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Amdahl's Law states that speedup in moving from one processor to N identical 

processors can never be greater than N, and in fact usually is lower than N because of 

operations that must be done sequentially. Amdahl's Law gives us the following formula 

for speedup: 

S + P  
Speedup 5 s + P p  

where i\' is the number of processors, S is the percentage of the code that is 

serial (i.e., cannot be parallelized), and P is the percentage of code that is parallelizable. 

We can substitute 1 - S for P in the above formula and we see that as S approaches 

zero speedup approaches N. It can also be shown that seemingly small values of S can 

severely limit the maximum speedup. 

Researchers at the University of Maine saw speedups that seemed to contradict 

Amdahl's Law, and identified an assumption made by the law that is not always true. 

When this assumption is not true, it is possible to achieve speedups that are larger than 

the theoretical maximum speedup of N given by Amdahl's Law. 



The assumption in question is that the computer performance scales linearly as 

the size of the problem is reduced by dividing it over a larger number of processors. 

This assumption is not valid for computers with tiered memory. 

In this thesis we investigate superlinear speedup through a series of test 

programs specifically designed to exhibit superlinear speedup. After demonstrating 

these programs show superlinear speedup, we suggest methods for detecting the 

potential for superlinear speedup in a variety of algorithms. 
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CHAPTER 1 

Introduction 

1.1 Growing Computational Power 

Since the advent of the first microprocessor, the Intel 4004, microprocessor 

speeds have increased at an exponential rate [ l ,  21. This behavior was predicted by 

Gordon Moore in 1965, when he observed the exponential growth in the number of 

transistors per integrated circuit[l, 31. This observation became known as Moore's Law, 

which Intel expects to hold at least until the end of this decade[l]. 

The actual rate of Moore's Law was originally about a 12-month doubling time. 

This rate slowed down to about an 18-month doubling time in the 1970's, which has 

stayed relatively constant[4]. A graph of the number of transistors in various Intel micro- 

processors is seen in Figure 1. I .  Note that in Figure 1.1 we have "connected the dots" 

in order to make the trend easier to see. As you can see in this graph, the number of 

processors in Intel chips has been increasing exponentially. 

What this ability to pack more transistors onto a microprocessor means is that, 

among other things, the newer chips can have more registers, larger on-chip memory 

cache, wider data paths, and more logic circuits. It also means that memory and logic 

components can be placed closer together, allowing for a greater operating speed due to 

a shorter electrical path[il]. All of this leads to faster and faster processors, at relatively 

constant costs. This means that although the fastest processor available today costs 

about the same as the fastest processor available two years ago, it is more than twice as 

fast. 

We have also seen clock speeds increase at a dramatic rate, and with more 

complexity on new microprocessors, as described above, they are able to do more with 
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Figure 1.1 : Moore's Law - Transistors Per Chip, [I]  

Figure 1.2: Intel Processor Clock Speeds by Year, [2] 
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each additional clock cycle. Figure 1.2 shows the clock speeds, at the date of intro- 

duction, of many popular Intel microprocessors. Like Figure 1.1, we have connected 

the dots in Figure 1.2. It can easily be seen from this graph that clock speeds have been 

increasing exponentially as well. 

1.2 Growing Demand for Computational Power 

Despite this relentless increase in computational power available in commodity 

microprocessors the world's thirst for CPU cycles remains unquenched. Because there is 

always the desire to squeeze more detail out of computer models, and because scientific 

data sets are getting larger and larger, scientist's computational needs have kept up with, 

or possibly even out-paced Moore's Law. For example, increased computational power 

allows for more detailed Earth climate models, and therefore more accurate weather 

prediction. 

Even though we have this great demand for computational power, we are limited 

by current state of the art microprocessor manufacturing techniques. One can go to a 

local electronics store and purchase a microprocessor that executes over 3 billion opera- 

tions per second. The price of this chip will be less than $500. However, one can not 

purchase a commodity chip running ten times faster at any price. Such a thing simply 

does not exist. 

One can use specialized, and expensive, vector processors to achieve better 

speeds for large scientific calculations, but even single vector processors are not fast 

enough to satisfy the computational requirement of many of today's scientists and engi- 

neers. The only options available in this situation are to either wait for processor speeds 

to increase, at their current predictable rate, or utilize many processors together on the 

same problem. The latter approach is called parallel processing. 



1.3 Parallel Computing Overview 

In parallel processing the problem is essentially split up so it can be worked on 

in parallel by many different processors at the same time. This problem decomposition 

can be done either a priori, or during run time. Different problems will lend themselves 

to different decomposition methods. 

For example, Computational Fluid Dynamics (CFD) codes lend themselves to 

the a priori decomposition. In these types of programs the global grid is decomposed 

into sub-grids for each processor[S]. When the program starts, each processor reads 

its own input files and performs the computation on its portion of the grid. Then each 

processor communicates with the processors computing the neighboring sub-grids to 

exchange boundary information after each iteration[S]. 

A common method of run time decomposition is through a replicated worker 

type algorithm. In this type of parallelism, there is a task-pool and a number of workers 

that retrieve tasks from the task-pool in parallel. When a worker finishes processing a 

task it may add a new task to the pool. The program will run until the task-pool is empty. 

This is a common method of parallelism for combinatorial problems like graph or tree 

searches[6]. 

Another method of parallelism that does not involve decomposing input 

problem, but instead involves distributing the functionality of the program. This type 

of parallelism is called pipelining, or pipelined computation[6]. In this approach to 

parallelism, data flows from one processor to another, and at each processor a different 

portion of the overall computation is to be done. Efficient pipelining requires keeping 

the pipeline full. If there is only one chunk of data to process then the pipeline will not 

provide any parallelism. 

In parallel processing there are two major system architectures. The first is a 

shared memory parallel system. Historically these systems often used specialized vector 

processors, as was the case with the popular Cray supercomputers of the past[7]. This 



shared memory model has been the traditional approach to supercomputing. The second 

major approach, that has steadily been gaining popularity for a decade, is a parallel 

system based on commodity microprocessors, usually with a distributed memory archi- 

tecture. Distributed memory supercomputers based on commodity microprocessors and 

interconnects are commonly referred to as "Beowulf Clusters", in reference to the first 

cluster of this type, named Beowulf. The original Beowulf Cluster was built in 1994, 

when a research group at NASA had the need for a supercomputer, but could not afford 

a traditional one[7, 81. 

With the rapid increase in the computing power of desktop and workstation 

computers, this approach has become a very powerful yet cost effective alternative to 

the traditional supercomputer[9]. In fact, for over a decade, the rate at which desktop 

and workstation processors have increased in performance has been greater than the 

rate at which traditional supercomputing processors, such as vector processors, have 

increased in performance[lO]. 

Corresponding to these two major system architectures are two major 

programming paradigms for parallel processing. The first is the threaded model, 

where all the processors have access to the same shared memory. A common method 

to achieve shared memory parallelism is to use OpenMP directives. These directives 

give the compiler directions on how it can parallelize the code. The directives include 

telling the compiler which loops can be done in parallel, and which variables need to be 

local or shared in the parallel sections. Synchronization points and critical sections can 

also be specified. The compiler then creates threaded code based on these directives. 

The other major model is the distributed memory model, in which the programmer 

explicitly shares data between processors via message passing. The de facto standard 

for creating distributed memory parallel software is through Message Passing Interface 

(MPI) calls, where the programmer uses calls such as MPI-SEND and M P I B E C V  to 

share data between processors[l 11. 



1.4 Our Work 

Today, at the University of Maine, researchers use a cluster supercomputer, 

similar in concept to the original Beowulf Custer but thousands of times faster, to model 

airflow over missile bodies, water flow in nanotubes, the carbon cycle in the Pacific 

Ocean, and to perform other computationally intensive calculations. 

However, parallel processing is not trivial, and not all problems are well suited to 

this type of approach. Amdahl's Law, developed in 1967, is an equation showing that the 

inherently serial portions of a computation place an upper-limit on the potential speedup 

of the problem [6, 12, 13, 141. Furthermore, Amdahl's Law places an absolute limit of 

N on the potential speedup, where N is the number of processors used in a parallel 

calculation. This upper-limit represents an ideal problem that is infinitely parallelizable. 

Not only does this upper limit of N represent a infinitely parallelizable problem, 

it also does not account for any additional overhead that may be required to parallelize 

the computation[l4]. With serial tasks and additional overhead achieving speedups even 

close to N would be impossible for many parallel calculations. 

While conducting research for the SDMT (Supercluster Distributed Memory 

Technology) research project at the University of Maine, we saw speedups of a particular 

parallel computation that seemed to defy Amdahl's Law. This discovery caught our 

interest in the potential of speedups greater than N on N processors, which at first 

glance strikes one as very counter intuitive. 

This work focuses on the implications of Amdahl's Law, and on some short- 

comings of the law. It discusses situations where speedup greater than N is possible 

when a parallel computation is performed on N processors. This phenomenon is 

sometimes referred to as superlinear speedup. 



CHAPTER 2 

Significant Prior Research 

2.1 Amdahl's Law 

In 1967 Gene Amdahl, a researcher in IBM's mainframe division, wrote a paper, 

[12], promoting the uni-processor approach to computing. In this paper, Amdahl had 

observed that commonly 40 percent of executed instructions in typical programs of the 

time dealt with data management overhead. It was Amdahl's position that this could be 

reduced by a factor of two, and that it was highly unlikely that it could be reduced by 

a factor of three. Given that this overhead was sequential in nature, Amdahl stated that 

maximum speedup would be five to seven times the sequential rate. 

This idea of serial overhead of 13.3% to 20% (assuming that the 40% overhead 

can be reduced by a factor of two to three) limiting maximum speedup to five to seven 

times was commonly generalized and reformulated to what is commonly known as 

Amdahl's Law, seen in Equation 2.1. Here S is the percentage of instructions sequential 

in nature, P is the percentage of parallelizable instructions, and N is the number of 

processors used in a parallel calculation[(i]. This equation relating serial portions of 

code to speedup does not explicitly appear in Amdahl's work. 

Speedup 5 S + P  
S+ PIN 

If we look at 2.1 we can see that since P and S are percentages and add up to 1, 

then we can substitute 1 - S for P in 2.1: 

S+l-S 
Speedup 5 

s + y  



If we are then to assume that the problem is infinitely parallelizable (S  = O), 

then we get the following upper-limit for speedup: 

Speedup 5 
I 

s + y  

This is very intuitive, and can be compared to many physical examples. For 

example, consider the task of digging a moat around a medieval castle. One hundred 

workers would complete the task in about one-hundredth of the time it would take a 

single worker, assuming they all work at the same rate, but 100 identical workers would 

never complete the task over 100 times faster than the single worker. This task of digging 

a moat would have a very small S value (almost zero), and speedup would be about N 

until the laborers are so numerous that they are getting in each other's way. Amdahl's 

Law would predict a maximum speedup of almost N, even for large values of N. Once 

the laborers are getting in each other's way we start seeing diminishing returns for each 

additional laborer added to the task. Given the small value of S and the correspondingly 

large value of P ,  a speedup of several thousand times would be possible. 

Now consider the example of digging a well in the courtyard of this same castle. 

In comparison, this task would have a rather large S value. While multiple laborers may 

dig the well at one time, this number is quite small and depends on the diameter of the 

well. The small number of laborers that can fit in the well at one time corresponds to 

the small P value of the task. The depth of the well vs the diameter would correspond 

to the large S value of the task, as dirt cannot be removed until all the dirt above it has 

been removed. 



Serial Run 

Parallel Run 

Figure 2.1 : Speedup 

In Figure 2.1 we see a graphical illustration of Amdahl's Law at work. One 

can see that adding more processors to the problem shrinks the parallel portion, and the 

runtime becomes dominated by the serial portion of the code. No matter how many 

processors are added the amount of time spent in the serial portion remains constant. 

Figure 3.2 shows a graph of Equation 3.1, where N = 1024. One very important 

thing to note about this graph is the slope of the curve near S = 0. The slope of this curve 

is approximately - N 2 ,  which tells us that only a limited number of problems would 

even experience a speedup of 100[13]. What seems like a reasonable serial percentage 

of 5% (S = 0.05) would limit our maximum speedup on 1024 processors to 20 times. In 

most cases it would make no sense to run such a problem on that number of processors, 

since the efficiency is so poor. 

2.2 Gustafson's Scaled Speedup 

In 1988 researchers at Sandia National Laboratories achieved what they felt were 

unprecedented speedups on a 1024-processor hypercube, and John L. Gustafson wrote 

a paper, [13], where he proposed something called Scaled Speedup to address their 
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Figure 2.2: Speedup for N=1024 

findings. Gustafson said that they saw speedups, using his scaled speedup model, of 

1016 to 1021 on three problems with S values ranging from 0.004 to 0.008. From 

Equation 2.1 we can see that if S = 0.004 and N = 1024 we would get a maximum 

speedup of slightly over 201, which is much lower than the speedup that was observed 

by Gustafson. 

Amdahl's Law assumes a fixed problem and variable run time. Instead, 

Gustafson argued that a more realistic scenario would be problems expanding to make 

use of an increased number of processors. In Gustafson's model, Scaled Speedup, it is 

the run time that is fixed, and the problem size is scaled when run on more powerful 

computers. 

Gustafson had observed that it is usually the parallel part of the program that 

scales with problem size, but the S component grows much slower, if at all, as the 

problem size grows. By using this fact, Gustafson and his group created new, larger, 

problems that would run on the 1024-processor hypercube in the same wallclock time 



that the original serial problem took. Gustafson had found that his three real world 

problems had parallel portions that scaled by 1023.9969, 1023.9965, and 1023.9965 

when scaling the problems by 1024. This means that almost all of the additional work 

took place in the parallel portions of the code. This problem scaling is done by means 

of increasing the grid resolution, using a smaller time-step, adding more parameters, or 

other similar methods of extracting more detail out of the computer model. 

Gustafson then used Pt and St to represent the parallel and serial time spent on 

the parallel system, respectively. Gustafson set Pt + St = 1 for algebraic simplicity, 

basically making Pt and St percentages of the run time of the parallel program, much 

like in our previous definitions of Amdahl's Law where P and S were percentages of the 

serial run time. The extrapolated run time on a serial system would then be St + Pt * N .  

Using this reasoning, the researchers derived their alternative to Amdahl's Law: 

ScaledSpeedup = 
St + Pt * N 

St + Pt 

This equation, 2.4, became known as Gustafson's Law, and has been widely 

used to justify massively parallel processing[l5]. However, it really is not a new law. 

If you recalculate the S value based on the new scaled parallel percentage, Amdahl's 

Law would predict similarly large speedups. This equivalence of Gustafson's Law 

to Amdahl's Law was proven mathematically in [15]. In this paper Yuan Shi gives a 

formula to translate the non-scaled serial percentages to the scaled serial percentages. 

Using the scaled serial percentage, Amdahl's Law gives speedups for Gustafson's three 

problems consistent with his scaled speedup calculations. 



With Gustafson's fixed time, scaled speedup, approach we are able to see that 

even if massively parallel computing is not efficient for a given code and problem 

pair, massively parallel computing could be efficient for the same code given a larger 

problem. In his fixed time model the overall run time will be about the same, but the 

amount of work done in that time period can be thousands of times larger. 

2.2.1 Scaled Speedup Explained 

In most cases the amount of computation required for the "main loop" of a 

program is proportional to a power of the size of the input data[6, 131. The initial- 

ization of the program is generally proportional to the size of the input data[6]. Since the 

initialization portion of a program often contains the majority of a program's sequential 

instructions, and since the complexity of the computational portion of code grows faster 

than the complexity of the initialization, in most cases one can decrease the serial 

percentage in Amdahl's law by using a larger input data set (as long as the compu- 

tation is highly parallelizable)[6]. This makes the scaled speedup approach a very useful 

technique. 

Equation 2.5 shows how the serial percentage in Amdahl's Law can be described 

as a function of the amount of computation required for initialization and the amount of 

computation required for the "main loop"[6]. It is assumed that the initialization code is 

sequential in nature, and that the remainder of the program can be highly parallelized. 

In this example the amount of computation required for the initialization is cn, and the 

amount of computation required for the main loop is dn2, where c and d are constants 

and n is the size of the problem. Note that this is just an example, and dn2 was arbitrarily 

chosen. We could have easily chosen dn3, or any other power. From Equation 2.5 we can 

see that increasing the input problem will reduce the serial percentage of this program. 



2.2.2 Fixed Time vs Fixed Size 

The fixed time scaled speedup approach by Gustafson validated the approach 

of massively parallel processing, however, this fixed time approach does not work for 

all problems. Consider the example of a weather prediction model. Assume a serial 

implementation of a climate model takes thirty days to forecast the weather three days 

later. By the time the model is done running the data is useless. In this case the efficiency 

of the problem is secondary to the time it takes to run the problem. For example, even 

if the model achieved a speedup of 30 by running on 64 processors it would make sense 

to run the model on this number of processors in order to have the weather forecast in 

time for it to have value. 

The example of a weather model can also be used as an example where the fixed 

time approach makes sense. Say with a current weather model, the three day forecast can 

be computed in less than one day. With increased computational power it might make 

more sense to add more factors into the weather model or increase the grid resolution to 

get a more accurate solution instead of performing the calculation in less time[l6]. 

If we desire more computational power in order to achieve better accuracy, the 

fixed time, scaled speedup approach makes sense[l3, 161. If we desire more computa- 

tional power in order to arrive at a solution faster, the fixed problem size approach makes 

the most sense. Unfortunately the fixed problem size approach rules out massively 

parallel computation for many problems, and this way of thinking led most early super- 

computers to be built with a small number of processors[l6]. 

2.3 Parallel Overhead 

It has been observed that Amdahl's Law could even be overly optimistic due to 

overhead incurred while parallelizing the code[l4, 161. This overhead is often called 

parallel overhead, and it includes additional code required to parallelize the task, often 

in the form of MPI calls in the distributed memory model or thread control code in the 



shared memory architectures, as well as communication latency in distributed memory 

supercomputers and ensuring cache coherence in cache coherent (cc) NUMA (Non- 

Uniform Memory Access) architectures[6, 171. Non-uniform memory access means 

that not all memory can be accessed in the same amount of time. NUMA machines 

may locally cache data located in "remote" memory (memory not local to the processor, 

meaning it takes more clock cycles to access). Cache coherence means that when data 

is changed, all cached copies of that data have to be changed to reflect the new value 

thereby maintaining "cache coherenceM[6, 171. 

Robert G. Brown proposed a new estimate of speedup based on Amdahl's Law 

that accounted for some of the parallel overhead[l4]. In his new estimate, Brown took 

into account additional time doing serial tasks (such as interprocessor communication) 

and additional time spent by each processor doing additional parallel tasks (such as 

additional setup tasks required on each processor for the parallel version of the code). A 

new equation for speedup can be seen in 2.6. It is based on the formula that appeared in 

[13] but with variable names changed to reflect the notation established in Equation 2.1 

and with S  + P  normalized to one rather than reflecting the actual total runtime. Here 

we use s to signify additional time doing serial tasks, and P to signify additional time 

doing parallel tasks. 

Speedup = 
S + P  

S + N * S + P / N + P  

From Equation 3.6 we see that actual speedup will likely be less than that 

predicted by Amdahl's Law. 

2.4 Superlinear Speedup 

Superlinear speedup is the term commonly used to refer to speedup greater than 

N when a parallel calculation is performed on N processors. According to Amdahl's 



Law this is an impossibility. Also, according to [15], since every practical parallel 

program must consolidate the final answer the serial percentage is never zero, making 

even a speedup of N when running on N processors is impossible. Historically claims 

of superlinear speedup have often been due to inefficient serial algorithms[l8, 191. 

One of the earliest "proofs" of superlinear speedup was a 1986 short paper 

appearing in the journal Parallel Computing by D.  Parkinson,[20], where he asked us to 

consider the following code fragment: 

DO I = l,N 

A(1) = B(1) + C(1) 

CONTINUE 

Parkinson argued that by running this code fragment on N processors the loop 

overhead could be eliminated, thereby causing a speedup of greater than N. 

It is interesting to note that his paper, called "Parallel efficiency can be greater 

than unity", was accompanied by a paper called "Superlinear speedup of an efficient 

sequential algorithm is not possible" in the same July 1986 issue of Parallel Computing. 

These two conflicting articles were even appeared back to back in the journal! 

In [21] a model of parallel computation capable of explaining speedups greater 

than N on N shared memory processors is explained. The reasons given for speedup 

greater than N include: the sequential algorithm is somehow constrained to use an 

inferior method; the problem is NP-hard and the best known algorithm is a randomized 

search (when multiple choices are explored in parallel the probability that they all lead 

to lengthy calculations is low); the parallel calculation may have reduced overhead; the 

multiprocessor system has an increased cache size; and the parallel calculation hides 

latency. 

Of these causes of superlinear speedup the first two are self explanatory, and not 

particularly interesting. In fact, Helmbold et a1 provide references to claims that while 



the second cause (the randomized search case) is possible, it has not been observed 

in practical algorithms, and their model does not account for this cause of superlinear 

speedup. 

The latency hiding technique can be used on the uni-processor model, and can 

be considered an optimization and not a source of superlinear speedup['l]. The speedup 

greater than N caused by reduced overhead applies to shared memory machines, as they 

state that the cost (i.e., processor time) of some system calls on an n processor machine 

will be llnth the cost on a uni-processor machine. The idea that more processors 

allow the system overhead to be spread out does not apply to distributed memory cluster 

computers, since each node in a cluster computer has its own operating system. 

The idea of speedup greater than N due to an increased cache is quite interesting. 

However, like the reduced overhead cause, the arguments they present are based on a 

shared memory model[21]. They state that the cache miss ratio may decrease as n 

increases because the number of different tasks that each processor must execute will 

be reduced['l]. On a distributed memory cluster, such as the platform we use, this is 

not true. In particular, we know that each node used in a parallel job will be running the 

same number of processes per processor regardless of the number of nodes used in the 

computation. 

In [18], Gustafson says that in some cases performance can increase instead of 

decrease as the problem size per processor shrinks. Remember that in [13] Gustafson 

argued for scaling the global problem size up as the problem is run on more processors 

in order to achieve better efficiency. In [18] he is looking at the case where the global 

problem is fixed, and therefore the local problem shrinks as it is run on more processors. 

Gustafson points out that the different speeds of tiered memory in distributed memory 

supercomputers could allow for superlinear speedup (not caused by an inefficient serial 

algorithm). Gustafson offers no real world problem that demonstrates this sort of 

speedup. 



In this same paper, Gustafson offers another cause of superlinear speedup, which 

he calls "Changing Routine Profile"[l8]. In this cause of superlinear speedup, running 

on more processors allows more time to be spent in faster routines. Gustafson assumes 

that the "fixed time" approach is being used, and he gives experimental results showing 

a speedup of 4.16 when using four processors and fixing the run time of the example 

program at one minute. 

We don't find this cause of superlinear speedup particularly interesting because 

basically it is simply an effect of imposing a time limit on the computation and is not 

related to the supercomputer architecture. This can be explained using Gustafson's own 

example of this phenomenon. 

Gustafson gives a physical example of moving a piano with a time limit of 30 

minutes, and work measured in distance moved[l8]. In this example he states that with 

a single mover, the piano might be moved a few feet out the door, while a truck idles 

outside. With two movers, the piano might be moved outside, loaded onto the truck, 

and driven 20 miles down the highway. By adding a second mover, the amount of work 

done was increased by several thousand times (a few feet compared to 20 miles). Using 

two movers to move the piano out of the house and onto the truck might be 1.9 times 

faster than a single mover, and once they are in the truck the speedup of having a second 

mover is one, meaning it is the same speed (the second mover obviously cannot make 

the truck drive any faster). By imposing the fixed time, that speedup of 1.9 makes a 

huge impact on the amount of work done, but if we instead measured how long it takes 

to move a piano from one location to another with one and two movers, we would see 

that two movers is not more than twice as fast because for part of the task they are 

1.9 times faster, and for the remainder of the task they are the same speed. Therefore, 

imposing an artificial fixed time limit that is not sufficient to solve the problem can lead 

to artificial examples of superlinear speedup. 



In the past fourteen years the Helmbold[21] and Gustafson[l8] papers have 

received limited attention. In searching for citations of these papers, only a handful 

were found. Most often citations of these papers were used to justify minor super- 

linear speedups, with little or no explanation of the actual mechanism responsible for 

the particular instance of superlinear speedup. Furthermore most claims of superlinear 

speedup occurred in shared memory supercomputers, and no proof of large scale super- 

linear speedup in Beowulf-style commodity based clusters was found. 

A typical reference to either of these papers is exemplified by a paper on a 

parallel radiosity algorithm, [22], which uses Gustafson's work[l8] to justify their 

speedups that were slightly larger than 16 on 16 processors. These results were 

obtained on a Silicon Graphics Origin2000, a shared memory supercomputer. We have 

yet to find reports of significant superlinear speedup on large scale distributed memory 

supercomputers. 

2.5 Chapter Conclusions 

In this chapter we have summarized many of the views on parallel processing 

speedup. Amdahl's pessimistic view on parallel computation is one of the oldest, most 

intuitive, and most well-known of these views. It has also been said that Amdahl's 

law might even be too optimistic because of "Parallel Overhead. These beliefs ruled 

out massively parallel processor for many problems, but Gustafson saw that if, instead 

of fixing the problem size, we fixed the run time many more problems could see very 

efficient speedups on large processor counts. By fixing the run time, faster computers 

allowed larger or more complex problems to be used, which effectively shrinks the serial 

percentage of total run time spent in serial code. This was used to justify massively 

parallel processing, and soon systems with hundreds or even thousands of processors 

became much more common. The goal of these larger systems was often not to complete 

a problem faster, but instead to run larger, more detailed, or more accurate simulations. 



While scaling the problem size allowed many programs to be run utilizing more 

processors, the absolute upper limit of speedup was still considered to be N. This limit 

was based on the assumption that the computer performed linearly as problem sizes were 

reduced. Prior research has shown that small superlinear speedups could occur on shared 

memory supercomputers for a variety of reasons. Prior research has also suggested 

that superlinear speedup would be possible in a distributed memory supercomputer. In 

the following chapters we will show examples of superlinear speedup in a distributed 

memory cluster computer, and we will identify the properties of both the processors and 

programs that allow this to happen. 



CHAPTER 3 

Research Questions 

3.1 Problem Introduction 

As stated in Chapter 2 we know that the number of serial tasks in an algorithm 

severely limit its potential speedup when performing the computation in parallel. 

We also know that performing a computation in parallel often introduces additional 

overhead, as described in [14]. Because of this, while working on the University of 

Maine Supercluster Distributed Memory Technology (SDMT) research project, we 

were initially surprised to see speedups of 4.2 and 8.53, when increasing the number 

of processors used on a particular parallel computation by four and eight times respec- 

tively. Since Amdahl's Law is a law of diminishing return, one would expect doubling 

the number of processors would result in a less than doubling effect on the speedup, and 

that each additional doubling of processors would see a less efficient speedup than the 

previous doubling. 

The SDMT research group deals primarily with a package called CRAFT CFD, 

available from (and a registered trademark of) CRAFT Tech of Pipersville, PA. This 

code, henceforth simply referred to as CRAFT, is a state-of-the-art, three dimensional 

structured grid Navier-Stokes code. More information on CRAFT Tech and the CRAFT 

code can be obtained from the CRAFT Tech website, http://www.craft-tech.com. 

When performing CRAFT benchmarks, we usually compare something called an 

"iteration time", which is the time it takes for one pass through the main CRAFT loop. 

The iteration time consists of a computational portion, and a communication portion. 

For timing purposes we break a CRAFT run into several portions: startup time, many 

iterations, a write time, and end time (the time between the end of the write portion and 

actual program termination). An actual CRAFT run time is dominated by the iteration 
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Figure 3.1: CRAFT Time Components (not to scale) 

Number of CPUs r- 
times, so therefore this is the number we are most interested in. Figure 3.1 shows the 

various components that are timed during a CRAFT run. Note that the lengths of each 

portion do not accurately reflect their overall percentage of a complete run time (for 

example, communication time is a tiny fraction of an iteration time). 

In Table 3.1 we see iteration times for a CRAFT benchmark problem run on 

32, 64, 128, and 256 CPUs. We see that when doubling the number of processors 

from 32 to 64 the resulting speedup is 1.98, slightly less than the theoretical maximum 

speedup of two when doubling the number of processors. This speedup of nearly two 

when doubling the number of processors is not surprising since the iteration is very 

parallelizable. However, in the 128 and 256 CPU cases, we see speedups of 4.2 and 

8.53 when compared to the 32 CPU case. Both of these speedup values are larger than 

the theoretical maximum speedup. Even though these are the iteration times, and not 

timing data for the entire program, Amdahl's Law should apply to subsets of the code, 

otherwise it could be broken. 

Table 3.1: CRAFT Benchmark Results 
Measured Speedup 

1 
1.98 
4.2 
8.53 

Iteration Time (s) 

138.2 
69.7 
32.9 
16.2 

Theoretical Maximum 
Speedup 

(from 32 CPUs) 
1 
2 
4 
8 



After thinking about these results, we soon identified an assumption made by 

Amdahl's Law that we felt would allow for speedups larger than N if the assumption 

were not true. 

3.2 Our Hypothesis 

3.2.1 Amdahl's Assumption 

Amdahl's Law implicitly assumes that the processing time scales linearly with 

problem size. However, the program's input data is changing as the problem is decom- 

posed further to take advantage of more processors. This is especially the case where 

each processor works on a smaller sub-problem, such is the case with CFD codes. 

3.2.2 Problem with this Assumption 

We know that a processor does not always operate at the same speed with 

different input data. Different input may cause the program to take a different path 

through its instructions, varying the run time. Also the change in volume of data can 

make a significant impact in the speed of a program. Certainly a program that has to 

process half as much data should complete in less time, but in most cases it will not 

reduce the crunch time by more than half, where we define crunch time as the time 

spent processing the input data, but not doing other program "housekeeping" tasks. 

However, there are certain instances where halving the input data can cause a program's 

crunch time to be reduced to less than half of the original time. 

This behavior has to do with tiered memory found in modem microprocessors. 

Typically a computer has a large amount of disk storage, a significantly smaller amount 

of Random Access Memory (RAM), and one or more levels of cache memory, which are 

much smaller than main memory[4]. By decreasing the input data so it fits entirely into 

RAM instead of having to work from disk we see a significant performance gain because 



paging data to and from disk is much slower than the access time of RAM. The same 

holds true for RAM vs. cache memory. Typically supercomputers do not utilize virtual 

memory because of the performance penalty of swapping to and from disk. Problems 

must be run on enough processors so the local problem can fit entirely in physical RAM. 

Such is the case with the University of Maine supercomputers. 

The supercomputer at the University of Maine, Blackbear, on which the CRAFT 

benchmarks in Table 3.1 were performed, is comprised of 1 GHz Pentium I11 processors 

with 256 kilobytes of L2 cache. In these PI11 processors it takes about 7 clock cycles to 

fetch a 32-bit word stored in L2 cache, however, it takes about 60 clock cycles to fetch a 

word from RAM[23]. This makes the L2 cache almost ten times faster than RAM. Even 

though the amount of L2 cache is much smaller than data sets for typical real world 

supercomputer applications, the processor attempts to make the best use of the cache by 

not only pulling in one 32-bit word at a time, but pulling eight 32-bit words into cache 

at once (pulling a total of 256 bits, or 32 bytes of data)[23]. This group of data is called 

a cache line[24]. 

The rationale is that memory accesses are likely to be sequential, so once a line 

is pulled into cache the next several memory accesses will hopefully be of data already 

in cache[24, 251. When pulling in 32-byte lines into cache the 256 kilobytes fill up 

quickly, so eventually older data will be pushed out of cache. Ideally one hopes to read 

in a cache line, and then get several "cache hits" in a row before the next "cache miss" 

when another line is read in. In this situation most memory accesses are made to the L2 

cache with the access time roughly ten times faster than RAM. 

3.3 Chapter Conclusions 

We think that we could be seeing effects of our test platforms cache memory 

that caused CRAFT to run slightly faster (get a larger percentage of cache hits) on 

the smaller local problem. We also believe that the cache memory could allow for a 



program to seemingly break Amdahl's Law by achieving superlinear speedup. Upon 

further investigation we discovered an explanation of superlinear speedups in shared 

memory supercomputers[21], which didn't apply to our cluster, and we found a claim 

that superlinear speedup due to tiered memory in distributed memory supercomputers 

was possible[ 181, but no proof was given. 

In the following chapters, the existence of such programs (programs that 

show superlinear speedup due to cache memory) will be proven, thereby proving the 

conjecture made by Gustafson in [18], and key attributes will be identified with which 

one can predict the possibility of superlinear speedup in real world programs. 



CHAPTER 4 

Research Methods 

4.1 Exp eriment Ov 

Our experiments consisted of running several test programs on the Kearney 

supercomputer. Each test was run on a number of different processor counts ranging 

from one up to 124 (the maximum number of CPUs available for computations on 

Kearney at the time of this research). For each test program three runs were performed 

at each processor count and the average of those run times along with the actual three 

run times was recorded. 

Timing was done with MPI-Wtime function, which returns a double precision 

floating point number. The value of this number is defined as the number of seconds that 

have passed since an arbitrary time in the past[26]. This value will be recorded at the 

start of the program, and again after the "main loop" is complete just prior to program 

termination. This timing will be done by MPI process 0, which will also be responsible 

for collecting and merging data from all the other processes. This data aggregation 

overhead will be included in the timing information. 

4.2 Test Programs 

Our base test suite consist of three similar programs. The programs all perform 

floating point operations over a large set of data that they make repeated passes through. 

The programs were designed to be trivially parallelizable, and can therefore easily be 

run on varying numbers of processors. The datasets that are used are generated at run 

time, and although the programs are not performing an interesting calculation, the result 

can be used to make sure the program produces the same result regardless of the number 



of processors the calculation is performed on. The calculation over the dataset produces 

a single number than can be compared between all runs. 

The complete source code for all the test programs can be found in Appendix A. 

Below you will find descriptions and pseudo code for each of the three programs. 

4.2.1 Program 1 

Program 1 is the most basic of our test programs. This program simply repeats a 

numeric calculation over and over on a large data set. The idea is that as the calculation 

and data set are split over more and more processors eventually the entire local dataset 

will fit entirely into cache. This program accesses the data sequentially, so it already 

sees much of the benefits of cache (typically a cache miss will be followed by several 

cache hits). As with all the the test programs the size of the data set, and the number of 

iterations in the "main loop" makes the initial "setup" code a very small percentage of 

the overall executed code. Communication was minimized in Program 1. 

Program 1 Pseudo Code 

Initialize MPI 

Start Timing 

DataSize = GlobalDataSize / NumProcs 

Allocate myData[DataSize] 

For i = 0 to Datasize-1 [ 

myData[i] = 1.5 

For i = 0 to NumIterations [ 

sum = sum + myData[il * constant 
I 

Partial Solutions Gathered by Node 0 

End Timing 



Print Results 

4.2.2 Program 2 

Program 2 is very similar to Program 1, except for the order the data is accessed. 

In Program 2, memory is no longer accessed sequentially, and the benefits of the cache 

should be minimized until the local data set completely fits into cache. This should 

amplify the "cache effect" and demonstrate remarkable speedup. 

Program 2 Pseudo Code 

Initialize MPI 

Start Timing 

DataSize = GlobalDataSize / NumProcs 

Allocate myData[DataSize] 

For i = 0 to Datasize-1 [ 

myData[i] = 1.5 
I 

For k = 0 to NumIterations [ 

For i = 0 to 4 [ 

while j < DataSize [ 

sum = sum + myData[j] * constant 
j = j + 5  

I 

Partial Solutions Gathered by Node 0 

End Timing 

Print Results 



4.2.3 Program 3 

Program 3 introduces more communication into the "main loop", but otherwise 

is very similar to Program 2. In Programs 1 and 2, the local solutions are aggregated 

once at the end of the program, in Program 3 partial local solutions will be sent to 

mpi-node 0 at a preset interval. Initially this communication interval was set to every 

1,000 iterations. 

Program 3 Pseudo Code 

Initialize MPI 

Start Timing 

DataSize = GlobalDataSize / NumProcs 

Allocate myData[DataSize] 

For i = 0 to Datasize-1 [ 
myData[i] = 1.5 

I 

For k = 0 to NumIterations [ 

For i = 0 to 4 [ 

while j < DataSize [ 
sum = sum + myData[j] * constant 
j = j + 5  

If k mod CommInterval == 0 OR k == last iteration [ 

Partial Solutions Gathered by Node 0 

I 

End Timing 

Print Results 



4.2.4 Data Set and Number of Iterations 

The size of the global dataset was set at 1,500,000 double precision floating 

floating point numbers. A double precision floating point number is represented by 

eight bytes, giving our dataset a size of 12,000,000 bytes, or twelve megabytes (MB). 

This dataset is extremely small by modem supercomputing standards, but it allowed 

the local datasets to fit completely in cache at 47 processors. At that point the local 

dataset was just over 255,300 bytes, or about 255 kilobytes (KB). This allowed us a 

good number of runs with the local dataset larger than cache, as well as a large number 

of runs where the local dataset is smaller than the available cache. With a larger dataset 

we would simply need to utilize more processors to reduce the local dataset to a size 

that would completely fit into cache. 

After the size of the data was set at 12 h4E3, we began to experiment with a 

varying number of iterations, or the number of passes through the dataset. After trying 

various numbers of iterations for Program 1 (starting at 100 for initial testing, and 

increasing by multiples of ten), we found that 1,000,000 iterations would take around 

thirteen hours to complete on one processor. The final number of iterations was fixed at 

1,750,000. 

For Program 2, which also used a data set of 1,500,000 double precision floating 

point numbers, we found 1,000,000 iterations took approximately sixteen hours. The 

reason this is longer than 1,000,000 iterations in Program 1 is because Program 2 sees 

little benefit from cache, while Program 1 accesses the data sequentially and sees a 

large cache hit percentage. The cache hit percentage in Program 1 on one processor is 

essentially 75% because with each cache miss a 32-byte line is pulled into cache (as 

discussed in Chapter 3). Since double precision numbers are eight bytes, a cache line 

can hold four double precision floating point numbers, meaning the next three will will 

pulled into cache along with the double that is currently being accessed. Therefore in 

Program 1 a cache miss can be followed by three cache hits, giving us approximately 



75% hit rate (neglecting cache misses due to cache being flushed by context switches). 

Based on this, we decided to set the number of iterations for program 2 to 1,500,000. 

Since Program 3 is essentially the same as Program 2 with the exception of the 

amount of communication, we used the running time for one processor from Program 2 

as the running time on one processor of Program 3 since the communication in Program 

3 is unnecessary on a single processor run. Program 3, like Program 2, performed 

1,500,000 iterations over 1,500,000 double precision floating point numbers for the 

dataset. 

4.3 Test Procedure 

All three test programs were run a total of three times for each processor 

count and the average time was used for calculating the speedup. We performed a 

set of tests utilizing two processors on each node, allowing us to fully utilize the 

computing resources available on the Kearney cluster, and we also performed a set of 

test with Program 1 utilizing one processor per node while leaving the second processor 

idle. Comparing tests run using one processor per node and two processors per node 

allowed us to look for signs of memory contention affecting program speedup (the two 

processors in each Kearney compute node share the same memory bus). 

4.4 Additional Minor Experiments 

In addition to the three main test programs mentioned above, additional tests 

were run on a more limited number number of processor counts. The limited number 

of runs and processor counts of these additional minor tests was due to both the time 

required to make runs at hundreds of different processor counts, and as a courtesy to 

other cluster users. 



4.4.1 Communication Interval Tests 

Additional tests included additional limited runs of Program 3 (on a handful of 

different processor counts) with various communication intervals. Since these additional 

tests were used to clarify our understanding of results from the three major test programs 

outlined above, the results from these additional tests will be presented in the discussion 

of the results of the related major test. 

4.4.2 Multiple Array Tests 

Another set of tests were done to show that although our major test programs 

only used one array, superlinear speedup can be seen with programs that have multiple 

arrays. In these tests we created two test programs, one of which steps through two 

arrays at the same time, the other of which steps through one array, and then the other 

array. These tests were conducted on 1, 8, 16, 32, 48, 64, 80, 96, and 112 processors. 

Because of other jobs on the cluster, and because of time constraints, only one run was 

performed at each of these processor counts rather than averaging three runs at each 

processor count like we did for previous experiments. The programs used for these 

tests, called MultiArrayTest 1 and 2, were based on Program 2, and the source code 

appears in Appendix A. Like Program 2, these programs perform 1,500,000 iterations 

over their data, however, instead of one 1,500,000 element array they have two 750,000 

element arrays. Since these tests only produce a few data points, the results will be 

presented along with their discussion in Chapter 6. 

4.4.2.1 MultiArrayTest 1 Pseudo Code 

Initialize MPI 

Start Timing 

DataSize = GlobalDataSize / NurnProcs 



Allocate myData[DataSize] 
Allocate myData2[DataSize] 

For i = 0 to Datasize-1 [ 

myData[i] = 1.5 
myData2 [i] = 2.5 

For k = 0 to ~um~terations [ 

For i = 0 to 4 [ 

while j < DataSize [ 

sum = sum + myData[j] * constant + myData2[i] * constant 
j = j + 5  

A 

Partial Solutions Gathered by Node 0 

End Timing 

Print Results 

4.4.2.2 MultiArrayTest 2 Pseudo Code 

Initialize MPI 

Start Timing 

DataSize = GlobalDataSize / NumProcs 

Allocate myData[DataSize] 
Allocate myData2[DataSize] 

For i = 0 to Datasize-1 [ 
myData[i] = 1.5 
myData2 [i] = 2.5 

For k = 0 to NumIterations [ 

For i = 0 to 4 [ 

while j < DataSize [ 

sum = sum + myData[j] * constant 



For k = 0 to NumIterations [ 

For i = 0 to 4 [ 

while j  < DataSize [ 

sum = sum + myData2[i] * constant 
j = j + 5  

Partial Solutions Gathered by Node 0 

End Timing 

Print Results 

4.5 Chapter Summary 

In this chapter we described three major test programs, plus several additional 

minor tests, which we used to prove the existence of superlinear speedup due to micro- 

processor architecture and to better understand the underlying mechanisms that cause 

superlinear speedup in these cases. In the following chapter we present the results from 

the above mentioned experiments. 



CHAPTER 5 

Research Results 

5.1 Introduction 

This chapter presents the results from the tests described in Chapter 4. In-depth 

discussion of these results is reserved for Chapter 6. First we present the results from 

the three major test programs when utilizing two processors per node. These results are 

followed by our Program 1 tests utilizing one processor per node. 

5.2 Results, Two Processors Per Node 

First we did our major runs using two processors per node, allowing us to utilize 

all processors available for computation on the Kearney cluster. As discussed in Chapter 

4, Section 4.3, we performed runs utilizing two processors per node for all test programs, 

and additionally we performed Program 1 tests utilizing one processor per node (leaving 

one processor idle) in order to look for signs of memory contention. 

5.2.1 Program 1 Results 

Figure 5.1 shows our results for our Program 1 tests. The detailed timing infor- 

mation from these tests can be seen in Table B. 1, located in Appendix B. 

5.2.2 Program 2 Results 

Figure 5.2 shows our results for our Program 2 tests. The detailed timing infor- 

mation from these tests can be seen in Table B.3, located in Appendix B. 
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Figure 5.1: Program 1 Results, Two Processors Per Node 
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Figure 5.2: Program 2 Results, Two Processors Per Node 



Figure 5.3: Program 3 Results, Two Processors Per Node 
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Figure 5.3 shows our results for our Program 3 tests. For these test we used an 

initial communication interval of 1,000 iterations. That is, after every 1,000 iterations 

through the data set, all nodes perform a synchronous communication to consolidate a 

partial result onto the node with MPI rank of 0. MPI rank is a unique number from 0 to 

N-1, where N is the number of processors used in the MPI job, assigned to each process 

in the job. The detailed timing information from these tests can be seen in Table B.3, 

located in Appendix B. 

5.3 Results, One Processor Per Node 

Our single processor tests of Program 1 consisted of reserving both processors 

available on each node taking part in a particular run, and only running one process on 
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Figure 5.4: Program 1 Results, One Processor Per Node 

that node. This allowed us to virtually eliminate memory bus contention, and contention 

for processor time by system processes. Table B.4, located in Appendix B, summarizes 

our results, and a the speedup has been graphed in Figure 5.4. 

5.4 Chapter Conclusions 

As can easily be seen in Figures 5.1, 5.2, 5.3, and 5.4 all of our major tests 

showed superlinear speedup. While we had expected to see superlinear speedup in all of 

these test programs, some aspects of the results did surprise us. In the following chapter 

we discuss these results in detail, and we also discuss the results from our additional 

minor tests, which were described in Chapter 4, that we conducted to better understand 

these results. 



CHAPTER 6 

Discussion 

6.1 Program 1 Discussion 

6.1.1 Two Processors Per Node 

As seen from Figure 5.1 and Table B. 1, Program 1 clearly achieved superlinear 

speedup. We can see that at 48 processors the local dataset fit entirely into cache on each 

processor, with a maximum local dataset size of 250,000 bytes. Recall that in the result 

tables the table listing the size of the local dataset lists the maximum size of any local 

dataset. If the global dataset does not divide evenly, then one processor will end up with 

a local dataset that is slightly larger than the rest of the processors (up to (N - 1) * 8 

bytes larger, where N is the number of processors being used). 

In Figure 5.1 and Table B. I ,  we can see that between 40 and 62 processors the 

measured speedup begins to grow faster as the number of processors (referred to as N 

for the remainder of the chapter) increases, and at 60 processors the measured speedup 

is greater than N. The measured speedup then briefly drops back below N. After 84 

processors, at which time the speedup is over 92, the speedup remains superlinear. 

Program 1 was expected to show a less significant difference between operating 

fully in cache and only partially in cache than Program 2, since the sequential memory 

access of Program 1 allows good use of cache (recall that each cache miss causes several 

following memory locations to also be cached). Ignoring context switches, moving 

completely into cache would improve the cache hit rate to about 100% from about 

75%. This increases the effective speed of the processor, which we expected would 

be enough, considering the amount of communication in Program 1, to allow for super- 

linear speedup. 



6.1.2 One Processor Per Node 

As seen from Figure 5.4 and Table B.4, Program 1 achieved significant super- 

linear speedup when run utilizing one processor per node. In fact we began seeing 

superlinear speedup at only 42 processors, when the size of the local data set is still 

slightly larger than the size of the cache. By utilizing only one processor per node, we 

were able to see a speedup of around 221 times when utilizing 62 processors. The largest 

speedup we saw with Program 1 when utilizing two processors per node was 277, which 

occurred at 114 processors, so we certainly can go faster by utilizing the second CPU 

in each node, but we can conclude that given the choice to run Program 1 on either 62 

dual processor nodes (124 processors total), or 124 single processor nodes, we would 

expect to see greater speedup with the single processor nodes, assuming the nodes have 

characteristics similar to the nodes on our test platform. 

6.2 Program 2 Discussion 

Like Program 1, Program 2 also showed superlinear speedup. As expected, the 

out of sequence memory access of Program 2 made poor use of the processor's cache 

until the local dataset fit entirely into cache. When the local dataset fits entirely into 

cache, at around 48 processors, after one iteration the data will all be cached until a 

context switch forces it out. That means that after one iteration of mostly cache misses 

(the constant used in the loop should be the only cache hit), we will have many iterations 

of all cache hits. Because of this we expected a spike in speedup after a the local dataset 

size passed a certain threshold. 

An interesting observation that one makes when looking at Figure 5.2 is that 

although the local dataset is smaller than cache at 48 processors, we don't see a spike in 

speedup until we run on around 82 processors. This is also when the measured speedup 

of Program 1 was constantly above N. A possible explanation for this is the array that the 

program loops through is not the only data that we access from memory. For example, 



each loop iteration we access a constant that we use in multiplication, a variable that we 

store the result of a multiplication and addition, and loop variables. These additional 

variables take up room in cache, and certainly would be a contributing factor to the 

delay between when the local dataset is smaller than cache and when we see a spike in 

speedup. However, at 82 processors the maximum local dataset is only 146,784 bytes, 

which is over 100,000 bytes smaller than the cache on our test platforms PI11 processors. 

6.3 Program 3 Discussion 

Our major runs of Program 3 were set to communicate every 1,000 iterations. 

As we run on more processors the iteration time gets shorter, but we are communi- 

cating the same amount of data each time. That means that as we increase the number 

of processors, the communication gets more frequent and actually takes up a larger 

percentage of the total run time. We can qualitatively see in Figure 5.3 that the rate 

at which speedup is increasing as we increase N slows down somewhere between 40 

and 66 processors. The speedup by moving completely into cache begins to offset 

and eventually overtake the additional communication time, and we see superlinear 

speedup, which is clearly observable in Figure 5.3. Note that the additional commu- 

nication does lower the speedup that we see, especially for the larger processor counts, 

when compared to Program 2. 

6.3.1 Communication Interval Tests 

After analyzing the results from Table B.3 we decided to do limited runs of 

Program 3 at different communication intervals. First we set the communication interval 

to every 10 iterations and got the results listed in Table 6.1. The speedup observed in 

these tests has been plotted in Figure 6.1. As one can see this communication rate 

severely limited the speedup, keeping speedup under 14 as we ran on processor counts 

up to 124. 
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Figure 6.1: Program 3 Results, Cornm Interval = 10 Iterations 

Table 6.1 : 
Size of 
Local 
Data 

(KB, Max) 
12000000 
6000000 
3000000 
l5OOOOO 
7 50000 
375000 
250000 
187752 
l5OOOO 
125000 
107904 
97536 

Run l(s) 

8751 1.87 
81373.61 
40192.94 
19940.60 
11 134.34 
7444.41 
10821.03 
14491.43 
18676.87 
16363.29 
14610.50 
12855.31 

Run 2(s) 

87504.29 
80835.84 
40700.28 
19970.57 
10436.75 
7177.85 
11428.72 
13396.12 
19733.97 
13786.79 
15127.23 
13088.36 

Run 3(s) 

87514.48 
81692.96 
39392.51 
20220.54 
10558.58 
5494.05 
809 1.05 
14440.20 
19859.72 
1347 1.23 
11328.24 
12526.17 

Speedup 
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Figure 6.2: Summary of Additional Program 3 Tests 

From the data shown in Table 6.1, we also decided to perform additional runs 

with communication intervals of 25, 50,75, 100, 250, and 500 iterations. These results 

can be seen in Tables B.5, B.6, B.7, B.8, B.9, and B. 10, located in Appendix B. Figure 

6.2 compares the observed speedup in all additional Program 3 tests performed in 

Section 6.3.1, and the original Program 3 tests (as seen in Table B.3). All additional 

Program 3 tests were run utilizing two processors per node. 

6.3.2 Communication Interval Test Discussion 

One interesting thing to note in the additional Program 3 tests, was how 

quickly the speedup increased as the communication interval decreased. At a commu- 

nication interval of 25 iterations, we saw superlinear speedup, although it required 

more processors to achieve it than at less frequent communication intervals. This is 

interesting because at a communication interval of 10 iterations the highest speedup we 
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Figure 6.3: Additional Program 3 Tests, Detailed View 

saw was a little over 13 when utilizing 32 processors. At a communication interval of 

50 iterations the speedup was virtually identical to our original Program 3 tests with a 

communication interval of 1,000 iterations, as seen in Figure 6.2. 

While typical CFD programs, such as CRAFT, communicate every iteration it is 

more important to consider the ratio of communication to computation rather than the 

frequency of communication. Even though CRAFT communicates once per iteration, 

the ratio of computation to communication is such that the speedup of the iteration 

increases almost linearly as the number of processors used increases linearly. Clearly 

our iterations are so short that communicating every 10 iterations severely limits the 

speedup, especially as the iteration time shrinks and the communication time remains 

the same or grows. 



6.4 Multiple Array Tests 

As seen in Figure 6.3, both of our multi-array test programs showed significant 

superlinear speedup. In MultiArrayTest 1, we accessed both arrays in the same loop, 

stepping through both of them out of sequence. Because of the way these arrays are 

accessed, we did not expect to see superlinear speedup until the local portions of each 

of the arrays both fit into cache at the same time. 

In MultiArrayTest2 we basically broke our computation loop into two separate 

loops, where each loop iterated over a different array. Since we are only accessing one 

array at a time in this example, we would expect to see superlinear speedup earlier that 

we do in MultiArrayTestl. Since we did very limited (one run at 1,8,32,48,64,80,96, 

and 112 processors, compared to three runs starting at 1 processor and then every 

even processor count up to 124 for our three major test programs) tests with these two 

programs we will not draw too many conclusions from the results, other than in both 

cases we saw significant superlinear speedups. 

6.5 Chapter Summary 

From our test programs we have demonstrated that superlinear speedup due to 

microprocessor architecture is possible, because of the higher speed of on-chip cache 

memory. Furthermore, not only can superlinear speedup occur in programs that make 

poor use of cache, but is is even possible in programs that use the cache well. In the 

past, superlinear speedup was often attributed to inefficient sequential algorithms, but 

our examples demonstrated a remarkable speedup without using an inefficient sequential 

algorithm. 

As expected we demonstrated an even larger speedup with a program that 

accessed memory out of sequence, as the benefits from cache were virtually zero when 
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Figure 6.4: Multiple Array Test Results 

the code was run sequentially, but once the local data fit into cache we saw a large jump 

in the effective speed of the computer. 

We also saw superlinear speedups for every communication interval in Program 

3, other than every 10 iterations. For this we saw an upper limit of around 13 on speedup, 

which occurred when the problem was run using 32 processors. If we were to look at 

the upper limit in speedup of 13 in terms of Amdahl's Law, as shown in Equation 2.2 we 

could conclude that the serial percentage of the code was approximately 10.5 percent, 

or an S value of 0.105, which is prohibitively high, and is much larger than many real 

world problems. 

In summary we have determined that one of the most important aspects in 

determining the possibility of superlinear speedup for a particular program is the serial 

percentage of the code, which may include communication time. While the memory 

access order does have an effect on the speedup, programs were still able to see 



large superlinear speedups with both sequential and non-sequential memory access. 

Any further conclusions drawn from these experiment results will be reserved for the 

following and final chapter. 



CHAPTER 7 

Summary and Conclusion 

7.1 Summary 

In this work we have summarized many of the theories and ideas concerning 

speedup of parallel computations. We also showed that distributed memory supercom- 

puters can show large scale superlinear speedup without using tricks such as inefficient 

sequential algorithms or artificial time limits, such as those described by [18]. The 

reason Amdahl's Law does not apply in all cases, and why we were able to show large 

scale superlinear speedups was because of the tiered memory architecture of computers, 

and specifically the on-chip cache memory available in our test platform. 

We performed tests with three major test programs, one of which iterated over a 

large array, accessing the elements sequentially. The second major test program differed 

from the first program in that it no longer just accessed adjacent array elements. The 

third major test program was similar to the second program, but instead of communi- 

cating once, partial sums were periodically sent from all nodes to the node with MPI 

rank of zero. In Program 1 and Program 2 the partial sums were only sent to the node 

with MPI rank of zero after the computation loop was finished. 

All three programs showed significant superlinear speedup, as seen in Figures 

5.1, 5.2, and 5.3. As expected, the transition between sublinear and superlinear speedup 

in Program 2 and Program 3 was quite dramatic, as shown in Figures 5.2 and 5.3 because 

these programs see very little benefit to the on-chip L2 cache until the local problems 

can fit entirely into the cache. 

We had also performed additional tests to look at the effects of memory 

contention, communication interval, and utilizing more than one array. Our tests to 

investigate the effects of memory contention consisted of running our Program 1 test 



program utilizing one processor per node and two processors per node. Since our test 

platform was made up of Pentium I11 nodes, which shared one memory bus for both 

processors, each processor would be competing for this resource when running our 

memory-bandwidth intensive program. We showed that speedup grew much faster 

when we utilized one processor per node rather than two processors per node (when we 

compare runs of equal processor counts). It is likely that a cluster built from nodes that 

have an independent memory bus for each processor would see much less of a difference 

between a run of 64 processors on 32 nodes and 64 processors on 64 nodes. However, 

there is more going on in our test than just the elimination of memory contention. When 

running two processes that each want to utilize a processor loo%, we are going to have 

instances of these processes being preemptively swapped out of their running state in 

order to allow a system process to run. Since our single processor per node tests were 

conducted on dual processor systems, the second processor was usually free for any 

systems processes that needed to run, therefore reducing the need to swap our process 

out of it's running state (which not causes the program to take more wall clock time, but 

it can also flush some of its data out of cache). 

7.2 Predicting Superlinear Speedup 

Through the use of our test programs, we identified the following properties that 

when possessed by a particular program allow for the possibility of superlinear speedup 

when run in parallel on a distributed memory supercomputer. 

First, the program must iterate many times over a large singe or multi- 

dimensional array. Second, the local datasets must shrink as the problem is run on 

more and more processors. This does not work for problems where it is functionality 

not data that is distributed between processors. Third, the serial percentage of the 

program must be small. This means that the program must not require a large amount 

of communication, synchronization, or parallel overhead when run in parallel. Finally, 



we have an additional property, which is not a requirement but increases the likelihood 

of superlinear speedup: out of sequence memory access. 

Of these properties, the first two are the easiest to identify. Many of the 

traditional computationally intensive applications utilize large array-based datasets. 

Examples include CFD and finite-element simulations. It is also trivial to determine 

if the local data size of your problem shrink as you run it on more processors. It 

is also easy to determine if your code accesses your data out of sequence (ie. the 

indicies of a loop increase or decrease by a value of more than one each iteration). The 

difficulty comes in determining the serial percentage of the code. It is very difficult to 

quantitatively determine the serial percentage of code of a given algorithm, which is 

one reason why using an equation such as Amdahl's Law is not widely used to predict 

speedup, but instead is used to explain speedup. 

So while we have identified these properties, we do not have a quantitative 

method for determining if or when a program will show superlinear speedup. There 

are some things we can say for certain about superlinear speedup when caused by the 

on chip cache. We contend that absolute upper limit on speedup will be the following 

equation, where R is the ratio of memory access speeds: 

Speedup 5 S + P  
S +  P / ( N  * R)'  

Note that in 

memory, the above 

our case, where the L2 cache is about 10 times faster than main 

equation would place an absolute upper limit of 10 * N on the 

speedup we could see by running on N processors. Also it is important to note that 

this equation would also work when discussing a dataset that goes from fitting entirely 

into cache to entirely fitting into CPU registers. Equation 7.1 does not predict speedup, 

since there are many more factors at hand in actual speedup such as parallel overhead 

(additional code, communication latency, etc), and the computer is only R times faster 



for memory-fetch operations. Instead Equation 7.1 defines an absolute upper limit to 

speedup. 

7.3 Conclusions 

The first, and obvious, conclusion one should make from our work is that not 

only is superlinear speedup possible, but it is possible at a large scale in distributed 

memory supercomputers, and it is possible even when memory accesses are largely 

sequential in nature. This discovery is certainly counter-intuitive considering that 

the already cache-friendly program must see increased performance large enough to 

overcome any additional parallel overhead. 

Secondly we would like to conclude that Amdahl's Law should not be viewed as 

a law, since we have shown that it can be broken. Instead, we should classify a subset of 

parallel programs that do follow Amdahl's Law as having "Amdahl-like parallelism". 

It is not our intention to fault Amdahl for is assumptions about computer 

architecture. In 1967, when Amdahl published his paper promoting the uni-processor 

approach, computers were much simpler than they are today. This was, in fact, several 

years before the first microprocessor was introduced by Intel in 197 1, or the first micro- 

processor powered a general purpose computer arrived in 1974[2]. It was not until many 

years after the introduction of the microprocessor that on-chip cache memory became 

popular, however off-chip cache memory was used in many large scale computing 

systems of the late 1960's and early 1970's[25]. 

Third, while this has yet to be proven, we feel comfortable concluding that 

the small superlinear speedups we saw in our CRAFT benchmarks could very well 

have been "real" superlinear speedup caused by the tiered memory architecture of our 

distributed memory supercomputer. More tests will be necessary to determine the exact 

cause of the superlinear speedup for that particular CRAFT problem, but certainly now 

that we know more about superlinear speedup we are well prepared for such a task. It 



is interesting to note that the CRAFT code exhibits all of the properties identified in 

section 7.3. 

While the tests conducted in this work were computationally expensive, we felt 

that not many researchers would have the opportunity to conduct tests as extensive 

as these. First quick turnaround times for jobs was a necessity because of the large 

number of runs we were required to make. Secondly, researchers would need access to 

an affordable computational platform. Third, researchers would need a reasonably large 

number of processors available to them. A system that meets all of these requirements is 

certainly not something that is available to everyone, which presented us with a unique 

opportunity to explore the area of superlinear speedup on distributed memory cluster 

supercomputers. 

7.4 Future Work 

There is room for a great deal of future work in this field. Now that we have 

discovered properties that can help us identify cases where superlinear speedup is 

possible, we can now look for real-world algorithms with these properties and run 

them on a cluster computer with input parameters that we feel will lead to super- 

linear speedups. This means we will then have used this work to successfully predict 

superlinear speedup in some other real world program. 

Specific to our work with the CRAFT code, more profiling can be done to 

determine the exact cause of the superlinear speedup previously observed. Another area 

that needs more investigation is the relationship between problem size, cache size, and 

superlinear speedup. As we hypothesized, and proved, superlinear speedup can occur 

when local datasets fit entirely into cache after the parallel problem is run on enough 

processors. However, with many of our test results, superlinear speedup did not occur 

until the local data size was considerably smaller than cache. In some cases the local 

problem size was 100 lulobytes smaller than our 256 kilobyte cache before superlinear 



speedup occurred. When utilizing one processor per node, superlinear speedup actually 

began before the local data set fit entirely into cache, and this was a problem that should 

already see a large benefit to cache since it makes sequential memory accesses. 

All tests in this work could be extended to larger processor counts to find where 

our speedup begins to level off. Qualitatively we could see that there was "no end in 

sight", that is we had yet to see a point of diminishing returns, with the exception to 

Program 3 when run with a high communication rate as shown in Figure 6.1. 

Another area in which our test can be expanded is by varying the problem size 

to determine how our speedups change as we shrink or expand our problem size. Again 

given the computational expense of the tests performed for this work, this would be 

a major undertaking that would take many months to accomplish. Despite expenses in 

both time and computational resources, this undertaking would add to our understanding 

of the mechanics of superlinear speedup. 

Finally, the future problem we are most interested in is applying this work to the 

decomposition of large CFD problems, specifically, to the CRAFT code. Conventional 

wisdom says that if you want to run your CFD calculation on N processors you should 

decompose the problem into N equal-sized subproblems, giving one to each processor. 

What might be better is to decompose the problem into M * N cache-sized pieces, giving 

M to each processor. The reason this may work well with the CRAFT code is because 

during each iteration the local problem is stepped through in all three dimensions. In 

the CRAFT code these are called an I sweep, a J sweep, and a K sweep. If, after the 

I sweep, the subproblem currently being worked in is now totally in cache the J and K 

sweeps will be able to work completely from cache. If the subproblem is very large, 

by the time CRAFT performs the J sweep most of the problem will have been flushed 

from cache. The same holds for the K sweep. By splitting the problem into M * N 

cache-sized pieces rather than N larger pieces, we could possibly maximize our use of 

cache. 
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APPENDIX A 

Source Code 

Program 1 

#define MAXNUM 1500000 
#define NITER 1750000 

int main(int argc, char **argv) 
{ 

double tl, t2, mysum, total, constant; 
double *myData; 
MPI-Status status; 
int rank, size, i, j, k, n; 

/ *  initialize MPI, get rank, size, and time * /  
MPI-Init(&argc, &argv); 
MPI-Comm-size(MP1-COMM-WORLD, &size); 
MPI-Co-rank(MP1-COMM-WORLD, &rank); 
tl = MPI-Wtime() ; 

mysum = 0; 
constant = 2; /*constant used in computational loop*/ 

/ * * * *  SETUP LOCAL DATASETS * * * * * /  

/*first each proc finds the size of its local data*/ 
if(rank == 0 && MAXNUN 3 size ! =  0) 

n = MAXNUM % size + MAXNUN / size; 
else 

n = MAXNUN / size; 

/ *  each proc allocates memory for its data * /  
myData = (double*)malloc(n*sizeof(double)); 

/ *  each proc fills its data * /  
for(i = 0; i < n; i++) { 

myData[i] = 1.5; 
1 

/ * * * *  END DATA SETUP * * * * /  

/ * * * *  BEGIN COMPUTATION * * * * /  
for(i = 0; i < NITER; i++){ 

for( j = 0; j < n; j++) { 



/ *  CONSOLODATE ANSWER * /  
MPI-Reduce(&mySum, &total, 1, MPI-DOUBLE, MPI-SUM, 

0, MPI-COMM-WORLD); 

return 0 ; 

Program 2 

#define MAXNUM 1500000 
#define NITER 1500000 

int main(int argc, char **argv) 
C 

double tl, t2, mysum, total, constant; 
double *myData; 
MPI-Status status; 
int rank, size, i, j, k, n; 

/*initialize MPI, get rank, size, and time*/ 
MPI-Init(&argc, &arm); 
MPI~Comm_size(MPI~COMMMMWORLD, &size); 
MPI-Comm_rank(MPI-COMM-WORLD, &rank); 
tl = MPI-WtimeO ; 



mysum = 0; 
constant = 2; /*constant used in computational loop*/ 

/ * * * *  SETUP LOCAL DATASETS * * * * * /  

/*first each proc finds the size of its local data*/ 
if(rank == 0 && MAXNUM % size ! =  0) 

n = MAXNUM % size + MAXNUM / size; 
else 

n = MAXNUM / size; 

/*each proc allocates memory for its data*/ 
myData = (double*)malloc(n*sizeof(double)); 

/ *  each proc fills its data * /  
for(i = 0; i < n; i++){ 

myData[i] = 1.5; 
1 

/ * * * *  END DATA SETUP * * * * /  

/*step through out of sequence*/ 
for(k = 0; k < NITER; k++) { 

for(i = 0; i<=4; i++){ 
j =i ; 
while(j < n) { 

mysum += myData[j]*constant; 
j + = 5 ;  

1 
1 

1 

/ *  CONSOLODATE ANSWER * /  
MPI-Reduce(&mySum, &total, 1, MPI-DOUBLE, 

MPI-SUM, 0, MPI-COMM-WORLD); 

if (rank == 0) { 
printf("----------------------------"). 
printf("----------------------------\n") - 
printf("The total is: %f\nM, total); 
printf("The time is: %£\nu, t2-tl); 
printf("Num Procs = %d, size"); 
printf("Size of local dataset: %d / %d bytes\nM, 

(MAXNUM / size)*sizeof(double), 
(MAXNUM/size + MAXNUM%size)*sizeof(double) ) ;  

printf("N1TER = %d\nM, NITER); 
printf("----------------------------"). 
printf("----------------------------\n") 



return 0; 
1 

Program 3 

#define MAXNUM 1500000 
#define NITER 1500000 
#define COMM-RATE 1000 
int main(int argc, char **argv) 
{ 

double tl, t2, mysum, total, constant, subTotal; 
double *myData; 
MPI-Status status; 
int rank, size, i, j, k, n; 

/ *  initialize MPI, get rank, size, and time * /  
MPI-Init(&argc, &argv); 
MPI-Comm_size(MPI-COMM-WORLD, &size); 
MPI-Comm_rank(MPI-COMM-WORLD, &rank); 
tl = MPI-Wt ime ( ) ; 

mysum = 0; 
total = 0; 
constant = 2; / *  constant used in computational loop * /  

/ * * * *  SETUP LOCAL DATASETS * * * * * /  

/ *  first each proc finds the size of its local data * /  
if(rank == 0 && MAXNUM 8 size ! =  0) 

n = MAXNUM 8 size + MAXNUM / size; 
else 

n = MAXNUM / size; 

/ *  each proc allocates memory for its data * /  
myData = (double*)malloc(n*sizeof(double)); 

/ *  each proc fills its data * /  
for(i = 0; i < n; i++){ 

myData[i] = 1.5; 
1 

/ * * * *  END DATA SETUP * * * *  / 

/ * * * *  BEGIN COMPUTATION * * * * /  



for(k = 1; k <= NITER; k++) { 
for(i = 0; i<=4; i++) { 

j =i ; 
while(j < n) { 

mysum += myData[j]*constant; 
j+=5; 

1 
1 
/ *  do partial sum * /  
if(k % COMM-RATE == 0 I I k == NITER ) {  

MPI-Reduce(&mySum, &subTotal, 1, MPI-DOUBLE, 
MPI-SUM, 0, MPI-COMICWORLD); 

mysum = 0; 
if (rank ==0) { 

total += subTota1; 
subTotal = 0; 

1 
1 

1 

return 0; 
1 

Multi Array Test 1 

#define MAXNUM 750000 
#define NITER 1500000 

int main(int argc, char **argv) 
{ 



double tl, t2, mysum, total, constant; 
double *myData, *myData2; 
MPI-Status status; 
int rank, size, i, j, k, n; 

/*initialize MPI, get rank, size, and time*/ 
MPI-Init(&argc, &argv); 
MPI~ComrLsize(MPI~COMMMMWORLD, &size); 
MPI-Comm_rank(MPI-COMM-WORLD, &rank); 
tl = MPI-WtimeO; 

mysum = 0; 
constant = 2; /*constant used in computational loop*/ 

/ * * * *  SETUP LOCAL DATASETS * * * * * /  

/*first each proc finds the size of its local data*/ 
if(rank == 0 && MAXNUM % size ! =  0) 

n = MAXNUM % size + MAXNUM / size; 
else 

n = MAXNUM / size; 

/*each proc allocates memory for its data*/ 
myData = (double*)malloc(n*sizeof(double)); 
myData2 = (double*)malloc(n*sizeof(double) ) ;  

/ *  each proc fills its data * /  
for(i = 0; i < n; i++){ 

myData[i] = 1.5; 
myData2[i] = 2.5; 

1 

/ * * * *  END DATA SETUP * * * * /  

/*step through out of sequence*/ 
for(k = 0; k < NITER; k++){ 

for(i = 0; i<=4; i++){ 
j=i; 
while (j < n) { 

mysum += (myData [ j ] *constant + myData2 [ j ] *constant) ; 
j +=5; 

1 

/ *  CONSOLODATE ANSWER * /  
MPI-Reduce(&mySum, &total, 1, MPI-DOUBLE, 

MPI-SUM, 0, MPI-COMM-WORLD); 



return 0; 
1 

Multi Array Test 2 

#define MAXNUM 750000 
#define NITER 1500000 

int main(int argc, char **argv) 
{ 

double tl, t2, mysum, total, constant; 
double *myData, *myData2; 
MPI-Status status; 
int rank, size, i, j ,  k, n; 

/*initialize MPI, get rank, size, and time*/ 
MPI-Init(&argc, &argv); 
MPI-Comm_size(MPI-COMM-WORLD, &size); 
MPI-Comm_rank(MPI-COMM-WORLD, &rank); 
tl = MPI-Wtime ( ) ; 

mysum = 0; 
constant = 2; /*constant used in computational loop*/ 

/ * * * *  SETUP LOCAL DATASETS * * * * * /  

/*first each proc finds the size of its local data*/ 
if(rank == 0 && MAXNUM % size ! =  0) 

n = MAXNUM % size + MAXNUM / size; 
else 

n = MAXNUM / size; 



/*each proc allocates memory for its data*/ 
myData = (double*)malloc(n*sizeof(double)); 
myData2 = (double*)malloc(n*sizeof(double) ) ;  

/ *  each proc fills its data * /  
for(i = 0; i < n; i++) { 

myData[i] = 1.5; 
myData2[i] = 2.5; 

1 

/ * * * *  END DATA SETUP * * * * /  

/*step through out of sequence*/ 
for(k = 0; k < NITER; k++) { 

for(i = 0; i<=4; i++) { 
j =i ; 
while(j < n) { 

mysum += myData[j]*constant; 
j+=5; 

1 

for(k = 0; k < NITER; k++){ 
for(i = 0; i<=4; i++) { 

j =i ; 
while(j < n) { 

mysum += myData2[j]*constant; 
j+=5; 

1 

/ *  CONSOLODATE ANSWER * /  
MPI-Reduce(&mySum, &total, 1, MPI-DOUBLE, 

MPI-SUM, 0, MPI-COMM-WORLD) ; 



return 0; 

1 



APPENDIX B 

Detailed Results 

Two Processors Per Node 

Table B. 1 : Program 1 Results, Two Processors Per Node 

Size of 
Local 
Data 

(=A Max) 
12000000 
6000000 
4000000 
3000000 
2000000 
l5OOOOO 
1200000 
1000000 
857232 
750000 
6667 12 
600000 
545592 
500000 
46 1600 
428664 
400000 
375000 
3531 12 
333520 
3 15992 
300000 
285808 
273040 
261 120 
250000 
240000 
230832 
222552 
2 14600 

Run l(s) 

79639.80 
5 1074.74 
35905.40 
25975.45 
17034.79 
13415.29 
10197.61 
8670.07 
7539.5 1 
6655.41 
598 1 .O7 
5204.04 
4728.79 
4364.87 
3925.80 
3845.33 
3373.81 
3094.26 
2942.58 
2640.59 
2515.13 
2322.90 
2374.18 
2266.54 
2024.39 
1744.68 
1740.60 
1767.27 
1483.40 
1492.14 

(Con 

Run 2(s) 

79638.32 
52024.08 
34734.53 
260 1 1.63 
17046.4 1 
13183.46 
10219.56 
849 1 .O 1 
7688.98 
6647.08 
5985.48 
5103.78 
4682.12 
4484.54 
4023.26 
3310.82 
3413.81 
3173.91 
2788.12 
2544.33 
2485.82 
2386.13 
2160.22 
2045.06 
204 1.90 
1870.67 
1786.19 
1892.93 
1846.07 
1780.47 

Run 3(s) 

79653.83 
5 1060.26 
34859.65 
25980.39 
17525.95 
13027.34 
10226.79 
85 10.42 
7349.24 
6550.20 
5985.14 
5328.99 
4861.15 
4315.13 
3829.63 
3845.54 
3437.10 
3191.74 
2956.83 
2628.57 
2402.13 
2359.29 
2168.83 
2268.92 
2028.25 
1911.17 
1662.05 
1739.97 
1706.35 
1542.33 

Speedup 

1 .oo 
1.55 
2.26 
3.06 
4.63 
6.03 
7.80 
9.3 1 
10.58 
12.04 
13.31 
15.28 
16.74 
18.15 
20.29 
21.72 
23.37 
25.26 
27.50 
30.58 
32.27 
33.80 
35.64 
36.3 1 
39.20 
43.23 
46.05 
44.25 
47.45 
49.62 



Table B. 1 : (continued) 

Size of 
Local 
Data 

(KB, Max) 
206928 
200000 
193816 
187752 
181960 
176912 
171744 
166856 
162320 
15 8400 
154320 
l5OOOO 
146784 
142952 
140120 
136680 
133808 
130688 
127992 
125000 
122544 
120000 
11 8360 
1 15448 
1 14000 
111872 
109408 
107904 
106072 
103480 
102504 
100000 
98440 
97536 

Run l(s) 

155 1.42 
1218.34 
1438.03 
1503.38 
1283.54 
1440.56 
1369.16 
1159.1 1 
1177.50 
1088.34 
1233.67 
806.49 
11 10.71 
820.27 
792.54 
79 1.45 
669.68 
491.91 
733.27 
714.23 
56 1.49 
492.20 
489.1 1 
480.80 
723.60 
427.29 
375.30 
39 1.47 
191.43 
466.23 
184.99 
180.87 
370.27 
176.61 

Run 2(s) 

1324.54 
1356.25 
1547.82 
1475.48 
1506.17 
1157.24 
1393.82 
1195.25 
1098.29 
903.46 
794.91 
1088.06 
1056.03 
766.81 
789.83 
800.86 
777.68 
1032.87 
511.45 
710.57 
831.51 
477.66 
759.90 
504.29 
526.83 
525.50 
416.44 
434.54 
410.74 
453.85 
41 1 .O9 
483.46 
355.66 
358.27 

Run 3(s) 

1549.45 
1272.93 
1345.62 
1362.02 
1286.92 
1372.52 
1378.69 
1308.88 
1054.86 
905.65 
1138.49 
826.28 
884.08 
985.70 
790.00 
847.64 
815.94 
770.67 
603.22 
706.35 
527.63 
751.41 
790.54 
209.20 
422.05 
456.57 
753.55 
39 1.70 
258.93 
404.34 
391.20 
364.40 
177.83 
353.05 

Speedup 

53.99 
62.10 
55.16 
55 .O4 
58.61 
60.18 
57.69 
65.22 
7 1.74 
82.46 
75.44 
87.82 
78.32 
92.87 
100.71 
97.92 
105.57 
104.09 
129.30 
112.11 
124.40 
138.81 
117.15 
200.06 
142.86 
169.53 
154.62 
196.21 
277.47 
180.41 
242.01 
232.26 
264.37 
269.09 



Table B.2: Program 2 Results 

Size of 
Local 
Data 

(KB, Max) 
12000000 
6000000 
3000000 
2000000 
l5OOOOO 
1200000 
1000000 
857232 
750000 
6667 12 
600000 
545592 
500000 
46 1600 
428664 
400000 
375000 
3531 12 
333520 
3 15992 
300000 
285808 
273040 
261 120 
250000 
240000 
230832 
222552 
2 14600 
206928 
200000 
193816 
187752 
181960 
176912 
17 1744 
166856 

Run l(s) 

875 1 1.87 
79608.79 
39883.54 
26670.20 
19805.03 
16023.06 
13276.94 
11513.93 
10085.42 
8917.48 
7898.90 
6903.49 
6654.59 
5653.82 
5 154.93 
4499.46 
4424.57 
4129.56 
3910.91 
3376.27 
3446.7 1 
3066.98 
2995. 13 
2807.77 
2412.97 
2267.47 
2298.12 
2159.35 
1987.69 
1772.84 
17 10.48 
1299.23 
1808.78 
1551.82 
147 1.73 
1600.86 
1483.00 

(Con 

Run 2(s) Run 3(s) 

875 14.48 
80475.30 
39798.33 
26666.33 
19928.92 
15917.52 
13253.79 
11562.87 
9994.40 
8854.19 
7842.3 1 
6961.58 
6185.83 
6017.66 
4899.15 
4489.28 
4339.13 
4008.90 
383 1.59 
3300.69 
3532.93 
3068.99 
294 1 .O9 
2532.63 
226 1.98 
23 17.07 
2286.50 
2305.36 
2008.35 
1659.38 
2100.59 
1389.06 
1904.05 
1562.5 1 
1791.55 
1294.39 
1362.04 

Speedup 

1 .oo 
1 .O9 
2.20 
3.29 
4.40 
5.45 
6.60 
7.63 
8.7 1 
9.84 
1 1 .O7 
12.48 
13.80 
15.10 
17.43 
19.68 
19.88 
21.21 
22.15 
24.92 
25.34 
28.29 
29.49 
31.89 
37.89 
36.89 
39.35 
41.92 
42.16 
50.80 
50.21 
63.27 
49.09 
56.83 
52.62 
66.44 
63.03 

~tinued on next page) 
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Table B.2: (continued) 

Size of 
Local 
Data 

(KB, Max) 
162320 
15 8400 
154320 
l5OOOO 
146784 
142952 
140120 
136680 
133808 
130688 
127992 
125000 
122544 
120000 
11 8360 
1 15448 
1 14000 
111872 
109408 
107904 
106072 
103480 
102504 
100000 
98440 
97536 

Run l(s) 

1211.19 
1019.16 
993.02 
1 169.75 
334.17 
454.49 
473.80 
292.52 
296.64 
323.09 
209.28 
205.34 
201.34 
197.34 
193.56 
189.3 1 
186.32 
182.88 
178.85 
176.52 
173.37 
169.41 
167.69 
163.84 
160.96 
159.42 

Run 2(s) 

1304.20 
1153.1 1 
1389.87 
1285.15 
360.78 
565.67 
376.15 
294.14 
350.79 
323.62 
268.22 
205.23 
267.40 
198.29 
193.56 
189.58 
186.56 
182.88 
178.98 
176.49 
173.46 
169.33 
167.59 
163.64 
160.97 
159.45 

Run 3(s) 

1168.81 
1286.39 
1006.02 
1015.15 
506.48 
568.75 
455.94 
352.1 1 
332.85 
322.23 
209.73 
287.94 
200.63 
197.26 
193.82 
189.12 
186.35 
182.90 
178.93 
176.48 
173.54 
169.24 
167.79 
163.73 
161.04 
159.50 

Speedup 

71.26 
75.91 
77.47 
75.66 
218.52 
165.23 
201 .O3 
279.65 
267.81 
270.95 
382.01 
375.85 
392.21 
442.80 
451.91 
462.20 
469.44 
478.49 
489.11 
495.82 
504.51 
516.80 
521.86 
534.46 
543.57 
548.80 



Table B.3: Program 3 Results 

Size of 
Local 
Data 

(KB, Max) 
12000000 
6000000 
3000000 
2000000 
l5OOOOO 
1200000 
1000000 
857232 
750000 
6667 12 
600000 
545592 
500000 
46 1600 
428664 
400000 
375000 
3531 12 
333520 
3 15992 
300000 
285808 
273040 
261 120 
250000 
240000 
230832 
222552 
2 14600 
206928 
200000 
1938 16 
187752 
18 1960 
176912 
171744 
166856 

Run l(s) 

875 11.87 
78540.26 
39427.09 
26074.18 
19578.53 
15738.27 
13338.09 
11093.30 
9887.28 
8835.09 
8005.18 
6882.77 
6696.76 
6164.53 
5597.54 
4772.94 
4324.92 
4284.43 
3821.17 
3748.81 
355 1 .OO 
2470.95 
331 1.84 
2823.14 
2809.44 
2987.25 
241 1.83 
2575.01 
246 1.04 
2539.7 1 
2265.15 
1955.38 
1947.04 
1686.83 
1444.57 
1377.21 
1405.08 

(Con 

Run 2(s) 

87504.29 
79135.58 
39061.88 
25726.23 
20143.72 
15665.33 
13560.78 
1 1360.64 
10146.65 
8997.28 
8074.82 
7364.9 1 
6560.72 
5 847.44 
5842.94 
5086.38 
3810.00 
3702.27 
3783.84 
3407.25 
3478.58 
3016.41 
3324.60 
2740.86 
3015.49 
2753.35 
2679.30 
2768.74 
244 1.4 1 
2035.34 
2236.58 
2103.21 
1876.62 
1685.19 
1478.40 
1426.18 
1349.05 

Run 3(s) 

875 14.48 
78833.68 
39187.60 
26171.68 
19926.37 
15437.15 
13380.89 
11596.19 
9781.86 
9044.9 1 
7969.30 
7354.12 
6708.23 
6069.97 
5152.05 
4928.86 
4550.96 
4210.67 
3718.70 
3584.59 
3330.19 
3344.15 
3101.27 
2944.55 
2809.76 
2692.85 
2776.55 
2708.85 
2460.34 
2554.43 
2364.20 
223 1 S O  
1948.46 
1589.65 
1496.35 
1423.08 
1098.57 

tinued on next page) 

Speedup 

1 .oo 
1.11 
2.23 
3.37 
4.40 
5.60 
6.52 
7.7 1 
8.81 
9.77 
10.92 
12.15 
13.15 
14.52 
15.82 
17.75 
20.69 
21.52 
23.18 
24.44 
25.34 
29.73 
26.96 
30.85 
30.40 
31.13 
33.37 
32.60 
35.66 
36.82 
38.24 
41.74 
45.48 
52.91 
59.41 
62.12 
68.14 



Table B.3: (continued) 

Size of 
Local 
Data 

(KB, Max) 
162320 
15 8400 
154320 
l5OOOO 
146784 
142952 
140120 
136680 
133808 
130688 
127992 
125000 
122544 
120000 
11 8360 
1 15448 
1 14000 
111872 
109408 
107904 
106072 
103480 
102504 
100000 
98440 
97536 

Run l(s) 

1160.19 
1049.49 
901.88 
854.48 
488.80 
487.02 
519.41 
398.10 
380.29 
357.24 
346.89 
230.74 
225.89 
221.21 
217.59 
212.41 
209.69 
205.98 
201.12 
198.30 
194.95 
190.44 
188.44 
184.05 
181.13 
179.29 

Run 2(s) 

1177.95 
817.09 
975.12 
854.44 
787.11 
470.96 
366.11 
378.22 
384.74 
320.95 
235.48 
230.51 
226.01 
22 1.40 
217.63 
213.00 
209.61 
205.66 
201.18 
198.37 
194.99 
190.34 
188.35 
184.06 
181.05 
179.30 

Run 3(s) 

1060.74 
1105.43 
396.82 
924.23 
556.32 
621.63 
366.26 
397.03 
377.94 
369.39 
235.64 
230.86 
297.00 
221.50 
217.69 
213.23 
210.03 
205.71 
201.22 
198.57 
195.08 
190.61 
188.52 
184.14 
181.15 
179.28 

Speedup 

77.24 
88.33 
115.46 
99.70 
143.28 
166.20 
209.73 
223.75 
229.69 
250.60 
320.94 
379.32 
350.55 
395.32 
402.10 
41 1.08 
417.15 
425.25 
434.99 
441 .O5 
448.76 
459.46 
464.39 
475.38 
483.19 
488.10 



One Processor Per Node 

Table B.4: Program 1 Results, One Processor Per Node 

Size of 
Local 
Data 

(KB, Max) 
12000000 
6000000 
3000000 
2000000 
l5OOOOO 
1200000 
1000000 
857232 
750000 
6667 12 
600000 
545592 
500000 
46 1600 
428664 
400000 
375000 
3531 12 
333520 
3 1 5992 
300000 
285808 
273040 
261 120 
250000 
240000 
230832 
222552 
2 14600 
206928 
200000 
193816 

Run l(s) 

79639.80 
39819.81 
19912.07 
13273.06 
9957.05 
7965.31 
6637.73 
5689.49 
4978.62 
4424.42 
3982.66 
3620.79 
3319.13 
3063.96 
2845.23 
2655.52 
2489.59 
2343.80 
221 2.68 
2097.4 1 
1991.70 
1549.03 
973.98 
584.38 
459.03 
438.56 
416.69 
401.30 
386.96 
373.15 
360.91 
349.45 

Run 2(s) 

79638.32 
39821.82 
19912.55 
13273.33 
9954.98 
7965.14 
6638.18 
5689.43 
4978.62 
4424.61 
3982.65 
3620.76 
3318.62 
3064.00 
2845.12 
2655.33 
2489.48 
2343.57 
2213.55 
2097.24 
1991.72 
1490.08 
97 1.78 
574.94 
458.13 
437.51 
416.56 
40 1.95 
386.93 
552.91 
360.68 
381.35 

Run 3(s) Speedup 

1 .oo 
2.00 
4.00 
6.00 
8.00 
10.00 
12.00 
14.00 
16.00 
18.00 
20.00 
22.00 
24.00 
25.99 
27.99 
29.99 
3 1.99 
33.98 
35.98 
37.97 
39.99 
52.75 
81.90 
138.39 
173.66 
181.80 
191.18 
198.34 
195.91 
183.91 
220.58 
221.19 



Communication Interval Tests 

Table B .5 : 
Size of 
Local 

Data (KB) 
12000000 
6000000 
3000000 
l5OOOOO 
750000 
375000 
250000 
187752 
l5OOOO 
125000 
107904 
97536 

rogram 3 I 
Run l(s) 

875 11.87 
78264.00 
39279.27 
19921.98 
9988.71 
4077.4 1 
3079.08 
2285.99 
1613.09 
970.45 
406.12 
554.52 

:suits, Cor 
Run 2(s) 

87504.29 
78333.15 
393 1 1.68 
20396.61 
9511.61 
4290.59 
3045.43 
2358.35 
2948.18 
1311.06 
384.39 
463.68 

Speedup 

1 .oo 
1.12 
2.22 
4.39 
8.84 

20.57 
28.25 
35.83 
40.62 
62.57 
191.54 
178.07 

n Interval = 25 Iteratior 
Run 3(s) Average(s) 

- 

- 



CPUs 

1 
2 
4 
8 
16 
32 
48 
64 
80 
96 
112 
124 

CPUs 

1 
2 
4 
8 
16 
32 
48 
64 
80 
96 
112 
124 

Table B.6: Program 3 Results, Cor 
Size of 
Local 

Data(KB) 
12000000 
6000000 
3000000 
l5OOOOO 
750000 
375000 
250000 
187752 
l5OOOO 
125000 
107904 
97536 

Run 2(s) 
m Interval = 50 Iteratior 

Table B.7: Program 3 Results. Cornm Interval = 75 Iterations 
Size of 
Local 

Data(KB) 
12000000 
6000000 
3000000 
l5OOOOO 
750000 
375000 
250000 
187752 
1 50000 
125000 
107904 
97536 

Run 2(s) 

87504.29 
78539.77 
39221.01 
19727.73 
9758.16 
4129.73 
2871.35 
1817.85 
753.61 
232.80 
198.87 
180.23 

Run 3(s) 

875 14.48 
78570.19 
38777.88 
19622.65 
10038.65 
4297.14 
2930.67 
1997.07 
8 10.5 1 
232.76 
199.58 
180.0 1 

Speedup 

Speedup 

1 .oo 
1.11 
2.23 
4.40 
8.78 
20.56 
30.38 
46.15 
112.54 
377.09 
439.01 
485.79 



Table B.8: Program 3 Results. Comm Interval = 100 Iterations 
CPUs 

CPUs 

Size of I 
Local 

Data(KB) 
12000000 
6000000 
3000000 
l5OOOOO 
750000 
375000 
250000 
187752 
l5OOOO 
125000 
107904 
97536 

Run l(s) 7 Run 2(s) 

87504.29 
78231.67 
39079.47 
19647.97 
9808.7 1 
3903.05 
2988.67 
2020.86 
754.16 
23 1.26 
198.81 
179.86 

Run 3(s) 

875 14.48 
767 12.87 
39136.86 
19540.95 
9839.30 
4266.13 
2854.65 
1962.82 
525.76 
23 1.8 1 
199.88 
179.87 

Speedup 

1 .oo 
1.13 
2.23 
4.48 
8.89 

21.32 
29.57 
44.80 
136.20 
377.46 
439.07 
486.53 

Table B.9: Program 3 Results. Comm Interval = 250 Iterations 
Size of 
Local 

Data(KB) 
12000000 
6000000 
3000000 
l5OOOOO 
750000 
375000 
250000 
187752 
l5OOOO 
125000 
107904 
97536 

Run l(s) Run 2(s) rr Run 3(s) 

875 14.48 
78614.28 
39240.47 
20342.47 
9741.19 
4528.97 
2967.10 
1945.75 
875.35 
23 1.69 
198.49 
179.44 

Speedup 

1 .oo 
1.12 
2.23 
4.43 
8.94 

20.46 
29.72 
45.82 
109.14 
34 1.37 
440.94 
487.66 



Table B.lO: Program 3 Results. Cornrn Interval = 500 Iterations 
Size of 
Local 

Data(KB) 
12000000 
6000000 
3000000 
l5OOOOO 
750000 
375000 
250000 
187752 
l5OOOO 
125000 
107904 
97536 

Run 2(s) 

87504.29 
77997.22 
39321.77 
19394.22 
9742.86 
3872.24 
3015.71 
1804.24 
776.81 
305.59 
198.46 
179.42 

Run 3(s) 

875 14.48 
78614.28 
39240.47 
20342.47 
9741.19 
4528.97 
2967.10 
1945.75 
875.35 
23 1.69 
198.49 
179.44 

Average(s) Speedup 7 



APPENDIX C 

System Descriptions 

Background Information 

Blackbear is the primary supercomputer used by the University of Maine SDMT 

research group. Blackbear is based on 208 dual processor Pentium 3 lGhz diskless 

compute nodes. This cluster is used for sensitive research, and therefore access is 

limited to researchers affiliated with the SDMT research project. In order to allow 

other University of Maine researchers to take advantage of computing resources that 

were often idle, but to still maintain the security of Blackbear, the Kearney cluster was 

created. 

Kearney is comprised of 63 of the dual PI11 compute nodes mentioned above, 

plus its own dual Xeon 2.8Ghz master node. These 63 nodes are physically separated 

from Blackbear by disconnecting appropriate Ethernet and Myrinet switch intercon- 

nects. The diskless nature of the compute nodes allows them to boot a different ram-disk 

image when connected to Kearney instead of Blackbear. Most of the time these 63 nodes 

are available to University of Maine researchers, however if the SDMT research group 

needs more than 145 compute nodes, the 63 Kearney nodes can quickly be reconnected 

to Blackbear. This reconnection process is quite simple: first, the Kearney master node 

is physically disconnected from the internal Ethernet and the Myrinet networks; second, 

the Ethernet and Myrinet switch interconnects are reestablished between the Kearney 

compute nodes and the Blackbear compute nodes; finally, the 63 Kearney nodes are 

rebooted to boot the ram-disk image for the Blackbear cluster. 



Hardware 

Blackbear 

Master Node 

2x Intel Xeon 2.8Ghz Processors 

1024MI3 PC2100 RAM 

2x 134GB Ultra- 160 SCSI RAIDO Storage 

1.4 Terabyte RAID5 Storage 

Intel Gigabit Ethernet - Management Network 

M3-PCI-64B Myrinet adapter - Computational Network 

Diskless Compute Nodes (145 or 208) 

2x Intel PI11 1.OGhz Processors 

512MB PC133 RAM 

Intel El00 Ethernet adapter - Management Network 

M3-PCI-64B Myrinet adapter - Computational Network 

Kearney 

Master Node 

2x Intel Xeon 2.8Ghz Processors 

1024MI3 PC2 100 RAM 

134GB Ultra-160 SCSI RAIDO Storage 



a Intel Gigabit Ethernet - Management Network 

a M3-PCI-64B Myrinet adapter - Computational Network 

Diskless Compute Nodes (63) 

a 2x Intel PI11 1.OGhz Processors 

a 512MB PC133 RAM 

a Intel El00 Ethernet adapter - Management Network 

a M3-PCI-64B Myrinet adapter - Computational Network 
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