880 research outputs found

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    Guest Editorial: Nonlinear Optimization of Communication Systems

    Get PDF
    Linear programming and other classical optimization techniques have found important applications in communication systems for many decades. Recently, there has been a surge in research activities that utilize the latest developments in nonlinear optimization to tackle a much wider scope of work in the analysis and design of communication systems. These activities involve every “layer” of the protocol stack and the principles of layered network architecture itself, and have made intellectual and practical impacts significantly beyond the established frameworks of optimization of communication systems in the early 1990s. These recent results are driven by new demands in the areas of communications and networking, as well as new tools emerging from optimization theory. Such tools include the powerful theories and highly efficient computational algorithms for nonlinear convex optimization, together with global solution methods and relaxation techniques for nonconvex optimization

    Benchmarking Practical RRM Algorithms for D2D Communications in LTE Advanced

    Full text link
    Device-to-device (D2D) communication integrated into cellular networks is a means to take advantage of the proximity of devices and allow for reusing cellular resources and thereby to increase the user bitrates and the system capacity. However, when D2D (in the 3rd Generation Partnership Project also called Long Term Evolution (LTE) Direct) communication in cellular spectrum is supported, there is a need to revisit and modify the existing radio resource management (RRM) and power control (PC) techniques to realize the potential of the proximity and reuse gains and to limit the interference at the cellular layer. In this paper, we examine the performance of the flexible LTE PC tool box and benchmark it against a utility optimal iterative scheme. We find that the open loop PC scheme of LTE performs well for cellular users both in terms of the used transmit power levels and the achieved signal-to-interference-and-noise-ratio (SINR) distribution. However, the performance of the D2D users as well as the overall system throughput can be boosted by the utility optimal scheme, because the utility maximizing scheme takes better advantage of both the proximity and the reuse gains. Therefore, in this paper we propose a hybrid PC scheme, in which cellular users employ the open loop path compensation method of LTE, while D2D users use the utility optimizing distributed PC scheme. In order to protect the cellular layer, the hybrid scheme allows for limiting the interference caused by the D2D layer at the cost of having a small impact on the performance of the D2D layer. To ensure feasibility, we limit the number of iterations to a practically feasible level. We make the point that the hybrid scheme is not only near optimal, but it also allows for a distributed implementation for the D2D users, while preserving the LTE PC scheme for the cellular users.Comment: 30 pages, submitted for review April-2013. See also: G. Fodor, M. Johansson, D. P. Demia, B. Marco, and A. Abrardo, A joint power control and resource allocation algorithm for D2D communications, KTH, Automatic Control, Tech. Rep., 2012, qC 20120910, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10205

    Autonomous Algorithms for Centralized and Distributed Interference Coordination: A Virtual Layer Based Approach

    Get PDF
    Interference mitigation techniques are essential for improving the performance of interference limited wireless networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated interference situation in the network and that is used for power control. We show how optimization in this virtual layer generates gradually adapting power control settings that lead to autonomous interference minimization. Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive system-level simulations to compare three distributed algorithms and evaluate their applicability for different user mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way. Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from global optimality by comparing to a branch-and-bound-based solution.Comment: revised versio
    • …
    corecore