1,123 research outputs found

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    Get PDF
    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Evaluation of the Efficiency of an ARM-based Beowulf Cluster versus Traditional Desktop Computing for High Performance Computing

    Get PDF
    In the realm of scientific computing, it has become increasingly important to focus on results driven growth (Kamil, Shalf and Storhmaier). Doing this enables researchers to continue building the rapidly expanding area of scientific discovery. However, with the growth comes a cost of the amount of resources consumed to accomplish these results. Large supercomputers are consuming power at a rate roughly fourteen thousand times that of a traditional American household (U.S. Energy Information Administration). Parallel to this, public consumers have been driving the mobile industry and the research behind it. The need to have faster and faster mobile devices that can last all day long on a single battery charge has driven the development of Advanced Reduced Instruction Set processors developed by ARM. These processors are built to perform efficiently while still maintaining the ability to perform the necessary calculations. This study looked at combining these two parallel realms and analyzing the overall efficiency and energy consumption of multiple ARM processors as compared to a traditional desktop computer. The results showed that the ARM processors were less efficient roughly by an order of two when compared to the slowest possible trial on the desktop. Several variables played a significant role in these results including the limitation on network speed and bandwidth, idle energy consumption, and individual power regulators

    Maine EPSCoR End-to-End Connectivity for Sustainability Science Collaboration

    Get PDF
    Project DescriptionThis RII C2 proposal from Maine (ME) EPSCoR is focused on addressing last-mile bottlenecks at seven campuses of the University of Maine System. Maine\u27s Research and Education Network, MaineREN, delivers high performance inter-campus fiber connectivity to public and private institutions across the state, but the intra-campus networking has lacked the same investment by the state.The proposed improvements include:- Rewiring eight buildings at the University of Maine Orono Campus (UMaine) with Cat-6 cable, increasing end-to-end performance to 10 Gbps.- Upgrading the fiber backbone between the two University of Southern Maine (USM) campuses, one in Portland and one in Gorham, 12 miles apart. In addition, upgrades will be done for the buildings housing the ME RII Track-1 researchers, including the Law Building, Library, Bailey Hall, and the buildings that make up the fiber core for the Portland campus. - Upgrades to edge routers to connect to the MaineREN backbone for UMaine Augusta (UMA), UMaine Farmington (UMF), UMaine Fort Kent (UMFK), UMaine Machias (UMM), and UMaine Presque Isle (UMPI). Intellectual MeritThe proposed upgrades in network connections will greatly improve the networking capacity available to the University of Maine system and enable researchers to take advantage of state-wide upgrades with improved end-to-end performance. The proposed RII C2 connectivity improvements will support the Maine RII Track-1 Sustainability Science Initiative (SSI) by increasing bandwidth availability for the SSI data management and visualization approaches. SSI is advancing the emerging field of sustainability science in three integrative ways: 1) examining interactions between social and ecological systems (SES) as landscapes change in response to urbanization, forest management, and climate variability; 2) investigating how much SES knowledge affects, and is influenced by, the actions and decision of stakeholders, with a goal of strengthening connections between knowledge and actions; 3) evaluating the factors that facilitate and impede interdisciplinary collaboration, with a goal of identifying and implementing individual and institutional best practices that are needed to support successful interdisciplinary research programs in sustainability science.Broader ImpactsBy filling in relatively small gaps in the infrastructure, Maine will be able to make very large gains in the effectiveness of the state\u27s cyberinfrastructure (CI) that will allow researchers to fully utilize investments to improve research effectiveness, promote collaboration, improve K-12 interaction, and develop the future workforce of the state. The networking upgrades will support the 300 researchers, students, and stakeholders that are part of the SSI collaboration over 17 different disciplinary fields. The SSI activities have the potential to increase Maine\u27s research capacity and competitiveness and grow Maine\u27s green innovation economy. The proposed project will leverage the RII Track-1 programs for broader impacts

    The Effects of Microprocessor Architecture on Speedup in Distrbuted Memory Supercomputers

    Get PDF
    Amdahl\u27s Law states that speedup in moving from one processor to N identical processors can never be greater than N, and in fact usually is lower than N because of operations that must be done sequentially. Amdahl\u27s Law gives us the following formula for speedup: Speedup \u3c or = (S+P)/(S+(P/N)) where is the number of processors, S is the percentage of the code that is serial (i.e., cannot be parallelized), and P is the percentage of code that is parallelizable. We can substitute 1 - S for P in the above formula and we see that as S approaches zero speedup approaches N. It can also be shown that seemingly small values of S can severely limit the maximum speedup. Researchers at the University of Maine saw speedups that seemed to contradict Amdahl\u27s Law, and identified an assumption made by the law that is not always true. When this assumption is not true, it is possible to achieve speedups that are larger than the theoretical maximum speedup of N given by Amdahl\u27s Law. The assumption in question is that the computer performance scales linearly as the size of the problem is reduced by dividing it over a larger number of processors. This assumption is not valid for computers with tiered memory. In this thesis we investigate superlinear speedup through a series of test programs specifically designed to exhibit superlinear speedup. After demonstrating these programs show superlinear speedup, we suggest methods for detecting the potential for superlinear speedup in a variety of algorithms

    Maine EPSCoR End-to-End Connectivity for Sustainability Science Collaboration

    Get PDF
    This NSF EPSCoR C2 project allowed Maine EPSCoR to continue the state’s momentum to enhance the connectivity of the state’s research, higher education, and K-12 institutions through Maine’s Research and Education Network (MaineREN). Over the last few years, multi-million dollar investments have built networking and computing power at the state level, including: 1) the installation of 1,100 miles of middle-mile fiber optic cable; 2) investments in shared computing resources for high performance computing and cloud computing; 3) the Maine School and Library Network; 4) the Maine Learning Technology Initiative (grade 6-12 laptops); and 5) investments in high-performance visualization and videoconferencing. This C2 project allowed Maine EPSCoR to address the cyberinfrastructure gaps at the seven campuses of the University of Maine System that had still been preventing the delivery of true end-to-end connectivity between Maine’s researchers and the new advanced networking services provided over MaineREN. The research and education focus that was enabled by this C2 project is the Maine EPSCoR Sustainability Science Initiative (SSI) Rll Track 1, with the goal of providing SSI researchers and students at the seven campuses of the University of Maine System true end-to-end connectivity. Cyberinfrastructure is an important key to helping SSI to advance their sustainability science objectives to: 1) examine interactions between social and ecological systems (SES) as landscapes change in response to urbanization, forest management, and climate variability; 2) investigate how such SES knowledge affects, and is influenced by, the actions and decisions of diverse stakeholders, with a goal of strengthening connections between knowledge and action; 3) evaluate the factors that facilitate and impede interdisciplinary collaboration, with a goal of identifying and implementing individual and institutional best practices that are needed to support successful interdisciplinary research programs in sustainability science. In particular, the C2 connectivity improvements that are now in place will support the Track 1 SSI research agenda by addressing various data management, visualization, and virtual proximity challenges that were present. Except for a small amount of support towards the AAAS review, all of the C2 budget was allocated for the capital cyberinfrastructure improvements, with the goal of enabling the effectiveness of the research and education activities of the SSI Track 1 project. This then means that there is a high degree of leveraging and synergy between the two projects, and that the personnel participation, research, diversity, and workforce development activities were supported from a variety of other sources including SSI Track 1, state funds, university funds, and UMaine System funds (and therefore are not a direct part of this award). While somewhat confusing for reporting purposes, this high degree of leveraging resulted in a tightly integrated and effective manner of furthering Maine’s research and education capacity in Sustainability Science. The implementation and administration of all three NSF EPSCoR projects (Track 1, 2, C2) has been through the Maine EPSCoR office at the University of Maine, which allowed for effective coordination and leveraging of resources and investments for the maximum benefit to Maine researchers
    • …
    corecore