3,123 research outputs found

    Monocular SLAM Supported Object Recognition

    Get PDF
    In this work, we develop a monocular SLAM-aware object recognition system that is able to achieve considerably stronger recognition performance, as compared to classical object recognition systems that function on a frame-by-frame basis. By incorporating several key ideas including multi-view object proposals and efficient feature encoding methods, our proposed system is able to detect and robustly recognize objects in its environment using a single RGB camera in near-constant time. Through experiments, we illustrate the utility of using such a system to effectively detect and recognize objects, incorporating multiple object viewpoint detections into a unified prediction hypothesis. The performance of the proposed recognition system is evaluated on the UW RGB-D Dataset, showing strong recognition performance and scalable run-time performance compared to current state-of-the-art recognition systems.Comment: Accepted to appear at Robotics: Science and Systems 2015, Rome, Ital

    Unsupervised learning of clutter-resistant visual representations from natural videos

    Get PDF
    Populations of neurons in inferotemporal cortex (IT) maintain an explicit code for object identity that also tolerates transformations of object appearance e.g., position, scale, viewing angle [1, 2, 3]. Though the learning rules are not known, recent results [4, 5, 6] suggest the operation of an unsupervised temporal-association-based method e.g., Foldiak's trace rule [7]. Such methods exploit the temporal continuity of the visual world by assuming that visual experience over short timescales will tend to have invariant identity content. Thus, by associating representations of frames from nearby times, a representation that tolerates whatever transformations occurred in the video may be achieved. Many previous studies verified that such rules can work in simple situations without background clutter, but the presence of visual clutter has remained problematic for this approach. Here we show that temporal association based on large class-specific filters (templates) avoids the problem of clutter. Our system learns in an unsupervised way from natural videos gathered from the internet, and is able to perform a difficult unconstrained face recognition task on natural images: Labeled Faces in the Wild [8]

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    An in Depth Review Paper on Numerous Image Mosaicing Approaches and Techniques

    Get PDF
    Image mosaicing is one of the most important subjects of research in computer vision at current. Image mocaicing requires the integration of direct techniques and feature based techniques. Direct techniques are found to be very useful for mosaicing large overlapping regions, small translations and rotations while feature based techniques are useful for small overlapping regions. Feature based image mosaicing is a combination of corner detection, corner matching, motion parameters estimation and image stitching.Furthermore, image mosaicing is considered the process of obtaining a wider field-of-view of a scene from a sequence of partial views, which has been an attractive research area because of its wide range of applications, including motion detection, resolution enhancement, monitoring global land usage, and medical imaging. Numerous algorithms for image mosaicing have been proposed over the last two decades.In this paper the authors present a review on different approaches for image mosaicing and the literature over the past few years in the field of image masaicing methodologies. The authors take an overview on the various methods for image mosaicing.This review paper also provides an in depth survey of the existing image mosaicing algorithms by classifying them into several groups. For each group, the fundamental concepts are first clearly explained. Finally this paper also reviews and discusses the strength and weaknesses of all the mosaicing groups

    Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation

    Full text link
    This paper presents a novel cost aggregation network, called Volumetric Aggregation with Transformers (VAT), for few-shot segmentation. The use of transformers can benefit correlation map aggregation through self-attention over a global receptive field. However, the tokenization of a correlation map for transformer processing can be detrimental, because the discontinuity at token boundaries reduces the local context available near the token edges and decreases inductive bias. To address this problem, we propose a 4D Convolutional Swin Transformer, where a high-dimensional Swin Transformer is preceded by a series of small-kernel convolutions that impart local context to all pixels and introduce convolutional inductive bias. We additionally boost aggregation performance by applying transformers within a pyramidal structure, where aggregation at a coarser level guides aggregation at a finer level. Noise in the transformer output is then filtered in the subsequent decoder with the help of the query's appearance embedding. With this model, a new state-of-the-art is set for all the standard benchmarks in few-shot segmentation. It is shown that VAT attains state-of-the-art performance for semantic correspondence as well, where cost aggregation also plays a central role.Comment: Code and trained models are available at https://seokju-cho.github.io/VAT/ . This is ECCV'22 camera-ready version, which is revised from arXiv:2112.1168

    Layered Interpretation of Street View Images

    Full text link
    We propose a layered street view model to encode both depth and semantic information on street view images for autonomous driving. Recently, stixels, stix-mantics, and tiered scene labeling methods have been proposed to model street view images. We propose a 4-layer street view model, a compact representation over the recently proposed stix-mantics model. Our layers encode semantic classes like ground, pedestrians, vehicles, buildings, and sky in addition to the depths. The only input to our algorithm is a pair of stereo images. We use a deep neural network to extract the appearance features for semantic classes. We use a simple and an efficient inference algorithm to jointly estimate both semantic classes and layered depth values. Our method outperforms other competing approaches in Daimler urban scene segmentation dataset. Our algorithm is massively parallelizable, allowing a GPU implementation with a processing speed about 9 fps.Comment: The paper will be presented in the 2015 Robotics: Science and Systems Conference (RSS

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm
    • …
    corecore