 4.15 MFLIPS

considering rule range of [1:16] from (2.8) for n=4 and the MRA2-OMF DFLC is capable of

handling 21.5 to 4.15 MFLIPS considering rule range of [1:16] from (2.10) for n=4. Here, the

44

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

(a) Slice Registers for All Rule Versus 2-OMF
method

(b) Slice LUTs for All Rule Versus 2-OMF method

(c) Slice Registers for 2-OMF method Versus
MRA2-OMF method

(d) Slice LUTs for 2-OMF method Versus
MRA2-OMF method numbers

Figure 2.19: Comparative Analysis of Logic Utilization.

Table 2.3: Implementation results for proposed methods

Proposed Methods BRAM utilized FFs LUTs Speed(MHz) Power(µW)32K 18K
2-OMF 3 1 1506 3368 145.658 27
MRA2-OMF 3 1 992 2327 147.923 26

increase in rules consumes more processing time and results less inference speed. Table 2.4

presents the comparative study of proposed two methods with the different architectures in

literature. These fuzzy implementations on FPGAs are targeted for a specific application

with fixed fuzzy parameters. Whereas the DFLC supports various fuzzy parameters as

per the specification defined in section 2.2. The proposed DFLC outperforms all other

implementations with its superior fuzzy inference speed.

2.7 Summary

The VLSI architecture of the FLC opens up a new line of approach to several explorations.

Firstly, fuzzification, inference, and defuzzification with the total rule base was implemented

and observed that it consumed more area for all industry based FPGA’s. Secondly, the

45

Chapter 2 VLSI Architecture of Fuzzy Logic Controller with Rule Reduction

Ta
bl

e
2.

4:
C

om
pa

ris
on

pr
op

os
ed

m
et

ho
ds

w
ith

ot
he

rF
PG

A
Im

pl
em

en
ta

tio
ns

Ye
ar

A
pp

lic
at

io
n

In
pu

ts
In

pu
tM

Fs
O

ut
pu

ts
O

ut
pu

tM
Fs

N
o

O
fR

ul
es

D
ef

uz
zi

fie
r

Sp
ee

d
D

ev
ic

e
19

95
C

on
tro

lle
r

[9
6]

2(
6

B
it)

3-
3

(T
ria

ng
)

1
(8

bi
t)

9(
si

ng
lto

n)
9

C
O

G
1.

67
M

FL
IP

S
SC

40
08

19
96

C
A

D
Tr

uc
k

C
on

tro
l

[9
7]

2(
8

B
it)

5-
5

(T
ria

ng
)

1
(8

bi
t)

5(
Tr

ia
ng

)
11

M
O

A
1.

25
M

FL
IP

S
X

C
40

06
20

01
C

ar
Pa

rk
in

g
[9

8]
2(

8/
10

/1
2

bi
t)

5-
7

(T
ra

p/
Tr

ia
ng

)
1

(8
/1

0/
12

bi
t)

7(
si

ng
lto

n)
35

W
A

M
33

3/
27

7/
22

2
K

FL
IP

S
FL

EX
10

K
20

06
C

0-
Pr

oc
es

so
r

[9
9]

2(
8

B
it)

3-
3

(T
ria

ng
)

1
(8

bi
t)

9(
si

ng
lto

n)
9

C
O

G
2.

5
M

FL
IP

S
X

C
3S

20
0E

20
06

G
en

er
al

[1
00

]
2(

6
B

it)
7-

7
(T

ria
ng

)
1

(6
bi

t)
5(

si
ng

lto
n)

9/
49

M
O

M
2.

85
,0

.9
2

M
FL

IP
S

X
C

2S
20

0E
20

06
C

lim
at

e
C

on
tro

l
[1

01
]

4(
12

B
it)

7-
7

(T
ria

ng
)

2(
12

bi
t)

7(
Tr

ia
ng

)
16

C
O

A
77

K
FL

IP
S

A
54

SX
32

A
(A

ct
el

)
20

08
B

it
se

ria
lA

rth
m

at
ic

[1
02

]
2(

6
B

it)
3-

3
(T

ria
ng

)
1

(8
bi

t)
9(

si
ng

lto
n)

9
C

O
G

5.
26

M
FL

IP
S

EP
1S

80
B

95
6C

6
20

10
M

ob
ile

R
ob

ot
s

[1
03

]
2(

12
B

it)
9-

9
(T

ra
p/

Tr
ia

ng
)

1
(1

2b
it)

9(
si

ng
lto

n)
81

C
O

G
1.

2M
FL

IP
S

Sp
ar

ta
n

3E
20

11
M

PP
T

[9
3]

2(
16

B
it)

5-
5

(T
ria

ng
)

1
(1

6b
it)

9(
si

ng
lto

n)
-

C
O

A
-

EP
2C

35
*

Pr
op

os
ed

(2
-O

M
F)

1
to

4(
8/

16
B

it)
(1

to
7)

-(
1

to
7)

(T
ria

ng
)

1
to

2
(8

/1
6b

it)
1

to
7(

Tr
ia

ng
)

1
to

24
01

C
O

G
7.

2
to

4.
15

M
FL

IP
S

V
irt

ex
5

LX
11

0T
*

Pr
op

os
ed

(M
R

A
2-

O
M

F)
1

to
4(

8/
16

B
it)

(1
to

7)
-(

1
to

7)
(T

ria
ng

)
1

to
2

(8
/1

6b
it)

1
to

7(
Tr

ia
ng

)
1

to
24

01
C

O
G

21
.5

to
4.

15
M

FL
IP

S
V

irt
ex

5
LX

11
0T

46

inference processing time of this FLC is optimized, and this fast FLC is relatively simple

and provides good performance/price comparison.

The superior performance of this approach serves as a basis for further fuzzy applications,

where the 2-OMF and MRA2-OMF based methods have been investigated for rule reduction.

The next chapter focuses the further development of these methods, partial rule base support,

and online tunability option in FLC.

Chapter 3

Tunable Digital Fuzzy Logic Controller
with rule reductions and Special Case

Rule Base Support

3

Preface
This chapter, an architectural change in the tuning of FLC parameters is introduced. Serial
communication is used to configure parameters remotely in real time. This feature of
reconfigurability enables an user to change fuzzy parameters in real-time, eliminating
repeated hardware programming. Hardware-software co-design architecture for the
proposed Digital Fuzzy Logic Controller (DFLC) is developed on Xilinx Virtex5LX110T
FPGA and seamlessly integrated with a MATLAB based Graphical User Interface (GUI)
for re-configurability. A Modified Rule Active 3-OMF (MRA3-OMF) and A Modified
Rule Active 4-OMF (MRA4-OMF) are also supported to improve the Fuzzy Inference
Engine (FIE) performance. A mechanism to support canonical fuzzy IF-THEN rules
with special cases of the fuzzy rule base is also included in DFLC architecture. The
MATLAB GUI acquires the fuzzy parameters from users and a Universal Asynchronous
Receiver/Transmitter (UART) is dedicated to data communication between the hardware
and the fuzzy toolbox. DFLC peripheral integration with Micro-Blaze (MB) Processor
through Processor Logic Bus (PLB) is established for Intellectual Property (IP) core
validation. Analysis of this design is carried out using simulation results. The performance
of the proposed system is compared with the Fuzzy Toolbox of MATLAB. Analysis of this
design is achieved by using Hardware-In-Loop (HIL) test to control various plant models in
MATLAB/Simulink environment.

3

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

3.1 Introduction

Fuzzy inference is a decision-making process to control a plant effectively, where the control

mechanism is based on fuzzy theory. For low-speed control applications, a software that runs

on a conventional microprocessor can perform the task but for high-speed applications, the

fuzzy inference process demands faster processing. It has been observed through software

implementations in a conventional microprocessor, the inference speed is limited to 10K

FLIPS (Fuzzy Logic Inferences Per Second) and is convenient for the majority of current

consumer applications. These systems suffer from the drawback of slow speed and higher

resource consumption. On the other hand, high-speed applications such as automotive

control, space applications, and aircraft embedded control systems demand higher speed,

which is time critical in nature. These applications are very complex in nature and use

a significant amount of rules to express their complex behaviors. Considering the speed

of operation they also require dedicated hardware that partially or fully implements the

fuzzy logic controller. The previous chapter focused on rule reduction based hardware

architectures for FLCs to reduce system latency and chip area. Here, the current chapter

discusses system architecture of the FLC system, which provides remote re-configurability

or can be tuned remotely according to the requirement of the application namely tunable

FLCs. The parameters to program are mostly the FLC parameters, which need to tune

the fuzzy logic algorithm running on hardware. FLC parameters, which are tuned include

the number of inputs, the number of outputs, the number, and type of input membership

functions, the number, and type of output membership functions and IF-ELSE rule base for

fuzzy inference process, etc. This work selects FPGA as a targeted device for its advantage

of re-configurability, parallel data processing capability, and the support of soft/hard core

processors.

In section 2.5 an approach to implement a fast processing of search for a rule contributing

to output using MRA2-OMF method was proposed and implemented. The limitation of

this design was the assumption of the maximum overlapping or an uncertainty between

Membership Functions (MFs) was limited to two. This was done considering most

applications to work in this boundary. However, for complex systems and to achieve superior

control for a variety of cases the system should support more than 3 Overlap Membership

Functions (3-OMFs). In this work, rule active approach had been limited to Rule Active 3

Overlap Membership Function and Rule Active 4 Overlap Membership Function.

49

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
This Chapter introduces a Finite State Machine (FSM) to support canonical fuzzy

IF-THEN rules with its special cases, support for “Partial Rule Base” and “Single Fuzzy

Statements”. The majority of the FPGA-based FLCs [119–121] have omitted this feature in

their FLC implementations, but for a complete FLC inference mechanism these rules must

be supported and tested.

3.2 Special Case Rule Base

As discussed earlier, In the FLCs the processing stage is based on a collection of logic rules

in the form of IF-THEN statements as presented in (3.1), where the IF part is called the

‘antecedent’ and the THEN part is called the ‘consequent’. The fuzzy rule base form the

heart of fuzzy system with large number of rules.

Rl : IF X1 is M
l
1 and X2 is M

l
2...and Xn is M

l
n THEN Y is Nl (3.1)

Where, X1, X2, ... Xn are the input variables and Y is the output variable. M l
n and Nl are

linguistic values represented as fuzzy subsets of the respective universe of discourse Ui and

V at input and output respectively. The rules in the form of (3.1) is called as canonical fuzzy

IF-THEN rules, since they can include other types of fuzzy rules and fuzzy propositions as

special cases, as presented in the following lemma.

Lemma 1. The canonical fuzzy IF-THEN rules in the form of (3.1) include the following as
special cases with m<n:

a “Partial Rules”:

IF X1 is M
l
1 and...and Xm is M l

m THEN Y is Nl (3.2)

b “OR Rules”:

IF X1 is M
l
1 and...and Xm is M l

m OR

IF Xm+1 is M
l
m+1 and...and Xn is M l

n THEN Y is Nl

(3.3)

c “Single Fuzzy Statement”:
Y is Nl (3.4)

Proof. The partial rule in (3.2) is equivalent to

IF X1 is M
l
1 and...and Xm is M l

m and Xm+1 is I and Xn is I THEN Y is Nl (3.5)

Where I is fuzzy set in R with MI = 1 for all x ∈ R. The proceeding rule is in the form of
(3.1)) and proves ‘a’. Based on the nonrational meaning of the logic operator ‘OR’ the ‘OR

50

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
Rules’ in (3.3) is equivalent to

IF X1 is M
l
1 and...and Xm is M l

m THEN Y is Nl (3.6)

IF Xm+1 is M
l
m+1 and...and Xn is M

l
n THEN Y is Nl (3.7)

From (3.3) the two rules in (3.6) and (3.7) are special case of (3.1), this proves ‘b’. The
fuzzy statement is equivalent to

IF X1 is I and...and Xn is I THEN Y is Nl (3.8)

Which is in the form of (3.1) and this proves ‘c’.

The current Chapter provides a State Machine (SM) to support these special cases of the

rule base to implement each rule in hardware.

3.3 Modified 3-OMF Rule Active (MRA-3OMF) and
Modified 4-OMF Rule Active (MRA-4OMF) Rule
Reduction

The concept of 2-OMF has been widely used [117] in reducing computational time of

fuzzy systems, especially in hardware development of FLC as it eradicates the nonlinear

dependency between a number of inputs and computational complexity. However, this

rule reduction method is limited by the assumption of maximum 2 overlaps. However, this

stipulation of segregation of input space with a maximum of two overlapping membership

functions causes major worry in an accuracy of the FLC, which is circumstantial in a majority

of non-linear FLC system design. However, when it is employed to control a non-linear

system, where the membership functions are overlapped with more than two over their

input space, this system fails to provide expected accuracy. When the number of overlaps

increases, the performance can be affected considerably.

Thus to keep the simplicity of the 2-OMF intact, while addressing its major disadvantage,

3-OMF and 4-OMF FLC is proposed here and incorporated in FLC hardware system

design. The advantage of this design over the conventional counterpart can be understood

considering a case, where fuzzy logic antecedent MFs are as shown in Figure 3.1. A system

is considered where, X1 ≤ x ≤ X2. Any input in this region, is fuzzified to provide more

than two non-zero values since there are more than two overlapping MFs. Further, it is

observed that the number of non-zero values in a fuzzified input cannot exceed the number

of overlapping MFs. If 2-OMF is applied on these set of input MFs, then useful data would

51

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.1: Less than 4 fuzzy membership functions overlapping at once

be lost. 2-OMF will only return two non-zero fuzzy values in place of three or four if input

in the range of X1 to X2 input space. This results in non-accurate control output, which is

proportional to the weight of the discarded membership function and its implication on the

rule base. Support of 3 and 4 overlap methods in the design can allow the user to vary a

number of overlaps in conjunction to the complexity of control system. Table 3.1 presents

the rule search space with the number of overlaps. To limit the computational complexity in

hardware, DFLC is modified to support up to four overlaps.

It is in general that from (2.6), for 3-OMF NOver
i = 3 and 4-OMF NOver

i = 4. The

maximum number of rules derived is

N3−OMF =
n∏

i=1

N3
i (3.9)

N4−OMF =
n∏

i=1

N4
i (3.10)

Hence from (2.10) it can be seen that

NMRA3−OMF =
n∏

i=1

N3
i −Nnull (3.11)

NMRA4−OMF =
n∏

i=1

N4
i −Nnull (3.12)

The fraction F3A of MRA3-OMF rules with 3-OMF rules and F4A of MRA4-OMF rules with

52

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
4-OMF rules derived as

F3A =

∏n
i=1N

3
i∏n

i=1N
3
i −Nnull

(3.13)

F4A =

∏n
i=1N

4
i∏n

i=1N
4
i −Nnull

(3.14)

and the fraction F3RA of MRA3-OMF rules with total rules and F4RA of MRA4-OMF rules

with total rules are

F3RA =

∏n
i=1N

Over
i∏n

i=1 N
Over
i −Nnull

(3.15)

F4RA =

∏n
i=1N

Over
i∏n

i=1 N
Over
i −Nnull

(3.16)

(a) F3RA for 4 input variables (b) F3RA for 3 input variables

(c) F3RA for 2 input variables (d) F4RA for 4 input variables

(e) F4RA for 3 input variables (f) F4RA for 2 input variables

Figure 3.2: MRA3-OMF and MRA4-OMF fractional values with different input variables.

53

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
Figure 3.2 shows the plot between 3-OMF rules with MRA3-OMF rules and 4-OMF

rules with MRA4-OMF rules, where Figure 3.2a, 3.2d, 3.2b, and Figure 3.2e, 3.2c, 3.2f

are plotted for 4,3, and 2 inputs respectively.

Table 3.1: Rule search space for varying n and Overlaps

Overlaps Ncells (n=1) Ncells (n=2) Ncells (n=3) Ncells (n=4)

2 2 4 8 16
3 3 9 27 81
4 4 16 64 256
5 5 25 125 625
6 6 36 216 1296
7 7 49 343 2401

3.4 Configurable DFLC IP Core

In the present architecture, two systems have been proposed, one for fuzzy validation

and another for IP validation. Any FPGA chip can be used in this work for hardware

deployment. The software implementation of the fuzzifier, defuzzifier, and GUI for control

data transfer has been completed on the MATLAB platform as System Method 1 (SM1) and

MicroBlaze processor as a System Method 2 (SM2). SM1 can be used for fuzzy validation to

compare with existing fuzzy toolbox, and SM2 can be used to validate IP Core by producing

different test vectors. UART serial communication port and Processor Local Bus is used for

2-way data transfer between software and hardware for SM1 and SM2 simultaneously. The

tunability option is provided in the IP core architecture. The term tunability here is refined

to the point that architecture provides re-configurability of parameters. The specifications

for the IP core are as follows.

• Number of Inputs: 4 (Maximum, Configurable)

• Number of Outputs: 2 (Maximum, Configurable)

• Shape of Membership Function: Triangular

• Number of MF for each input and output: 7 (Maximum, Configurable)

• MF Overlapping Degree: 2, 3 or 4 (Configurable)

• Implication model: Mamdani

54

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.3: System Model for IP and Fuzzy Validation of Inference IP Core

• Aggregation model: Mamdani

• Inference rules: Field programmable

• The system can be configurable in the field through a GUI application running on a

MATLAB.

The fuzzy memory map is designed and provided for software interaction with the fuzzy

inference IP core. Here memory map refers to process of sending the fuzzy parameters like

the complete fuzzy rule base, number of input MFs, a number of output MFs, a number of

inputs and outputs, and control signals.

Figure 3.3 presents the system model to test the proposed architecture for fuzzy

inferences with the existing MATLAB fuzzy toolbox. The control module extracts the

memory map of Figure 3.4 into its internal registers and generates the control signal to

start the inference process. This memory map supports both for 8-bit and 16-bit widths

based on the accuracy of the system which is user selectable. Two inference modules of

the MAX-MIN circuit are used to support two outputs of the IP core. From the minimum

configuration to a maximum configuration, the memory map varies from the size 17 Bytes

to 7254 (Approx. 7K) Bytes. These values are calculated by taking one input, 1 rule, and

one output parameter values for minimum configuration and four inputs, 2401 rules, and

two outputs parameter values for maximum configuration. From Figure 3.4 it can be seen

that the 00H address location provide the control signals RE (Rule Enable) and IE (Input

Enable). From Table 3.2, the process of the Inference will start its operation by configuring

55

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Output 1
(Programmable
with no of MFs)

Output 2
(Programmable
with no of MFs)

Rule 2 to
Rule 2041

(Programmable)

Rule1

Control Signals

Input1 to Input 4
fuzzified values
(Prgrammables)

00H

02H

08H

09H

0BH

03H

04H

06H
05H

07H

0CH

0DH

0EH

0FH

10H
11H

13H

12H

0AH

01H

14H

15H

16H

19H

18H

1AH

1BH

1CH

1DH

1FH

1EH

17H

20H

21H

22H

23H

24H

25H

26H

27H

28H

(B + 3*NoOfRules + 3)H

(B + 3*NoOfRules + 4)H

(B + 3*NoOfRules + 5)H

(B + 3*NoOfRules + 2)H

(B + 3*NoOfRules + 6)H

(B + 3*NoOfRules + 7)H

(B + 3*NoOfRules + 8)H

(B + 3*NoOfRules + 11)H

(B + 3*NoOfRules +12)H

(B + 3*NoOfRules +13)H

(B + 3*NoOfRules + 9)H

(B + 3*NoOfRules +14)H

(B + 3*NoOfRules + 1)H

(B + 3*NoOfRules + 10)H

RES RES Output2IndexNo Output1IndexNo

RES RES Input4IndexNo Input3IndexNo

RES RES Input2IndexNo Input1IndexNo

RES RES RES RES NR11 NR10 NR9 NR8

NR7 NR6 NR5 NR4 NR3 NR2 NR1 NR0

RES NMO22NMO21NMO20NMO2 NMO11NMO10NMI42

NMI41 NMI40 NMI32 NMI31 NMI30 NMI22 NMI21 NMI20

RES NMI12 NMI11 NMI10 NI1 NI0 NO IT

RES RES RES RES RES RES RE IE

MFIndex24

MFValue24

MFIndex23

MFValue23

MFIndex22

MFValue22

MFIndex21

MFValue21

MFIndex14

MFValue14

MFIndex13

MFValue13

MFIndex12

MFValue12

MFIndex11

MFValue11

MFIndex34

MFValue34

MFIndex41

MFValue41

INFOUT11

MFIndex44

MFValue44

MFIndex43

MFValue43

MFIndex42

MFValue42

……………..

……………..

……………..

……………..

……………..

MFIndex33

MFValue33

MFIndex32

MFValue32

MFIndex31

MFValue31

INFOUT21

INFOUT27

INFOUT26

INFOUT25

INFOUT24

INFOUT23

INFOUT22

INFOUT17

INFOUT16

INFOUT15

INFOUT14

INFOUT13

INFOUT12

Figure 3.4: Memory Map to support different user configurations according to the system
specification

56

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

(a) Two Overlap membership functions values

(b) Three Overlap membership functions

(c) Four Overlap membership functions

Figure 3.5: Rule reduction methods supported according to the present architecture

RE and IE.

Table 3.2: Control Signal Description to start different FLC programming options

Control Signals Values Description
{RE, IE} 00 No Inference Operation
{RE, IE} 01 With existing Rule Base and fuzzy

parameters start inference for new
input

{RE, IE} 10 Update new rule base, but there is
no inference to start as if there is no
new input

{RE, IE} 11 Update new rule base and start
inference for new input available
with new fuzzy parameters

57

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

(a) 2-OMF (b) 3-OMF (c) 4-OMF (d) All Rule

Figure 3.6: The rule-sector outputs for 2-OMFs, 3-OMFs and 4-OMFs rule reduction
methods and all rules.

From Figure 3.4, for a 8-bit depth memory map the 01H to (B + 3 * No of Rules +

145)H address location (here ‘B’ is the variable which ranges from 08H to 25H for different

configurations) is set for fuzzy parameters where

a. The parameter NO (Number of Outputs) is a single bit value to support maximum

configurable outputs as two. Value ‘0’ for a single output and ‘1’ for two outputs.

b. The parameter NI (Number of Inputs) is a 2-bit value to support maximum 4

configurable inputs. Value ‘00’ is issued for single input, ‘01’ for two inputs, ‘10’

for three inputs and ‘11’ for four inputs.

c. The parameter NMI1, NMI2, NMI3, and NMI4 (Number of Membership Functions)

relates to a number of membership functions at input for input 1,input 2, input 3, and

58

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
input 4 respectively. NMO1 and NMO2 relates to number of membership functions

at output for output 1 and output 2 respectively. These parameters are assigned 3-bit

value to give maximum configurable MFs of 7 to support full four inputs two output

system. Value ‘000’ for single MF, ‘001’ for 2 MFs, ‘010’ for 3 MFs, ‘011’ for 4 MFs,

‘100’ for 5 MFs, ‘101’ for 6 MFs, and ‘110’ for 7 MFs are used.

d. The parameter NR (Number of Rules) is a 12-bit value to support maximum 2401

configurable rules.

e. The parameter MFValueXY is a non-zero fuzzified value of a membership function

where X denotes the input number, and Y denotes membership index number.

f. The parameter MFIndexXY is an MFValueXY’s index number. The index value varies

from ‘000’ to ‘110’ to support maximum configurable seven membership functions.

g. Each rule consumes 3 bytes with the corresponding index numbers of consequents and

antecedents in the fuzzy rule base.

h. Modus ponens reasoning method for a mamdani’s fuzzy inference strategy gives seven

fuzzy set values on outputs with parameter INFOUT1Y and INFOUT2Y. Here Y

denotes output membership index number.

Three methods of searching for the rule, which contributes inference output are shown in

Figure 3.5. The rule selector module for 2-OMFs, 3-OMFs, and 4-OMFs with respect to

All Rule is presented in Figure 3.6. Figure 2.8 illustrates the condition of a two input one

output system where it fires at most two fuzzy sets for overlapping factor 2 and results not

more than 4 rules. In the same way for the 3-OMFs case inference module has at most 23

= 8 and for 4-OMF case the inference module has 24 = 16 rules. The modified Rule Active

method discussed in section 3.3 is applied in the architecture. This reduced the inference

process time further.

3.4.1 State Machine for Partial and Complete Rule Generation

In the DFLC architecture described here, the mealy FSM is proposed and acts as a control

unit. The main objectives of special state machine are to initiate rule base processing,

generate special case rules like partial and single fuzzy statements. This state machine has 19

states, Where 3 states are used for control purpose and 16 states are used to support different

59

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.7: Finite State Machine to support special rule cases

special case rules. Figure 3.7 presents the controller state diagram. The state machine

starts executing once the new rule is available in rule base memory. The state machine

generates the address and places the corresponding output membership function in the ‘All

Rule memory’. The ‘All Rule Memory’ has an address depth of covering 2041 locations and

the data width of 3 bits to store 2041 (74 Max) rules and to map seven membership functions

at an output. For 4 (maximum configurable) input problem the rule base should support all

special cases mentioned in section 3.2, for that the design considered the index numbers of

each of its inputs and mapped them to the all rule memory by using a finite state machine.

The address generation for each rule is obtained in each state are explained in Table 3.3. For

partial rules, the missing input is mapped to all its combinations. Single Fuzzy Statement

(SFS) special case is supported in state FLC_SFS. The main objective of this stat

3.4.2 Interfacing DFLC IP Core

To test the DFLC module with its counterpart MATLAB fuzzy toolbox, an interface is

established using UART module. The complete DFLC Design module with its interfacing

module is presented in Figure 3.8. The UART to Fuzzy IP Core is a simple communication

60

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
Table 3.3: State Transition Table

Present State Next State Transition Signal Description
FLC_INITIAL FLC_INITIAL NextRuleAvail Reset state which waits for new rule every time to Map the all rule

address.
FLC_START FLC_MAP1 |Index1 &|Index2 &|Index3&|index4 It’s a complete rule where all inputs are active. In this state the write

address is Index4, Index3, Index2, Index1
FLC_START FLC_MAP2 |Index1 &|Index2 &|Index3 It’s a partial rule where input 4 is absent. In this state the write address

is Index4, Index3, Index2, Index1 where Index4<=Index4 +1 for 7(1 to
7) iterations

FLC_START FLC_MAP3 |Index1 &|Index2 &|Index4 It’s a partial rule where input 3 is absent. In this state the write address
is Index4, Index3, Index2, Index1 where Index3<=Index3 +1 for 7 (1 to
7) iterations

FLC_START FLC_MAP4 |Index&|Index2 It’s a partial rule where input 3,4 are absent. In this state the write
address is Index4, Index3, Index2, Index1 where Index3<=Index3 +1
for 7 (1 to 7) iterations then Index4<=Index4 +1 for 7 (1 to 7) to map all
3,4 locations.

FLC_START FLC_MAP5 |Index&|Index3 &|index4 It’s a partial rule where input 2 is absent. In this state the write address
is Index4, Index3, Index2, Index1 where Index2<=Index2 +1 for 7 (1 to
7) iterations

FLC_START FLC_MAP6 |Index1 &|Index3 It’s a partial rule where input 2,4 are absent. In this state the write
address is Index4, Index3, Index2, Index1 where Index2<=Index2 +1
for 7 (1 to 7) iterations then Index4<=Index4 +1 for 7 (1 to 7) to map all
2,4 locations.

FLC_START FLC_MAP7 |Index1 &|index4 It’s a partial rule where input 2,3 are absent. In this state the write
address is Index4, Index3, Index2, Index1 where Index2<=Index2 +1
for 7 (1 to 7) iterations then Index3<=Index3 +1 for 7 (1 to 7) to map all
2,3 locations.

FLC_START FLC_MAP8 |Index1 It’s a partial rule where input 2,3,4 are absent. In this state the
write address is Index4, Index3, Index2, Index1 where Index2<=Index2
+1 for 7 (1 to 7) iterations then Index3<=Index3 +1 for 7 (1 to 7),
Index4<=Index4 +1 for 7(1 to 7) to map all 2,3,4 locations.

FLC_START FLC_MAP9 |Index2 &|Index3&|index4 It’s a partial rule where input 1 is absent. In this stae the write address
is Index4, Index3, Index2, Index1 where Index1<=Index1 +1 for 7 (1 to
7) iterations.

FLC_START FLC_MAP10 |Index2 &|Index3 It’s a partial rule where input 1,4 are absent. In this state the write
address is Index4, Index3, Index2, Index1 where Index1<=Index1 +1
for 7 (1 to 7) iterations then Index4<=Index4 +1 for 7 (1 to 7) to map all
1,4 locations.

FLC_START FLC_MAP11 |Index2 &|Index4 It’s a partial rule where input 1,3 are absent. In this state the write
address is Index4, Index3, Index2, Index1 where Index1<=Index1 +1
for 7 (1 to 7) iterations then Index3<=Index3 +1 for 7 (1 to 7) to map all
1,3 locations.

FLC_START FLC_MAP12 |Index2 It’s a partial rule where input 1,3,4 are absent. In this state the
write address is Index4, Index3, Index2, Index1 where Index1<=Index1
+1 for 7 (1 to 7) iterations then Index3<=Index3 +1 for 7 (1 to 7),
Index4<=Index4 +1 for 7 (1 to 7) to map all 1,3,4 locations.

FLC_START FLC_MAP13 |Index3&|Index4 &(NoOfInputs>=3) It’s a partial rule where input 1,2 are absent. In this state the write
address is Index4, Index3, Index2, Index1 where Index1<=Index1 +1
for 7 (1 to 7) iterations then Index2<=Index2 +1 for 7 (1 to 7) to map all
3,4 locations.

FLC_START FLC_MAP14 |Index3& (NoOfInputs>=3) It’s a partial rule where input 1,2,4 are absent. In this state the
write address is Index4, Index3, Index2, Index1 where Index1<=Index1
+1 for 7 (1 to 7) iterations then Index2<=Index2 +1 for 7 (1 to 7),
Index4<=Index4 +1 for 7 (1 to 7) to map all 1,2,4 locations.

FLC_START FLC_MAP15 |Index4 &(NoOfInputs==4) It’s a partial rule where input 1,2,3 are absent. In this state the
write address is Index4, Index3, Index2, Index1 where Index1<=Index1
+1 for 7(1 to 7) iterations then Index2<=Index2 +1 for 7 (1 to 7),
Index3<=Index3 +1 for 7 (1 to 7) to map all 1,2,3 locations.

FLC_START FLC_SFS !(|Index1 &|Inex2 &|Index3&|Index4) Its single fuzzy statement where all inputs are absent and consequent
is same for all rules In this state the write address is Index4, Index3,
Index2, Index1 where Index1<=Index1 +1 for 7 (1 to 7) iterations then
Index2<=Index2 +1 for 7 (1 to 7), Index3<=Index3 +1 for 7 (1 to 7),
Index4<=Index4 +1 for 7 (1 to 7) to map all 1,2,3 locations.

FLC_MAP1 to
FLC_MAP15 and

FLC_SFS
FLC_UPDATE FuzAddrEn Once the consequent is written into corresponding Consequent

memories (in this case 2 for maximum 2 output problems) this signal
enables.

FLC_UPDATE FLC_INITIAL FuzDataCnt==3 This state makes Fuzzy Address to increment for 3 more locations to
read next rule.

parser that can be used to access an internal bus via UART interface. The internal bus

designed with address bus of 12 bits (to support 2401 rules) and data bus of 8 bits/16 bits

(Option given in the core) based on the application. The UART module block diagram has

61

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
UART transmit and receive blocks, which share a common baud generator. The baud rate is

set using two constants defined in the UART top core module, which is calculated as follows:

QBAUDFREQ = 16
BaudRate

GCD(GlobalClockFrequency ∗BaudRate)
(3.17)

QBAUDLIMIT = 16
GlobalClockFrequency

GCD(GlobalClockFrequency ∗BaudRate)
−QBAUDFREQ (3.18)

The baud rate generator parameters for baud rate 9600 bps and global lock frequency of

100MHz are configured in Verilog HDL as follows.

‘define Q_BAUD_FREQ 12‘h18 (3.19)

‘define Q_BAUD_LIMIT 16‘h3CF1 (3.20)

These two values are further used as an input signal to the UART top modules as shown in

Figure 3.8.

3.4.2.1 MATLAB GUI and Operation

The MATLAB GUI to initiate the FPGA process is shown in Figure 3.9. The control register

values, input fuzzified values with indexes, and the rule base are forced here as shown in

Figure 3.10. For the purpose of testing, it can be chosen the same rule base formulated in

the fuzzy toolbox. The inference output from DFLC is then read from COM1 port using the

fread function of MATLAB and passed to defuzzification unit, which computes COG (2.4).

The results from DFLC implemented in FPGA and fuzzy toolbox are then compared and

displayed in GUI.

3.4.2.2 DFLC IP Core Peripheral Connection to MicroBlaze Processor

The MicroBlaze is a soft processor core designed for Xilinx FPGAs from Xilinx. As a

soft-core processor, MicroBlaze is implemented entirely in the general-purpose memory and

the logic fabric of Xilinx FPGAs. MicroBlaze’s primary I/O bus, the CoreConnect PLB bus,

is a traditional system memory mapped transaction bus with master/slave capability. The

majority of vendor-supplied and third-party IP interface to PLB directly (or through a PLB to

OPB bus bridge). Xilinx’s EDK (Embedded Development Kit) is the development package

for building MicroBlaze (and PowerPC) embedded processor systems in Xilinx FPGAs.

62

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.8: Detailed Design block diagram of DFLC

63

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.9: GUI to Initiate and Compare DFLC with Fuzzy tool box

Figure 3.10: Configuration Register files of DFLC

64

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
Hosted in the Eclipse IDE, the project manager consists of two separate environments:

XPS (Xilinx Platform Studio) and SDK (Software Development Kit). The work used

XPS to configure and build the DFLC hardware specification. The XPS converts the

DFLC specification into a User Peripheral and writes a set of scripts to automate the

implementation of DFLC peripheral. The Xilinx SDK handles the software that executes

on the DFLC peripheral. Figure 3.11 presents the interface connection of DFLC IP Core

with PLB interface. Figure 3.12 illustrates the DFLC peripheral integration with MicroBlaze

Processor.

3.5 Simulation Results and Analysis

In this section, the proposed MRA-3OMF, MRA4-OMF, and special case rule base supported

DFLC performance has been compared to MATLAB Fuzzy Logic Toolbox for performance

analysis. Generality of a DFLC allows it to work with various FIS (Fuzzy Inference System)

structure files. A MATLAB GUI to an FIS structure file is used here for the purpose of

comparison. The GUI extracts the parameters in control register file for a specific test case

and generates testing models. The test model of special case rule “Partial Rule” is presented

in Figure 3.13. The simulation result of “Partial Rule” test case is given in Figure 3.14,

where the “Ready” signal validates the fuzzy output. The GUI displays the fuzzified output

comparison between MATLAB Fuzzy Logic Toolbox and proposed DFLC.

The “Special Fuzzy Statement” special case rule simulation waveform is presented at

Figure 3.15. From the waveform it can be inferred that the proposed system supports all rule

structures in hardware implementation. Figure 3.17 shows the presented implementation is

working under repeated rule update. In other words, the DFLC supports even if two rules

have same antecedents.

Finally, the DFLC peripheral connection to the MicroBlaze processor goes through the

PLB interface, with its register update as mentioned in Figure 3.4 and the performance is

verified in Figure 3.18. The tuning of FLC parameters and the support of special rule case

made the design more dynamic, but these extra features added more logic utilization to FPGA

and it is observed in Table 3.4 by comparing with our previous proposed systems. A cycle

time of value 6.608 ns was derived from the maximum clock frequency of the design using

Virtex 5 LX110T FPGA. The latency of 46.256 ns is calculated for a 4 input Test vector with

3 active rules.

65

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.11: DFLC Peripheral Connection PLB Interface to Microblaze Processor

Table 3.4: Hardware implementation: Comparison of all proposed methods

Proposed Methods BRAM utilized FFs LUTs Cycle Time Latency32K 18K
2-OMF 0 1 1506 3368 6.865 ns 137.3 ns
MRA2-OMF 0 1 992 2327 6.76 ns 47.32 ns
Tunable MRA2-OMF-SpecialRule 0 1 2056 4126 6.608 ns 46.256 ns

66

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.12: DFLC Peripheral to Microblaze Processor

Figure 3.13: Test Model for partial rule support

67

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.14: Simulation waveform of partial rule support

Figure 3.15: Simulation waveform of single fuzzy statement

Figure 3.16: Test Model for repeated rule

68

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

Figure 3.17: Continuous Data Transfer from DFLC to MATLAB

Figure 3.18: DFLC register updation from MB through PLB interface

69

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
3.5.1 Test Plan

The verification plan or test plan is a specification for the verification effort. It is used to

define a first-time success, how a design is verified. Table 3.5 shows such test plan in this

document to check and debug the DFLC architecture on FPGA. A fundamental 4 input 2

output tipping problem [122] with different rules and membership functions are used here

to generate different test cases.

Table 3.5: Test Plan to verify the functionality of DFLC on FPGA

Test Case Name Service Food Environment Facilities Fuzzy
toolbox (Tip)

Fuzzy
toolbox
(Rating)

DFLC-FPGA
(Tip)

DFLC-FPGA
(Rating)

TDFlc2In1Out7Mf5Rul 9.5 5.95 - - 26.348(0:30) - 26.537(0:30) -
TDFlc2In1Out7Mf6Rul 8.85 6.05 - - 25.4(0:30) - 25.7043(0:30) -
TDFlc2In1Out7Mf9Rul 4.3 1.735 - - 15(0:30) - 15(0:30) -

TDFlc2In1Out7Mf3ParRul 4.135 1.055 - - 9.99728(0:30) - 10(0:30) -
TDFlc2In1Out7Mf3SFSRul 4.135 1.055 - - 9.9972(0:30) - 15(0:30) -
TDFlc3In1Out7Mf3ParRul 8.012 5.482 0.584 - 20.0028(0:30) - 20(0:30) -
TDFlc3In1Out7Mf4ParRul 4.036 3.072 0.620 - 15 (0:30) - 15(0:30) -
TDFlc3In2Out7Mf3ParRul 0 5.923 0.5682 - -9.998(-30:0) 20.0023(0:30) -10(-30:0) 20(0:30)
TDFlc3In2Out7Mf3ParRul 1.176 0.7 0.225 - -20.0025(-30:0) 5.00234(0:30) -20(-30:0) 5.001(0:30)
TDFlc4In2Out7Mf7ParRul -3.636 1.389 0.1182 0.1 -25.1062(-30:0) 22.222(0:30) -25.150(-30:0) 22.5441(0:30)

#TFLC-Tunable Digital Fuzzy Logic Controller,xIn- x inputs, yOut-y Outputs,lMf- l Membership Functions, rRul- r Rules

3.6 System Implementation and Validation

To provide proof of concept for the proposed design, an experiment was carried out with

Xilinx Virtex5 LX110T Board. The code developed for hardware DFLCs was synthesized

using Xilinx ISE 14.5 to generate the DFLCs bit files for both 8bit and 16bit data widths. Two

Tank Water Level Controller Plant model [123], Ball and Beam System [124] were developed

in MATLAB and communication with FPGA was established using UART serial commands

in a Hardware-in-the-Loop testing method. Figure 3.19 presents the central concept of the

HIL test methodology, where a DFLC is developed on an FPGA and its interaction with the

process plant simulation in the MATLAB. The functionality is executed in following steps:

Step1: Generation of control register set from FIS model.

Step2: Apply rule base extracted from the FIS model to GUI.

Step3: Convert all parameters into fixed point mode.

Step4: Transmit parameters from UART to FPGA by using fwrite serial command.

70

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

MATLAB
Proposed
DFLC

FPGA

Figure 3.19: The setup for Hardware-in-loop Testing for DFLC

Step5: The plant model is executed with the received data from FPGA and returns the output

to MATLAB. This forms the controller output.

Step6: The simulink plant output is computed with controller output. It is stored and plotted

with respect to plant output using DFLC in 8 and 16 bit modes for comparative

analysis.

Some benchmark control problems namely, Two Tank Water Level Controller [123],

Ball and Beam System [124] were used to test the applicability and performance of the

proposed DFLC architecture. In Figure 3.20 and Figure 3.21, the observed results from

these simulated tests are displayed. In Figure 3.20a, the plant output of this proposed

8bit DFLC and 16 bit DFLC are compared to a MATLAB FLC controller when applied to

control a Two Tank Water Level Controller [123]. The Figure 3.20 plots the plant response

under these controllers with respect to time in seconds. It can be observed that the DFLC

attains the performance of FIS model using the fuzzy toolbox with word length truncation

error. Similar results can be obtained for Ball and Beam System [124] as shown in Figure

3.21. Figure 3.20b and Figure 3.21c compares the control output from 8bit DFLC, 16

bit DFLC and MATLAB FLT for every sample while controlling Two Tank Water Level

Controller [123] and Ball and Beam System [124]. The results convincingly reflect that the

proposed system architecture with its hardware implementation performs satisfactorily and

can be applied on real-time. These tests also indicate that the parameters of DFLC can be

remotely configurable.

71

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

0 10 20 30 40 50 60 70 80 90
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(seconds)

P
la

nt
 O

ut
pu

t

y1 = Reference Level
y2 = FLC Tool Box Output
y3 = DFLC FPGA(16 bit)Output
y4 = DFLC FPGA(8 bit)Output

(a) Plant Output: Two Tank Water Level System

0 10 20 30 40 50 60 70 80 90
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(seconds)

C
on

tr
ol

 O
ut

pu
t

x1 = Simulink FLC Control Output
x2 = DFLC FPGA(16 bit) Control Output
x3 = DFLC FPGA(8 bit)Control Output

(b) Control Output: Two Tank Water Level System

Figure 3.20: Plant and Control output of 8 bit, 16 bit and MATLAB FLT test modes using
HIL for two tank water level system

3.7 Plasma Position Control in Nuclear Fusion Reactor

This section describes a control problem where the radial position of a plasma column in

Aditya Tokamak Fusion Test Reactor (TFTR) [125] is managed. Aditya TFTR is installed

at Institute of Plasma Research (IPR), Gandhinagar, India. It is a medium size tokamak with

a major radius of 0.75 m and a minor radius of 0.25 m. There are 20 toroidal field coils in

the design which produces maximum field strength of 1.2 tesla. A tokamak is a magnetic

field based plasma confining device in the shape of a torus. Stable plasma equilibrium can

be achieved by generating magnetic field lines, which can helically move around the torus.

The plasma position control in a Tokamak reactor is a highly nonlinear control problem.

72

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(seconds)

P
la

nt
 O

ut
pu

t

y1 = Reference Level
y2 = Simulink FLC Control Output
y3 = DFLC FPGA(16 bit) Control Output
y4 = DFLC FPGA(8 bit) Control Output

(a) Plant Output (Ball Position): Ball and Beam System

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(seconds)

B
ea

m
 A

ng
le

x1 = Simulink FLC Beam Angle
x2 = FLC FPGA(16 bit) Beam Angle
x3 = DFLC FPGA(8 bit) Beam Angle

(b) Plant Output (Beam Angle): Ball and Beam System

0 5 10 15
−4

−3

−2

−1

0

1

2

3

Time(seconds)

C
on

tr
ol

 O
ut

pu
t

y1 = Simulink FLC Control Output
y2 = FLC FPGA(16 bit) Control Output
y3 = DFLC FPGA(8 bit) Control Output

(c) Control Output: Ball and Beam System

Figure 3.21: Plant and Control output of 8 bit, 16 bit and MATLAB FLT test modes using
HIL for ball and beam system

In Tokamak reactor, a magnetic field is used to confine the plasma in the desired position.

Plasma is highly sensitive state of matter and can be unstable under slightest trigger in the

surrounding environment. It is, therefore, crucial to design a fast but highly robust controller.

A tokamak can successfully operate, if the plasma is stable and confined to the geometric

center of the vacuum vessel. The radial position of the confined plasma inside the torus

vessel inflicts on the quality of the plasma discharge. Unstable plasma, when approaches

too close to the wall of the vessel, may lead to partial or complete disruption of the plasma.

Hence, it is of primal importance that the plasma position is controlled throughout the plasma

discharge process.

73

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
To achieve stable plasma equilibrium and to confine it inside, a fusion reactor is required

to generate a magnetic field lines that helically embraces the torus shaped plasma. These

magnetic field lines can be created using electromagnets positioned suitably. Generation of

helical field can be achieved by adding a magnetic field that circularly travels around the

torus (toroidal field) and another field that travels orthogonally across to the toroidal field

(poloidal field). These fields are generated by toroidal field coils and inner and outer poloidal

field coils as shown in Figure 3.22. When a current is passed to a centrally located helical

inner poloidal magnetic field coil, it produces an induced current in the plasma. The direction

of the coil current and induced plasma current is shown using arrows. This plasma current

generates a poloidal magnetic field. The required toroidal magnetic field is produced by the

circularly surrounded coils across the torus. The position of the plasma can be controlled by

driving the electric current to these coils.

Figure 3.22: Schematic of a tokamak.
Photo credit: Abteilung Öffentlichkeitsarbeit - Max-Planck Institut für Plasmaphysik. Licensed under Creative Commons BY–SA 3.0 via Wikimedia Commons

Figure 3.23: Cross-sectional view of plasma position and displacement inside the vacuum
chamber

74

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
Table 3.6: List of Variables

Ip Plasma current µo Permeability of Vaccum
Vc Control voltage βp Poloidal beta
Ic Coil and conductor current Γ Shafranov parameter
RIp Weighted plasma radial position Bv Vertical magnetic field
zIp Weighted plasma vertical position li Internal inductance of plasma magnetic field
R Major Radius a Minor radius

3.7.1 Aditya Tokamak System Modeling

In this section, the control of the radial position of plasma in Aditya TFTR using fast feedback

(FF) coil has been analyzed using an RZIP model. The geometric center of the vacuum

vessel of Aditya TFTR is at 0.75 m, and it is critical that the radial position of the plasma is

maintained at this point. This model is developed with the assumption that small variation

in coil currents produces a small change in plasma position and current. Table 3.6 lists the

variables in the model.

Unlike circular cross-section plasma, Tokamak operates on highly non-circular torus

shape. Non-circular shapes are harder to generate and to control accurately since currents

through several control coils must be adjusted simultaneously [126]. Due to uncertainties

in the current and pressure distributions within the plasma, the desired accuracy for plasma

control can only be achieved by making real-time measurements of the position and shape

of the boundary, and using error feedback to adjust the currents in the control coils. The

modeling of the discharge parameters like plasma current, position and shape is a challenging

task, as they are highly nonlinear and time varying in nature. Hence, it is hard to achieve

control of plasma position using traditional controllers [1] due to the inherent complexity

of the plasma position control system and its nonlinear nature. A similar approach was also

taken by Morelli et. al. [127] in plasma position control of STOR-M Tokamak Fusion Test

Reactor.

Considering the above modeling parameters taken from the work by Bandyopadhyay et.

al. [128, 129],

Ẋ = AX + BU (3.21)

75

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
Where, A = M−1 ·R, B = M−1, and

X =

IC

zIP

RIP

IP

 , U =

VC

0

−µ0IP
2

Γ

IP

M and R refers to vector of mutual inductances and resistances of all circuits with plasma

[1, 129, 130].

M =

MC (M ′

R)
T MPC

M ′
Z 0 0

M ′
R

MPC

M22

M22

M22

LP0

 and R =

ΩC 0 0

0 0 0

0 0 0

0 Ω′
P ΩP

where,
M22 =

(
µ0

2
dΓ
dr

+ 2πBz0

Ip0
+

2πR0B′
z0

Ip0

)
M23 =

(
µ0Γ0 +

2πR0Bz0

Ip0

)
M32 =

(
µ0 (1 + f0) +

2πR0Bz0

Ip0

)
Where, MC and ΩC are mutual inductance and resistance matrices of all the circuits,

MPC and MR are the vector of mutual inductances of the circuits with the plasma and their

radial derivatives respectively, and Γ is known as Shafranov parameter. This shows that

A and B are matrices that are dependent on the mutual inductances and resistances of all

circuits with plasma, which is highly non-linear in nature.

In Aditya TFTR, four magnetic probes are used to measure the radial position of the

plasma. These probes are placed close to the outer periphery of the vacuum vessel. A

Rogowski coil is used to measure the plasma current (IP).

P. Suratia et. al. [1] and I. Bandyopadhyay et. al. [130] explained the major control

operatives as - ‘ADITYA has been provided with a primary vertical coil field with an

adjustable gain proportional to plasma current, to compensate the change in vertical

displacement of plasma column. The shift in radial position due to minor disruptions is

controlled by a separate pair of Fast Feedback coils, and this fast feedback coil produces an

adequate magnetic field to bring the plasma column back to its geometrical center’ .

76

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

3.8 Control Strategy

3.8.1 Using PID Control

Traditional PID controllers [131] are used presently in Aditya TFTR to which radial position

signal is fed as input. The controller generates a suitable control signal to actuate the current

in the fast feedback coils and accordingly the plasma is confined in radial direction [1].

Figure 3.24 shows the control strategy employed in radial position control of plasma in

Aditya TFTR.
∆Bv

Bv

=
∆R

R

The vertical field required to maintain the radial position of plasma in Aditya TFTR can be

obtained from Grad-Shafranov equation [1, 132] presented at (3.22).

Bv =
µ0IP
4πR

[
ln
(
8R

a

)
+ βP +

li − 3

2

]
(3.22)

where, Bv is Magnetic flux density, Bϕ, Bθ, Bρ is Toroidal, poloidal and radial components

of the magnetic field, E is Electric field intensity, J is Plasma current density, R is Major

radial coordinate and a is Minor radial coordinate. It can be observed from (3.22) that,

the total vertical magnetic field for proper position control of plasma is proportional to the

magnitude of

1. Internal inductance of plasma li,

2. Plasma current IP , and

3. Plasma poloidal beta { It is the ratio of the poloidal plasma pressure to the poloidal

magnetic pressure}.

Figure 3.24: Control strategy for radial plasma position control in Aditya TFTR

77

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
All these parameters are time varying and highly nonlinear in nature. The limitations of PID

controllers have been already explained in section 1.5, and therefore, a controller equipped

to handle these parameters to provide a smooth, fast and robust control action is of utmost

importance. However, it is important to exercise the existing knowledge gathered from

the system response with PID controller. A PID control loop for radial plasma position

control of Aditya TFTR is developed in Simulink as shown in Figure 3.25. It represents the

mathematical model explained in (3.22). The PID controller is tuned using Ziegler-Nichols

method. The Ziegler-Nichols tuning method is a heuristic method of tuning a PID controller

[129, 130]. The simulation output data is observed and recorded.

Figure 3.25: Simulink model of radial plasma position control in Aditya TFTR with PID
controller

3.8.2 Plasma Position Control in Aditya using FLC and DFLC

P. Suratia et. al. proposed a fuzzy logic controller for radial plasma position control in Aditya

TFTR [1]. The characteristic features of this controller and the proposed DFLC used in the

control simulation is tabulated in Table 3.7. The simulink model for the control of the system

with FLC is shown in Figure 3.26. It can be observed in this figure that the inner PID loop

in the outer position control loop in Figure 3.25 is replaced by an FLC loop in Figure 3.26.

The DFLC is connected to a PC with Simulink model of radial plasma position control of

Aditya TFTR. Using UART, data can be exchanged between the two systems. The hardware

DFLC polls for any input at the UART. Once it receives the input, it completes the FLC with

78

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support
Table 3.7: Characteristics of FLCs used in [1] and DFLCS

Parameters [1] DFLC
Inputs 2 2
Output 1 1

Antecedent MFs 7 (triangular) 7 (triangular)
Consequent MFs 7 (singleton) 7 (triangular)

Aggregation MIN MIN
Implication MAX MAX

MF Overlapping Degree 2 Dynamic (4)
Defuzzification Method Weighted Average Weighted Average

FLC execution process to return a suitable control signal to the power supply of the feedback

output. This completes hardware in loop and it is continued for the entire simulation.

Simulation for other controllers is carried out sequentially by changing the manual switches

as shown in Figure 3.26. These simulation data are recorded for all control schemes and

analyzed for the performance of the controllers.

Figure 3.26: Simulink model of radial plasma position control in Aditya TFTR with FLC
and DFLC

The recorded data from the simulations is plotted as depicted in Figure 3.27. This

plot clearly displays the difference in the control action. A significant improvement in

rise time and settling time is observed in accordance to the PID controller and existing

79

FLC. The hardware DFLC is observed to provide a smooth and fast response. It caters

a robust control scheme for the radial position control in Aditya TFTR. A comparative

analysis of the control parameters is drawn and tabulated in Table3.8. It can be observed

that the DFLC with MRA2-OMF method provided 62% faster rise time and 80% speedy

settling time, MRA3-OMF method provided 62% faster rise time and 82% speedy settling

time, and MRA4-OMF method provided 64% faster rise time and 83% speedy settling time

in comparison to existing control schemes. The computational complexity comparison is

provided in Table 3.9, Which shows the logic utilization is increasing from MRA-2-OMF to

MRA-3-OMF and MRA-3-OMF to MRA-4-OMF.

Table 3.8: Comparison of performance parameters of PID, FLC [1], and DFLC with
MRA2-OMF, MRA3-OMF and MRA4-OMF Methods

Parameters PID FLC [1] DFLC (MRA2-OMF) DFLC (MRA3-OMF) DFLC (MRA4-OMF)
Rise Time 0.0062 0.0062 0.0025 0.0023 0.0022
Settling Time 0.1255 NaN 0.0249 0.0223 0.0213
Overshoot 0 0 0 0 0
Undershoot 0 0 0 0 0
Peak 0.7497 0.7483 0.7502 0.7487 0.7487
Peak Time 0.14 0.02 0.0235 0.0230 0.0228

3.9 Summary

This chapter presented a novel system architecture for a general purpose fuzzy logic

controller based on FPGA. The proposed FPGA-based FLC can be used for any control

application effectively. Here, the idea is to implement a flexible algorithm running on

hardware which can be configured remotely on user demand. This chapter elaborated

proposed MRA-3OMF and MRA4-OMF rule reduction technique with a special case rule

base state machine support. The tunability of FLC parameters is provided in the DFLC

architecture as mentioned in section 3.4. GUI based fuzzy validation with its test vectors

is analyzed. MB processor based IP integration with its simulation shows that the proposed

DFLC can be easily connected as peripheral to any soft or hard processor with processor

Table 3.9: Computational Complexity of all proposed methods

Proposed Methods BRAM utilized FFs LUTs Cycle Time Latency32K 18K
MRA2-OMF 0 1 992 2327 6.608 ns 99.12 ns
MRA3-OMF 0 1 1154 2551 6.754 ns 101.31 ns
MRA4-OMF 0 1 1386 2613 6.913 ns 103.695 ns

Chapter 3
Tunable Digital Fuzzy Logic Controller with rule reductions and Special Case Rule Base

Support

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−120

−100

−80

−60

−40

−20

0

Time(seconds)

In
pu

t D
is

tu
rb

an
ce

Disturbance Data (Input)

(a) Input Disturbance Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.734

0.736

0.738

0.74

0.742

0.744

0.746

0.748

0.75

0.752

0.754

Time(seconds)

P
la

nt
 O

ut
pu

t

PID Controller tuned by Ziegler−Nichols Method
FLC designed by P. Suretia et. al.
DFLC with MRA2−OMF method on FPGA
DFLC with MRA3−OMF method on FPGA
DFLC with MRA4−OMF method on FPGA

(b) System Response

Figure 3.27: Performance of various controllers in presence of disturbances in plasma
position

logic bus. The proposed DFLC can suitably replace existing controllers in a process plant

that confirms the generic nature of the designed DFLCs. The applicability of the proposed

method was also tested by applying it to a benchmark problem. The results portrayed a

proof-of-concept for the objectives that were set in chapter 1. The observation obtained

from this system was exciting as it provided around 60% faster rise time and around 80%

speedy settling time in comparison to existing control schemes. These results are extremely

positive and encouraging.

81

Chapter 4

Tunable Type 2 Fuzzy Logic Controller
with Successive Approximation based

Membership Function

3

Preface
In this Chapter, the Type 2 fuzzy system with dynamic digital type 2 fuzzifier, using a
successive approximation is presented. The hardware implementation of the proposed Type
2 FLC is characterized by online tunability, choice of rule reduction technique, and partial
rule base support. The Successive Approximation based Iterative Type 2 Fuzzy Logic
Controller (SAIT2FLC) is observed to have a cycle time of 267.9 ns i.e., 3.7 MFLIPS for 2
input 4 rule IT2FLC system. A UART interface is proposed for the communication between
MATLAB IT2FLC GUI and Virtex LX110TFPGA for system level testing. In this chapter,
the proposed SAIT2FLC is used to control the radial plasma position in Aditya TFTR.

3

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

4.1 Introduction

When something is uncertain, as a measurement, it’s hard to determine its exact value and

of course, type 1 fuzzy sets make more sense than using crisp sets. However, it is not

reasonable to use an accurate membership function, if the fuzzy rules are uncertain. Such

uncertainty leads to rules, whose antecedents or consequents are uncertain, which translates

into uncertain antecedent or consequent membership functions [133]. In this case, we need

another type of fuzzy sets to handle these uncertainties called type 2 fuzzy sets. Iterative

Type 2 Fuzzy Logic Controllers (IT2FLC) [134, 135] with its membership functions in type

2 fuzzy sets [136, 137] can handle rule uncertainties (characterized by more parameters) than

their predecessors Type-1 Fuzzy Logic Controllers (T1FLC) [138]. In IT2FLC uncertainties

are accommodated by using Upper Membership Function (UMF) and Lower Membership

Function (LMF) of two type 1 fuzzy sets [4], called Footprint of Uncertainty (FOU). There

have been many applications that have shown that IT2FLCs perform well compared to its

predecessor T1FLC and some traditional controllers.

Type 2 Fuzzy Logic Controller (T2FLC) implementations in hardware have been of

current research interest [139–142] with different control applications [143, 144]. There are

analog, digital, and microprocessor based T2FLCs implementation in literature [145–147].

In these implementations, there has been limited discussion on the design aspects of type 2

fuzzifier, especially, digital type 2 fuzzifier. Usually, fuzzification is implemented either by

software or by Look-Up-Table (LUT) method. The first method, in general, is not suitable

for real-time applications, and the latter is not appropriate considering its computational

complexity. The other competing method for hardware realization is to compute membership

function by using arithmetic circuits. This approach is characterized by complexity that is

being related to the type of membership functions. Triangular and Trapezoidal membership

functions are computationally secured than other membership functions because of their first

order polynomial implementation. Hence, these two types of membership functions have

been used to realize in hardware.

Analog implementations have been implemented by different designs methodologies,

Where A. Mesri et. al. [148] presented a fully programmable IT2 membership function

generator using slope tuning method. By getting required current biasing from the voltage

to current converter, the membership function was developed by K.P. Abdulla et. al. [149].

However, the analog nature of these circuits limit the accuracy of the fuzzifier, and it also

83

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function
needs extra circuits like A/D and D/A converters. In these circumstances, an improved digital

fuzzifier serves better with its advances in digital implementations using reconfigurable

hardware.

In this chapter, a hardware implementation of type 2 fuzzifier using successive

approximation is proposed; the parameters can be tuned and configured by the upper layer.

This fuzzifier supports trapezoid and triangular membership functions with nine parameters

represented by P1, P2, P3, P4, P5, P6, P7, P8, and P9 points as shown in Figure 4.3b. We

choose 16-bit Word Length (WL) in this design to acquire good accuracy. Since the inference

mechanism in T2FLC and T1FLC are similar, it is applied here the same rule reduction

methods and special case rule support of rule base as in section 3.4.1. The significant

hardware complexity involves in T2FLC is in its type reduction stage than the T1FLC. The

popular Karnik-Mendel (KM) [150] iterative method is used extensively by researchers in

the fuzzy domain. Due to its iterative nature, its hardware realization is complex with high

computational cost. Its design consumes lot of resources in FPGA implementation. The

primary objective of defuzzification is to find a unique output value following the inference

graph. So, it only demands that there must be a relation between the shape of the inference

graph and the defuzzified value. If there is a method other than the classic centroid methods,

providing satisfactory results than KM method can be used as type reducer. One such method

is Wu-Mendel (WM) [151] closed form method. In this work, the proposed Wu-Mendel

(WM) [151] type reduction method has been adopted and implemented in hardware. The

proposed reduced active rules applied on this method to obtain the crisp output.

4.2 Type 2 Fuzzy Logic Systems - An Overview

4.2.1 Type 2 Fuzzy Sets

An example of a type-2 fuzzy set Ã is shown in Figure 4.1, where the membership of type-2

fuzzy set is an interval. The concept of a type-2 fuzzy set was introduced by Zadeh [152]

as an extension of the concept of a type-1 fuzzy set. A type-2 fuzzy set is characterized by

a fuzzy membership function, i.e. the membership grade for each element of this set is a

fuzzy set in [0, 1], unlike a type-1 set, where a membership grade is a crisp number in [0, 1],

type-2 fuzzy sets can be used in situations, where the uncertainty in the shape of membership

function or some of its parameters. In real world problems, it can be considered type 1 fuzzy

set as first order approximation and type-2 fuzzy set as second order approximation.

84

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.1: Type 2 Fuzzy Set

A type-2 fuzzy set denoted as Ã, is characterized by a type-2 membership function:

Ã = ((x, u), µÃ(x, u))|∀xϵX, uϵJx ⊆ [0, 1] (4.1)

Here 0 6 µÃ(x, u)) 6 1, in fact Jx ⊆ [0, 1] represents the primary membership of x and

µÃ(x, u)) is a type 1 fuzzy set known as a secondary set [153]. Hence, a type-2 membership

grade can be any subset in [0,1], the primary membership. Corresponding to each primary

membership, There is a secondary membership (which can also be in [0, 1]). Uncertainty

is represented by a region, which is called the footprint of uncertainty (FOU). An upper

membership function and lower membership functions are two type-1 membership functions

that bound for the FOU of a type-2 fuzzy set Ã. The upper membership function is associated

with the upper bound of FOU(Ã) or Ā. The lower membership function is associated with,

the lower bound of FOU(Ã) or A.

4.2.2 Type 2 Fuzzy Set Operations

To compute the union, intersection, and complement of type-2 fuzzy sets, it needs to extend

the binary operations of minimum (or product) and maximum, and the unary operation of

negation, from crisp numbers to type-1 fuzzy sets, because at each x, µÃi(x, u) is a function.

Consider two type-2 fuzzy sets Ã1 and Ã2, i.e.,

Ã1 =

∫
x

µÃ1
(x)/x (4.2)

Ã2 =

∫
x

µÃ2
(x)/x (4.3)

85

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function
The union of Ã1 and Ã2 is another type-2 fuzzy set and is named as “join” operation [154].

More formally, has the following expression.

Ã1 ∪ Ã2 =

∫
xϵX

µÃ1∪Ã2
(x)/x (4.4)

The intersection of Ã1 and Ã2 is another type-2 fuzzy set and is named as ”meet” operation

[154]. More formally, has the following expression:

Ã1 ∩ Ã2 =

∫
xϵX

µÃ1∩Ã2
(x)/x (4.5)

The complement of set Ã is another type-2 fuzzy set, just as the complement of type-1 fuzzy

set A is another type-1 fuzzy set. More formally has,

Ã
′
=

∫
x

µÃ
′ (x)/x (4.6)

4.2.3 Type 2 Fuzzy Logic Controllers

The primary structure of type 2 fuzzy logic system does not change from type 1 fuzzy logic

system since the core principles of fuzzy logic are independent of the nature of membership

function. The rule of inference like generalized modes pones continuous to apply. The

general structure of type 2 FLC is shown in Figure 4.2. Here, the significant structural

difference is the defuzzifier block in type 1 FLC is replaced by output processing block,

which consists type reduction followed by defuzzifier. Hence the type 2 FLC comprises the

following two extra modules:

i. Type Reducer: This module converts output inference engine, which is type 2 fuzzy sets

into type 1 fuzzy sets.

ii. Output Processor: It consists of Type reducer followed by defuzzifier.

4.3 Successive Approximation Type 2 Membership
Function

This section analyzes the digital type 2 fuzzifier shown in Figure 4.3b is described. Where,

the values of the fuzzifier output are considered in 16 bit, here ‘1’ is represented as FFFFH

since maximum fuzzifier value is FFFFH. The Type 2 fuzzifier’s basic operation is shown

86

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Crisp Input
A/D Convereter

Output Defuzzifier
(Fuzzy to Binary)

Type Reducer

Output Processor

D/A Convereter
Crisp Output

Type-reduced Set
(Type 1)

Input Fuzzifier
(Binary to Fuzzy)

Fuzzy Rule-Base

Inference
Engine

Figure 4.2: An Interval Type 2 Fuzzy Set

in Figure 4.4. It can be observed that two fuzzifications happen simultaneously from

upper and lower membership functions with subtractions and divisions. It is observed that

the UMF calculation is similar to type 1 fuzzier (shown in Figure 4.3a) and provides

the membership value ≤ 1. For LMF calculation, a slight modification in the design

is incorporated by multiplying height (point P9) with fuzzy calculated value. The basic

operations of fuzzification are integer subtraction and division as depicted in (2.1). Since

division is evolved in fuzzification, implementing high speed and the accurate divider is the

major concern in type 2 fuzzification.

Implementation of division algorithm had an extensive literature, where digit recurrence

[155–157], functional iteration [158, 159], non-restoring [160, 161], very high radix [162],

newton raphson approximation [163], variable latency [164, 165] and table look-up [166,

167] are some of the implementation techniques. These are well-known implementations

with their advantages with low latency, less cycle time and the support for negative

integer numbers. Pipelining had been used at the cost of an area to reduce latency in the

division algorithms. Using one of these methods to implement a fuzzifier is usually not

preferred because of their computational complexity such as radix operations, conversion of

a negative digit to binary forms and the usage of underlying multipliers. A simple successive

approximation divider is proposed in this chapter to calculate membership values considering

the following limitations in fuzzification.

1. The denominator (dividend) is always less than the numerator (divisor)

2. Unsigned integer division.

3. Both dividend and divisor have an equal number of bits.

Considering the above limitations as an advantage, this chapter proposed a simple

division algorithm, especially for fuzzification purpose. The algorithm for a 2n radix runs

87

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

(a) 4 point representation of Type 1
Fuzzifier for one group of membership

(b) 9 point representation of Type 2 Fuzzifier
for one group of membership

Figure 4.3: Trapezoidal Type 1 and Type 2 Fuzzifiers

in following steps:

Step 1: Load initial values of dividend and divisor to the divider input.

Step 2: Segregate divisor in to n regions (Equally) as depicted in Figure 4.5, Where, Figure

4.5a presents the segregation of eight equal regions in Left Shoulder Left Foot (LSLF)

and Figure 4.5a presents the segregation of eight equal regions in Right Shoulder

Right Foot (RSRF).

Step 3: Compare the dividend value with each region. Assign the region index values at

Y-Axis of Figure 4.5a to the 3 bit MSB of quotient value.

Step 4: Subtract the regions lower bound value from divisor and dividend. Left shift 3 times

and assign the new region index value to the 3 bit MSB of quotient value.

Step 5: Repeat ‘Step 2’ for newer values of divisor and dividend as given in Figure 4.6.

Where, the input at the region 3/8th of input value to 1/4th of the input value is

expanded for further iteration.

Step 6: Repeat the steps from ‘Step 2’ to ‘Step 5’ until a proper precision is reached.

Step 7: Assign final quotient value with appropriate enable signal for validating its usage in

next module.

Figure 4.7 presents the digital logic circuit implementation of membership circuit. This

system consists of the priority encoder, subtractor, edge detector, shifter and a multiplexer.

In this design, the membership values use 16 bit representation, where the values of “0000H”

= 0 and “FFFF” = 1 with precision of 0.0000152. ‘Shift+ Add’ module generates eight

88

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.4: Basic operation of Type 2 Fuzzification

regions from divisor. ‘Comparator + Subtractor’ module compares the dividend value with

in each region and subtracts its lower bound from divisor and dividend. ‘Membership Values

Generator’ generates quotient by using shift operation. Multiplexer selects and places the

newly made dividend and divisor values. The counter controls the precision of the output.

The circuit models of lower and upper membership functions are depicted in Figure 4.8

and Figure 4.9 respectively. In these circuits the comparator compares the input to find its

membership value from following 5 cases:

Case 1: If the input value is less than UMF and LMF left foot, the circuits result in zero

membership value.

Case 2: If the input value is between the UMF left foot and UMF left shoulder or LMF left foot

and LMF left shoulder, The comparator selects InputX-P5, P6-P5 values as dividend,

divisor values for UMF circuit and InputX-P1, P2-P1 values as dividend, divisor

values for LMF circuit.

Case 3: If the input value is between the UMF left shoulder and UMF right shoulder or LMF

left shoulder and LMF right shoulder, the membership value is taken as ‘1’ in the case

of UMF Circuit and P9 in the case of LMF Circuit.

89

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

(a) Left Shoulder-Left Foot (b) Right Shoulder-Right Foot

Figure 4.5: Basic function of membership circuit

Case 4: If the input value is between the UMF/LMF right shoulder and UMF/LMF right foot,

the comparator selects P8-InputX, P8-P7 values as dividend, divisor values for UMF

circuit and P4-InputX, P4-P3 values as dividend, divisor values for LMF circuit.

Case 5: If the input value is greater than UMF right foot or LMF right foot, the circuits result

in zero membership value.

The top-level block of type 2 fuzzifier with successive approximation based upper

and lower memberships is given in Figure 4.10. Where, the LMF circuit uses extra

input to accommodate point P9. Internal digital structure of Interval Type 2 Successive

Approximation based Higher Membership Function (IT2SAHMF) and Interval Type 2

Successive Approximation based Lower Membership Function (IT2SALMF) are presented

in Figure 4.8 and Figure 4.9 respectively. Where, membership circuit is used as a divider

to support Case 2 and Case 3.

4.4 Tunable Type 2 Fuzzy Logic Controller

4.4.1 Digital Architecture

This section presents the architecture of Type 2 FLC for hardware implementation. Similar

kind of interface as discussed in section 3.4.2 is established using the UART module to

configure the Type 2 FLC from MATLAB GUI. The top level architecture of SAIT2FLC

is presented in Figure 4.11. Where, the proposed successive approximation based type 2

90

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.6: Algorithm flow of successive approximation

Figure 4.7: Design of membership circuit module

91

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

P1

P2

P3

P4

Comparator

InputX-P1

P4-P3

P4-InputX

P2-P1
2X1
Mux

ItComp3

ItComp4

ItComp2

ItComp1

Dividend

Membership
Circuit

Divisor

InputX
Sel

Sel

2X1
Mux

MFEn

P5
X

2X1
Mux

OutEn Edge
Detector

Out

MFOut

MFOutEn

'0'

Figure 4.8: Circuit Model of Lower Membership Function

Figure 4.9: Circuit Model of Upper Membership Function

92

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.10: Type 2 Fuzzifer Block

Figure 4.11: Top Level Architecture of Type 2 FLC

93

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.12: Type 2 FLC Memory Map to support different user configurations

fuzzifier is connected four times (one time to each of four inputs) to support four inputs,

and its design details were presented in section 4.3. The proposed finite state machine

in section 3.4.1 is used to act as control unit as well as to support partial rules. The rule

driven circuit discussed in section 2.5 is reused in ‘ReduceRuleAddress Generator’ module

to reduce rules from the methods MRA-2OMF, MRA-3OMF and MRA-4OMF methods

based on users choice. All parameters received from GUI are extracted and stored into the

memory map of Figure 4.12 as its internal registers. This memory map supports 16-bit

variable and provision has been made for the user by parameterizing the data and address

widths. The depth of memory in Type 2 FLC ranges from 44 bytes to 27994 (Approx. 28K)

bytes. The values here are calculated by taking one input, one rule, one output configuration

to four inputs, 2401 rules, and two output configurations. Here, the process of Type 2 FLC

starts its operation by configuring Input Enable (IE) and Rule Enable (RE) signals.

94

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function
4.4.2 Tunable Parameters

From Figure 4.12 for a 16-bit depth memory map the 01H to (D + 6 * No of Rules + 4)H

address location (Here ‘D’ is the variable, which ranges from 0EH to 16EH for different

input configurations) is set for fuzzy parameters where,

a. The parameter NO (Number of Outputs) is a single bit value to support maximum

configurable outputs as 2. Value ‘0’ for a single output and ‘1’ for two outputs.

b. The parameter NI (Number of Inputs) is a 2-bit value to support maximum

configurable inputs as 4. Value ‘00’ is used for single input, ‘01’ for two inputs, ‘10’

for three inputs and ‘11’ for four inputs.

c. The parameter NMI1, NMI2, NMI3, and NMI4 (Number of Membership Functions)

relates to a number of membership functions for input 1, input 2, input 3, and input 4.

NMO1 and NMO2 relate to a number of membership functions at the output for output

1 and output 2. These parameters are of 3-bit value to provide maximum configurable

MFs of 7 to support full four inputs two output system. Value ‘000’ is used for single

MF, ‘001’ for 2 MFs, ‘010’ for 3 MFs,‘011 ’for 4 MFs, ‘100’ for 5 MFs, ‘101 ’ for 6

MFs, and ‘110’ for 7 MFs are used.

d. The parameter NR (Number of Rules) is an 8-bit value to support maximum 256

configurable rules.

e. The parameters INPUTX1, INPUTX2, INPUTX3, and INPUTX4 are crisp input data.

f. The parameter MFXYP1, MFXYP2, MFXYP3, MFXYP4, MFXYP5, MFXYP6,

MFXYP7, MFXYP8, and MFXYP9 are Type 2 fuzzy points. Where, X denotes the

Membership index number (1 to 7), and Y (1 to 4) indicates the corresponding input

number.

g. Each rule consumes six words with the corresponding index numbers of consequents

and type 2 antecedents in the fuzzy rule base.

h. Wu-Mendel based output processing unit provide 32 bit value for yl and yr .

95

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function
4.4.3 Inference Engine and Type Reducer

The implementation of inference mechanism is simplified by reading rule base data from rule

base RAM, with reduced rule addresses and places them in yl and yr array registers. A set

of minimum blocks is used to find the effective consequent parts in xl and xr registers. The

array sizes of these registers are 4, 8, and 16 for number of inputs 2, 3, and 4 respectively.

The Wu-Mendel closed form method [168] finds the bound sets for the interval type 2

fuzzy logic controller. The calculation was performed with closed form expressions. Here,

closed form suggests there is a limit or one can say a finite number of steps for the calculation.

Unlike KM algorithm, which keeps on iterating until it gets the switch points, here, the

outputs are bound set, and these are not the type reduced sets as KM method. The bound set

gives the footprint of uncertainty for that particular output. Finally KM’s method gets yl and

yr and average of these two provides the defuzzified value y. But WM method, provides

a range for yl as [yl, ȳl] and a range for yr as [yr, ȳr]. The physical significance of these

intervals is that they provide the region in which probability of finding yl and yr is maximum.

Taking advantage of these, the average of these the left and right foot point of uncertainty

yl and ȳl for yl , yr and ȳr for yr can approximate yl and yr. These approximate values

can provide satisfactory results while saving hardware resource in terms of time and silicon

space.

Mini-max uncertainty bounds can express the Wu-Mendel Algorithm [168]. These

uncertainty bounds are defined as,

Step1:

y
(0)
l (x) =

∑N
i=1 x

iyil∑N
i=1 x

i
(4.7)

y
(m)
l (x) =

∑N
i=1 x̄

iyil∑N
i=1 x̄

i
(4.8)

y(0)r (x) =

∑N
i=1 x

iyir∑N
i=1 x

i
(4.9)

y(m)
r (x) =

∑N
i=1 x̄

iyir∑N
i=1 x̄

i
(4.10)

Step2:

ȳl(x) = min(y
(0)
l (x), y

(m)
l (x)) (4.11)

yr(x) = min(y(0)r (x), y(m)
r (x)) (4.12)

96

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.13: MATLAB GUI to configure hardware Type 2 FLC

Step3:

yl(x) = ȳl(x)−

[∑N
i=1(x̄

i − xi)∑N
i=1 x̄

i
∑N

i=1 x
i
×

∑N
i=1 x

i(yil − y1l)
∑N

i=1 x̄
i(yNl − yil)∑N

i=1 x
i(yil − y1l) +

∑N
i=1 x̄

i(yNl − yil)

]
(4.13)

ȳr(x) = yr(x)−

[∑N
i=1(x̄

i − xi)∑N
i=1 x̄

i
∑N

i=1 x
i
×

∑N
i=1 x̄

i(yir − y1r)
∑N

i=1 x
i(yNr − yir)∑N

i=1 x̄
i(yir − y1r) +

∑N
i=1 x

i(yNl − yil)

]
(4.14)

Step4: [
ȳl(x), yr(x)

]
, Inner Bounded Set (4.15)[

yl(x), ȳr(x)
]
,Outer Bounded Set (4.16)

yl(x) ∼=
ȳl(x) + yl(x)

2
(4.17)

yr(x) ∼=
ȳr(x) + yr(x)

2
(4.18)

y(x) =
yl(x) + yr(x)

2
(4.19)

4.5 Results and Discussion

In this section, the proposed type 2 fuzzy system based on successive approximation interval

type 2 fuzzifier is compared to existing type 2 hardware IT2FLCs for performance analysis.

97

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.14: Functional simulation result of Successive Approximation Division method

Figure 4.15: Functional simulation result of SAIT2FLC

98

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function

Figure 4.16: Simulink model of radial plasma position control in Aditya TFTR with FLC
and SAIT2FLC

Table 4.1: Comparison of performance parameters of FLC [1], and DFLC with MRA2-OMF,
SAIT2FLC with MRA2-OMF,MRA3-OMF,MRA4-OMF

Parameters FLC [1] DFLC
(MRA-2-OMF)

SAIT2FLC
(MRA-2-OMF)

SAIT2FLC
(MRA-3-OMF)

SAIT2FLC
(MRA-4-OMF)

Rise Time 0.0025 0.0023 0.0021 0.0019 0.0018
Settling Time NaN 0.0249 0.0177 0.0169 0.0162
Overshoot 0 0 0 0 0
Undershoot 0 0 0 0 0
Peak 0.7483 0.7492 0.7493 0. 7493 0.7494
Peak Time 0.02 0.0235 0.018 0.017 0.016

The tunability of this FLC is evaluated by testing with different test vectors using MATLAB

GUI presented in Figure 4.13. Figure 4.14 shows the functional simulation of successive

approximation division with the latency of 9 clocks. The latency and cycle time for various

hardware implementations of Type 2 FLC is presented in Table 4.3. From the analysis it is

seen that the proposed method works efficiently with less latency. Figure 4.15 illustrates the

functional simulation of Type 2 FLC output on UART SEROUT port for external interface

reading. An experiment was conducted for evaluating the performance of this FLC using

the radial position control of a plasma column in Aditya TFTR. Its system modelling and

simulink model were discussed in section 3.7. UART is used for serial communication

to establish data exchange between SAIT2FLC and Simulink. Using Manual switches,

simulation of all controllers were carried out sequentially as shown in Figure 4.16. A

comparison of control performance of the proposed SAIT2FLC with MRA2-OMF method

99

(a) Input Disturbance Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.734

0.736

0.738

0.74

0.742

0.744

0.746

0.748

0.75

0.752

0.754

Time(seconds)

P
la

nt
 O

ut
pu

t

FLC designed by P. Suretia et. al.
DFLC with MRA2OMF Method
Proposed SAIT2FLC with MRA2OMF Method

(b) System Response

Figure 4.17: Performance of various controllers in presence of disturbances in plasma
position

and DFLC with MRA2-OMF proposed in section 2.5 is plotted in 4.17 and their control

parameters are tabulated in Table 4.1. In Table 4.2, the logic utilization and latency

comparison of two methods are shown. From these tables, it can be observed that SAIT2FLC

hardware has an improvement in control parameters with 8% faster rise time and 28% faster

settling time at the cost of chip area and latency compared to DFLC. SAIT2FLC consumes

more DSP48E slices to support multiply accumulation operation in type 2 output processing.

This architecture also consuming more clocks to finish type reducer task resulting 37%

slower speed in FLIPS when comparing with DFLC MRA2-OMF design.

Chapter 4
Tunable Type 2 Fuzzy Logic Controller with Successive Approximation based Membership

Function
Table 4.2: Hardware Implementation: Comparison of proposed method SAIT2FLC with
DFLC

Proposed Methods BRAM utilized DSP48Es LUTs Cycle Time Latency32K 18K
DFLC with MRA2-OMF 0 1 2 2327 6.608 ns 99.12 ns
DFLC with MRA3-OMF 0 1 3 2551 6.754 ns 101.31 ns
DFLC with MRA4-OMF 0 1 3 2618 6.913 ns 103.695 ns
SAIT2FLC with MRA2-OMF 1 1 25 8724 8.129 ns 267.993 ns
SAIT2FLC with MRA3-OMF 1 1 28 9413 8.513 ns 280.652 ns
SAIT2FLC with MRA4-OMF 1 1 28 9881 8.605 ns 283.685 ns

Table 4.3: Performance of Successive Approximation Based Type2 FLC with other methods

Year Type 2 Fuzzifier Method Cycle Time Latency
2003 G. Louverdis et al. [169] 15 ns 1665 ns
2004 Melgarejo et al. [170] 29.789 ns 1026 ns
2014 Schrieber et al. [171] 20 ns 460 ns
* Proposed SAIT2FLC 8.129 ns 267.993 ns

4.6 Summary

In this Chapter, a FLC based on type 2 fuzzifier with successive approximation technique is

presented. In this system, for a 16 bit fuzzy process the fuzzifier took nine clock cycles each

with 8.129 ns cycle time and provided latency of 73 ns. This time is very low compared to

other division algorithms used in type 2 fuzzifier. The overall speed of SAIT2FLC reached

3.7 MFLIPS. Even though the SAIT2FLC has an improved control performance, the major

drawback of this design is the complexity of the design and silicon area. Latency of the

system is another drawback as the SAIT2FLC worked with higher latency of 267.993 ns

compared to DFLC with 99.12 ns for ADITYA TFTR problem. The next chapter deals with

the rule base optimization with Genetic Algorithm (GA) to reduce the complexity and latency

of DFLC on FPGA platform.

101

Chapter 5

FPGA Implementation of Genetic
Algorithm (GA) based Rule Optimized

Fuzzy Logic Controller

3

Preface
In this Chapter, a self-tuned rule-optimized Multi-Input and Multi-Output (MIMO) FLCs is
implemented on FPGA. The design of membership functions in the rule base is made with the
aid of Genetic Algorithm (GA). Flexibility in FPGA design is implemented through tuning
of FLC parameters. The system is modularized as rule base development, rule base transfer
and computations on FPGA. Based on the system, an experimental dataset is obtained, which
is utilized in a capable computing platform so as to develop a fine-tuned fuzzy rule base. The
synthesized rule base is transferred to FPGA along with the user-provided inputs through a
GUI. The GUI also displays the output result sent by FPGA. The communication between
the GUI and the FPGA is achieved via UART. The proposed FLC is implemented on Xilinx
Virtex-5 LX110T board. This dedicated single chip architecture performs high-speed fuzzy
inferences with processing speed up to 9.88 MFLIPS at a clock frequency of 247MHz
using eight rules for two input variables with 16-bit resolution. Experiments of software
implementation and hardware software co-design implementation shows encouraging result.

3

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

5.1 Introduction

Fuzzy logic controllers (FLC) have immensely contributed to the industrial sector as a

powerful tool to solve complex and non-linear control problems. Fuzzy logic, being the

mathematical emulation of human reasoning, are developed by human intelligence, which

have helped in designing intelligent control systems with advanced features in handling

environmental changes and system level faults.

As discussed earlier in the thesis, FLC are designed by taking crisp inputs from the

user, and they perform complex mathematical computations to provide the output. The

entire design constitutes of mathematical computations, which are difficult to synthesize

practically. As they have potential for large error even with the best of the design

implementations. The classical theory of fuzzy logic has failed to develop the systems

thoroughly and efficiently for increased number of variables, conditions and become less

powerful with the requirement of MIMO systems. To avoid any such problems in the

design systems having accessible user interfaces with the availability of input-output data,

intelligent mechanisms to work out the rule base can be used. Some of the design

methodology include neural networks, regression, evolutionary algorithms, etc. [172–174].

In this Chapter, fuzzy systems are first trained with known input-output results and then

tested for new input conditions.

A number of FLCs have been designed with intelligent techniques [175–178] for

different application. But the designing of these controllers requires a thorough knowledge

of the controlled process. FLCs are designed based on human intelligence, i.e. by the experts.

Most of these processes are non-linear and depend on a large number of parameters, which

results in the rigorous mathematical representation of the process. It is tough to incorporate

each of the parameters while designing the FLC. This Chapter discusses methods to create

optimized fine-tuned rules to an FLC on hardware. The designed fuzzy system has potential

to reduce the level of complexity in terms of chip area and speed.

This Chapter elaborates designing of an optimized FLC using Genetic Algorithm (GA).

The FLC proposed extracts tuned rule base automatically by analyzing the training data set

alone, making the design superior where,

i. Human knowledge brimming with possibilities of error is relied upon to make the

decision-making process.

103

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
ii. Enough prior knowledge is required for decision making.

iii. Many conditions are to be checked to design the system, which cannot be done

manually, hence prone to error.

iv. Solution to the system must be designed with transparency to non-experts.

FLC design is normally an offline process, so the system is tuned before use. Some of

the techniques used to train FLC are discussed here: H. Nomura [179] reported a self-tuning

method for fuzzy inference rules, employing a descent method for TS fuzzy rules with

constant outputs and isosceles triangular MFs. Y. Glorennec [180] presented an adaptive

controller using fuzzy logic and connectionist methods. Whereas, Siarry et al. [181] used

the gradient descendant method for optimizing TS rules with symmetric and asymmetric

triangular membership functions (MFs) proposing the ‘centered TS rules’ for avoiding a

particular class of local minima. O. Cordon et al. [182] used real coded GA with some

genetic operators for tuning the membership points. Similarly GA for designing an adaptive

FLC has been attempted by many researchers [183–185]. These works analyzed several

attributes for the rule base generation for FLC development, but the number of rules increases

exponentially with the increase in the number of considered attributes. For example, in a

2-input system, if the number of attributes per input is 4, then total number of rules will be

42 = 16, For 3-input and 4 attributes system, it will be 43 = 64. So with increased number of

inputs and corresponding attributes the number of rules becomes very high, which results in

computational complexity and memory complexity. But in the present designing principle,

it is proposed to reduce rules with required efficiency level. The facility of FLCs to capture

the automatic learning from data and render it into a rich control strategy without the need of

mathematical model of the system or expert knowledge is the key advantage of the proposed

design.

The mathematical model of the system under control has led to a significant increase in

the number of control applications in the last fifteen years [172, 186]. This has also propelled

the development of different approaches to implementing fuzzy inference systems. These

strategies range from completely software or hardware solutions or mix of two. This chapter

considers a hybrid realization, which allows fair trade-off between flexibility and inference

speed [187, 188]. Hybrid strategies require software task execution and fixed hardware to

execute complex, time-consuming tasks, usually the Fuzzy Inference Process (FIP) [189].

104

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
Many hardware solutions choose FPGAs for their advantages discussed in section 2.1.

Chekired et. al. [190] implemented FLCs on FPGA, where they used fixed rule base structure

and hence give lower FLIPS (Fuzzy Logic Inferences Per Second).A. Messai et. al. [191]

developed genetic algorithm based FPGA design of Maximum power point tracking system.

Here, the design is optimized with 25 rules for 2-input 1-output system, and the design

operated at a maximum frequency of 97 MHz, which eventually resulted in to high cycle

time or low FLIPS. The proposed generalized FLC with optimized rule base implementation

on FPGA is well suited to the applications, where cycle time of the system is very less.

Generally, software level design has advantage over hardware level design for validating

multiple conditions, handling add-in functionality of the system and easy of configurability.

Hardware typically provide faster functionally superior to software owing to processing of

high volume of data. With current technology the software can be embedded in memory

circuits, thereby providing hardware-software co-design. Through in this type of design

principle, the overall system has higher performance of hardware also provides smooth

designing and reprogrammable capability of software. This co-design can be made possible

with the development of high-performance processor core, embedded memory circuits and

faster communication technologies between hardware and software.

Hardware/software co-design principle for the fuzzy system designing has been

discussed here. The chapter also includes hardware direct interaction with the user interface

(PC), communication and computing in FPGA along with serial communication through

UART.

5.2 System Architecture

The proposed system architecture for GA based FLC on FPGA using software- hardware

co-simulation is presented in Figure 5.1. The training data set is prepared from the

experimental observations of the system is provided to the computer. The training data sheet

is used to extract the initial rule base and then optimized it using GA. Accuracy of the rule

base depends on the distribution of data points in the data sheet over the total system range

of application.

Once the rule base is designed, the parameters of the rules, which include input variables

and control information are sent through serial communication protocol like RS-232 of the

computer. The UART module on the Xilinx board receives the rule base and saved in the

105

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.1: System Architecture of GA-FLC on FPGA

dual port block RAM on the FPGA through its Port A. This completes the initialization of

the rule base at the hardware level. Following this for testing purpose input parameters of a

data point are taken through a GUI to the computer and are sent serially to the Xilinx board.

All the rules, input values, control information, are read from port B of the dual port RAM,

which initializes the fuzzy inference processing hardware to receive the desired crisp output.

This value is again transferred serially back to the computer for display on the GUI. The

memory address map and control information of dual port RAM is shown in Table 5.1. All

the parameters here are considered in fixed point notation Q8.8 for simplicity in hardware

implementation.

In the hardware, the core is divided into two sections (a) software section and (b)

hardware section. The software section is executed in the Computer (PC) for the designing

and tuning of the rule base and the hardware section is implemented on the FLC executed on

the XUPV5LX110T board in real-time. The specification of the FLC proposed to be built in

this work is as follows:

a. No of Inputs : 4

b. No of Outputs: 2

c. Shape of Membership Function: Triangle

d. Number of fuzzy sets per input and output variables: 7

e. Resolution of membership values: 16 bit

f. Implication Model: Mamdani

g. Aggregation Model: Mamdani

106

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
h. No of rules field programmable

i. Configurable on the field by GUI application

The entire system design can be subdivided into following stages:

• Rule base extraction using GA

• GA optimized rule transmission through UART to FPGA

• Hardware architecture of FLC in Virtex5 LX110T FPGA.

All the above stages of design are discussed in the following sections.

Table 5.1: Memory Space

Address Access Name Description
000H-001H Read/Write CTRLREG Control register for software and

hardware updation
001H-221H Read RULEBASE Based on the number of rules, the

address range is varied within this
address.

222H-225H Read/Write INPUTVAL Address to store input variables in
16 bits

226H-22AH Write CRISPOUT To store Final Crisp output

5.3 Rule Base Extraction

The most important step in designing an FLC involves rule base extraction. The rules in a

rule-base can be optimized either using expert’s knowledge of the process or by using the

available experimental dataset of the process. The later approach automatically learns the

process attributes without relying on the expert’s thorough process understanding.

Rule extraction is achieved through algorithms like Fuzzy C-Means (FCM) [192, 193],

Hard C-Means (HCM) [194, 195], K-Means algorithms [196, 197] etc. In this work,

K-Means clustering algorithm to design the initial rule base is used. The number of clusters

equals the number of rules in the rule base. After fixing the number of rules as per the

requirement, clustering is applied to generate rules out of the dataset at each run.

Following this process, GA is used to optimize the initial rule base by tuning the centers

and boundaries of each rule. Through several epochs GA evolves to provide more accurate

rule base. The tuning parameters of the GA can be set as per the user’s desired accuracy

level in accordance to system’s memory and time complexity.

107

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
5.3.1 Rule Base Initialization

Initially a number of rule bases equal to the population size of GA is designed. The number

of rules is same for each rule base. K-Means clustering algorithm is then applied to design

each rule base. In order to initialize one rule base ‘c ’ number of data points are chosen

randomly so as to accommodate flexibility in the designing. They are chosen as the initial

cluster centers for each of the clusters. Then, the Euclidean distance of each data point in

the dataset is calculated from each of the cluster centers. The data point is included into a

cluster whose center has the minimum distance from the data point. Thus, all the data points

are distributed among different clusters.

In each of the clusters, the feature wise mean is taken for all the data points belonging to

that cluster, and these mean values are set as the new cluster centers for the particular cluster.

The process is repeated taking the modified cluster centers as the new rule base. This process

is continued till the difference between all the points in the current rule base and the former

rule base remain below a pre-defined threshold. As two consecutive rule bases differ by a

small margin, as set by the threshold, the convergence of the rule bases is ensured. Thus, a

final clustered rule base is generated.

Triangular membership function is chosen as the MF for the designed algorithm. Each

of the points in the rule base forms the center of the corresponding triangular MF. In each of

the final clusters, the feature wise minimum and maximum are selected, which are set as the

two endpoints for the corresponding triangular MF for that particular rule. Let,

C=Number of rules to be designed with a rule base, and 1 ≤ i ≤ c,

n= Number of data points in the data set, and 1 ≤ k ≤ n,

m= Number of features in each data point, and 1 ≤ j ≤ m,

Dk=kth data point in the data set = ⌊Dk,j⌋ = ⌊Dk,1, Dk,2 . . . Dk,m⌋

Ri=ith rule in the data set = ⌊Ri,j⌋ = ⌊Ri,1, Ri,2 . . . Ri,m⌋

Ci=ith cluster,

dk,i = distance of Dk from Ri, i.e. the cluster center Ci

108

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.2: Rule Base Design

Then,

Dk ∈ Ci ⇔
c

min
i=1

√√√√ m∑

j=1

(Dk,j −Ri,j)2

 = dk,i (5.1)

After clustering, if the number of data point in cluster Ci is p. Then rule Ri can be

constructed from Ci by taking the feature wise mean of all data points Dk ∈ Ci, as shown in

Figure 5.2.

5.3.2 A Genetic Algorithm for Tuning of the Rule Base

Real-coded GA has been used for optimization. The GA has been designed to deal with

the situation where, the antecedents and the consequent all are membership functions. The

proposed algorithm has been used for triangular MFs, but it can also be extended to any

other type of MF. The parameters of GA are set as per the design requirements. Figure 5.3

presents the flowchart for GA algorithm used in this work. The steps of GA are explained

below.

5.3.2.1 Step1: Selection

As per the algorithm used in this work the population size has to be even. The clustering

algorithm and initial rule base designing method explained above has been used to generate

initial rule bases for each population. Thus, each population corresponds to one rule base

for which, the total squared error can be calculated for all the data points in the training data

sheet. Here, the objective is to reduce the sum of squared errors.

5.3.2.2 Step 2. Crossover

Sum of squared errors is calculated for each rule base. These are sorted in ascending order,

so the 1st one corresponds to the best rule base, i.e. rule base with the minimum squared

error and the last one with the maximum squared error. The Roulette Wheel technique

109

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.3: Flow diagram showing the GA based optimization of the fuzzy rule base

110

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
is used to select the populations for crossover purpose. The purpose of a crossover is to

generate new children from their parents. In this case, both the parents are rule bases and

crossed-over is used to generate child rule bases. A crossover probability is chosen as a

design parameter. In this work it is chosen randomly between 0 and 1. If the rule value is

less than the crossover probability then crossover is carried out, else no crossover is applied.

The concept of crossover is that the better parent gives best offspring. The total number of

crossovers is limited to population size/2. During each crossover one parent is from the first

half of the population and others from the other half of the population. The corresponding

parent with whom crossover takes place is chosen randomly on Roulette wheel method.

After each crossover, two new children are generated. If no crossover is done between the

two parents then parent parameters are transferred to their children. Thus, the total number

of children produced after crossover of all parents equal the population size. The technique

used for crossover is discussed below.

Crossover is carried out between the two populations, i.e. between two rule bases. For

triangular MFs, only the peaks of the triangles, which construct the rule base, take part in

the crossover process. Suppose the two triangles, which take part in crossover have the base

points given by [a1, m1, b1] and [a2, m2, b2], then d1, d2 are calculated as below.

d1 =
m1 − a1
b1 − a1

, d2 =
m2 − a2
b2 − a2

(5.2)

These d1 and d2 values were then interchanged between the 2 triangles, i.e. the new value

of m1, m2 are

m1 = a1 + d2 ∗ (b1 − a1),m2 = a2 + d1 ∗ (b2 − a2) (5.3)

The end points of the triangle remain unchanged. The shape of membership functions before

and after the crossover is shown in Figure 5.4.

5.3.2.3 Step3: Mutation

Mutation is the process of maintaining genetic diversity from one generation of population

to the next. Here, the newly generated triangles are again modified slightly expecting for

a better rule base. The designer sets a mutation probability and a mutation fraction as a

design parameter. The maximum number of points that can be mutated is equal to mutation

probability times the total number of points. In this case, the triangle centers and the

boundary points were mutated to result in better rule base. The above algorithm includes

111

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.4: Shape of membership functions before and after crossover

that; if the center point of a triangle gets mutated then the boundary points of the triangle

will also get mutated providing a new triangle.

A number is chosen randomly in between 0 to 1. If that number is below the mutation

probability then mutation is applied, otherwise no mutation occurs. The mutation of a

triangle described by the points [a,m, b] is carried out as given below. First the minimum

distance is calculated, i.e. d = min(m− a, b−m). Then a new value of ‘m ’is assumed in

the neighborhood of ‘m ’within a given region,

([m− d] ∗mutationfactor, [m+ d] ∗mutationfactor) (5.4)

Similarly the boundary points of the triangle also get mutated. a and b are assumed within a

region given by,

(a− [m− a] ∗mutationFactor, a+ [m− a] ∗mutationFactor)

(b− [b−m] ∗mutationFactor, b+ [b−m] ∗mutationFactor)
(5.5)

The m value used in updating the boundary points is the old value of m before it is modified.

112

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.5: Reduced Rule Base with GA optimization

5.3.2.4 Step4: Elitism

The total squared errors for all the populations, i.e. for all the rule bases generated before

crossover, after crossover, and after mutation are calculated. The rule bases for the next

generation of GA are chosen from the mating pool, based on the minimum total squared

error, i.e. all the rule bases shorted in ascending order of their total squared error, and the

number of rule bases carried forward to the next generation equals the population size of the

GA. These new populations are again modified through the previous procedure in subsequent

generations resulting in an optimum rule base with a minimum total squared error. The plot

of optimized rule base drawn as in Figure 5.5 for input X1, input X2 and output Y. This

generation process terminates if,

• The number of generations set by the designer is completed.

• The total squared error comes below the required error level.

• The total squared error does not improve over a number of generations.

5.4 Rule Base Transmission

After the rule base optimization, the system parameters are sent through the serial

communication over the UART to the FPGA and vice versa using the Matlab GUI is

presented in Figure 5.6. The transfer of all optimized rules, input values, and control

113

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
information follows fixed point representation; the following points explains the data

representation and a total number of bytes to finish the communication process.

1. The data to be sent is multiplied by 256 i.e. 8 bit left shift in binary value.

2. The obtained result is rounded to nearest integer value.

3. This value is represented in 16 bits Q8.8, Where first 8 bits constitute integer part and

the other bits constitute fractional part format and sent over the UART in chunks of

bytes with higher byte followed by lower byte.

4. Initially control registers are transmitted, which indicates the availability of the crisp

input values and the number of rules, Also initiates the hardware FLC process.

5. The transmission of data points of reduced rules begins in the reverse direction, i.e.

the 1st upper value of the triangle of the rule is sent. Then the center value of the rule

followed by the lower value.

6. Once the first rule is sent over the UART, Following the 2nd rule is sent followed by

the 3rd rule. This sequence is followed till the final rule is sent.

7. After the rule base was sent successfully, High byte of nth crisp input is sent, then its

low byte. All the crisp input values were sent as per the number of input parameters.

8. Total number of Points = No. Of Rules * No. Of Points required to represent each

membership function * (No. Of inputs + No. Of outputs)

9. Total number of bytes to be transferred for parameter initiation is = Total number of

points * 2

10. For examples, let us design a system for 2 inputs and 1 output. Triangular membership

functions are used to design 8 rules in the rule base both for input and output side. 3

points are required to represent each triangle.

11. Total number of data points to be transferred = 8 *3 * (2 + 1) = 72.

12. Total number of bytes (In Q8.8 format) to be transferred = 72*2 = 144.

13. After 144 bytes have been captured, the FLC treats the next pair of bytes as inputs.

That finishes the initiation process.

114

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.6: Designed GUI for FLC using uses MATLAB for rule transmission to FPGA and
computed value received from FPGA

5.5 Hardware Architecture of the FLC

The design goal in this exercise is to enable extraction of synthesized rule base from a

computer hardware platform onto a dedicated hardware platform for the fuzzy system. The

UART is chosen as a communication interface due to its simplicity in design and results in

reduced debugging time. Figure 5.7 shows the hardware block diagram of the fuzzy logic

controller module. The choice of components for the architecture is dictated by the terms

imposed by the HDL as well as the synthesis software. A word size of 16-bits is considered

as the numbers represented in Q8.8 format. The software sends the optimized rule base

followed by the triangular membership functions. Since triangular functions are used, a set

of three points is required to represent each function. The software transmits these points

as a set of two bytes over UART. The membership function points of the rules are stored in

RAM locations after the UART on FPGA has captured the bytes. Following the rule base

extraction, the crisp input values are sent to hardware and are also stored in RAM locations.

115

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.7: Block Diagram of Fuzzy Inference Module

Once new crisp inputs are transferred, the software writes value 0xA3H to RAM location

0x0H, which is the control word as mentioned in Table 5.1. The FLC keeps pooling this

value, after reading 0xA3 the FSM initiates the FLC process. The process ends on computing

crisp output value software acknowledges this compilation by reading 0xA1 data on RAM

location 0x0H. A dual-port RAM is used by ports A and port B interfaced to the UART and

the FLC modules respectively. The Xilinx Core Generator tool is used to generate the core

of the block RAM module. The functionality of dual ports purges bus sharing issues. The

address on port A is set to 0x00 and increments twice for each membership point or crisp

input (2 bytes). Arrival of data over UART triggers address, increment and memory write

operation.

Following this the rule base is ready for inference processing. The address is set to 0x00H

and incremented till it reaches NoOfBytes. Here, control registers are to be read first.

Then the membership function points are read rule by rule. The location NoOfBytes+ 1 to

NoOfBytes+ 4 are used to store crisp output for single output system and NoOfBytes+ 1

to NoOfBytes+ 8 are used to store crisp outputs of 2 outputs system.

No_Of_Bytes = 2 + 2 ∗No_Of_Inputs+ 2 ∗ 3 ∗No_Of_Rules

∗(No_Of_Inputs+No_Of_Outputs)
(5.6)

116

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
For defuzzification, a weighted average method is used considering its simple hardware

structure. Here FLC is designed to evaluate the output rule wise and accumulate them.

It reads the points for the one rule only at a time and computes the output before reading

the next set of points. Finally all defuzzified values are accumulated using an accumulator.

This architecture reduces the logic utilization of the FLC. The proposed Mealy Finite State

Machine in section 3.4.1 is used here to act as control unit and supports partial rules. The rule

driven circuit discussed in section 2.5 is reused in ’ReduceRuleAddress Generator’ module

to reduce rules from the methods MRA-2OMF, MRA-3OMF and MRA-4OMF methods

based on users choice.

Mamdani inference method is used here to implement inference processing. The FIP

module consists of three sub-modules and control logic. There is a 2-byte register file

consisting of 8 registers for storing each rule’s output. A 5-byte accumulator is used for

multiplication and accumulation. The sub-modules include

I. Fuzzification unit for converting crisp quantity fuzzy variable.

II. An inference engine unit to compute overall control output based on individual

contribution of each rule in the reduced rule base.

III. The Defuzzification unit, which converts Fuzzification quantity to the precise quantity.

Figure 5.8 shows the calculation of fuzzified values in hardware by evaluating the crisp

input membership degree using membership functions by:

If Point1 ≤ Input ≤ Point2

µ =
Input− Point1
Point2 − Point1

(5.7)

If Point2 ≤ Input ≤ Point3

µ =
Input− Point3
Point2 − Point3

(5.8)

The max-min composition of the inference model proposed by Mamdani [198] illustrated

in Figure 5.9 and Table 5.2 is applied for hardware realization of inference module. The

inference module outputs are defined by:

µOr1
m1(y) = min[µA1j1(X1), µA2k1(X2)] (5.9)

µOr3
m1(y) = min[µA1j3(X1), µA2k3(X2)] (5.10)

117

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.8: Calculation of membership values

Table 5.2: Rule Base of simple FLC

X1 X2 Rule Y

A1j1 A2k1 r1 Om1

A1j2 A2k2 r2 Om2

A1j3 A2k3 r3 Om1

µOr1&r3
m1 (y) = max{min[µA1j1(X1), µA2k1(X2)],min[µA1j3(X1), µA2k3(X2)]}

(5.11)

µOr2
m2(y) = min[µA2j2(X1), µA2k2(X2)] (5.12)

Instead of a composite output membership function weighted average defuzzification is

used as shown in Figure 5.10 for its simplicity in hardware implementation as it needs only

clipped or scaled output membership functions. This method just takes the peak value of

each clipped or scaled output fuzzy sets and builds weighted sum of these peak values given

by:

Y ∗ =
µOm1 ∗ P1 + µOm2 ∗ P2

P1 + P2
(5.13)

The implemented block diagrams of fuzzifier, inference, and defuzzifier and their top

modules in an FPGA are shown in Figure 5.11. Where, three membership points of

triangular membership function are used as inputs for fuzzifier and defuzzifier modules with

other synchronous signals.

5.6 Validation of Proposed FLC in Practical Systems

At this juncture, it is necessary to implement the proposed algorithm on a programmable

hardware and validate the results. To achieve this, the proposed system is used an Intel

Corei5-2400 3.1 GHz PC with 4GB memory for optimized rule generation with GA and

Xilinx Virtex5 LX110T FPGA for DFLC implementation. DFLC on FPGA is connected to

118

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.9: Process of fuzzy controller

Figure 5.10: Defuzzification

119

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.11: Block Diagrams of Fuzzy inference processing top module and fuzzifier,
inference and defuzzifier.

120

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
Table 5.3: GA-FLC system manual to generate optimized rules for hang data function.

Si No GA-FLC system parameters Value
1 Number of points in the data sheet 800
2 Number of features 3
3 Number of designing rules 12
4 Number of populations used for GA optimization 6
5 GA crossover percentage 0.8
6 GA Mutation percentage 0.3
7 Number of GA generations 1000
8 GA Error threshold value 0.001
9 Samples for integration in defuzzification 1000

the PC using on-board UART and provides a platform, which is capable of accepting Fuzzy

parameter register file to operate as a standalone tunable FLC.

5.6.1 Hang Data Function [2 input 1 output system]

Hang data function is a test case mathematical function with two inputs and one output. The

mathematical representation of the function is given by,

y = {1 + x−1.5
1 + x−2.5

2 }2 (5.14)

where

1 ≤ x1 ≤ 5

and

1 ≤ x2 ≤ 5

We obtained 800 input-output data points by sampling the input range x1, x2∈ {1, 5} . Rule

base had been generated for this test case and it was optimized using GA. Fuzzy rule base

was designed for hang function by generating a training datasheet using the basic relationship

at (5.14). The designed dataset is used for training and tuning of the rule base while using

GA as the tuning algorithm. A list of GA and fuzzy parameters are provided as shown in

Table 5.3, which are considered in the designing of the fuzzy optimized system for Hang

data function. Results before and after optimizations of the rule base are as follows: Total

mean square error for initial rule base = 283 and Total mean square error for final optimized

rule base = 23.

Actual surface plot for hang data function in presented in Figure 5.12a. Figure 5.12b

121

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

(a) Hang Function Surface Plot Signal

(b) Hang function approximation with GA trained
fuzzy system.

(c) Using GA-FLC on FPGA data

Figure 5.12: Hang function approximation with GA trained fuzzy system on FPGA

shows the surface plot of hang data function using GA based rule base optimized system,

where the centroid method is used for defuzzification. The FPGA implemented GA-FLC

based hang data function surface plot is shown in Figure 5.12c, where the weighted average

method is used to reduce the hardware resource consumption for defuzzification. Figure

5.13 presents the comparison of GA-FLC with 8 rules and artificial Neuro-fuzzy Inference

system (ANFIS) with 49 rules that were trained with 10 epochs. From the figure it can be

observed that error generated using the GA-FLC provides better results even though 8 rules

are used as against 49 rules in ANFIS.

5.6.2 Chaotic Time Series [4 input 1 output system]

Chaotic processes are the type of methods, which have got a disordered mechanism of

functioning. These processes have acquired this behavior because of the presence of positive

feedback. The analysis of this sort of processes against time results in a form of a random

time series can be called as chaotic time series. These systems are never entirely predictable;

because of feedback the simulation and the real series will always rapidly diverge.

Let x(t) be a Chaotic Time Series. If t0 = start time, ∆t = time interval, then at time

122

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.13: GA-FLC versus ANFIS error plot

point tk = t0 +∆t ∗ k , (0 ≤ k ≤ n). The Chaotic time series data can be represented as,

X = (x0, x1, ...xn) = (x(t0), x(t1), ...x(tn)) (5.15)

Because of the unpredictability of the chaotic time series, it is not possible to mathematically

model the series in terms of equations. Hence, the objective is to design a data predictive

model T, to predict the value x′
m of the series at time instance tm based on the available data

set, {xk | k ≤ m} such that | xm − x′
m | is as minimum as possible.

GA optimized fuzzy rule base algorithm is used to design the model for chaotic time

series prediction. The chaotic series taken into consideration had ∆t=6 and the prediction is

done with four previous available data set. The mathematical model is:

x(t+∆t) = F [x(t), x(t−∆t), x(t− 2∆t), x(t− 3∆t)]

⇒ x(t+ 6) = F [x(t), x(t− 6), x(t− 12), x(t− 18)]
(5.16)

The parameters chosen for designing of the four input one output GA optimized rule base is

given in Table 5.3, The rule base tested with its real-time data points and the mean square

error obtained for 1000 data points is 5.244 ∗ 10−4. The optimized fuzzy rule base was sent

to the designed FPGA model to predict the data for the same 1000 data points. Comparison

of Plots is given in Figure 5.14a, Figure 5.14b, and the error plot is shown in 5.14c.

123

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

(a) Desired time series data versus GA rulebase predicted
data Signal

(b) GA rulebase predicted data versus GA-FLC on
FPGA

(c) Prediction errors between desired time series data and
GA predicted data

Figure 5.14: Comparative plots between desired time series data, GA rulebase predicted
data, and GA-FLC on FPGA

5.6.3 Plasma Position Control in ADITYA TFTR

Section 3.7 presented the simulink model and system modelling of ADITYA TFTR. The

proposed GA based optimized rule base on FPGA is applied on this simulink model. The

FLC I/O parameters that is considered are,

i. Rp Error : Radial position Error in Range [-0.05,0.05] with 7 Input MFs (Triangular)

ii. Ip : Plasma Current in Range [5e4,8e4] with 7 Input MFs (Triangular)

iii. u : Control Signal in Range [-60,60] with 7 Output MFs (Triangular)

Figure 5.15 shows the simulation of GA-FLC with other models. The simulation data is

used to analyze the control performance. The simulation data is plotted in Figure 5.16 and

observed that the proposed GA-FLC shows an improvement in rise time and settling time

in accordance with PID controller and proposed DFLC with MRA2-OMF method. Table

5.5 presents the comparative analysis of control parameters. It can be observed that the

proposed GA-FLC provides 18% rise time and 31% settling time in comparison to DFLC

124

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.15: Radial Plasma Position Control of Aditya TFTR: HIL Simulation

with MRA2-OMF of section 2.5. Table 5.4 provides FPGA performance parameters of

GA-FLC with other methods. Where, the GA-FLC outperforms the other proposed designs

with its lesser cycle time of 4.06 ns and latency of 60.9 ns with subsequently lesser logic

utilization.

Table 5.4: Hardware Implementation: Comparison of proposed methods

Proposed Methods DSP48Es LUTs Bonded IOBs Cycle Time Latency
DFLC with MRA-2OMF 2 4126 6 6.608 ns 99.12 ns
SAIT2FLC with MRA-2OMF 25 8724 10 8.129 ns 267.993 ns
GA-FLC with MRA-2OMF 2 1294 6 4.06 ns 60.9 ns

Table 5.5: Comparison of performance parameters of PID, FLC [1], and DFLC with
MRA2-OMF, GA-FLC with MRA2-OMF

Parameters PID FLC [1] DFLC (MRA2-OMF) GA-FLC (MRA2-OMF)
Rise Time 0.0062 0.0025 0.0023 0.00187
Settling Time 0.1255 NaN 0.0249 0.0170
Overshoot 0 0 0 0
Undershoot 0 0 0 0
Peak 0.7497 0.7483 0.7492 0.7497
Peak Time 0.14 0.02 0.0235 0.0182

125

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−120

−100

−80

−60

−40

−20

0

Time(seconds)

In
pu

t D
is

tu
rb

an
ce

Disturbance Data (Input)

(a) Input Disturbance Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.734

0.736

0.738

0.74

0.742

0.744

0.746

0.748

0.75

0.752

0.754

Time(seconds)

P
la

nt
 O

ut
pu

t

PID Controller tuned by Ziegler−Nichols Method
FLC designed by P. Suretia et. al.
GA−FLC with MRA2−OMF method on FPGA
DFLC with MRA2−OMF method on FPGA

(b) System Response

Figure 5.16: Performance of various controllers in presence of disturbances in plasma
position

5.6.4 Simulation and Hardware Implementation

The implementation of the FLC is carried out by coding each module in Verilog hardware

description language integrated with Xilinx foundation ISE 14.2 tool, which supports ISim

(Integrated within ISE) is used here for functional verification. The architecture of the FLC

is highly pliable as the parameters of the fuzzy logic controller can be changed by modifying

registry values and Verilog parameters.

126

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller
5.6.4.1 Simulation Parameters

i) The UART interface includes receiving and transmits modules that share a single baud

generator module. Two constants set the baud rate at FLC top modules, which are

calculated as follows:

X_BAUD_FREQ =
(16 ∗ BaudRate)

(GCD(GlobalClkFreq, 16 ∗ BaudRate)) (5.17)

X_BAUD_LIMIT =
GlobalClkFreq

(GCD(GlobalClkFreq, 16 ∗ BaudRate))

−X_BAUD_FREQ
(5.18)

ii) For 100Mhz of board clock in XUPV5 FPGA board, The calculated parameters set in

Verilog is as follows:

d̀efine X_BAUD_FREQ 12’H90

d̀efine X_BAUD_LIMIT 12’H0ba5

iii) The test bench parameterized for total no of inputs and no of membership functions

and data bus width for each input and membership value is as below:

d̀efine NO_OF_INPUTS 3’h2

d̀efine NO_OF_MFS 3’h7

d̀efine DATA_BUS_WIDTH 6’h10

d̀efine DEFUZZY_METHOD 2’h0

5.6.4.2 Hardware Implementation

The functional simulations obtained by ISIM 14.2 is presented in Figure 5.17, where the

READY signal enable UART transmitter to transmit crisp out data back to MATLAB GUI for

display. Figure 5.18 presents, the process of crisp data transfer from FPGA to MATLAB GUI

using Chipscope-Pro debugging tool. The implemented platform chosen in this work is the

Virtex 5 (LX110T) Xilinx FPGA family included in XUPV5 development board. This FPGA

is sufficient enough for implementing all the modules of the FLC addressed in this work. This

is possible as the FPGA contains 17,280 slices and 68 DSP48E slices as well as 296 18kb

block RAMs etc. Table 5.6 ushered the FPGA utilization to develop the FLC addressed

here. The total clocks needed to compete with fuzzy logic inference process (FLIP) with

GA reduced 8 rules is 25 clocks with 247 MHz clock frequency, this means that the total

127

Chapter 5
FPGA Implementation of Genetic Algorithm (GA) based Rule Optimized Fuzzy Logic

Controller

Figure 5.17: The functional simulation waveform obtained by ISim 14.2.

Table 5.6: Device Utilization Summary

Experiment 4 input 1 output system 2 input 1 output
system

Selected device xc5vlx110t-2-ff1136 xc5vlx110t-2-ff1136
Maximum Frequency 213.413Mhz 246.819Mhz
Number of slices 1456 out of 69120 2% 1149 out of 69120

1%
Number of 4 input LUTs 1919 out of 69120 2% 1294 out of 69120

1%
Number of bonded IOBs 6 of 640 1% 6 of 640 1%
Number of MULT18X18s 1 out of 640 1% 1 out of 640 1%
Number of GCLKs 1 out of 32 6% 1 out of 32 6%

time required to complete one FLIP to generate output is 0.10121µs, it is equal to 9880446

(9.8MFLIPS) fuzzy logic inference outputs can be made using the current design.

The GA-FLC using FPGA is proved to be a useful framework, which can be easily used

to develop fuzzy logic applications within a short period and the main functional units can

be reused without modification and user can only concentrate to provide input-output data

sheet, membership values and the number of rules, which increases the design efficiency.

5.7 Summary

A novel approach towards the rule base synthesis for fuzzy systems using genetic algorithm

was undertaken. The system is tested with bench mark problems like hang data function and

chaotic time series. Compared to an ANFIS model in MATLAB, which used 49 rules and

128

Figure 5.18: Crisp Data output from FPGA using UART captured on the Chipscope - Pro
tool

ran for 100 iterations, this novel method provides better results with lesser rules. Further,

there is no need for an expert to design the system. An accurate data set of the system/plant

under discussion is required only for generating the rule base. The following are the benefits

of the algorithm proposed in this work:

i. The user can design required number of rules as per the system memory and time

constraints for better response of the system.

ii. The Proposed GA rule base optimization system is easily configured.

iii. Actual process changes can be easily incorporated by redesigning the rule base in short

time.

iv. Rule bases can be designed as per the system tolerance limit.

v. As it is mentioned the problems with existing fuzzy systems, this process handles the

above issues with automatic rule base designing and auto-optimization process.

vi. The fuzzy rule base is scalable, i.e. any change in the actual process behavior can be

taken into consideration easily.

Chapter 6

Conclusion

3

Preface
This chapter concludes the thesis and summarizes the objectives accomplished to the thesis.
It also provides the limitations of this work and future scope of the work through which the
current work can be enhanced.

3

Chapter 6 Conclusion

The development of the remotely tunable FLCS in FPGA is discussed in this thesis

opens a line of approach to several explorations. This architecture provides a significant

number of functionalities to the users along with improved speed to drive a variety of

industrial processes. This system performance is compared with MATLAB Fuzzy Logic

Toolbox and it is seen that it has the ability to provide good performance. The proposed

systems are observed to perform well within multiple testing paradigms mentioned in this

work. Thorough investigations have been done using few specific applications to ascertain

generality and applicability of DFLCS in control applications, the system designed can be

used in a variety of applications.

6.1 Contributions of this thesis

In summary, this research successfully contributes the following

• A DFLC module with MATLAB GUI has been proposed. The FLC can operate

as a standalone remotely tunable controller. All existing DFLC do not have user

interactions [199, 200] and even though they were developed on field programmable

hardware, the system architecture does not permit field programmability of the

DFLCS. The proposed MRA2-OMF, MRA3-OMF, and MRA4-OMF based DFLC

system can be field programmed through the user interface. The novelty of this

development lies in the system architecture which has been elaborated in Chapter 2

and 3.

• A Mealy state machine is proposed and implemented to support special case rules in

FLCs. Partial rules have been successfully supported in hardware with reduced logic

utilization. A 5% logic utilization saving is observed after merging this state machine

with rule reduction techniques. Further, in section 3.4.1, a simple UART based HIL

testing process was described that provided performance and timing analysis of the

proposed DFLCS.

• The addition of tunability to MRA2-OMF based DFLC slightly reduced by speed

but achieved an operating speed of around 21.61 FLIPS. This speed was found to

be satisfactory for application related to ADITYA TFTR.

• A GUI based fuzzy validation with test vectors has been analyzed. MicroBlaze

processor based IP integration was conducted on simulation and shows that the

131

Chapter 6 Conclusion

proposed DFLC can be easily connected as peripheral to any soft or hard processor

with processor logic bus (PLB).

• A Type 2 fuzzifier based on successive approximation method has been proposed and

a digital hardware implementation has been carried out. This fuzzier is based on a

T2FLC consumed nine clock cycles with 8.129 ns cycle time results in 73 ns latency.

Comparative analysis of this technique with other division algorithms type 2 fuzzifiers

shows that proposed method has superior speed. An overall operation speed of 3.7

MFLIPS was achieved.

• A novel approach towards the rule base synthesis for fuzzy systems was taken using an

evolutionary algorithm based on Genetic Algorithm, for convergence of the rule base

to provide superior tuning. Compared to an ANFIS model in MATLAB which used

49 rules and tuned over 100 iterations, it was seen that the proposed method provides

superior performance with a lower number of rules. Further, there is no need for an

expert to design the system. An accurate data set of the system/plant under discussion

is required only for generating the rule base. The major benefits of the algorithm

proposed lies in its GA rule base optimization with automatic rule base designing and

auto-optimization process.

• The proposed stand-alone tunable fuzzy logic controllers on FPGA have been used

to control the radial plasma position of ADITYA TFTR model. The observations

obtained from these systems are exciting as they provide better rise time and speedy

settling time in comparison to existing control schemes.

6.2 Limitations of this Work

The major limitations of the work reported in this thesis can be summarized as follows:

• DFLC was tested in HIL environment with simulink models. Full-scale hardware was

not used in system performance testing. Although the HIL test results are promising,

a real-time test will assure system performance.

• In the test procedure, the DFLC was connected to a PC using UART protocol.

Other communication protocols like Ethernet, Controller-Area Network (CAN) have

132

Chapter 6 Conclusion

not been integrated and tested. System implementation using these communication

interfaces can make the testing complete.

• In this implementation, the security of the data communication network needs to be

further investigated to evaluate the network security.

• In successive approximation method, the silicon area was seen to increase with the

bit size of type 2 fuzzy process. Hence, to achieve more precision in fuzzy output,

the proposed method requires higher silicon area leading to more space and power

requirement.

6.3 Future Research Directions

The work presented in this thesis elaborates the design and implementation of FLC-based

on MRA-2OMF, MRA-3OMF, and MRA-4OMF. The design discussed DFLCS with special

case rule base support. This design has the potential for broad explorations. Some of the

significant areas of future work include the following.

• ASIC implementation of DFLCS can investigate the system performance and power

consumption with equivalent FPGA using the same process geometry.

• Microblaze driver implementations for light weight IP (LWIP) TCP/IP stack to tune

FLC parameters over Ethernet. With Ethernet communication, the proposed DFLC

can talk to any other device on the network, and the user can remotely configure the

FLC parameters from a workstation.

• The proposed DFLCS architecture is implemented on the type-I and type-II Mamdani

fuzzy logic control system. This architecture has been implemented using modular

design methodology. The modules in proposed DFLCS can be integrated with a neural

network to achieve an FPGA based generic neuro-fuzzy system.

• DFLCS is developed on a programmable hardware. The methodology of DFLC is

implemented using an FPGA. A hardware-software codesign of hybrid computing

platform with DSP would unleash the complete power of the proposed method. Since

DSP provides an efficient implementation of multiplication and accumulation (MAC)

and this helps better tunability options for fuzzifier and de-fuzzifier.

133

• The proposed DFLCs can be tested with other control benchmark problems like

automatic cruise control, automotive suspension system, and aircraft pitch system,

etc.

• An attempt has been made on rule base generation with Genetic Algorithm for Type-1

FLC in chapter 5. Same rule base can also be applied on Type-2 FLC with a new

architecture.

• This concept of DFLCs can be extended to different complex control problems.

References

[1] P. Suratia, J. Patel, R. Rajpal, S. Kotia, and J. Govindarajan, “Fpga based fuzzy logic controller for
plasma position control in aditya tokamak,” Fusion Engineering and Design, vol. 87, no. 11, pp.
1866–1871, 2012.

[2] L. A. Zadeh, “Fuzzy logic, neural networks and soft computing,” Communications of the ACM, vol. 37,
no. 3, pp. 77–84, 1994.

[3] T. J. Ross, Fuzzy logic with engineering applications, 3rd ed. John Wiley & Sons, Ltd, 2010.

[4] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.

[5] H. Nguyen, N. Prasad, C. Walker, and E. Walker, AFirst Course in Fuzzy andNeural Control. Chapman
and Hall, CRC press, 2003.

[6] S. Bogdan and Z. Kovacic, Fuzzy Controller Design: Theory and Applications, 1st ed. CRC press,
Taylor and Francis, 2006.

[7] K. Passino and S. Yurkovich, Fuzzy Control. Addisson Wisely, 1998.

[8] Z. Kovacic and S. Bogdan, Fuzzy controller design: theory and applications. CRC press, 2005, vol. 19.

[9] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proceedings of the IEEE, vol. 83, no. 3,
pp. 345–377, 1995.

[10] P. Londhe, B. Patre, and A. Tiwari, “Design of single-input fuzzy logic controller for spatial control of
advanced heavy water reactor,” IEEE Transactions on Nuclear Science, vol. 61, no. 2, pp. 901 – 911,
2014.

[11] A. El Khateb, N. Abd Rahim, J. Selvaraj, and M. Uddin, “Fuzzy-logic-controller-based sepic converter
for maximum power point tracking,” IEEE Transactions on Industry Applications, vol. 50, no. 4, pp.
2349 – 2358, 2014.

[12] S. Seyedtabaii and A. Khalaji, “Single chip digital implementation CMOS of a reconfigurable fuzzy
logic traffic controller,” Journal of Intelligent & Fuzzy Systems: Applications in Engineering and
Technology, vol. 27, no. 2, pp. 921 – 928, 2014.

[13] H. Peyravi, A. Khoei, and K. Hadidi, “Design of an analog CMOS fuzzy logic controller chip,” Fuzzy
Sets and Systems, vol. 132, no. 2, pp. 245 – 260, 2002.

[14] T. Korol, “A fuzzy logic model for forecasting exchange rates,” Knowledge-Based Systems, vol. 67, pp.
49–60, 2014.

[15] W. L. Tung, C. Quek, and P. Cheng, “GenSo-EWS: a novel neural-fuzzy based early warning system
for predicting bank failures.” Neural networks : the official journal of the International Neural Network
Society, vol. 17, no. 4, pp. 567–587, 2004.

[16] Y. Yoshida, “The valuation of European options in uncertain environment,” European Journal of
Operational Research, vol. 145, no. 1, pp. 221–229, 2003.

[17] P. Dostal, Advances in Intelligent Systems and Computing. Springer International Publishing, 2013.

135

References

[18] O. Linda and M. Manic, “Uncertainty-robust design of interval type-2 fuzzy logic controller for delta
parallel robot,” IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 661–670, 2011.

[19] J. J. Acevedo, B. Arrue, J. M. Diaz-Banez, I. Ventura, I. Maza, and A. Ollero, “One-to-one coordination
algorithm for decentralized area partition in surveillance missions with a team of aerial robots,” Journal
of Intelligent and Robotic Systems: Theory and Applications, vol. 74, no. 1-2, pp. 269–285, 2014.

[20] T. Das and I. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled
mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, no. 3, pp. 501–510, 2006.

[21] K. Lochan and B. Roy, “Control of two-link 2-dof robot manipulator using fuzzy logic techniques: A
review,” in Proceedings of Fourth International Conference on Soft Computing for Problem Solving.
Springer, 2015, pp. 499–511.

[22] S. Gopinath, I. Kar, and R. Bhatt, “Experience inclusion in iterative learning controllers: Fuzzy model
based approaches,” Engineering Applications of Artificial Intelligence, vol. 21, no. 4, pp. 578–590,
2008.

[23] C.-H. Wang and C.-C. Wang, “Finding the real surge boundaries of turbo-charged automobiles using
intelligent fuzzy reasoning technique,” International Journal of Fuzzy Systems, vol. 17, no. 2, pp.
224–235, 2015.

[24] M. D. Baldania, D. A. Sawant, and A. B. Patki, “Fuel saving of an automobile using fuzzy logic based
embedded controller,” in IEEE International Conference on Advanced Communications, Control and
Computing Technologies. IEEE, 2014, pp. 136–140.

[25] N. C. Basjaruddin, Kuspriyanto, D. Saefudin, E. Rakhman, and A. M. Ramadlan, “Overtaking assistant
system based on fuzzy logic,” Telkomnika (Telecommunication Computing Electronics and Control),
vol. 13, no. 1, pp. 76–84, 2015.

[26] H. Li, X. Jing, H.-K. Lam, and P. Shi, “Fuzzy sampled-data control for uncertain vehicle suspension
systems.” IEEE transactions on cybernetics, vol. 44, no. 7, pp. 1111–1126, 2014.

[27] S. Bogdan, B. Birgmajer, and Z. Kovačić, “Model predictive and fuzzy control of a road tunnel
ventilation system,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 5, pp.
574–592, 2008.

[28] C. Bhende, S. Mishra, and S. Jain, “TS-fuzzy controlled active power filter for load compensation,”
IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1459–1465, 2006.

[29] C. W. Lou and M. C. Dong, “A novel random fuzzy neural networks for tackling uncertainties of electric
load forecasting,” International Journal of Electrical Power&Energy Systems, vol. 73, pp. 34–44, 2015.

[30] A. Al Nabulsi and R. Dhaouadi, “Efficiency optimization of a DSP-based standalone PV system using
fuzzy logic and dual-MPPT control,” IEEE Transactions on Industrial Informatics, vol. 8, no. 3, pp.
573–584, 2012.

[31] H. Pan, H. Wong, V. Kapila, and M. S. de Queiroz, “Experimental validation of a nonlinear backstepping
liquid level controller for a state coupled two tank system,” Control Engineering Practice, vol. 13, no. 1,
pp. 27–40, 2005.

[32] F. Aqlan and E. Mustafa Ali, “Integrating lean principles and fuzzy bow-tie analysis for risk assessment
in chemical industry,” Journal of Loss Prevention in the Process Industries, vol. 29, no. 1, pp. 39–48,
2014.

[33] N. Lerkkasemsan and L. E. Achenie, “Pyrolysis of biomass fuzzy modeling,” Renewable Energy,
vol. 66, pp. 747–758, 2014.

[34] A. Shamiri, S. W. Wong, M. F. Zanil, M. A. Hussain, and N. Mostoufi, “Modified two-phase model
with hybrid control for gas phase propylene copolymerization in fluidized bed reactors,” Chemical
Engineering Journal, vol. 264, pp. 706–719, 2015.

136

References

[35] F.-C. Liu, L.-H. Liang, and J.-J. Gao, “Fuzzy PID control of space manipulator for both ground alignment
and space applications,” International Journal of Automation and Computing, vol. 11, no. 4, pp. 353 –
360, 2014.

[36] Y. Zhang, T. Yang, C. Li, S. Liu, C. Du, M. Li, and H. Sun, “Fuzzy-PID control for the position loop of
aerial inertially stabilized platform,” Aerospace Science and Technology, vol. 36, pp. 21 – 26, 2014.

[37] H. Gao, J. Liu, Y. Li, K. Hong, and Y. Zhang, “Dual-layer fuzzy control architecture for the CAS rover
arm,” International Journal of Control, Automation, and Systems, vol. 13, no. 5, pp. 1262 – 1271, 2015.

[38] S. Yauldegar, H. Ghiasi, M. H. Mazloom, A. Sahamijoo, M. R. Avazpour, and F. Piltan, “Trajectory
tracking control of multi degrees of freedom joints: Robust fuzzy logic-based sliding mode approach,”
International Journal of Control and Automation, vol. 7, no. 12, pp. 323 – 338, 2014.

[39] T. Sreenuch, F. Khan, and J. Li, “Particle filter with operational-scalable Takagi-Sugeno fuzzy
degradation model for filter-clogging prognosis,” Journal of Aerospace Information Systems, vol. 12,
no. 5, pp. 398 – 412, 2015.

[40] M. E. Ooi, M. Sayuti, and A. A. Sarhan, “Fuzzy logic-based approach to investigate the novel uses
of nano suspended lubrication in precise machining of aerospace tempered grade 6061,” Journal of
Cleaner Production, vol. 89, pp. 286 – 295, 2015.

[41] I. A. Zammar, I. Mantegh, M. S. Huq, A. Yousefpour, and M. Ahmadi, “Intelligent thermal control of
resistance welding of fiberglass laminates for automated manufacturing,” IEEE/ASME Transactions on
Mechatronics, vol. 20, no. 3, pp. 1069–1078, 2015.

[42] S. Rajak and S. Vinodh, “Application of fuzzy logic for social sustainability performance evaluation:
a case study of an Indian automotive component manufacturing organization,” Journal of Cleaner
Production, pp. 108–121, 2015.

[43] J. Gokulachandran and K. Mohandas, “Prediction of cutting tool life based on Taguchi approach with
fuzzy logic and support vector regression techniques,” International Journal of Quality & Reliability
Management, vol. 32, no. 3, pp. 270–290, 2015.

[44] Z. Zhou, F. Chu, A. Che, and M. Zhou, “Constraint and fuzzy logic-based optimization of hazardous
material transportation via lane reservation,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 2, pp. 847 – 857, 2013.

[45] K. Noori and K. Jenab, “Fuzzy reliability-based traction control model for intelligent transportation
systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 1, pp. 229 – 234,
2013.

[46] S. K. Singh and S. P. Yadav, “Efficient approach for solving type-1 intuitionistic fuzzy transportation
problem,” International Journal of Systems Assurance Engineering and Management, vol. 6, no. 3, pp.
259 – 267, 2015.

[47] P. Kundu, S. Kar, and M. Maiti, “Fixed charge transportation problem with type-2 fuzzy variables,”
Information Sciences, vol. 255, pp. 170 – 186, 2014.

[48] S. Bogdan, B. Birgmajer, and Z. Kovačić, “Model predictive and fuzzy control of a road tunnel
ventilation system,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 5, pp.
574–592, 2008.

[49] K. Kumar, S. Deep, S. Suthar, M. Dastidar, and T. Sreekrishnan, “Application of fuzzy inference
system (FIS) coupled with Mamdani’s method in modelling and optimization of process parameters
for biotreatment of real textile wastewater,” Desalination and Water Treatment, pp. 1–8, 2015.

[50] A. Kumar, A. Khosla, J. S. Saini, and S. S. Sidhu, “Range-free 3D node localization in anisotropic
wireless sensor networks,” Applied Soft Computing, vol. 34, pp. 438–448, 2015.

137

References

[51] X. Sun, S. Chung, and F. T. Chan, “Integrated scheduling of a multi-product multi-factory manufacturing
system with maritime transport limits,” Transportation Research Part E: Logistics and Transportation
Review, vol. 79, pp. 110–127, 2015.

[52] H. Boumaaraf, A. Talha, and O. Bouhali, “A three-phase NPC grid-connected inverter for photovoltaic
applications using neural network MPPT,” Renewable and Sustainable Energy Reviews, vol. 49, pp.
1171–1179, 2015.

[53] V. K. Jadoun, N. Gupta, K. Niazi, and A. Swarnkar, “Modulated particle swarm optimization for
economic emission dispatch,” International Journal of Electrical Power & Energy Systems, vol. 73,
pp. 80–88, 2015.

[54] P. Dutta, O. Mishra, and M. Naskar, “A reviw of operational earthquake forecasting methodologies using
linguistic fuzzy rule-based models from imprecise data with weighted regression approach,” Journal of
Sustainability Science and Management, vol. 8, no. 2, pp. 220–235, 2013.

[55] H. Lam and F. F. Leung, “Fuzzy controller with stability and performance rules for nonlinear systems,”
Fuzzy Sets and Systems, vol. 158, no. 2, pp. 147–163, 2007.

[56] M. Togai and H. Watanabe, “A VLSI implementation of a fuzzy-inference engine: toward an expert
system on a chip,” Information Sciences, vol. 38, no. 2, pp. 147 – 163, 1986.

[57] T. Yamakawa, “A fuzzy inference engine in nonlinear analog mode and its application to a fuzzy logic
control,” IEEE Transactions on Neural Networks, vol. 4, no. 3, pp. 496 – 522, 1993.

[58] I. Baturone, S. Sanchez-Solano, A. Barriga, and J. L. Huertas, “CMOS fuzzy controllers implemented
as mixed-signal ICs,” in Proceedings - IEEE International Symposium on Circuits and Systems, vol. 3.
IEEE, 1996, pp. 422–425.

[59] L. Lemaitre, M. Patyra, and D. Mlynek, “Analysis and design of CMOS fuzzy logic controller in current
mode,” IEEE Journal of Solid-State Circuits, vol. 29, no. 3, pp. 317 – 322, 1994.

[60] T. Yamakawa, “A fuzzy inference engine in nonlinear analog mode and its application to a fuzzy logic
control,” IEEE Transactions on Neural Networks, vol. 4, no. 3, pp. 496 – 522, 1993.

[61] L. Peters, S. Guo, and R. Camposano, “A novel analog fuzzy controller for intelligent sensors,” Fuzzy
Sets and Systems, vol. 70, no. 2-3, pp. 235 – 247, 1995.

[62] G. Marshall and S. Collins, “Fuzzy logic architecture using subthreshold analogue floating-gate
devices,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 1, pp. 32 – 43, 1997.

[63] I. Baturone, S. Sanchez-Solano, A. Barriga, and J. Huertas, “Implementation of CMOS fuzzy controllers
as mixed-signal integrated circuits,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 1, pp. 1 – 19, 1997.

[64] O. Landolt, “Low-power analog fuzzy rule implementation based on a linear mos transistor network,” in
Microelectronics for Neural Networks, 1996., Proceedings of Fifth International Conference on. IEEE,
1996, pp. 86–93.

[65] K. Tsukano and T. Inoue, “Synthesis of operational transconductance amplifier-based analog fuzzy
functional blocks and its application,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 1, pp. 61 –
68, 1995.

[66] T. Inoue, T. Motomura, R. Matsuo, and F. Ueno, “New OTA-based analog circuits for fuzzy membership
functions and max/min operations,” IEICE Transactions, vol. E74, no. 11, pp. 3619 – 3621, 1991.

[67] U. Cilingiroglu, B. Pamir, Z. Gunay, and F. Dulger, “Sampled-analog implementation of
application-specific fuzzy controllers,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 3, pp. 431
– 442, 1997.

[68] J. Huertas, S. Sanchez-Solano, A. Barriga, and I. Baturone, “A fuzzy controller using switched-capacitor
techniques,” in Fuzzy Systems, 1993., Second IEEE International Conference on. IEEE, 1993, pp.
516–520.

138

References

[69] Y.-P. Ko, Y.-S. Lee, and W.-H. Chao, “Analysis, design and implementation of fuzzy logic
controlled quasi-resonant zero-current switching switched-capacitor bidirectional converter,” IET
Power Electronics, vol. 4, no. 6, pp. 683 – 692, 2011.

[70] E. Pierzchala, M. Perkowski, and S. Grygiel, “A field programmable analog array for continuous,
fuzzy, and multi-valued logic applications,” in IEEE International Symposium on Multiple-Valued
Logic(ISMVL2004), 1994.

[71] J. F. M. Amaral, J. L. M. Amaral, C. C. Santini, M. A. Pacheco, R. Tanscheit, and M. H. Szwarcman,
“Intrinsic evolution of analog circuits on a programmable analog multiplexer array,” in International
Conference on Computational Science. Springer, 2004, pp. 1273–1280.

[72] S. Ionita and E. Sofron, “Field-programmable analog filters array with applications for fuzzy inference
systems,” in International Conference on Hybrid Intelligent Systems, 2005, pp. 470–471.

[73] T. Miki and T. Yamakawa, “Fuzzy inference on an analog fuzzy chip,” IEEE Micro, vol. 15, no. 4, pp.
8 – 18, 1995.

[74] S. Guo, L. Peters, and H. Surmann, “Design and application of an analog fuzzy logic controller,” IEEE
Transactions on Fuzzy Systems, vol. 4, no. 4, pp. 429 – 438, 1996.

[75] J. Fattaruso, S. Mahant-Shetti, and J. Brock Barton, “A fuzzy logic inference processor,” New York,
NY, USA, 1993, pp. 210 – 214.

[76] M. M. Eichfeld, H. Lohner, “Architecture of a CMOS fuzzy logic controller with optimized organisation
and operator design,” in International Conference on Fuzzy Systems, 1992, pp. 1317–1323.

[77] H. Watanabe, J. Symon, W. Dettloff, and K. Yount, “VLSI fuzzy chip and inference accelerator board
systems,” in International Symposium on Multiple- Valued Logic.IEEE, 1991, pp. 120 – 127.

[78] S.-H. Huang and J.-Y. Lap, “A high-speed VLSI fuzzy inference processor for trapezoid-shaped
membership functions,” Journal of Information Science and Engineering, vol. 21, no. 3, pp. 607 –
626, 2005.

[79] D. Falchieri, A. Gabrielli, and E. Gandolfi, “Very fast rate 2-input fuzzy processor for high energy
physics,” Fuzzy Sets and Systems, vol. 132, no. 2, pp. 261 – 272, 2002.

[80] M. Haji Seyed Javadi, H. R. Mahdiani, and E. Zeinali Kh, “A hardware oriented fuzzification algorithm
and its VLSI implementation,” Soft Computing, vol. 17, no. 4, pp. 683 – 690, 2013.

[81] W. Dettloff and K. Yount, “A VLSI fuzzy logic inference engine for real-time process control,” in
Custom Integrated Circuits Conference, Proceedings of the IEEE, 1989, pp. 12–14.

[82] M. Patyra, J. Grantner, and K. Koster, “Digital fuzzy logic controller: design and implementation,”
IEEE Transactions on Fuzzy Systems, vol. 4, no. 4, pp. 439 – 459, 1996.

[83] M. Jacomet and R. Walti, “A VLSI fuzzy processor with parallel rule execution,” in Proc. 5th Int. Conf.
on Fuzzy Systems. Citeseer, 1996, pp. 554–558.

[84] H. Eichfeld, M. Klimke, M. Menke, J. Nolles, and T. Kunemund, “A general-purpose fuzzy inference
processor,” in IEEE Micro, 1994, pp. 310 – 317.

[85] N. Yubazaki, M. Otani, A. Muto, T. Ashida, J. Yi, K. Hirota, and Y. Shi, “Fuzzy inference chip
FZP-0401A based on interpolation algorithm,” Fuzzy Sets and Systems, vol. 98, no. 3, pp. 299–310,
1998.

[86] G. Cardarilli, M. Re, and R. Lojacono, “VLSI implementation of a real time fuzzy processor,” Journal
of Intelligent and Fuzzy Systems, vol. 6, no. 3, pp. 389–401, 1998.

[87] N. Evmorfopoulos and J. Avaritsiotis, “An adaptive digital fuzzy architecture for application-specific
integrated circuits,” Active and Passive Electronic Components, vol. 25, no. 4, pp. 289 – 306, 2002.

139

References

[88] H. Sun and J. Wu, “Plating pulse switching power based on a CPLD,” Electrochimica Acta, vol. 105,
pp. 342–346, 2013.

[89] J. Xue, L. Sun, C. Qiao, and H. Qian, “Research on high-speed fuzzy reasoning with CPLD for
fault diagnosis expert system,” in 2009 9th International Conference on Electronic Measurement &
Instruments. IEEE, 2009, pp. 564–568.

[90] B. Adhavan and C. S. Ravichandran, “FPGA implementation to minimize torque ripples in permanent
magnet synchronous motor driven by field oriented control using fuzzy logic controller,” Journal of
Theoretical and Applied Information Technology, vol. 61, no. 2, pp. 369–377, 2014.

[91] A. Benzekri and A. Azrar, “FPGA Based design process of a fuzzy logic controller for a Dual-Axis sun
tracking system,” Arabian Journal for Science and Engineering, vol. 39, no. 8, pp. 6109–6123, 2014.

[92] M. P. S. Dos Santos and J. a. F. Ferreira, “Novel intelligent real-time position tracking system using
FPGA and fuzzy logic,” ISA Transactions, vol. 53, no. 2, pp. 402–414, 2014.

[93] A. Messai, A. Mellit, A. M. Pavan, A. Guessoum, and H. Mekki, “FPGA-based implementation of a
fuzzy controller MPPT for photovoltaic module ,” Energy Conversion and Management, vol. 52, no. 7,
pp. 2695 – 2704, 2011.

[94] M. D. Schrieber and M. Biglarbegian, “Hardware implementation and performance comparison of
interval type-2 fuzzy logic controllers for real-time applications,” Applied Soft Computing, vol. 32, pp.
175–188, 2015.

[95] H. Tamukoh, K. Horio, and T. Yamakawa, “A bit-shifting-based fuzzy inference for self-organizing
relationship (SOR) network,” IEICE Electronics Express, vol. 4, no. 2, pp. 60–65, 2007.

[96] D. Hung and W. Zajak, “Design and implementation of a hardware fuzzy inference system,” Information
Sciences, Applications, vol. 3, no. 3, pp. 193 – 207, 1995.

[97] T. Hollstein, S. Halgamuge, and M. Glesner, “Computer-aided design of fuzzy systems based on generic
vhdl specifications,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 4, pp. 403 – 417, 1996.

[98] R. Amore, O. Saotome, and K. Kienitz, “A two-input, one-output bit-scalable architecture for fuzzy
processors,” IEEE Design and Test of Computers, vol. 18, no. 4, pp. 56 – 64, 2001.

[99] A. Di Stefano and C. Giaconia, “An FPGA-based adaptive fuzzy coprocessor,” in International
Work-Conference on Artificial Neural Networks. Springer, 2005, pp. 590–597.

[100] A. Barriga, S. Sanchez-Solano, P. Brox, A. Cabrera, and I. Baturone, “Modelling and implementation
of fuzzy systems based on vhdl,” International Journal of Approximate Reasoning, vol. 41, no. 2, pp.
164 – 178, 2006.

[101] R. Castaneda-Miranda, E. V.-R. Jr., R. del Roci o Peniche-Vera, and G. Herrera-Ruiz, “Fuzzy greenhouse
climate control system based on a field programmable gate array,” Biosystems Engineering, vol. 94,
no. 2, pp. 165 – 177, 2006.

[102] S. Dick, V. Gaudet, and H. Bai, “Bit-serial arithmetic: A novel approach to fuzzy hardware
implementation,” in Fuzzy Information Processing Society, 2008. NAFIPS 2008. Annual Meeting of
the North American. IEEE, 2008, pp. 1–6.

[103] S. Tzafestas, K. Deliparaschos, and G. Moustris, “Fuzzy logic path tracking control for autonomous
non-holonomic mobile robots: Design of system on a chip,” Robotics and Autonomous Systems, vol. 58,
no. 8, pp. 1017 – 1027, 2010.

[104] J. Binfet and B. Wilamowski, “Microprocessor implementation of fuzzy systems and neural networks,”
in International Joint Conference on Neural Networks (IJCNN 01), vol. 1, 2001, pp. 234 – 239.

[105] G. Nhivekar, S. Nirmale, and R. Mudholker, “Implementation of fuzzy logic control algorithm in
embedded microcomputers for dedicated application,” International Journal of Engineering, Science
and Technology, vol. 3, pp. 276 – 283, 2012.

140

References

[106] N. Eskandarian, Y. A. Beromi, and S. Farhangi, “Improvement of dynamic behavior of shunt active
power filter using fuzzy instantaneous power theory,” Journal of Power Electronics, vol. 14, no. 6, pp.
1303–1313, 2014.

[107] S. Rafa, A. Larabi, L. Barazane, M. Manceur, N. Essounbouli, and A. Hamzaoui, “Implementation of a
new fuzzy vector control of induction motor.” ISA transactions, vol. 53, no. 3, pp. 744–754, 2014.

[108] P. Maji, On Design and Implementation of Generic Fuzzy Logic Controllers. NIT Rourkela, 2015.

[109] H. Kahveci, H. Okumus, and M. Ekici, “Improved brushless DC motor speed controller with digital
signal processor,” Electronics Letters, vol. 50, no. 12, pp. 864–866, 2014.

[110] S. Gai, P. Liu, J. Liu, and X. Tang, “A method for banknote feature extraction based on Haar wavelet
and fuzzy logic,” Gaojishu Tongxin/Chinese High Technology Letters, vol. 20, no. 11, pp. 1149–1155,
2010.

[111] N. Lall, Xilinx, “FPGAs and DSPs - What Makes Sense for Your Design?” RTC Magazine, p. 1, 2005.

[112] M. Parker, “FPGA versus DSP design reliability and maintenance,” in Design, no. May, 2010, pp. 1–4.

[113] R. Schneiderman, “Automotive industry is a key component to the success of the DSP sector [Special
Reports],” IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 18–21, 2014.

[114] L. Zhao, F. Hicks, and A. Robinson Fayek, “Long lead forecasting of spring peak runoff using
mamdani-type fuzzy logic systems at hay river NWT,” Canadian Journal of Civil Engineering, vol. 42,
no. 9, pp. 665 – 674, 2015.

[115] M. Muslim, I. Kurniawati, and E. Sugiharti, “Expert system diagnosis chronic kidney disease based on
mamdani fuzzy inference system,” Journal of Theoretical and Applied Information Technology, vol. 78,
no. 1, pp. 70 – 75, 2015.

[116] F. Camastra, A. Ciaramella, V. Giovannelli, M. Lener, V. Rastelli, A. Staiano, G. Staiano, and A. Starace,
“A fuzzy decision system for genetically modified plant environmental risk assessment using mamdani
inference,” Expert Systems with Applications, vol. 42, no. 3, pp. 1710 – 1716, 2015.

[117] I. Kalaykov and G. Tolt, “Fast fuzzy signal and image processing hardware,” in Fuzzy Information
Processing Society, 2002. Proceedings. NAFIPS. 2002 Annual Meeting of the North American. IEEE,
2002, pp. 7–12.

[118] Xilinx, “Chipscope pro software and cores,” in User Guide, 2012, pp. 33–129.

[119] D. Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA system,” IEEE
Transactions on Industrial Electronics, vol. 47, no. 3, pp. 703 – 715, 2000.

[120] F. Taeed, Z. Salam, and S. Ayob, “FPGA implementation of a single-input fuzzy logic controller for
boost converter with the absence of an external analog-to-digital converter,” IEEE Transactions on
Industrial Electronics, vol. 59, no. 2, pp. 1208 – 1217, 2012.

[121] Y. Sun, S. Tang, Z. Meng, Y. Zhao, and Y. Yang, “A scalable accuracy fuzzy logic controller on FPGA,”
Expert Systems with Applications, vol. 42, no. 19, pp. 6658 – 6673, 2015.

[122] Mathworks Inc., “Build Mamdani Systems,” 2010. [Online]. Available: http://in.mathworks.com/help/
fuzzy/building-systems-with-fuzzy-logic-toolbox-software.html

[123] R. S. Smith and J. Doyle, “The Two Tank Experiment: A Benchmark Control Problem,” in American
Control Conference, Atlanta, Ga, USA, 1988, pp. 2026–2031.

[124] H. Li, N. Godfrey, and Y. Ji, “A fuzzy logic beam-and-ball controller prototype,” IEEE Micro, vol. 15,
no. 6, pp. 64 –67, 1995.

[125] S. B. Bhatt, D. Bora, and B. N. Buch, “ADITYA: The first Indian tokamak,” Indian Journal of Pure and
Applied Physics, vol. 7, no. 9, pp. 710–742, 1989.

141

References

[126] C. M. Bishop, P. S. Haynes, M. E. U. Smith, T. N. Todd, D. L. Trotman, and C. G. Windsor, “Real-time
control of a Tokamak plasma using neural networks,” in Neural Computation, 1995, vol. 7, no. 1, pp.
1007–1013.

[127] J. Morelli, A. Hirose, and H. Wood, “Fuzzy-logic-based plasma-position controller for STOR-M,” IEEE
Transactions on Control Systems Technology, vol. 13, no. 2, pp. 328–337, 2005.

[128] I. Bandyopadhyay, S. P. Deshpande, and S. Chaturvedi, “Design analysis of plasma position control in
SST1,” Fusion Engineering and Design, vol. 54, no. 2, pp. 151–166, 2001.

[129] I. Bandyopadhyay, D. Raju, and S. Deshpande, “Modelling of advanced plasma configurations in SST-1
tokamak,” Nuclear Fusion, vol. 46, no. 3, pp. 62–71, 2006.

[130] I. Bandyopadhyay, S. M. Ahmed, P. K. Atrey, S. B. Bhatt, R. Bhattacharya, M. B. Chaudhury, S. P.
Deshpande, C. N. Gupta, R. Jha, Y. S. Joisa, V. Kumar, R. Manchanda, D. Raju, C. V. S. Rao, and
P. Vasu, “Modelling of Ohmic discharges in ADITYA tokamak using the Tokamak Simulation Code,”
Plasma Physics and Controlled Fusion, vol. 46, no. 9, pp. 1443–1453, 2004.

[131] A. Sutradhar, A. Chaudhuri, S. Bera, and S. Sadhu, “Analysis and design of an optimal pid controller
for insulin dispenser system,” Journal of the Institution of Engineers(India): Electrical Engineering
Division, vol. 82, pp. 304–313, 2002.

[132] V. S. Mukhovatov and V. D. Shafranov, “Plasma equilibrium in a Tokamak,” Nuclear Fusion, vol. 11,
no. 6, p. 605, 1971.

[133] N. N. Karnik and J. M. Mendel, “Introduction to type-2 fuzzy logic systems,” in Fuzzy Systems
Proceedings, 1998. IEEEWorld Congress on Computational Intelligence., The 1998 IEEE International
Conference on, vol. 2. IEEE, 1998, pp. 915–920.

[134] H. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers,” IEEE Computational Intelligence
Magazine, vol. 2, no. 1, pp. 30 – 43, 2007.

[135] H.-K. Lam and L. D. Seneviratne, “Stability analysis of interval type-2 fuzzy-model-based control
systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 3,
pp. 617–628, 2008.

[136] J. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, vol. 10,
no. 2, pp. 117 – 127, 2002.

[137] N. Karnik and J. Mendel, “Operations on type-2 fuzzy sets,” Fuzzy Sets and Systems, vol. 122, no. 2,
pp. 327 – 348, 2001.

[138] D. Wu, “On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers,”
IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 832 – 848, 2012.

[139] S. Raju and G. Pillai, “Design and real time implementation of type-2 fuzzy vector control for DFIG
based wind generators,” Renewable Energy, vol. 88, pp. 40 – 50, 2016.

[140] A. El-Nagar and M. El-Bardini, “Hardware-in-the-loop simulation of interval type-2 fuzzy PD controller
for uncertain nonlinear system using low cost microcontroller,” Applied Mathematical Modelling,
vol. 40, no. 3, pp. 2346 – 2355, 2016.

[141] L. Leottau and M. A. Melgarejo, “Implementing an interval type-2 fuzzy processor onto a DSC
56F8013.” in FUZZ-IEEE, 2010, pp. 1–4.

[142] M. Melgarejo and C. A. Pena-Reyes, “Implementing interval type-2 fuzzy processors,” IEEE
Computational Intelligence Magazine, vol. 2, no. 1, pp. 63 – 71, 2007.

[143] U. Pareek and I. N. Kar, “Estimating compressor discharge pressure of gas turbine power plant using
type-2 fuzzy logic systems,” in Fuzzy Systems, 2006 IEEE International Conference on. IEEE, pp.
649–654.

142

References

[144] R. K. Gupta, U. Pareek, and I. N. Kar, “Soft computation of turbine inlet temperature of gas turbine
power plant using type-2 fuzzy logic systems,” in Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007.
IEEE International. IEEE, 2007, pp. 1–6.

[145] M. Ozek and Z. Akpolat, “A software tool: type-2 fuzzy logic toolbox,” Computer Applications in
Engineering Education, vol. 16, no. 2, pp. 137 – 146, 2008.

[146] H. Yazdanjouei, H. Feizy, A. Khoei, and K. Hadidi, “Design of a fully programmable analog
interval type-2 triangular or trapezoidal fuzzifier,” in Mixed Design of Integrated Circuits and Systems
(MIXDES), 2012 Proceedings of the 19th International Conference. IEEE, 2012, pp. 243–248.

[147] M. Bryk and A. Wielgus, “Digital implementation of a programmable type-2 fuzzy logic controller,”
Elektronika: konstrukcje, technologie, zastosowania, vol. 51, no. 11, pp. 44–48, 2010.

[148] A. Mesri, A. Khoei, and K. Hadidi, “Design of a current-mode fully programmable interval type-2
fuzzifier for general-purpose applications,” in 2013 21st Iranian Conference on Electrical Engineering
(ICEE). IEEE, 2013, pp. 1–5.

[149] K. Abdulla and M. Azeem, “A novel programmable CMOS fuzzifiers using voltage-to-current converter
circuit,” Advances in Fuzzy Systems, pp. 1–9, 2012.

[150] J. Mendel, “On KM algorithms for solving type-2 fuzzy set problems,” IEEE Transactions on Fuzzy
Systems, vol. 21, no. 3, pp. 426 – 446, 2013.

[151] H. Wu and J. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic
systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 5, pp. 622 – 639, 2002.

[152] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning,” in
Learning systems and intelligent robots. Springer, 1974, pp. 1–10.

[153] P. Melin and O. Castillo, Type 2 Fuzzy Logic. Springer-Verlag Berlin Heidelberg, 2005.

[154] Q. Liang and J. Mendel, “Interval type-2 fuzzy logic systems: theory and design,” IEEE Transactions
on Fuzzy Systems, vol. 8, no. 5, pp. 535 – 550, 2000.

[155] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-recurrence dividers with reduced logical
depth,” IEEE Transactions on Computers, vol. 54, no. 7, pp. 837–851, 2005.

[156] T. Lang and A. Nannarelli, “A radix-10 digit-recurrence division unit: algorithm and architecture,” IEEE
Transactions on Computers, vol. 56, no. 6, pp. 727–739, 2007.

[157] N. Boullis and A. Tisserand, “On digit-recurrence division algorithms for self-timed circuits,” in
International Symposium on Optical Science and Technology. International Society for Optics and
Photonics, 2001, pp. 115–125.

[158] S. Oberman and M. J. Flynn, Fast IEEE rounding for division by functional iteration. Computer
Systems Laboratory, Stanford University, 1996.

[159] M. J. Flynn, “On division by functional iteration,” IEEE Transactions on Computers, vol. 100, no. 8,
pp. 702–706, 1970.

[160] J.-S. Chiang, E. Lai, and J.-Y. Liao, “A radix-2 non-restoring 32-b/32-b ring divider with asynchronous
control scheme,” Tamkang Journal of Science and Engineering, vol. 2, no. 1, pp. 37 – 43, 1999.

[161] S. F. Obermann and M. J. Flynn, “Division algorithms and implementations,” IEEE Transactions on
Computers, vol. 46, no. 8, pp. 833–854, 1997.

[162] A. Amaricai and O. Boncalo, “Implementation of very high radix division in FPGAs,” Electronics
letters, vol. 48, no. 18, pp. 1107–1109, 2012.

143

References

[163] P. Montuschi, L. Ciminiera, and A. Giustina, “Division unit with newton-raphson approximation and
digit-by-digit refinement of the quotient,” IEE Proceedings-Computers and Digital Techniques, vol.
141, no. 6, pp. 317–324, 1994.

[164] T. Pham, Y. Wang, and R. Li, “A variable-latency floating-point division in association with predicted
quotient and fixed remainder,” in 2013 IEEE 56th International Midwest Symposium on Circuits and
Systems (MWSCAS). IEEE, 2013, pp. 1240–1245.

[165] D. Piso and J. D. Bruguera, “A new rounding algorithm for variable latency division and square root
implementations,” in Digital System Design Architectures, Methods and Tools, 2008. DSD’08. 11th
EUROMICRO Conference on. IEEE, 2008, pp. 760–767.

[166] G. Amdahl and M. Clements, “Method and apparatus for division employing table-lookup and functional
iteration,” Aug. 1974, US Patent 3,828,175.

[167] H. Hassler and N. Takagi, Function evaluation by table look-up and addition. Department of
Information Science, Faculty of Engineering, Kyoto University, 1995.

[168] D. Wu and J. M. Mendel, “Aggregation using the linguistic weighted average and interval type-2 fuzzy
sets,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1145–1161, 2007.

[169] G. Louverdis and I. Andreadis, “Design and implementation of a fuzzy hardware structure for
morphological color image processing,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 3, pp. 277 – 288, 2003.

[170] M. A. Melgarejo R and C. A. Pena-Reyes, “Hardware architecture and FPGA implementation of a type-2
fuzzy system,” in Proceedings of the 14th ACM Great Lakes symposium on VLSI. ACM, 2004, pp.
458–461.

[171] M. D. Schrieber and M. Biglarbegian, “Hardware implementation of a novel inference engine for interval
type-2 fuzzy control on FPGA,” Beijing, China, 2014, pp. 640 – 646.

[172] S. Guillaume, “Designing fuzzy inference systems from data: An interpretability-oriented review,”
IEEE Transactions on Fuzzy Systems, vol. 9, no. 3, pp. 426–443, 2001.

[173] A. Orriols-Puig, F. Martinez-Lopez, J. Casillas, and N. Lee, “A soft-computing-based method for the
automatic discovery of fuzzy rules in databases: Uses for academic research and management support
in marketing,” Journal of Business Research, vol. 66, no. 9, pp. 1332 – 1337, 2013.

[174] M. Sakai, N. Homma, M. Gupta, and K. Abe, “Statistical approximation learning of discontinuous
functions using simultaneous recurrent neural networks,” 2002, pp. 434 – 439.

[175] S. Khrais, T. Al-Hawari, and O. Al-Araidah, “A fuzzy logic application for selecting layered
manufacturing techniques,” Expert Systems with Applications, vol. 38, no. 8, pp. 10 286 – 10 291, 2011.

[176] H. Malik, T. Mahto, B. Kr, M. Kr, and R. Jarial, “Fuzzy-logic applications in transformer diagnosis
using individual and total dissolved key gas concentrations,” Journal of Electrical Engineering, vol. 12,
no. 3, pp. 202 – 206, 2012.

[177] M. Nair, R. Lakshmanan, M. Wilscy, and R. Tatavarti, “Satellite image processing for oceanic
applications using fuzzy logic,” International Journal of Intelligent Systems Technologies and
Applications, vol. 10, no. 3, pp. 289 – 301, 2011.

[178] J. Ropero, C. Leon, A. Carrasco, A. Gomez, and O. Rivera, “Fuzzy logic applications for knowledge
discovery: A survey,” International Journal of Advancements in Computing Technology, vol. 3, no. 6,
pp. 187 – 198, 2011.

[179] H. Nomura, “Self tuning method fuzzy reasoning by genetic algorithm,” Proc. of the Int’l Fuzzy systems
and intellignet control, vol. 4, no. 5, pp. 251–256, 1992.

[180] P. Y. Glorennec, “Adaptive fuzzy control,” in Fuzzy logic. Springer, 1993, pp. 541–551.

144

References

[181] F. Guely and P. Siarry, “Gradient descent method for optimizing various fuzzy rule bases,” in Fuzzy
Systems, 1993., Second IEEE International Conference on. IEEE, 1993, pp. 1241–1246.

[182] O. Cordon and F. Herrera, “A two-stage evolutionary process for designing TS fuzzy rule-based
systems,” IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, vol. 29, no. 6,
pp. 703–715, 1999.

[183] S. Sathiyan, S. Kumar, and A. Selvakumar, “Segmented fuzzy logic controller for vehicle following
with optimised rule base,” Journal of Theoretical and Applied Information Technology, vol. 57, no. 1,
pp. 7 – 15, 2013.

[184] R. Arivalahan, P. Subbaraj, and D. Devaraj, “Development of genetic algorithm-based fuzzy logic
controller for conical tank process,” International Journal of Industrial and Systems Engineering,
vol. 13, no. 4, pp. 442 – 461, 2013.

[185] M. Khan, M. Choudhry, M. Zeeshan, and A. Ali, “Adaptive fuzzy multivariable controller design based
on genetic algorithm for an air handling unit,” Energy, vol. 81, pp. 477 – 488, 2015.

[186] H. Wang, S. Kwong, Y. Jin, W. Wei, and K.-F. Man, “Agent-based evolutionary approach for
interpretable rule-based knowledge extraction,” IEEE Transactions on Systems, Man and Cybernetics,
Part C (Applications and Reviews), vol. 35, no. 2, pp. 143 – 155, 2005.

[187] Y. Fu, H. Li, and M. Kaye, “Hardware/software codesign for a fuzzy autonomous road-following
system,” IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 6, pp. 690 – 696, 2010.

[188] B. R. Jammu, S. K. Patra, and K. K. Mahapatra, “VLSI architecture of reduced rule base inference for
run-time configurable fuzzy logic controllers,” in Proceedings of Seventh International Conference on
Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Springer, 2013, pp. 77–88.

[189] S. Sanchez-Solano, A. Cabrera, I. Baturone, F. Moreno-Velo, and M. Brox, “FPGA implementation
of embedded fuzzy controllers for robotic applications,” IEEE Transactions on Industrial Electronics,
vol. 54, no. 4, pp. 1937 – 1945, 2007.

[190] D. F. Chekired, C. Larbes and F. Haddad, “Implementation of a MPPT fuzzy controller for photovoltaic
systems on FPGA circuit,” EnergyProcedia, vol. 2, no. 6, pp. 541–549, 2011.

[191] A. M. A. Messai, A. Mellit and A. Guessoum, “FPGA-based implementation of a fuzzy controller
MPPTfor photovoltaic module,” Energy Conversation and Management, vol. 52, no. 1, pp. 2695–2704,
2011.

[192] M.-S. Xiao, Z. Xiao, Z.-Q. Wen, and H.-J. Yu, “Interval type fuzzifier parameter model in fuzzy c-means
clustering,” Systems Engineering and Electronics, vol. 37, no. 4, pp. 868 – 873, 2015.

[193] X. Yongjun, L. Weiguo, and O. Pengjie, “New optimized fuzzy c-means clustering algorithm,”
Computer Engineering and Applications, vol. 51, no. 11, pp. 124 – 128, 2015.

[194] W. Lu, L. Zhang, X. Liu, J. Yang, and W. Pedrycz, “A human-computer cooperation fuzzy c-means
clustering with interval-valued weights,” International Journal of Intelligent Systems, vol. 30, no. 2, pp.
81 – 98, 2015.

[195] M.-S. Xiao, Z. Xiao, Z.-Q. Wen, and H.-J. Yu, “Interval type fuzzifier parameter model in fuzzy c-means
clustering,” Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, vol. 37, no. 4,
pp. 868 – 873, 2015.

[196] M. Luz Lopez Garcia, R. Garcia-Rodenas, and A. Gonzalez Gomez, “K-means algorithms for functional
data,” Neurocomputing, vol. 151, no. P1, pp. 231 – 245, 2015.

[197] L. Bottou, Y. Bengio et al., “Convergence properties of the k-means algorithms,” Advances in neural
information processing systems, pp. 585–592, 1995.

145

References

[198] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic contoller,”
International journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975.

[199] I. Milln, O. Montiel, R. Seplveda, and O. Castillo, Soft Computing for Hybrid Intelligent Systems, ser.
Studies in Computational Intelligence. Springer Berlin Heidelberg, 2008, vol. 154.

[200] Y. Fu, H. Li, and M. E. Kaye, “Hardware/software codesign for a fuzzy autonomous road-following
system,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews,
vol. 40, no. 6, pp. 690–696, 2010.

146

Dissemination

Dissemination

Journal Articles

1. B R Jammu, S. K. Patra, K. K. Mahapatra, “ FPGA implementation of rule

optimization for stand-alone tunable fuzzy logic controller using GA,”Complex &

Intelligent Systems, vol. 2, no. 2, pp. 83-98, 2016.

Journal Sumbmitted

2. B R Jammu, S. K. Patra, K. K. Mahapatra, “ Tunable Type 2 Fuzzy Logic Controller

with Successive Approximation based Type 2 Memebership Function”to the journal

of Applied Soft Computing (Elsevier), 30 Sep 2016.

Patents Submitted

3. B. R Jammu, S. K. Patra, and K. K. Mahapatra, “ Configurable inference IP core for

standalone tunable fuzzy logic controller on FPGA”Submitted to NIT Rourkela Patent

Cell.

Conference Presentations

4. B. R Jammu, S. K. Patra, and K. K. Mahapatra, “ VLSI architecture of reduced

rule base inference for run-time configurable fuzzy logic controllers,”in Seventh

International Conference on Bio-Inspired Computing: Theories and Applications

(BIC-TA 2012), Springer, Gwalior, 2012, pp. 88-97.

5. P. Maji, B. R. Jammu, S. K. Patra, and K. K. Mahapatra, “ Design and implementation

of online fuzzy logic controller on FPGA,”2014 Annual IEEE India Conference

(INDICON), Pune, 2014, pp. 1-5.

147

Author’s Biodata

Name of the Candidate : Bhaskara Rao Jammu

Father’s Name : Mahalakshmu Naidu Jammu

Date Of Birth : 03− 06− 1982

Present Address : Adv. Communication Lab.
Dept. of Electronics & Communication Engg.
National Institute of Technology
Rourkela-769 008
Odisha (India)

Permanent Address : H.No 5/47, Garbham Road
Garividi
PIN - 535101
Andhra Pradesh (India)

Academic Qualifications :

(i) B.Tech. in Electronics & Communications Engg., Andhra University, Visakhapatanm,

Andhra Pradesh

(ii) M.Tech. in Electronics & Communication Engg., Motilala Nehru National Institute of

Technology, Allahabd, Uttar Pradesh

Publications :

(i) Published 01 paper in International Journal

(ii) Communicated 01 paper in International Journal

(iii) Submitted 01 patent in NITR IPR Cell

(iv) Published 02 papers in International Conferences

