283 research outputs found

    Privacy Management and Optimal Pricing in People-Centric Sensing

    Full text link
    With the emerging sensing technologies such as mobile crowdsensing and Internet of Things (IoT), people-centric data can be efficiently collected and used for analytics and optimization purposes. This data is typically required to develop and render people-centric services. In this paper, we address the privacy implication, optimal pricing, and bundling of people-centric services. We first define the inverse correlation between the service quality and privacy level from data analytics perspectives. We then present the profit maximization models of selling standalone, complementary, and substitute services. Specifically, the closed-form solutions of the optimal privacy level and subscription fee are derived to maximize the gross profit of service providers. For interrelated people-centric services, we show that cooperation by service bundling of complementary services is profitable compared to the separate sales but detrimental for substitutes. We also show that the market value of a service bundle is correlated with the degree of contingency between the interrelated services. Finally, we incorporate the profit sharing models from game theory for dividing the bundling profit among the cooperative service providers.Comment: 16 page

    The Internet of Energy: Architectures, Cyber Security, and Applications

    Get PDF
    The energy crisis and carbon emissions have become two critical concerns globally. As a very promising solution, the concept of Internet of Energy has appeared to tackle these challenges. The Internet of Energy is a new power generation paradigm developing a revolutionary vision of smart grids into the Internet. The communication infrastructure is an essential component for implementing the Internet of Energy. A scalable and robust communication infrastructure is crucial in both operating and maintaining smart energy systems. The wide-scale implementation and development of Internet of Energy into industrial applications should take into account the following challenges

    Pseudo-Random Bit Generator Using Chaotic Seed for Cryptographic Algorithm in Data Protection of Electric Power Consumption

    Get PDF
    Cryptographic algorithms have played an important role in information security for protecting privacy. The literature provides evidence that many types of chaotic cryptosystems have been proposed. These chaotic systems encode information to obviate its orbital instability and ergodicity. In this work, a pseudo-random cryptographic generator algorithm with a symmetric key, based on chaotic functions, is proposed. Moreover, the algorithm exploits dynamic simplicity and synchronization to generate encryption sub-keys using unpredictable seeds, extracted from a chaotic zone, in order to increase their level of randomness. Also, it is applied to a simulated electrical energy consumption signal and implemented on a prototype, using low hardware resources, to measure physical variables; hence, the unpredictability degree was statistically analyzed using the resulting cryptogram. It is shown that the pseudo-random sequences produced by the cryptographic key generator have acceptable properties with respect to randomness, which are validated in this paper using National Institute of Standards and Technology (NIST) statistical tests. To complement the evaluation of the encrypted data, the Lena image is coded and its metrics are compared with those reported in the literature, yielding some useful results

    Privacy aware surveillance system design

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Privacy Preserving Data Publishing

    Get PDF
    Recent years have witnessed increasing interest among researchers in protecting individual privacy in the big data era, involving social media, genomics, and Internet of Things. Recent studies have revealed numerous privacy threats and privacy protection methodologies, that vary across a broad range of applications. To date, however, there exists no powerful methodologies in addressing challenges from: high-dimension data, high-correlation data and powerful attackers. In this dissertation, two critical problems will be investigated: the prospects and some challenges for elucidating the attack capabilities of attackers in mining individuals’ private information; and methodologies that can be used to protect against such inference attacks, while guaranteeing significant data utility. First, this dissertation has proposed a series of works regarding inference attacks laying emphasis on protecting against powerful adversaries with auxiliary information. In the context of genomic data, data dimensions and computation feasibility is highly challenging in conducting data analysis. This dissertation proved that the proposed attack can effectively infer the values of the unknown SNPs and traits in linear complexity, which dramatically improve the computation cost compared with traditional methods with exponential computation cost. Second, putting differential privacy guarantee into high-dimension and high-correlation data remains a challenging problem, due to high-sensitivity, output scalability and signal-to-noise ratio. Consider there are tens-of-millions of genomes in a human DNA, it is infeasible for traditional methods to introduce noise to sanitize genomic data. This dissertation has proposed a series of works and demonstrated that the proposed differentially private method satisfies differential privacy; moreover, data utility is improved compared with the states of the arts by largely lowering data sensitivity. Third, putting privacy guarantee into social data publishing remains a challenging problem, due to tradeoff requirements between data privacy and utility. This dissertation has proposed a series of works and demonstrated that the proposed methods can effectively realize privacy-utility tradeoff in data publishing. Finally, two future research topics are proposed. The first topic is about Privacy Preserving Data Collection and Processing for Internet of Things. The second topic is to study Privacy Preserving Big Data Aggregation. They are motivated by the newly proposed data mining, artificial intelligence and cybersecurity methods
    corecore