305 research outputs found

    SSVEP-Based BCIs

    Get PDF
    This chapter describes the method of flickering targets, eliciting fundamental frequency changes in the EEG signal of the subject, used to drive machine commands after interpretation of user’s intentions. The steady-state response of the changes in the EEG caused by events such as visual stimulus applied to the subject via a computer screen is called steady-state visually evoked potential (SSVEP). This feature of the EEG signal can be used to form a basis of input to assistive devices for locked in patients to improve their quality of life, as well as for performance enhancing devices for healthy subjects. The contents of this chapter describe the SSVEP stimuli; feature extraction techniques, feature classification techniques and a few applications based on SSVEP based BCI

    SSVEP Extraction Applying Wavelet Transform and Decision Tree With Bays Classification

    Get PDF
    Background: SSVEP signals are usable in BCI systems (Brain-Computer interface) in order to make the paralysis movement more comfortable via his Wheelchair.Methods: In this study, we extracted The SSVEP from EEG signals, next we attained the features from it then we ranked them to obtain the best features among all feature and at the end we applied the selected features to classify them. We want to show the degree of accuracy we applied in this work.Results: In this study Bayes (applied for classifying of selected features) got the highest level of accuracy (83.32%) with t-test method, until the SVM took the next place of having the highest accuracy to itself with t-test method (79.62%). In the next place according to the feature selection method, decision tree took the next place with Bayes classification (79.13%) and then with SVM classification (78.70%).Conclusion: Bays obtained the better results to itself rather than SVM with t-test

    Feature extraction and classification for Brain-Computer Interfaces

    Get PDF

    Influence of Auditory Cues on the Neuronal Response to Naturalistic Visual Stimuli in a Virtual Reality Setting

    Full text link
    Virtual reality environments offer great opportunities to study the performance of brain-computer interfaces (BCIs) in real-world contexts. As real-world stimuli are typically multimodal, their neuronal integration elicits complex response patterns. To investigate the effect of additional auditory cues on the processing of visual information, we used virtual reality to mimic safety-related events in an industrial environment while we concomitantly recorded electroencephalography (EEG) signals. We simulated a box traveling on a conveyor belt system where two types of stimuli – an exploding and a burning box – interrupt regular operation. The recordings from 16 subjects were divided into two subsets, a visual-only and an audio-visual experiment. In the visual-only experiment, the response patterns for both stimuli elicited a similar pattern – a visual evoked potential (VEP) followed by an event-related potential (ERP) over the occipital-parietal lobe. Moreover, we found the perceived severity of the event to be reflected in the signal amplitude. Interestingly, the additional auditory cues had a twofold effect on the previous findings: The P1 component was significantly suppressed in the case of the exploding box stimulus, whereas the N2c showed an enhancement for the burning box stimulus. This result highlights the impact of multisensory integration on the performance of realistic BCI applications. Indeed, we observed alterations in the offline classification accuracy for a detection task based on a mixed feature extraction (variance, power spectral density, and discrete wavelet transform) and a support vector machine classifier. In the case of the explosion, the accuracy slightly decreased by –1.64% p. in an audio-visual experiment compared to the visual-only. Contrarily, the classification accuracy for the burning box increased by 5.58% p. when additional auditory cues were present. Hence, we conclude, that especially in challenging detection tasks, it is favorable to consider the potential of multisensory integration when BCIs are supposed to operate under (multimodal) real-world conditions

    EEG-Based Person Authentication Modelling Using Incremental Fuzzy-Rough Nearest Neighbour Technique

    Get PDF
    High level security has nurtured the arisen of Electroencephalograms (EEG) signals as a noteworthy biometrics modality for person authentication modelling. Modelling distinctive characteristics among individuals, especially in a dynamic environment involves incremental knowledge updates from time to time. K-Nearest Neighbour (KNN) is a well-known incremental learning method which applies First-In-First-Out (FIFO) knowledge update strategy. However, it is not suitable for person authentication modelling because it cannot preserve the representative EEG signals patterns when individual characteristics changes over time. Fuzzy-Rough Nearest Neighbours (FRNN) technique is an outstanding technique to model uncertainty under an imperfect data condition. The current implementation of FRNN technique is not designed for incremental learning problem because there is no update function to incrementally reshape and reform the existing knowledge granules. Thus, this research aims to design an Incremental FRNN (IncFRNN) technique for person authentication modelling using feature extracted EEG signals from VEP electrodes. The IncFRNN algorithm updates the training set by employing a heuristic update method to maintain representative objects and eliminate rarely used objects. The IncFRNN algorithm is able to control the size of training pool using predefined window size threshold. EEG signals such as visual evoked potential (VEP) is unique but highly uncertain and difficult to process.There exists no consistant agreement on suitable feature extraction methods and VEP electrodes in the past literature. The experimental comparison in this research has suggested eight significant electrodes set located at the occipital area. Similarly, six feature extraction methods, i.e. Wavelet Packet Decomposition (WPD), mean of amplitude, coherence, crosscorrelation, hjorth parameter and mutual information were used construct the proposed person authentication model. The correlation-based feature selection (CFS) method was used to select representative WPD vector subset to eliminate redundancy before combining with other features. The electrodes, feature extraction, and feature selection analysis were tested using the benchmarking dataset from UCI repositories. The IncFRNN technique was evaluated using a collected EEG data from 37 subjects. The recorded datasets were designed in three different conditions of ambient noise influence to evaluate the performance of the proposed solution. The proposed IncFRNN technique was compared with its predecessor, the FRNN and IBk technique. Accuracy and area under ROC curve (AUC) were used to measure the authentication performance. The IncFRNN technique has achieved promising results. The results have been further validated and proven significant statistically using paired sample ttest and Wilcoxon sign-ranked test. The heuristic incremental update is able to preserve the core set of individual biometrics characteristics through representative EEG signals patterns in person authentication modelling. Future work should focus on the noise management in data acquisition and modelling process to improve the robustness of the proposed person authentication model

    The Use of EEG Signals For Biometric Person Recognition

    Get PDF
    This work is devoted to investigating EEG-based biometric recognition systems. One potential advantage of using EEG signals for person recognition is the difficulty in generating artificial signals with biometric characteristics, thus making the spoofing of EEG-based biometric systems a challenging task. However, more works needs to be done to overcome certain drawbacks that currently prevent the adoption of EEG biometrics in real-life scenarios: 1) usually large number of employed sensors, 2) still relatively low recognition rates (compared with some other biometric modalities), 3) the template ageing effect. The existing shortcomings of EEG biometrics and their possible solutions are addressed from three main perspectives in the thesis: pre-processing, feature extraction and pattern classification. In pre-processing, task (stimuli) sensitivity and noise removal are investigated and discussed in separated chapters. For feature extraction, four novel features are proposed; for pattern classification, a new quality filtering method, and a novel instance-based learning algorithm are described in respective chapters. A self-collected database (Mobile Sensor Database) is employed to investigate some important biometric specified effects (e.g. the template ageing effect; using low-cost sensor for recognition). In the research for pre-processing, a training data accumulation scheme is developed, which improves the recognition performance by combining the data of different mental tasks for training; a new wavelet-based de-noising method is developed, its effectiveness in person identification is found to be considerable. Two novel features based on Empirical Mode Decomposition and Hilbert Transform are developed, which provided the best biometric performance amongst all the newly proposed features and other state-of-the-art features reported in the thesis; the other two newly developed wavelet-based features, while having slightly lower recognition accuracies, were computationally more efficient. The quality filtering algorithm is designed to employ the most informative EEG signal segments: experimental results indicate using a small subset of the available data for feature training could receive reasonable improvement in identification rate. The proposed instance-based template reconstruction learning algorithm has shown significant effectiveness when tested using both the publicly available and self-collected databases

    Machine Learning in VEP-based BCI

    Get PDF
    Antud töös esitatakse visuaalse stiimuliga esilekutsutud potentsiaalidel põhineva ajuarvuti liidese (AAL) jaoks klassifitseerimisreegel, mis põhineb tunnuste ja lävendväärtuste omavahelisel võrdlusel. Klassifitseerimise jaoks optimaalsete lävendväärtuste leidmine formaliseeritakse maksimeerimisülesandena, kus maksimeeritakse AALi informatsiooniedastamise kiirus, mille arvutamiseks tuletatakse eraldi valem, et vältida standardse valemi poolt vajalikke eeldusi. Esitatud reegel näitab AALi klassifitseerimisülesandes häid tulemusi, saavutades informatsiooni edastamise kiiruseks kuni 60 bitti minutis. Samuti võimaldab pakutud reegel vältida vale-ennustusi, mis on oluline AALi kasutamiseks igapäevaelus. AALid omavad suurt potentsiaali medistsiini valdkonnas, kuna võimaldavad raske puudega või halvatud isikutel seadmeid kontrollida.In this thesis, a classification method for SSVEP-based BCI is proposed. The classification method is based on simple comparisons of extracted feature values and thresholds and it involves a way of optimising the thresholds. Optimising the thresholds is formalised as a maximisation task of the information transfer rate of BCI, but instead of using the standard formula for calculating ITR, more general formula is derived. This allows the thresholds to be automatically optimised and avoids calculating incorrect ITR estimate.The proposed method shows good performance in classifying targets of a BCI and achieves ITR as high as 60 bit/min. The proposed method also provides a way to reduce false classifications, which is important in real-world applications. BCIs have high potential to be used in the field of medicine as they provides a way for severely disabled people to control external devices

    A Brief Exposition on Brain-Computer Interface

    Get PDF
    Brain-Computer Interface is a technology that records brain signals and translates them into useful commands to operate a drone or a wheelchair. Drones are used in various applications such as aerial operations, where pilot’s presence is impossible. The BCI can also be used for patients suffering from brain diseases who lose their body control and are unable to move to satisfy their basic needs. By taking advantage of BCI and drone technology, algorithms for Mind-Controlled Unmanned Aerial System can be developed. This paper deals with the classification of BCI & UAV, methodologies of BCI, the framework of BCI, neuro-imaging methods, BCI headset options, BCI platforms, electrode types & their placement, and the result of feature extraction technique (FFT) with 72.5% accuracy
    corecore