70 research outputs found

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • …
    corecore