688 research outputs found

    Levels of Decentralization and Trust in Cryptocurrencies: Consensus, Governance and Applications

    Get PDF
    Since the apparition of Bitcoin, decentralization has become an ideal praised almost religiously. Indeed, removing the need for a central authority prevents many forms of abuse that could be performed by a trusted third party, especially when there are no transparency and accountability mechanisms in place. Decentralization is however a very subtle concept that has limits. In this thesis, we look at the decentralization of blockchains at three different levels. First we look at the consensus protocol, which is the heart of any decentralized system. The Nakamoto protocol, used by Bitcoin, has been shown to induce centralization through the shift to mining pools. Additionally, it is heavily criticized for the enormous amount of energy it requires. We propose a protocol, FantĂ´mette, that incorporates incentives at its core and that consumes much less energy than Bitcoin and other proof-of-work based cryptocurrencies. If the consensus protocol makes it possible to decentralize the enforcement of rules in a cryptocurrency, there is still the question of who decides on the rules. Indeed, if a central authority is able to determine what those rules are then the fact that they are enforced in a decentralized way does not make it a decentralized system. We study the governance structure of Bitcoin and Ethereum by making measurements of their GitHub repositories and providing quantitative ways to compare their level of centralization by using appropriate metrics based on centrality measures. Finally, many applications are now built on top of blockchains. These can also induce or straightforwardly lead to centralization, for example by requiring that users register their identities to comply with regulations. We show how identities can be registered on blockchains in a decentralized and privacy-preserving way

    Evaluating the Impacts of Detecting X.509 Covert Channels

    Get PDF
    This quasi-experimental before-and-after study examined the performance impacts of detecting X.509 covert channels in the Suricata intrusion detection system. Relevant literature and previous studies surrounding covert channels and covert channel detection, X.509 certificates, and intrusion detection system performance were evaluated. This study used Jason Reaves’ X.509 covert channel proof of concept code to generate malicious network traffic for detection (2018). Various detection rules for intrusion detection systems were created to aid in the detection of the X.509 covert channel. The central processing unit (CPU) and memory utilization impacts that each rule had on the intrusion detection system was studied and analyzed. Statistically significant figures found that the rules do have an impact on the performance of the system, some more than others. Finally, pathways towards future related research in creating efficient covert channel detection mechanisms were identified

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Framework for Evaluation of the IT&C Audit Metrics Impact

    Get PDF
    The paper defines an assessment system for performance of IT&C audit process. The analytical models of performance indicators are provided together with the interpretation of their results. Performance levels catch the quality characteristics of the audit processes carried out for distributed informatics systems. Also, the paper presents a performance assessment framework for audit processes and a performance audit methodology. The impact of performance indicators is defined as the organization’s income after performance audit recommendation implementing. Methods and techniques for performance assessment are provided for audit processes of the distributed informatics system. The impact levels of performance indicators are calculated before implementation of the performance recommendation and after that to establish whether the performance audit increases the quality of IT&C audit processes.Performance Metrics, Metric Impact, Audit Process

    Dht-based security infrastructure for trusted internet and grid computing

    Get PDF
    Abstract: We designed a distributed security infrastructure with self-defence capabilities to secure networked resources in Grids and internet applications. This paper reports new developments in fuzzy trust management, game-theoretic Grid models, security-binding methodology, as well as new Grid performance metrics, defence architecture and mechanisms against intrusions, worms, and low-rate pulsing Distributed Denial of Service (DDoS) attacks. The design is based on a novel Distributed Has

    Access Control In and For the Real World

    Get PDF
    Access control is a core component of any information-security strategy. Researchers have spent tremendous energy over the past forty years defining abstract access-control models and proving various properties about them. However, surprisingly little attention has been paid to how well these models work in real socio-technical systems (i.e., real human organizations). This dissertation describes the results of two qualitative studies (involving 52 participants from four companies, drawn from the financial, software, and healthcare sectors) and observes that the current practice of access control is dysfunctional at best. It diagnoses the broken assumptions that are at the heart of this dysfunction, and offers a new definition of the access-control problem that is grounded in the requirements and limitations of the real world

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted
    • …
    corecore