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Abstract 

This quasi-experimental before-and-after study examined the performance impacts of 

detecting X.509 covert channels in the Suricata intrusion detection system. Relevant literature 

and previous studies surrounding covert channels and covert channel detection, X.509 

certificates, and intrusion detection system performance were evaluated. This study used 

Jason Reaves’ X.509 covert channel proof of concept code to generate malicious network 

traffic for detection (2018). Various detection rules for intrusion detection systems were 

created to aid in the detection of the X.509 covert channel. The central processing unit (CPU) 

and memory utilization impacts that each rule had on the intrusion detection system was 

studied and analyzed. Statistically significant figures found that the rules do have an impact 

on the performance of the system, some more than others. Finally, pathways towards future 

related research in creating efficient covert channel detection mechanisms were identified. 
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Chapter 1: Introduction 

Many aspects of our lives today use technology that relies on making connections over 

the internet. Most consumers will interact with online banking, social networking, online 

shopping, and more (Conti, Dragoni, & Lesyk, 2016). As these platforms and computer 

networks around the globe continue to process and store private information, the need to 

detect and prevent cyber-attacks is ever rising.  

One technique that attackers often employ during a cyber-attack is that of a covert 

channel.  Covert channels allow attackers to transmit data over an otherwise legitimate-

looking communications channel (Zander, Armitage, & Branch, 2007). Covert channels can 

be used to bypass network firewalls, secretly transferring data in and out of a network. 

Malware has used covert channels to for command and control traffic, which allows remote 

attackers to interact with the malware once it has infected a computer (Dietrich et al., 2012). 

Additionally, malware authors have used covert channels when removing or exfiltrating data 

from a computer network (Carrara & Adams, 2016). 

A recent instantiation of a covert channel was created using X.509 certificates by 

Reaves (2018). X.509 certificates are used in the transport layer security protocol to secure 

communications across networks (Wazan, Laborde, Chadwick, Barrere, & Benzekri, 2016). 

The certificates specifically play a key role in verifying the identity of entities, often verifying 

the identity of web servers. While X.509 certificates traditionally play a key role in verifying 

this trust and securing the internet, Reaves has shown they can be used for malicious covert 

channel purposes. 

Network defenders can employ intrusion detection and prevention systems and to aid 

in the detection and prevention of cyber-attacks that utilize covert channels. These systems 
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search for known patterns in network traffic in order to identify malicious usage (Bhuyan, 

Bhattacharyya, & Kalita, 2014). Before these systems can be used to accurately and 

efficiently detect X.509 covert channel usage, network defenders must first understand how 

the covert channel appears in network traffic to create intrusion detection system rules.  

In an effort to enhance knowledge in the industry around detecting X.509 covert 

channels in a highly performant manner, the purpose of this study was to observe the 

performance impacts detecting X.509 certificate extension misuse using an intrusion detection 

system. The efficiency and performance impacts of multiple different methods of performing 

this detection were documented and evaluated against each other. By studying these impacts, 

detection mechanisms can be written with knowledge of overall performance of the intrusion 

detection system in mind. 

Background of the Problem 

After successfully gaining access to a network, attackers have been able to exist in that 

network undetected for a median of 101 days (Mandiant, 2018). This statistic, called dwell 

time, details the number of days between the evidence of first compromise that an attacker is 

on a network to the day the compromise is detected. Globally, dwell times have ranged from 

less than a week to more than 2,000 days (Mandiant, 2018). Mandiant identified a common 

trend showing a gap in both visibility of the network and detection capabilities – 

organizations are unable to successfully detect a threat’s presence within their own network.  

Two tools that can be used to aid in the detection and prevention of breaches are 

intrusion detection systems (IDS) and intrusion prevention systems (IPS). An IDS is focused 

solely on detecting attacks or unauthorized access to the computer or network, while an IPS 
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takes a similar detection approach with added capabilities to block malicious traffic as soon as 

it is detected (Hock & Kortis, 2015). To detect malicious traffic, these systems use knowledge 

from prior attacks and intrusions, much like antivirus signatures (Titorenko & Frolov, 2018). 

Because of this, it is important to fully understand the various tactics and techniques used by 

attackers to bypass the IDS and IPS security controls. 

Another tool that is commonly used to prevent attacks is a firewall. Firewalls provide 

the ability to filter traffic entering and leaving a network by blocking specific network traffic 

based on predefined rules (Satasiya & Raviya Rupal, 2016). Traditionally, firewalls are placed 

between a private internal network and a public network, commonly the internet. They inspect 

the traffic flowing between the two networks, making decisions on whether to allow or block 

the traffic based upon the source and destination of the traffic such as the source IP address, 

destination IP address, network protocol, source port, and destination port (Kaur, Singh, 

Kumar, & Ghumman, 2015).  

In an effort to detect malicious content in the network application level, the 

capabilities of firewalls have been advancing. Next-generation firewalls have the ability to 

inspect the contents of network traffic deeper, beyond that of a traditional firewall. In addition 

to inspecting the source and destination of the traffic, next-generation firewalls also can peer 

into the applications that are present in the network traffic, providing additional more 

stringent filtering features (Neupane, Haddad, & Chen, 2018). 

To bypass security controls such as firewalls, attackers need to hide their presence 

through information hiding techniques. Information hiding traditionally can occur by using 

cryptographic techniques to obscure information in transit across a computer network. 

Utilizing only cryptography, one could discern that two entities are in fact communicating, 
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but not what they are communicating about. Attackers are also concerned with staying 

completely anonymous so that defenders are not aware they are communicating at all 

(Ritchey, 2015). 

In information security, the practice of information hiding can be broken down into 

two relevant fields: anonymity and steganography. Anonymity uses cryptographic techniques 

to obscure the contents of the message as well as the source and destination of the 

communication. Steganography is defined as hiding secrets in otherwise normal 

communication so that it is undetectable to a third party observer (Ritchey, 2015). If 

cryptography can be broken or its use is otherwise prohibited, cryptography is ineffective in 

anonymizing communications (Ritchey, 2015). Instead, steganography techniques can be 

utilized. Covert channels can be an instantiation of steganography. 

Malware and malicious actors have been using covert channels as a method to enable 

communication and bypass network security controls like firewalls and intrusion detection 

systems. Covert channels are defined as the use of existing communication channels for the 

transfer of information through a system’s security controls (Department of Defense, 1985). 

In practice, communication channels on computers and networks that are traditionally open 

for legitimate purposes can be abused and used to send custom, non-standard data through the 

channel. These channels can be used to hide the presence of data leaving the network, or for 

covert command and control communications between infected hosts (Scott, 2008).  

The Transmission Control Protocol (TCP) is a reliable protocol used for 

communication between computers on a network (Postel, 1981). Similarly, the User 

Datagram Protocol (UDP) is also a protocol used for communication between computers on a 

network, but with minimum overhead (Postel, 1980). Each of these protocols which are still in 
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prevalent use today define a port number to name the ends of the communication (Reynolds & 

Postel, 1994). It is through these ports that most computer communication over a network 

occurs. The Internet Assigned Numbers Authority has assigned port numbers 0 to 1023 to 

specific protocols, just a subset of the 65,535 total ports available on computer systems 

(Reynolds & Postel, 1994). 

Some common protocols and applications that have historically been used as covert 

channels include Internet Relay Chat (IRC), Peer-to-Peer (P2P), Hyper Text Transfer Protocol 

(HTTP), and Domain Name System (DNS) (Binsalleeh, Kara, Youssef, & Debbabi, 2014). 

Many of these protocols were optimal choices for covert channels in part because these 

common protocols are generally available for communication on most computers. Selecting 

ports and protocols that are rarely blocked by network firewalls is a key factor in the 

usefulness of the covert channel.  

Since most computer users will have a need to browse the internet, many network 

firewalls today will allow general web browsing traffic outbound. Therefore, the protocols 

required for general web browsing could be good choices for covert channel usage. One of 

these common protocols is HTTPS, or HTTP Secure. HTTPS is an extension of the Hyper 

Text Transfer Protocol (HTTP), with the addition of encryption using the Secure Sockets 

Layer (SSL) or more recently Transport Layer Security (TLS) (Clark & Van Oorschot, 2013). 

TLS is in use by many websites across the internet to secure information as it passes between 

web servers and web browsers, especially sensitive information such as passwords (Scott, 

2008). 

TLS makes use of public key certificates, specifically X.509v3 certificates, to allow 

the server and client to be authenticated (Dierks & Rescorla, 2008). X.509 is the standard that 
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defines the format of public key certificates. X.509 certificates are a key component of a trust 

model used to verify the identity of entities on the internet. This is key to confirming that you 

are actually communicating with whom you expect, not some third party or malicious actor. A 

trusted third party, the certificate authority, verifies the identity of an entity and provides an 

X.509 certificate containing cryptographic keys to the entity (Wazan et al., 2016). 

X.509 certificates are used to secure network traffic from various applications across 

the internet. This prevalence can make it a good candidate for use as a covert channel. In 

January 2018, Jason Reaves published research into using X.509 extensions as a covert 

channel (Reaves, 2018). The research also includes proof-of-concept code demonstrating the 

feasibility of this new covert channel mechanism.   

Malware has been observed to make use of covert channels for communication, from 

the exfiltration of data to command and control traffic, instructing the malware to carry out its 

malicious tasks. Morto, Katusha, and Feederbot are examples of some malware families that 

have used DNS as a covert communication mechanism (Binsalleeh et al., 2014). DNS has 

been used as a covert channel, and there have been various studies done on the detection of 

this covert channel (Binsalleeh et al., 2014). Newer covert channels, like X.509, benefit from 

the existence of little to no detection mechanisms, and often will go undetected. 

To modify the X.509 certificate to add arbitrary data, the attacker would need to re-

create the certificate each time. This method of using X.509 as a covert channel is effective 

when simply using a self-signed certificate, rather than one signed by a legitimate certificate 

authority (Reaves, 2018). Typically, computer users are presented with a warning if the 

certificate is self-signed, or otherwise untrusted. However, users too often do not verify the 



7 

certificate when receiving these warnings, especially those users who encounter self-signed 

certificates frequently (Callegati, Cerroni, & Ramilli, 2009). 

In the X.509 covert channel proof of concept, there is no need to pass the certificate to 

a web browser on the affected machine – the user may not know a malicious certificate is 

being used at all (Reaves, 2018). The certificates used in the covert channel are passed 

between the attacker’s server and the malicious application on the victim’s machine. To 

effectively mitigate this, an organization might choose to block all self-signed or otherwise 

untrusted certificates at the network level, though some organizations and users routinely 

encounter legitimate self-signed certificates (Callegati et al., 2009). 

Statement of the problem 

The problem is that X.509 certificates and X.509 certificate extensions can be misused 

giving end-users a false sense of security and enabling a mechanism for covert channels that 

enable command and control, data exfiltration, or other malicious purposes unknown to 

current detection mechanisms. This is evidenced by Reaves’ (2018) covert channel proof of 

concept. 

As malicious actors use new methods to circumvent security controls, there becomes a 

need to detect that behavior. Therefore, as X.509 misuse as a covert channel becomes more 

relevant and widespread, the need for effective and performant detection mechanisms will 

rise. As any new offensive technique is created and used, eventually will come a defensive 

mechanism to block or at least detect the technique in the ever-evolving cyber security cat-

and-mouse game. Extensive and robust X.509 covert channel detection mechanisms do not 

yet exist (Reaves, 2018).  
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The RFC 5280 document defines the X.509 Internet Public Key Infrastructure (Cooper 

et al., 2008). The X.509 specification defines several certificate extensions, intended to 

associate additional attributes to the certificate (Cooper et al., 2008). There also is the ability 

to include private extensions that are not explicitly defined in the RFC (Cooper et al., 2008). 

Reaves’s X.509 covert channel uses the Subject Key Identifier extension to transmit arbitrary 

data. Normally, this field is a string that contains a hash (Reaves, 2018).  

While the use of the Subject Key Identifier extension field as a covert channel has 

been proven to be possible, there are other extensions in the X.509 specification that could 

theoretically be used to transmit arbitrary data through a covert channel. One would need to 

verify all potential fields and extensions to thoroughly detect malicious content that may exist 

in other fields. Today, firewalls and intrusion detection systems do not deeply inspect and 

verify the fields and extensions of an X.509 certificate exchange, likely because its abuse as a 

covert channel is not widely known (Reaves, 2018). 

While accurately detecting the protocol abuse is important, so is doing so in a highly 

performant manner as poor performance has an effect on the system (Chan, Hammad, & 

Kundur, 2016). That is, obtaining a high true positive rate and a low false positive rate is a 

separate problem from having a significantly negative impact on the IDS’s ability to inspect 

traffic with minimal impact to the CPU and therefore high traffic rates (Schaelicke, Slabach, 

Moore, & Freeland, 2003). As bandwidth requirements and usage grows on networks, so must 

rise the ability of an IDS to process that traffic. Intrusion detection systems that cannot 

process traffic fast enough will likely drop packets, increasing the chance a real intrusion will 

be missed (Bulajoul, James, & Pannu, 2013). This is why these systems should be as 

performant as possible. 
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Purpose of the Study 

The purpose of this study was to observe the performance impacts of detecting X.509 

certificate extension misuse using an intrusion detection system. The efficiency and 

performance impacts of multiple different methods of performing this validation will be 

documented and evaluated against each other. By studying these impacts, detection 

mechanisms can be written with knowledge of overall performance of the intrusion detection 

system in mind. 

The performance of an intrusion detection system is defined as the rate at which 

events are processed (Mohammed Nazer & Lawrence Selvakumar, 2011a). The CPU and 

memory have a direct effect on the number of events processed by an intrusion detection 

system; an overloaded CPU can lead to dropped network packets and therefore fewer events 

processed (Hu, Asghar, & Brownlee, 2017). This study measured the CPU and memory usage 

of the system along with the number of CPU cycles, or ticks, that an individual detection rule 

consumed. 

This study used X.509 covert channel network traffic generated with the proof-of-

concept code described by Reaves (2018). This traffic was passed through an intrusion 

detection system with no specific detection rules in place and CPU and RAM utilization was 

measured. Then, the same traffic was passed through the same system with specific detection 

rules in place and the CPU and RAM utilization again was measured. These before-and-after 

data points suggest the selected experimental design as most appropriate. 

The network traffic used in the study included X.509 certificates without covert 

channels, and X.509 certificates with covert channels. Since intrusion detection and 

prevention systems will process truly non-malicious data in a real-world environment, this 
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study also used non-malicious traffic that is not related to X.509 certificates or covert 

channels. This was done to also observe the impacts of the implemented detection 

mechanisms on different kinds of traffic. 

Significance of the Study 

The development of new methods for detecting X.509 covert channels and invalid 

X.509 certificates is significant in its potential impact alone. The early detection of breaches 

will reduce an intruder’s dwell time. Dwell time is defined as the length of time from when an 

intruder gains access to a network to when their presence is discovered and eradicated. In 

2017, the median dwell time on a network was 101 days (Mandiant, 2018).  

As breaches become more significant, so does the need for early detection, bringing 

the dwell time closer to zero. In fact, breaches where the attacker has been able to exist 

undetected for a longer period of time also have a higher cost to the affected organization 

(Ponemon Institute, 2018). In fact, the average total cost of a data breach was $3.86 million in 

2018 (Ponemon Institute, 2018). Advancing the quality and accuracy of detection 

mechanisms, including intrusion detection systems, can be a crucial step in bringing the 

median dwell time closer to zero. If undetected, the intruder could remain quietly in a network 

to carry out whatever goals the intruder has, from data exfiltration to even causing damage to 

systems. 

The other major impact this study can have is the improvement of the efficiency of 

intrusion detection mechanisms. Inefficient signatures and other detection mechanisms built 

into intrusion detection systems can lead to poor performance and dropped network packets or 

inflated hardware requirements. As bandwidth usage on networks continues to rise, so will the 
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need to effectively monitor all this traffic. Large traffic flow rates coupled with numerous 

inefficient IDS rules could lead to an inability to monitor all packets without excessive 

hardware requirements (Chan et al., 2016). This study aims to determine the more efficient 

detection mechanisms to keep hardware requirements down and traffic processing ability up, 

while not sacrificing detection accuracy.  

Early detection of intrusions can lead to smaller incidents and faster cleanup. This 

benefits organizations with computer systems, as well as those whose data is stored there. 

Intrusions may be inevitable but being able to detect and react as swiftly as possible is key to 

minimizing damage. 

Nature of the Study 

This study used a quantitative, quasi-experimental before-and-after study design. This 

design aims to discover the association of an intervention and an outcome (Harris et al., 

2006). A before-and-after study design is the most appropriate for measuring a change or 

impact a variable has on an environment (Kumar, 2014). These studies compare 

measurements taken of a system before an intervention with measurements of that same 

system after an intervention (Kumar, 2014).  

Quasi-experiments do not use randomization. In a true experimental design study, the 

assigning of test subjects to the control group or treatment group is completely random. In this 

study, the specific network traffic and intrusion detection system will not change but can be 

reused between control tests and treatment tests, or the tests with modified detection 

mechanisms. This study, therefore, lacks randomization. 
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In reviewing the limitations of this study design and their applicability to this research 

problem, it is important to note that this design can only measure the total change from the 

first measurement to the last. Because of this, the researcher must be aware that observed 

changes cannot be related to specific independent variables (Kumar, 2014). As such, the 

research will be conducted in a way that minimizes extraneous variables that may affect the 

measurement and outcome as much as possible. 

Even with those limitations in mind, a quasi-experiment is the most appropriate 

research design for this study. There are three common quantitative experimental approaches: 

experimental, non-experimental and semi-experimental studies (Kumar, 2014). In an 

experimental study, the researcher intervening and observing a change. In a non-experimental 

study, the researcher observes a change and subsequently attempts to determine the cause of 

the change. For this study, a non-experimental design is not appropriate, since the researcher 

is to introduce a change to the IDS rules and subsequently observe the impacts. Semi-

experimental designs include a combination of both experimental and non-experimental 

studies, but was not suited for this research for the same reasons a non-experimental design 

was not appropriate. 

IDS signature and detection mechanisms were created to perform the detection of 

X.509 covert channels. The performance of these artifacts, specifically CPU and RAM usage 

metrics, are the major verification component. The study used the open source intrusion 

prevention and detection system, Suricata. Suricata is one of two popular open-source 

network intrusion detection and prevention systems in the industry, the other being Snort (Hu 

et al., 2017). Snort has the best market share of the two systems but has some shortcomings 

that Suricata addresses. For example, Snort will only process packets with a single CPU 
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thread, but Suricata can take advantage of multiprocessor systems to process packets with 

multiple threads simultaneously (Park & Ahn, 2017). Having the ability to process multiple 

packets silultaneously allows Suricata to process more network packets per second than a 

Snort system with identical hardware (White, Fitzsimmons, & Matthews, 2013a). 

The environment consisted of three major components – a client computer to simulate 

the victim, a server computer to simulate an attacker-controlled server on the internet, and the 

Suricata intrusion detection system itself. The X.509 covert channel proof-of-concept code 

described by Reaves (2018) was loaded and verified on both of the client and server systems.  

The Suricata IDS was configured with no rules as a starting control test. This 

represents the before test in this before-and-after study design. As rules and detection methods 

were designed, they were tested in the system using the same traffic as the starting control 

test. This represents the after test. 

The research began with only looking at the Subject Key Identifier field, which is used 

in Reaves’ proof-of-concept code. This field is only one of many different extensions present 

in the X.509 specification (Cooper et al., 2008). Subsequent detection mechanisms looked 

further beyond the one field to detect possible misuse of other available extensions. As the 

tests were conducted and data analyzed, small modifications were made to the detection 

mechanisms to evaluate the performance of the different methods, aiming for the most 

efficient and effective method. 

Research Questions 

This study’s intent was to discover performance impacts of various detection 

mechanisms on an intrusion detection system. As a part of this, various intrusion detection 
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methods, signature-based and anomaly-based, were tested. The impacts of short, limited 

signatures and regular expressions vs. extensive, yet specific, signatures and regular 

expressions was explored, as an example. While new X.509 signatures are artifacts of this 

research, the primary goal remained to answer the following question:  

How will validating X.509 certificate trust and detecting X.509 certificate extension 

misuse using an intrusion detection system affect the CPU and RAM performance of 

the system?  

To answer that question, the research measured the performance of the system with no 

detection mechanism present, as well as the performance of the system with the new 

mechanisms present. Each detection mechanism was measured separate from the others and 

compared after the data had been collected.  

Hypothesis 

Validating X.509 certificate trust and detecting X.509 certificate extension misuse 

using an inline intrusion detection system does affect the performance and throughput of the 

system. 

Theoretical Framework 

The theoretical framework acts as a guide for a researcher by leveraging an existing 

theory in the field of study (Adom & Joe, 2018). Utilizing existing research as a blueprint 

provides necessary structure to drive the research. A theoretical framework is well designed 

and accepted in the discipline (Adom & Joe, 2018). 

This research uses the computational complexity theory to explain the relationship 

between the complexity of an IDS rule and the speed and efficiency of that rule. 
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Computational complexity can be traced back to Alan Turing and his Turing machine, the 

device that built the foundations of modern computation (Homer & Selman, 2014). 

Computational complexity examines the resources required to solve a problem, such as the 

time required (Loui, 1996). As such, this study examines the time it takes for distinctive 

X.509 covert channel detection mechanisms. 

Several prior studies have examined the performance of an IDS as they examine 

network traffic using preconfigured signature-based detection rules. Prior work has studied 

the throughput of the IDS while changing a number of different variables: varied rulesets, 

varied workload with varied number and size of packets, varied system settings, and varied 

hardware configurations (White, Fitzsimmons, & Matthews, 2013b). 

One way to measure the performance of an IDS is by measuring the packets per 

second (PPS) that the IDS can process. The PPS represents the dependent variable and is the 

major variable that is measured. The independent variables should not change without 

researcher interaction, which in this study are the IDS detection ruleset, the hardware the IDS 

is running on, and the traffic or packets being sent through the IDS.  

Studies have shown that increased computing resources, like more processor cores, 

does not lead to more accurate detection, but does improve the packet handling capabilities of 

the IDS (Kabir & Hartmann, 2018). Increased processor performance has resulted in an 

increase of throughput the system can handle, since there are more computing resources to 

handle the complexity of detection (Saboor, Akhlaq, & Aslam, 2013). 

Ruleset complexity also has a direct impact on the performance and throughput of the 

IDS. The Emerging Threats was originally created in support of a free and open source ruleset 

for Snort and Suricata. Now, the team curates two major sets of rules for use in these systems, 
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the ET-Open rules and the ET-Pro rules. The ET-Open rules are community contributed and 

are widely installed and used across Snort and Suricata systems. The ET-Pro rules are 

developed and further vetted by the Emerging Threats team, a group that creates and 

distributes IDS rulesets (White et al., 2013). The ET-Open rules are available for free and 

typically ship with Snort and Suricata, whereas the ET-Pro ruleset is a paid subscription-based 

ruleset. Researchers found a greater negative performance impact while using the ET-Free 

ruleset over the ET-Pro ruleset because the ET-Pro rules are tuned by professionals (White et 

al., 2013b). That is, the ET-Pro ruleset showed an increase in performance. This evidence 

shows a correlation between the detection rule and overall performance of the IDS. 

Acronyms 

The following list contains acronyms that are used frequently throughout this 

document. Definitions were retrieved from Ayala (2016). 

ASN.1: Abstract Syntax Notation One 

CPU: Central Processing Unit 

DNS: Domain Name System 

HTTP: Hypertext Transfer Protocol 

HTTPS: Hypertext Transfer Protocol Secure 

IDS: Intrusion Detection System 

ICMP: Internet Control Message Protocol 

IP: Internet Protocol 

IPS: Intrusion Prevention System 

KiB: Kibibytes 

RFC: Request for Comments 
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SHA: Secure Hash Algorithm 

TCP: Transmission Control Protocol 

TLS: Transport Layer Security 

UDP: User Datagram Protocol 

Definitions 

Abstract Syntax Notation One (ASN.1): A data notation scheme that can be used to 

represent numerous different data types (Kaliski, 1993). The structure of X.509 certificates 

are defined in ASN.1 syntax. 

Censys: A search engine of data collected by scanning systems on the internet, notably 

X.509 certificates (Durumeric, Adrian, Mirian, Bailey, & Halderman, 2015). 

Covert Channel: A communication channel used to hide the sharing of information 

between two entities, typically on top of another legitimate communication channel (Ritchey, 

2015). 

Domain Name System (DNS): An application layer protocol designed for the 

translating between domain names and IP addresses (Binsalleeh et al., 2014).  

Hypertext Transfer Protocol: An application layer protocol designed for the 

transferring of hypertext webpages across the internet (Clark & Van Oorschot, 2013). 

Hypertext Transfer Protocol Secure: An application layer protocol designed for the 

transferring of hypertext webpages across the internet over a secure channel (Clark & Van 

Oorschot, 2013). 
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Internet Control Message Protocol: A protocol used to send messages between 

computers such as when a service is not available. ICMP is commonly used by ping to test 

connectivity between networked devices (Ayala, 2016). 

Intrusion Detection System: A tool used to identify security violations or network 

attacks by monitoring network traffic (Kabir & Hartmann, 2018). 

Intrusion Prevention System: A tool used to identify and prevent security violations or 

network attacks by monitoring and blocking traffic. (Kabir & Hartmann, 2018) 

Mpstat: A command-line tool that can be used to monitor the utilization of a system’s 

CPU (Ahmad & Qazi, 2018). 

Request for Comments: A document issued by the Internet Engineering Task Force 

that often describes an area of computer networking (Ayala, 2016). Within this document, the 

RFCs referenced describe various protocols or security related implementations. 

Secure Hashing Algorithm: A family of hash functions that map a group of bits of any 

length to a bit string of a fixed length. Hashing algorithms are one-way, meaning it is not 

feasible to find and input that matches an output hash, only an output that matches an input 

(Ayala, 2016). 

Snort: One of two predominant open source intrusion detection systems. (Brumen & 

Legvart, 2016) 

Suricata: One of two predominant open source intrusion detection systems. (Brumen 

& Legvart, 2016) 

Transmission Control Protocol: A transport layer protocol that enables two networked 

hosts to communicate with each other. TCP ensures the data was successfully delivered 

(Ayala, 2016). 
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Transport Layer Security: A protocol that provides end-to-end cryptographic 

communications security across computer networks. X.509 certificates are used in TLS 

(Ayala, 2016). 

User Datagram Protocol: A transport layer protocol that enables two networked hosts 

to communicate with each other. UDP is a connectionless protocol and therefore does not 

provide a guarantee that data was successfully delivered (Ayala, 2016). 

Vmstat: A command-line based tool that can be used to monitor the utilization of a 

system’s memory (Mohammed Nazer & Lawrence Selvakumar, 2011b). 

X.509: The certificates widely used today for verifying the identity of an entity, 

commonly another server or website (Uahhabi & Bakkali, 2017) 

Assumptions 

Throughout the course of this study, some assumptions were made. First, it is assumed 

that Suricata’s built in rule profiling features provide an accurate measurement of the CPU 

utilization of each rule that is configured on the system. Second, it is assumed that the utilities 

used to monitor the overall CPU utilization and RAM utilization of the system are accurate 

and that any changes are the direct result of the ruleset configured in Suricata. To further 

assist this assumption, the environment was controlled as tightly as possible to limit any 

outside factors from impacting the study as much as possible. While it is assumed a highly 

capable CPU would have an impact on the performance, all tests were run on the same 

hardware configurations. 
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Scope, Limitations, and Delimitations 

The scope of this study is to detect X.509 certificate extension misuse on an intrusion 

detection system while studying the impacts on the performance and throughput of the 

system. Rulesets were generated for the IDS to carry out the aforementioned verification of 

X.509 certificates, and the impact on the IDS was studied, specifically the CPU and RAM 

utilization. The intrusion detection system’s self-reported rule profiling statistics were 

recorded for each ruleset tested in the IDS. Throughout the study, the researcher used the 

same traffic sample along with the same hardware and IDS configuration to ensure 

consistency between tests. The only changing independent variable is the ruleset used in the 

intrusion detection system. 

There are a number of notable exclusions from the scope of this study. While the 

detection mechanisms and rulesets created and used in this study do accurately detect X.509 

certificate extension misuse for covert channels, the study does not test the false positive rate 

of the rulesets. A false positive result is one that occurs when the IDS generates an alert for 

malicious activity, though the activity was not actually malicious. False positive results are an 

incorrect determination of maliciousness, and are therefore a factor in most metrics on a 

ruleset’s accuracy (Chan et al., 2016). 

This study also did not look at any interactions between rules in the IDS, built-in or 

custom. Only the rules in question were loaded and tested separately of all other rules. 

Additionally, the aim of the study is not to test the performance of the IDS or rules in a best-

case environment, but rather to observe the performance of various rules under the same 

environment. Finally, this study was not looking at the performance of the system in a 

particularly high-bandwidth environment. These out-of-scope items can also be listed as 



21 

limitations of the study, as various factors, such as differences in traffic, large packet sizes, 

and high-bandwidth environments may affect the throughput and performance of the IDS. 

This study utilized a virtual machine to run the Suriciata IDS with very specific 

controlled network traffic used for testing. This environment was purposefully segregated 

from outside influences to the best of the researcher’s ability. This controlled virtual 

environment was not subject to certain influences that can have an effect on the performance 

of the IDS in a physical real-world environment. Some notable influences include a wider 

variety of network traffic with various packet sizes and purposes. 

While another researcher’s results may differ due to any number of variables to 

include the type of traffic tested, the performance of the hardware the IDS is running on, and 

the packet size, any correlation between IDS throughput and the detection mechanism and 

ruleset remains valid. 

Chapter Summary 

This chapter has established the profiling of the performance of the detection of X.509 

extension misuse as the basis of this study. Attackers have a need to evade common network 

defenses and do so using information hiding methods, specifically by creating and using a 

covert channel (Scott, 2008). X.509 extensions are a medium that can be used as a covert 

channel, though detection mechanisms do not yet exist (Reaves, 2018). 

As bandwidth utilization increases on computer networks, so does the need for an 

efficient and performant IDS. An IDS that is overloaded can drop packets, leading to the 

possibility of missing true-positive intrusions (Chan et al., 2016). As such, this study will 
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develop IDS rules for the detection of X.509 covert channels paying close attention to the 

CPU utilization of the rule.  

This study uses a quantitative, quasi-experimental before-and-after study to discover 

the relationship of an intervention and outcome (Harris et al., 2006). Specifically, the 

mechanisms used to detect X.509 covert channels being the intervention, and the performance 

impact to the intrusion detection system as the outcome. This chapter discussed the 

framework used in the study, as well as the scope and limitations of the study. 

Chapter 2 presents a literature review of the components of this study, including 

covert channels, X.509 certificates and attacks, intrusion detection systems and performance, 

and intrusion detection system rulesets. The literature review takes a look at the history and 

current state of the aforementioned topics, as well as a survey of previous research conducted 

in the detection of covert channels and other malicious network-based attacks. 
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Chapter 2: Literature Review 

Chapter 1 provided an introduction to and overview of this dissertation while 

identifying the study’s topic: to measure the CPU performance impacts of detecting X.509 

covert channels on an IDS. The motivation and background of the problem was discussed, 

along with the research questions and research design.  

What follows is a literature review focused on the major components in this research: 

covert channels and covert channel detection, intrusion detection methods, and intrusion 

detection system performance. Existing methods discussed in other research for covert 

channel detection and intrusion detection methods were applied to X.509 certificates in this 

dissertation.  

Covert Channel Background 

A covert channel has been defined as a “communication channel established contrary 

to the design of a system” (Carrara & Adams, 2016). Earlier, a covert channel was defined as 

one that was not intended to transfer information at all (Lampson, 1973). This definition has 

proved to be only partially correct, as covert communication channels have been hidden 

within portions of channels that were originally intended to transfer information, but in an 

originally unintended way (Binsalleeh et al., 2014). Generally, Kemmerer defined a covert 

channel as one that “uses entities not normally viewed as data objects to transfer information 

from one subject to another” (Kemmerer, 1983). 

The Trusted Computer Security Evaluation Criteria (TCSEC) defines two categories 

of covert channels: storage channels and timing channels (MD., 1993). This dissertation is 

working primarily with covert storage channels. A covert storage channel involves the 
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modification of a storage space that two processes can both access and therefore use for 

communication. The selected storage channel could be an unused field in existing network 

communication protocols (Newman, 2007). 

Some malware families abuse legitimate protocols to establish a covert 

communication channel for the exfiltration of data and for command and control purposes. It 

is important to understand existing successful uses of covert channels. Attackers have used a 

number of protocols for covert communication, including internet relay chat, peer-to-peer 

protocols, HTTP, and DNS (Binsalleeh et al., 2014). 

Covert channels have been compared to steganography. In steganography, data is 

typically embedded into innocent looking traffic to hide the fact that the data is being 

transmitted (Jakobsen & Orlandi, 2016). Covert channels can utilize a legitimate network 

protocol as the carrier of arbitrary data, where steganography uses legitimate or normal 

looking audio or visual content (Zander et al., 2007). 

Selection of covert channels often comes down to a few characteristics: the ability to 

transfer data and the availability of the channel. For example, on a clear majority of networks, 

HTTP, HTTPS, and DNS are open for free communication to the general internet. Most 

networks will allow users to browse the web, or at the very least portions of it, if filtered 

through a proxy server. HTTP can certainly carry custom data and is often open, making it a 

good communication channel. DNS is almost always open on a network, and even though it is 

not normally thought of as a good payload distribution channel, it can in fact be used as one. 

Early on, simply because of the fact intrusion detection systems were not inspecting DNS for 

malicious traffic, it was a great covert channel. 
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Malware can send arbitrary data through DNS queries and responses, although 

inefficiently. Often, traffic is passed using DNS TXT resource records. Only a very limited 

amount of data can exist in one query, creating a high rate of DNS queries and responses 

(Binsalleeh et al., 2014). The Feederbot malware, for example, uses TXT resource records to 

receive information, and specific domain requests to send information from the infected host. 

Command and control traffic to the malware is split into chunks, each with a maximum size 

of 220 bytes. The data is both encrypted and encoded before placed in the TXT record 

(Dietrich et al., 2012). 

Covert channel creation can be especially fruitful in protocol standards that do not 

require or verify specific values in the packet header. Many protocols allow header extensions 

to carry arbitrary data that was not initially in the specification as a means to extend the 

usefulness of the protocol (Zander et al., 2007). 

Another legitimate protocol that has been used as a covert channel is Voice Over IP 

(VoIP). Arbitrary data has been sent over both the control traffic and the audio channel. Data 

has been observed being embedded with the G.711 coded audio data. Even by injecting just a 

single bit into a sample of audio data to minimize audio quality loss, an attacker could transfer 

up to 8kb of information each second. More data can be embedded and transferred, at the risk 

of reducing audio quality (Scott, 2008). 

Covert channels can also be established without using existing protocols. One example 

of this is the Fanny malware. The Fanny malware was a specific piece of malware that used 

USB drives to spread itself from computer to computer (GReAT, 2015). The malware utilized 

a covert channel to both receive commands to execute as well as to store the output of the 

commands, a covert channel used for both ingress and egress (Carrara & Adams, 2016). This 
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malware was also unique in the fact that it provided a communication channel for systems that 

were not connected to the internet, or air-gapped systems, by using a hidden storage volume 

in removable media.  

When the existence of a covert channel is known, there are a few possible 

countermeasures, from most effective to least: eliminate the channel, limit the bandwidth, 

audit the channel, or document the channel (Zander et al., 2007). At times, completely 

removing the channel may not be realistic, especially if the channel is necessary for 

legitimate, critical network communication. At the very least, monitoring the usage of the 

channel, or blocking specific malicious packets used in the channel, is preferred.  

According to Zander et al., another method for thwarting a successful covert channel 

is to normalize specific fields in the packets. Removing unnecessary extensions and zeroing 

unused bits can be an effective defense. A lot of analysis can be performed to determine if 

specific combinations of data are valid, according to the protocol’s specification. For 

example, the urgent pointer in TCP traffic can be set to zero if the URG bit is not set. There 

are many more examples of specific data combinations that should not exist in normal, non-

malicious TCP traffic. 

The X.509 Standard 

Secure Sockets Layer (SSL), later renamed Transport Layer Security (TLS), has been 

securing internet traffic for years. It was originally intended to be used to secure online 

financial and shopping websites, though today many other websites, services, and applications 

use SSL/TLS technologies for encryption (Levillain, 2012).   
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In order to provide additional security for network traffic, TLS verifies the identity of 

an entity typically by leveraging public key infrastructure (PKI). PKI is based on the trust 

model presented in the X.509 standard (Wazan et al., 2016).  

PKI uses certificates to provide a binding between a domain name and TLS keys 

(Walsh, 2017). The X.509 certificate contains information to prove the ownership of the 

public key as well as what entity verified this ownership, among other information. 

In the X.509 trust model there are three entities. The subject or server of the 

communication is the certificate holder, the relaying party (RP) is the client, and the 

certification authority (CA) is a trusted third party between the subject and RP. The CA 

verifies the subject is who they say they are and issue a signed certificate (Wazan et al., 

2016). The RP uses the certificate signed by the CA along with their trust in the CA to verify 

the identity of the subject. 

X.509 certificates are described as a sequence of objects using the Abstract Syntax 

Notation One, or ASN.1 structure (Cooper et al., 2008). The ASN.1 is flexible enough to 

represent a number of different datatypes to include integers and bit strings, for example 

(Kaliski, 1993). While X.509 certificate fields and structures are usually discussed using 

ASN.1, it’s important to also understand the technique used to encode the data from ASN.1. 

The Data Encoding Rules (DER) define the unique encodings used for each ASN.1 data type 

(Kaliski, 1993). DER is used to encode the X.509 certificates described in ASN.1 into a 

binary format. 

The fields of a standard X.509 certificate are described in the following list (Cooper et 

al., 2008). 
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• The version field is a number describing the version of the certificate. Acceptable 

values for this field are 1, 2, or 3. 

• The serial number field is unique positive integer used to identify the certificate 

by the certificate authority. This field should handle values up to 20 octets in 

length. 

• The signature field contains the algorithm identifier that is used to sign the 

certificate. 

• The issuer field contains the identity of the certificate authority who issued and 

signed the certificate. This field contains a distinguished name (DN) as defined by 

the X.501 name type. 

• The validity field describes the time range that the certificate authority has 

deemed the certificate valid. This field contains both the beginning date and 

ending date of the validity period encoded as either the UTCTime or 

GeneralizedTime standard. A certificate with no ending time will show the 

GeneralizedTime value of 99991231235959Z. For this field, values will use 

Greenwich Mean Time. 

• The subject field contains the identity of the entity the certificate is issued to. This 

field contains a distinguished name (DN) as defined by the X.501 name type. 

• The subject public key info field contains the public key along with the algorithm 

that is used. 

• The unique identifier field or fields contain additional information to identify the 

certificate if subject or issuer names are reused. This is an optional field and will 

only appear if the certificate is version 2 or 3. 
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• The extensions field contains a sequence of one or more certificate extensions. 

This is an optional field and will only appear if the certificate is version 3. 

X.509 certificate extensions. 

Certificate extensions can be used to attach additional optional information to the 

certificate. While there are defined standard certificate extensions, custom extensions can be 

created and used as well. Entities that do not recognize an extension can either ignore it if the 

extension is not marked critical or reject the certificate if the unrecognized extension is 

marked critical (Cooper et al., 2008). 

All extensions are described as an ASN.1 sequence with three components: extnID, 

critical, and extnValue. The extnID field is the identifier for the specific extension and is of 

the object identifier type. The critical field shows whether or not the extension is critical and 

defaults to false. The extnValue field is an octet string data type that contains the data or value 

that the extension itself carries. (Cooper et al., 2008) 

Subject key identifier. 

The subject key identifier extension contains a unique value to identify certificates that 

have a specific public key. The X.509 specification recommends key identifiers be created 

one of two ways: by computing a 160-bit SHA-1 hash of the subjectPublicKey or combining 

the value 0100 with the least significant 60 bits of the aforementioned SHA-1 hash. Using 

another means of generating a unique identifier is also standards-conforming.  

This extension begins with the ID of the subject key identifier extension, which is 

2.5.29.14. Encoded with DER, this value is represented as the following three bytes: 55 1d 

0e. What follows is an encapsulated octet string which contains the subject key identifier 
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itself. Encoded with DER, this field is first noted by the byte 04 to signify an octet string, 

followed by the length of the octet string field (Cooper et al., 2008).  

The length of this field could be a feature used to help identify tampering or otherwise 

anomalous content. In Reaves’ (2018) X.509 covert channel proof-of-concept code, arbitrary 

data was placed in this field with a maximum length of 10000 bytes. The user could, however, 

modify the code to only encode a certain number of bytes in each payload.  

At the time of this writing, Censys, a website that utilizes internet scanning data to 

map the internet, had cataloged over 1.2 billion X.509 certificates with this field (Durumeric 

et al., 2015). Of those certificates, nearly 99.98% of them had a subject key identifier field 

with a length of 20 bytes. Only approximately 266,000 of those certificates, or approximately 

two hundredths of one percent, exhibited subject key identifier field lengths other than 20 

bytes. While it can be easy to bypass, this metric is one that could be used in an intrusion 

detection system to detect anomalous usage of the subject key identifier field of an X.509 

certificate. 

Authority key identifier. 

The authority key identifier extension contains a unique value to identify the specific 

public key corresponding to the specific private key used to sign the certificate. This may be 

necessary if a certificate authority has more than one signing key. The X.509 specification 

recommends key identifiers be created one of two ways: by computing a SHA-1 hash of the 

subjectPublicKey or combining the value 0100 with the least significant 60 bits of the 

aforementioned SHA-1 hash. Other means of generating a unique identifier is also standards-

conforming.  
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The extension begins with the ID of the authority key identifier extension, which is 

2.5.29.39. Encoded with DER, this value is represented as the following three bytes: 55 1d 

23. What follows is a sequence which contains the keyIdentifier octet string (Cooper et al., 

2008). 

At the time of this writing, Censys had cataloged over 1.2 billion X.509 certificates 

with the authority key identifier extension (Durumeric et al., 2015). Of those certificates, over 

99.99% of the authority key identifier fields exhibited a length of 20 bytes. Only 

approximately 106,000 of those certificates exhibited authority key identifier field lengths 

other than 20 bytes.  

Subject alternative name. 

The subject alternative name extension is used to identify additional identities that are 

bound to the certificate. The identities listed in the subject alternative name are present as 

identities in addition to the subject field of the certificate. This field can contain identities of a 

wide variety to include a DNS name, an IP address, an email address, or a uniform resource 

identifier, among others (Cooper et al., 2008). 

The extension begins with the ID of the subject alternative name extension, which is 

2.5.29.17. Encoded with DER, this value is represented as the following three bytes: 55 1d 

11. What follows is one or more sequences which contain the specific alternative name 

identifiers (Cooper et al., 2008). 

Key usage. 

The key usage extension is used to identify the purpose of the key in the certificate. 

This can be used to restrict how the certificate’s key is used (Cooper et al., 2008). Further, 



32 

according to Cooper et al., There are 9 bits that can be set for various options in the key usage 

extension. This is represented as a single byte in the certificate. 

• Bit 0 is the digital signature bit. It is set when the subject public key is to be 

used to verify digital signatures with the exceptions of signatures on 

certificates and certificate revocation lists. 

• Bit 1 is the non-repudiation bit. It is set when the subject public key is to be 

used to verify digital signatures with the same exceptions as the digital 

signature bit. This bit is set when the subject public key is used to provide 

non-repudiation. 

• Bit 2 is the key encipherment bit. It is set when the subject public key is to be 

used for enciphering private keys. 

• Bit 3 is the data encipherment bit. It is set when the subject public key is to be 

used for enciphering user data directly without the use of an additional 

symmetric cipher. 

• Bit 4 is the key agreement bit. It is set when the subject public key is used for 

key agreement, often when Diffie-Hellman is used to manage keys. 

• Bit 5 is the key certificate sign bit. It is set when the subject public key is used 

for the verification of signatures on a certificate. 

• Bit 6 is the certificate revocation list signing bit. It is set when the subject 

public key is used to verify signatures on certificate revocation lists. 

• Bit 7 is the encipher only bit. This bit should only be set when the key 

agreement bit is set. When both bits are set, the subject public key can only be 

used for enciphering data during a key agreement. 
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• Bit 8 is the decipher only bit. Similar to bit 7, this bit should only be set when 

the key agreement bit is set. When both bits are set, the subject public key can 

only be used for deciphering data during a key agreement. 

The extension begins with the ID of the key usage extension, which is 2.5.29.15. 

Encoded with DER, this value is represented as the following three bytes: 55 1d 0f. What 

follows is a single byte representing the configured usage options (Cooper et al., 2008). 

Extended key usage. 

The extended key usage extension defines how the public key is to be used. This field 

is in addition to the basic key usage field described above. This extension is typically only 

used in end entity certificates. There are six unique identifiers that may appear in this 

extension as a usage purpose (Cooper et al., 2008). These purposes are detailed in the list 

below of identifier number followed by the purpose. 

• ID 1: Server Authentication 

• ID 2: Client Authentication 

• ID 3: Code Signing 

• ID 4: Email Protection 

• ID 8: Time stamping 

• ID 9: OSCP response signing 

The extension begins with the ID of the extended key usage extension, which is 

2.5.29.37. Encoded with DER, this value is represented as the following three bytes: 55 1d 

25. What follows is a sequence which contains the key purpose ID (Cooper et al., 2008). 

CRL distribution points. 
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The CRL distribution points extension defines how certificate revocation list 

information can be acquired. The extension begins with the ID of the CRL distribution points 

extension, which is 2.5.29.31. Encoded with DER, this value is represented as the following 

three bytes: 55 1d 1f. What follows is a sequence which contains a DistributionPoint 

object. This object contains three optional fields: distributionPoint, reasons, and cRLIssuer 

(Cooper et al., 2008). 

Basic constraints. 

The basic constraints extension defines whether the subject is a certificate authority as 

well as the maximum number of certificates in a valid path. This allows users to determine if 

the public key in the certificate can be used to verify signatures. The extension begins with the 

ID of the basic constraints extension, which is 2.5.29.19. Encoded with DER, this value is 

represented as the following three bytes: 55 1d 13. What follows is a  sequence that 

contains a boolean value to indicate whether the key can be used for certificate verification 

and optionally an integer defining the path length constraint (Cooper et al., 2008). 

There are many more common standard extensions defined in RFC 5280 that could be 

inspected and verified as conforming as a part of an intrusion detection system. The difficulty, 

however, is in the fact that custom extensions can be created and used legitimately.  

X.509 Certificate Authority Trust Issues 

One major function of X.509 certificates is to validate the identity of an entity, 

commonly another server (Uahhabi & Bakkali, 2017). Because of this, users must place their 

trust in the Certificate Authority who created and signed the certificate issued to that entity 

(Walsh, 2017). Certificate authorities represent a trusted third party who verifies the identity 
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of an entity on the user’s behalf. Certificate authorities not only manage their own certificates 

but often build internal relationships and recommend trusting other certificate authorities on a 

user’s behalf (Wazan et al., 2016).  

Certificates bind a public signing key to an entity, a binding that is verified by the 

certificate authority. Often these certificates and their associated keys are used by web servers 

to encrypt web communications. In this case, a certificate authority often verifies the entity by 

verifying control over the domain, creating a domain validated (DV) certificate (Clark & Van 

Oorschot, 2013). 

If a certificate authority does not accurately validate the identity of an entity before 

issuing a certificate, that certificate may be issued to an entity with a false identity (Wazan et 

al., 2016). This could lead to issues with users trusting the certificate authority. A system 

compromise or security breach is another event that could lead to trust issues with a certificate 

authority. In an example of a compromise, certificates could be issued by compromised 

certificate authorities to malicious domains (Chen et al., 2018a).  

One of the more high-profile compromises of a certificate authority occurred in 2011 

when the Comodo certificate authority shared that one of their registration authorities had 

been hacked. In the breach, attackers obtained certificates from a number of domains, some of 

them high-profile domains like google.com (Roosa & Schultze, 2013). Later in 2011, the 

DigiNotar certificate authority discovered a similar breach.  

Another trust issue arises when a certificate authority issues a SubCA certificate to an 

organization. With a SubCA certificate, that organization can perform a man-in-the-middle 

attack on HTTPS browser traffic within their organization. In 2012, the Trustwave certificate 
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authority issued one such certificate. In 2013, the Turktrust certificate authority issued a 

SubCA certificate in error to the Turkish government (Roosa & Schultze, 2013). 

These and other certificate authority trust issues have led to several researchers 

studying various methods for validating that trust, sometimes using a decentralized model. 

Uahhabi and Bakkali (2016) described an approach to assist the users of certificate authorities 

in making trust decisions. The research provides a means to determine the certificate trust 

level (TLoCERT) while also automating trust decisions. Factors used to determine the 

certificate trust level include the correctness of a certificate’s content, procedures described in 

the certificate authority’s certificate policy and certification practice statements, and the 

reputation of the security of a certificate authority. 

Removing the need to explicitly trust one entity, that is a certificate authority, is a 

common theme among researchers. In one possible solution, multiple certificate authorities 

would be required to authorize the signing of a certificate preventing any single certificate 

authority from generating an unauthorized certificate (Chen et al., 2018b).  Another study 

suggests implementing a witness cosigning model that requires a large decentralized group of 

witnesses to verify certificates signed by a certificate authority (Syta et al., 2016). Again, 

requiring many entities to verify a certificate reduces the possibility of an unauthorized 

certificate being created and signed. 

Pinning describes a process where the client can pin a known key to a certificate on 

the first visit to a site. When the user visits the site again and is presented with the certificate, 

the pinned key should exist. If the pinned key does not exist, it is possible a man-in-the-

middle attack is taking place. This method works similar to how OpenSSH servers and clients 

operate (Vikan, 2015). 
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While the trust issues with the model have been widely publicized and solutions 

researched, no real changes to the widely-used model have been made. Introducing a change 

to such a widely-used system can be difficult and costly. 

X.509 Covert Channels 

The X.509 standard defines the format of public key certificates, commonly used in 

TLS/SSL for securing web traffic across the internet. Each time a client web browser visits a 

website secured with TLS/SSL, a handshake will occur, and the certificate details will be 

exchanged using the X.509 standard. A vast majority of networks will leave port 443 and 

HTTPS open to the internet to allow normal web browsing. This wide availability of the 

protocol and usage of X.509 certificates make it a great choice for a covert channel on almost 

any network.  

The second feature a protocol should possess to be used as a covert channel is to have 

space or fields to store, transmit, and receive arbitrary attacker-controlled data. While there 

are plenty of fields and extensions in the typical X.509 certificate, one of the X.509 standard’s 

security features could largely prevent the tampering of any data. A digital signature can be 

computed based on the contents of the certificate, and compared to the signature encrypted 

with the certificate authority’s public key (Scott, 2008). If the computed digital signature does 

not match the signature that was encrypted with the certificate authority’s public key, one 

would know the contents of the certificate had been tampered with. If one was attempting to 

communicate through an existing legitimate program like a web browser, this would be an 

effective defense. However, in the case the attacker has control of the affected system with a 

custom application, like malware, the attacker will not worry about verifying the contents of 
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the certificate. The attacker would only be concerned with evading common network 

perimeter defenses such as intrusion detection systems. 

We can assume if the attacker is attempting to create a covert channel to either 

exfiltrate information or setup command and control communications, they would already 

have control of the system. Placing a custom software application on the system to interact via 

abused X.509 channels would be trivial. Additionally, using self-signed certificates, an 

attacker could generate a certificate with secret data. Carlos Scott (2008) reminds us the intent 

of using covert channels is “not to hide the data being exfiltrated, but to hide the fact that the 

transmission is taking place, making it appear as regular traffic” (p. 32). 

As an attacker is embedding arbitrary data into the X.509 certificate for transfer, the 

attacker must pay attention to all of the fields in the certificate. Simple network traffic 

analysis has the ability to detect suspicious values in the certificate like invalid or otherwise 

odd validity dates on the certificate. To evade certain defensive mechanisms, the data placed 

in the fake certificate must look as though it is valid or otherwise normal data for the 

certificate (Scott, 2008). 

Carlos Scott (2008) identified three fields in the X.509 specification that have the 

potential to be used to transfer arbitrary data covertly.  

• The serialNumber field in a certificate is used to uniquely identify a 

certificate. A unique positive integer generated by the issuing certificate 

authority, the field’s potential wide range of legitimate values could be used as 

a covert channel. An attacker would need to encode the hidden data to fit the 

positive integer requirement.  
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• The validity field contains two dates to document when the validity period for 

the certificate begins, and when the period expires. Scott (2008) suggests 

encoding data as the difference of the two dates. Valid dates are presented as 

either UTCTime or GeneralizedTime and can be between the year 1900 and 

the year 9999. There are 10,642,086,000 seconds within that timeframe, each 

of which could be used to encode a unique value. 

• The unique identifiers fields contain a bit string of arbitrary length. Because 

of this openness of the specification, it is easier to place arbitrary data in these 

fields and still follow the X.509 standard. The limitation of these fields, 

though, is they are deprecated. 

Another location an attacker may be able to embed arbitrary data in the X.509 

certificate format is through the use of the certificate extensions. These extensions allow for 

the association of additional data to the certificate. There are fifteen standard extensions 

defined in RFC 5280. The specification also allows for the creation of additional custom 

extensions if defined by both parties of the communication, though recommends against it for 

compatibility reasons (Cooper et al., 2008). 

One of the defined standard X.509 extensions is the SubjectKeyIdentifier. This field is 

intended to identify certificates that contain a specific public key. The RFC states, 

“Applications are not required to verify that key identifiers match when performing 

certification path validation” (Cooper et al., 2008). The field should normally contain a hex 

string. Reaves made use of this field to send data from an attacker-controlled server to a client 

by encrypting arbitrary data and converting it to a hex string before placing it in this field 



40 

(Reaves, 2018). To an IDS, this field that should be a hex string, is still a hex string – 

potentially bypassing some detection methods. 

Transport Layer Security 

Transport Layer Security (TLS) is a protocol that is widely used to implement data 

integrity, authentication, and confidentiality across the internet (Rescorla, 2018). TLS was 

preceded by the Secure Sockets Layer (SSL) protocol which was originally created over 20 

years ago (Albashear, Ali, & Ali, 2018). TLS was originally detailed in 1999 as RFC 2246 to 

succeed SSL (Dierks & Allen, 1999). The most recent revision of the TLS protocol, version 

1.3, was outlined in RFC 8446 (Rescorla, 2018). 

In a TLS channel, the server side of the communication will always be authenticated 

while the client can be authenticated as an option. TLS provides confidentiality, that is the 

data communications over the secure channel can only be visible to the intended parties of the 

communication. Finally, TLS provides for the detection of the tampering of data sent over the 

channel, therefore providing data integrity (Rescorla, 2018).  

The two major components of TLS are the handshake protocol and the record 

protocol. The handshake protocol takes care of the authentication and negotiation of 

cryptographic methods and keys to be used during the secure communication. The record 

protocol leverages the agreed upon cryptographic methods and keys to protect data as it 

passes through the secure channel (Rescorla, 2018). 

In the first part of the handshake protocol the client initiates the connection with a 

client_hello message. The server then responds back to the client with a server_hello message. 

During this first phase as a part of the hello messages, the client and server determine the 

security and encryption capabilities of each endpoint (Scott, 2008).  
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In the second part of the handshake protocol the server sends a certificate message to 

the client TLS utilizes X.509 certificates for authentication of the server, specifically the 

X.509v3 specification outlined in RFC 5280 (Rescorla, 2018).  X.509 certificates are the most 

widely utilized method by websites to authenticate themselves to establish trust with users 

(Fu, Li, Xiong, Cao, & Kang, 2018).  

In the third phase of the handshake protocol the client verifies the validity of the 

X.509 certificate the server provided during the second phase. After verification, a 

client_key_exchange message is sent to the server which is then verified by the server in the 

fourth and final phase of the handshake protocol (Scott, 2008). The record protocol will then 

begin with the encryption and transfer of records, or data. 

X.509 Man-in-the-Middle Attacks 

Man-in-the-middle (MITM) attacks are one of the more well-known attacks of major 

concern to computer security professionals (Conti et al., 2016). This technique occurs when 

the attacker is positioned between the user and the server and can intercept communications. 

When the attacker sees the initial communication from the client to the server, the Client 

Hello, the attacker replies with an illegitimate, forged certificate to the client, establishing 

communication with the victim client (Conti et al., 2016). The client may believe they are 

communicating with the intended server but in reality, are communicating directly with the 

attacker. 

By stealthily taking control of the communications between a client and server, the 

man in the middle can view or change the traffic passing between the client and server 

(Pingle, Mairaj, & Javaid, 2018). Inserting oneself into a communication stream, the 
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attacker’s view of the traffic is exactly as it passes through the network. This traffic may be in 

plain text, but transport layer security using X.509 certificates is often used to provide 

encryption to this communication.  

To view the traffic passed during an encrypted session, the MITM attacker will have 

to remove the encryption. One method supported by the open source tool Ettercap is to hijack 

the SSL/TLS session itself. In this attack, the user is interacting with the attacker, and the 

attacker is interacting with the website. Instead of presenting the user with the legitimate 

website’s certificate to setup encrypted communication, the attacker presents the user’s web 

browser with a certificate the attacker owns to setup encryption between the user and attacker, 

often a self-signed certificate. In this case, the traffic is encrypted while in transit, but the 

attacker is able to decrypt the traffic before sending it along to the legitimate web server 

(Pingle et al., 2018). Another similar attack uses a tool called SSL-strip to remove the X.509 

certificate and never setup an SSL/TLS session between the user and web server, but only 

between the attacker and web server. 

MITM attacks using X.509 certificates do not exist only using self-signed, attacker-

generated certificates. One such counterexample is a compelled certificate creation attack. In 

this attack, government agencies may obtain a trusted certificate from a legitimate certificate 

authority by compelling that certificate authority to create one (Soghoian & Stamm, 2012). 

This false certificate could be used to covertly intercept traffic that is otherwise thought to be 

secure using X.509 certificates. 

Another MITM attack scenario puts the certificate authority directly in the spotlight. A 

browser will determine a presented certificate is valid if it can trace back it’s signing to a 

certificate authority that the browser trusts (Walsh, 2017). It is possible, however, that a 
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trusted certificate authority either be coerced or become compromised and generate a forged 

certificate (Dacosta, Ahamad, & Traynor, 2012). This example of a MITM attack is also 

stealthy, as the user and browser may not know the otherwise trusted certificate was forged by 

a trusted authority. As an example, a forged certificate was used to intercept nearly 300,000 

Gmail sessions in Iran (Leyden, 2011). Additionally, the certificate authority Trustwave 

admitted to supplying technology to a third party, allowing them to issue SSL certificates 

(Leyden, 2012). These and other incidents degrade the implicit trust that users and browsers 

place in certificate authorities. 

Intrusion Detection and Prevention Systems 

Two tools that can be used to aid in the detection and prevention of breaches are 

intrusion detection systems (IDS) and intrusion prevention systems (IPS). An IDS is focused 

solely on detecting attacks or unauthorized access to the computer or network, while an IPS 

takes a similar detection approach, with added capabilities to block malicious traffic. To 

detect malicious traffic, these systems use knowledge from prior attacks and intrusions, much 

like antivirus signatures (Titorenko & Frolov, 2018). 

These systems can be broken down further into two additional categories: host-based 

and network-based. The network-based systems place their focus on monitoring traffic as it 

flows across a network, inspecting the contents of the network packet itself along with the 

header information, like the source and destination of the traffic. Host-based systems focus on 

monitoring a specific computer, inspecting log files, file system integrity, and other malicious 

activity on the kernel of the computer and the computer as a whole (Bhuyan et al., 2014; 

Warzynski & Kolaczek, 2018). 
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Each of these types of systems use one or both of two typical detection strategies: 

signature-based and anomaly-based. Signature-based systems detect threats through the use of 

present knowledge of existing threats and attacks. Signature-based systems utilize 

preconfigured rules to look for known indicators of compromise. This method is extremely 

effective at detecting known attacks, but cannot detect new attacks (Warzynski & Kolaczek, 

2018). The searching for known patterns in traffic has also been referred to as misuse-based 

intrusion detection (Bhuyan et al., 2014). 

Anomaly-based systems look for a deviation from normalcy. For anomaly-based 

methods to be successful, it must first be possible to understand what normal actually looks 

like. Researchers have applied both statistical methods to determining if an event’s occurrence 

is an anomaly as well as machine learning algorithms (Warzynski & Kolaczek, 2018). 

Anomaly-based detection methods have the ability to detect new or previously unknown 

attacks, but they may also exhibit a higher false-positive rate than signature-based detection 

mechanisms. 

When discussing the accuracy of a system’s detection methods, four different 

detection accuracy rates are studied (Bhuyan et al., 2014). 

• The true positive rate refers to the number of malicious events that are 

correctly classified as malicious divided by the total number of actual 

malicious events. This is also referred to as the hit rate. 

• The false positive rate refers to the number of events that are incorrectly 

classified as malicious divided by the total number of non-malicious events.  
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• The true negative rate refers to the number of events that are correctly 

classified as normal or non-malicious divided by the total number of non-

malicious events. 

• The false negative rate refers to the number of events that are incorrectly 

classified as negative divided by the total number of actual malicious events. 

When comparing the performance of signature-based and anomaly-based detection 

mechanisms, signature-based detection mechanisms have a very high true positive rate and 

very low false positive rate. To the contrary, anomaly-based detection mechanisms often can 

have a high false positive rate. Generating many false alarms requires additional human 

intervention and manual analysis to determine if an alarm is actually a true positive or false 

positive (Warzynski & Kolaczek, 2018). 

In a typical setting for a network-based intrusion detection or prevention system, the 

system is placed on a network’s connection to the internet. In this configuration, the system is 

able to monitor all traffic passing between the specific network being monitored and the entire 

internet (Bhuyan et al., 2014). Host-based intrusion detection systems are placed on the hosts 

themselves, providing a more complete view of the activities occurring on a network. 

Networks are different, however, and exact placement of the system on a network depends on 

elements like the budget and the environment (Bashir & Chachoo, 2014).  

Many different network-based intrusion detection systems are deployed on networks 

today including commercial and open-source solutions. Three popular open-source solutions 

are Snort, Bro, and Suricata. All three of these tools monitor network traffic and decodes it to 

match against pre-defined rules, but they are each implemented a bit differently. Snort uses a 

single thread to perform signature detection in an effort to minimize hardware requirements. 
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Suricata is quite similar to Snort, though it utilizes multi-threading to perform signature 

detection in a more performant way. Unlike the two previously mentioned tools, Bro’s 

features are geared more towards classifying network traffic. Bro’s classified network traffic 

is commonly used for anomaly detection and behavior analysis (Hu et al., 2017). Both Snort 

and Suricata can be used in either intrusion detection system or intrusion prevention system 

mode. 

Intrusion Detection and Prevention System Rules 

While intrusion detection systems (IDS) and intrusion prevention systems (IPS) may 

vary slightly, the basic structure of their signature-matching rules will be quite similar. This 

section will explore the different components that make up an IDS rule, as well as different 

rule-based intrusion detection methods. 

Intrusion detection systems use rules to define tests that are carried out on each packet 

of network traffic that it inspects to perform signature matching. If any of the rules configured 

in the IDS contain a match to the packet in question, an alert is raised to indicate the match 

and therefore the possibility of an attack. As the industry learns of more and more attacks and 

vulnerabilities, the number of rules that are created to detect these also increases at the same 

rate (Afzal & Lindskog, 2015). 

All IDS/IPS rules will have a few things in common: the action of the rule, protocol, 

source and destination addresses, source and destination ports, and additional rule options or 

keywords. The specific options or keywords tend to vary a bit more between intrusion 

detection systems. 
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IPS rules can be quite broad, possibly only looking for traffic sent from a specific IP 

address, or to a specific port. Rules can also get more complex, as they may add any number 

of features that detect specific keywords deep within a packet’s payload.  

Intrusion detection signatures or rules typically will analyze many components of an 

IP packet. Shaelicke, et al. explain the two categories of rules in a typical IPS, based on what 

sections of the packet they analyze: 

“Header rules inspect the packet header in an attempt to detect specific combinations 

of features, such as the source and destination address, port numbers, checksums or 

sequence numbers. Payload rules attempt to match a specific byte sequence in a 

packet’s payload.” (Schaelicke et al., 2003, p. 3)  

Most IDS and IPSs utilize a flexible language to define rules that detect certain 

activity and carry out a corresponding action. The rule language used by Snort and Suricata 

places each rule on its own row with two logical segments: the rule header and the rule body 

(Kuang, Mei, & Bian, 2012). The rule header constitutes of the following five key 

components:  

• The action refers to what the system will do if a match is found, such as 

generating an alert or to drop the matched packets. 

• The protocol field defines the network protocol used that must be present for a 

match, such as tcp, udp, icmp, or ip. The ip protocol is used for any protocol. 

In Suricata, there are also a number of application layer protocols available, 

such as http, tls, and dns among others. 
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• The source field is a combination of the IP address and port that must be the 

source of the packet for a match. This field may also contain the any value 

which will match all source address and ports. 

• The destination field is a combination of the IP address and port that must be 

the destination of the packet for a match. This field may also contain the any 

value which will match all destination address and ports. 

• The direction field defines the direction of the packet between the source and 

destination fields. This field is typically filled with -> which matches the 

traffic from the source to the destination. The other option for this field is <> 

which would match the rule in both directions between the source and 

destination. 

The rule body portion of the Snort and Suricata rules contains any of a number of 

options to define the contents of a packet. Basic firewalls can prevent traffic from flowing 

between specific IP addresses over specific ports, but it is the additional content and detection 

mechanisms that make an IDS or IPS more extensible than a traditional firewall. Suricata 

refers to the rule body portion as the rule options. The most common keyword in the rule 

options is the content keyword which allows the rule author to define specific characters or 

bytes that must be present in the packet for a match. There are a number of modifiers that can 

define where in the packet that specific content should be checked for. As an example, a rule 

author can look for the content “index.php” specifically in the http_uri portion of the HTTP 

packet (OSIF, 2016). 
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Figure 1 Suricata Rule Structure 

Figure 1 shows the typical structure of a Suricata rule starting with the rule header 

followed by the rule options. The header of this rule begins with the action, in this case alert. 

Following the action is the protocol field. This rule will match only packets using the UDP 

protocol. Next is the IP address and port source and destination fields. This rule will match 

packets with a destination port of 53, no matter the source port or IP addresses. The next 

section of this rule contains two rule options. The first is a message keyword which specifies a 

message that will accompany the alert that this rule generates in the Suricata log files. Finally, 

the last rule option is a content keyword. This rule will only match packets that have the byte 

03 followed by the text abc, followed by the byte 03, followed by the byte xyz. If all of the 

content information is found in the packet and the packet matches the options specified in the 

rule header, an alert will be generated. 

Measuring Intrusion Detection and Prevention System Performance 

Typically, the effectiveness of an intrusion detection system and its signatures is 

measured by comparing the true-positive and false-positive rate the signature produces. 

Another metric that is less often measured is the impact on the throughput of an IDS that a 

signature has. With the prevalence of high-bandwidth environments ever increasing, any new 

detection mechanisms or rules in an IPS must have as minimal of an impact to the bandwidth 

processing capabilities of the system.  
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 The performance of an IDS is affected by many different potential factors: hardware 

resource availability, IDS rule design, and the type and bandwidth of network traffic. Network 

traffic with a large number of small packets will have a significant impact on header based 

rules, whereas smaller number of large packets will have a similar impact on payload based 

rules (Schaelicke et al., 2003). Real network traffic, of course, is comprised of various 

different packets and packet sizes, so an IDS needs to handle all kinds of potential network 

traffic. As such, this research suggests measuring the performance of an IDS through using 

different packet payload sizes, ranging from the tens of bytes to thousands of bytes, to test the 

range of all possible packet sizes. 

Some studies have pitted different intrusion detection systems against each other, 

comparing their performance and resource usage. In one such study, performance 

measurements of Snort and Suricata were compared. Researchers measured the CPU and 

memory load on the server after one minute of processing network traffic, as well as the 

number of dropped packets (Brumen & Legvart, 2016). 

Another study used constant bandwidth and a varying number of IPS rules to measure 

the performance. Once packet loss is observed, the IPS is considered to be overwhelmed and 

unable to process additional rules or any additional bandwidth. Schaelicke et al. (2003) 

suggest “the total number of rules that a platform is able to support is a measure if the 

platform’s NIDS capabilities” (p. 4). 

It has been proven that a larger quantity of packets in a constant time, and a constant 

number of packets in a shorter time, thus higher bandwidth in both cases, can lead to dropped 

packets by an IPS. Researchers have also found that, all other factors equal, larger packet 

sizes can lead to an increase in dropped packets in an IPS (Bulajoul et al., 2013). 
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Another study has shown a relationship between the number of rules configured in the 

IDS and the time it takes for the IDS to inspect a single packet. As the number of rules 

increase, so does the amount of processing time. In the study, the time to process a packet 

against 10 rules was 4.2 milliseconds, while the time to process the same packet against 1000 

rules was 15.4 seconds. On the high end, 1.5 million rules took 563.8 milliseconds (Kuang et 

al., 2012). 

The Snort and Suricata intrusion detection systems include a rule profiling feature that 

can be useful in analyzing a specific rule’s performance. This is typically used to find 

inefficient rules that may plague the throughput performance of the IDS. The IDS’s keep track 

of the number of clock cycles, or ticks, a specific rule consumes. Statistics reported include 

the total number of ticks consumed, maximum for one check, and average per check, among 

others. This feature will aid in the performance analysis of different signature detection 

methods. 

It seems most existing research in the area of intrusion detection system performance 

analysis, outside of accuracy, has centered around discovering and measuring factors that 

have the greatest impacts on IPS throughput, mainly network traffic characteristics and 

underlying resource availability. Not much academic research has focused on looking at the 

performance of the IDS rule designs themselves and the impact they may have on the 

throughput of the system. This dissertation proposes to perform that study – specifically with 

X.509 covert channel detection rules. 
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Chapter 3: Research Methodology 

The purpose of this study is to examine the performance impacts of various rules and 

methods of detecting X.509 covert channels on an intrusion detection system. This chapter 

presents the research methodology used to accomplish the purpose of this study. Details on 

the research method and design used will be presented, followed by the procedures and 

instrumentation used for data collection, processing, and analysis. 

Research Method and Design Appropriateness 

This study used a quantitative, quasi-experimental before-and-after study design. The 

goal of this study was to measure and compare the performance impacts of various rules and 

methods of detecting X.509 covert channels on an intrusion detection system. Measuring the 

performance change of the intrusion detection system after introducing new rules being the 

key goal, the quasi-experimental before-and-after study is the most appropriate choice. The 

quasi-experimental before-and-after research design aims to discover the association of an 

intervention and an outcome (Harris et al., 2006).  

The two primary research designs are qualitative and quantitative research. Qualitative 

research is typically used to explore social and human events and in order to understand 

subjective experiences. Qualitative studies are also categorized as those with open-ended 

questions rather than close-ended questions, or studies that often use words as a key data point 

rather than numbers. Additionally, qualitative studies feature researchers observing a setting, 

rather than collecting data from instrumentation (Creswell & Creswell, 2018). 

Quantitative research is typically used to measure and test relationships between 

variables to explain or evaluate interactions between the variables (Leavy, 2017). Quantitative 
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research is often characterized by numbers and figures collected from instrumentation, unlike 

qualitative studies. Additionally, quantitative research is used to test theories by examining 

relationships among variables (Creswell & Creswell, 2018). 

If the focus of a study is to gather information on beliefs, understandings, and similar 

data points, a qualitative study design would be appropriate. However, studies that aim to 

obtain specific measurements of variations, a quantitative study design is more appropriate 

(Kumar, 2014). As the aim of this research was to study the relationship between two 

variables, a quantitative research design was most appropriate to specifically measure and 

evaluate the relationship between an intrusion detection system rule and the performance of 

the system.  

Two forms of quantitative research design are survey design and experimental design 

(Creswell & Creswell, 2018). Survey design research provides descriptions of trends or tests 

the association between variables within a population. Unlike experimental research, the 

researcher does not manipulate variables during the research, and rather only observes and 

documents phenomena. In experimental design, the researcher manipulates a variable and 

observes the impact that manipulation has on the outcome of other variables (Creswell & 

Creswell, 2018). In experimental research, an action is performed before observing the impact 

of that action (Leavy, 2017). The effects of that action are isolated to be the result only of that 

action by holding other variables constant (Creswell & Creswell, 2018).  

Similar to experimental design is a casual-comparative design. In casual-comparative, 

the researcher attempts to find relationships between the independent and dependent 

variables, searching for which variable had the affect being studied (Salkind, 2010). Casual-

comparative research is also known as ex post facto research. Similar to finding relationships, 



54 

correlational research design measures two variables to determine how they are related or to 

find patterns between the two variables (Privitera, 2013). Correlational research aims to 

determine to what extent two variables are related, not to determine the extent of an effect one 

variable has on another. 

In true experimental design, the subjects of the research are randomly placed into 

groups, like the control group and the experimental group. The control group does not 

experience the action or intervention during the study but rather serves as a reference point 

when comparing the experimental group. If the researcher were to not use a control group, 

they would not be able to determine the significance of an effect on the population, since no 

group remains constant and unaffected throughout the research. The experimental group does 

receive the action or intervention during the study and can be compared to the control group 

in the study. 

Unlike a true experimental design, quasi-experimental designs do not use 

randomization when assigning test subjects to groups. One common type of quasi-experiment 

is the time-series experiment. In this experiment, measurements are taken from a single group 

for a period of time without intervention. Then, the group is given the experimental 

intervention and measured again for the same period of time (Leavy, 2017). In this study, the 

variables in the control and experimental group are exactly the same, being the network traffic 

and intrusion detection system. This was ensured to be true by utilizing the exact same 

network traffic and test system as a part of a tightly-controlled virtual environment to provide 

consistency in variables between tests. Virtualization allows the same computer system to be 

copied and reused between multiple control and treatment tests, and the study therefore lacks 

randomization. This is why a quasi-experimental research design is best for this study. 
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This study used a quantitative, quasi-experimental before-and-after design. This 

design aims to discover the association of an intervention and an outcome (Harris et al., 

2006). During this study, the researcher made an intervention through modifying the rules 

configured in the IDS and observed any performance change in the system as a result. A 

before-and-after study design is the most appropriate for measuring a change or impact a 

variable has on an environment (Kumar, 2014). These studies compare measurements taken 

of a system before an intervention with measurements of that same system after an 

intervention (Kumar, 2014). This study looks specifically at the impact that specific rule 

designs have on the performance of an intrusion detection system when detecting X.509 

covert channels. 

In reviewing the limitations of this study design and their applicability to this research 

problem, it is important to note that this design can only measure the total change from the 

first measurement to the last. Because of this, the researcher must be aware that observed 

changes cannot be related to specific independent variables (Kumar, 2014). As such, the 

research will be conducted in a way that minimizes extraneous variables that may affect the 

measurement and outcome as much as possible. 

Research Question, Hypothesis, and Variables 

The research question that guided this study was: How will validating X.509 certificate 

trust and detecting X.509 certificate extension misuse using an intrusion detection system 

affect the CPU and RAM performance of the system? To answer that question, the research 

measured the performance of the system with no detection mechanism present, as well as the 

performance of the system with the new mechanisms present. Each detection mechanism was 

measured separate from the others and compared after the data had been collected.  
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The hypothesis for this study was: Validating X.509 certificate trust and detecting 

X.509 certificate extension misuse using an inline intrusion detection system does affect the 

performance and throughput of the system. This question and hypothesis guided this study’s 

data collection and analysis methods, along with the specific variables that were observed. 

The specific variables measured were the CPU and RAM utilization of the system along with 

the number of CPU cycles the processing of each rule consumed.  

Population 

This study’s population was comprised of an exclusively virtual machine environment. 

Virtual machines allow users to set up one or more operating systems on one physical 

computer (Ansari, Hans, & Khatri, 2017a). In enterprise-scale environments, virtual machines 

allow for the maximum possible utilization of physical resources by placing more than one 

virtual machine and workload on the hardware. Virtual machines were used for this study due 

to their ability to be easily replicated for subsequent tests, and ability to be operated in a 

completely controlled separate environment. 

Virtual machines operate on a software layer called a hypervisor. The hypervisor takes 

care of the allocation of computing resources to the virtual machine or virtual machines 

running on the hypervisor. Hypervisors are typically classified in two different ways: type I 

and type II. Type I hypervisors are software that operates directly on the physical hardware, 

where a type II hypervisor software runs on top of another host operating system (Ansari, 

Hans, & Khatri, 2017b). This study used a Type I hypervisor, specifically VMware ESXi, to 

minimize any additional processing overhead that would be caused by the underlying host 

operating system in an environment with a type II hypervisor. The virtual machines operating 
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on the type I hypervisor were limited to only the machines necessary for this study to better 

control and limit any influences or performance impacts from outside systems. 

At the core of the test environment is the intrusion detection and prevention system. 

Today, there are two major players in the open source intrusion detection system market. 

Prior to the introduction of Suricata in 2009 by the Open Information Security Foundation,  

the open source Snort intrusion detection system was the industry standard signature-based 

intrusion detection system (Albin & Rowe, 2012). Suricata is very similar to Snort but was 

designed to process network traffic faster by employing multi-threaded processing. Multi-

threaded applications can more effectively take advantage of modern multi-core central 

processing units, which provides the Suricata system the ability to process more network 

traffic than a single-threaded application (Albin & Rowe, 2012). 

In this study, the Suricata system was installed on CentOS 7.6 operating system, 

which was the most recent version of CentOS at the time. CentOS was chosen due to its 

popularity in enterprise environments, close relationship with the Red Hat Enterprise Linux 

distribution, and prior use in similar studies (Albin & Rowe, 2012; Brumen & Legvart, 2016; 

Khamphakdee, Benjamas, & Saiyod, 2014; Shah & Issac, 2018). Additionally, CentOS is a 

free Linux distribution, making replication of this study easier. The system was configured 

with one virtual CPU at 2.4GHz and 4GB RAM, though the specific hardware resources such 

as quantity of RAM or CPU configured is not important in this study, since the results were 

not intended to be compared across other systems. The aim of this study is to compare the 

performance of various rules against each other on the same hardware. 

While the Suricata intrusion detection system is the primary focus system of this 

study, consistent network traffic for the system to observe needed to be created, specifically 
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traffic that exhibited Reaves’ (2018) X.509 covert channel design. On the aforementioned 

hypervisor, two Windows 10 systems were set up to simulate the client and server necessary 

to run the X.509 covert channel. Each of the systems were configured with 2 virtual CPUs at 

2.4GHz each and 4GB RAM. The existing proof-of-concept code was loaded and ran on each 

system to transmit custom information over X.509 certificates, specifically the 

SubjectKeyIdentifier extension. The Suricata system was able to inspect the traffic between 

the systems by receiving a mirror of all the traffic on the virtual network switch that the 

devices were connected to as illustrated in Figure 2. 

 

Figure 2 Suricata Intrusion Detection System and Windows Client and Server with X.509 Covert Channel 
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 As information was transferred over the X.509 covert channel between the Windows 

10 server and the Windows 10 client computers, the Suricata system received a copy of the 

traffic for inspection. Since there were multiple tests as a part of this before-and-after study, 

tests would need to be run against the exact same network traffic. With this in mind, traffic 

was captured on the Suricata machine while the X.509 covert channel was being used 

between the Windows machines. The traffic was captured with the tcpdump utility on the 

Suricata machine. Tcpdump is one of the most popular packet-sniffing tools available and has 

the ability to capture, display, and write out the data that is being transmitted over an ethernet 

network (Fuentes & Kar, 2005). In the case that tcpdump may have not accurately captured all 

traffic, the same captured file was used for all tests and does not affect the validity of the 

study (Arlos & Fiedler, 2016).  

Capturing the traffic once and using it repeatedly for all tests ensures consistency 

between tests. Some computers, like the Windows machines in this environment, may 

periodically generate additional network traffic such as checking for updates or telemetry 

information. By capturing the traffic once and removing any unnecessary systems from the 

environment, the network traffic that Suricata will analyze between tests is consistent, leading 

to more accurate results.  

Research Design 

The purpose of this study was to observe the performance impacts of detecting X.509 

certificate extension misuse using an inline intrusion detection system. Previous research by 

Reaves (2018) has shown X.509 certificate extensions, specifically the SubjectKeyIdentifier 

extension. The two key components of this study are to measure and observe the performance 
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of the system, specifically the impacts on the CPU and RAM of the system, and to create rules 

for the system to detect X.509 extension misuse.  

The performance of the system is of utmost importance as network throughput rises 

and intrusion detection and prevention systems need to inspect a larger volume of traffic just 

as quickly as before. This study looks specifically at how the complexity of rules has an 

impact on the performance of the system. The before and after nature of this study looks at 

exactly that – the performance of the system before and after a new detection method or rule 

was introduced to the system. The major factor in determining how quickly a system can 

process traffic is to look at how long it takes the CPU of the system to process the traffic. As 

such, the number of operations a CPU must carry out to analyze a single packet of traffic is a 

major metric in this study. 

Prior to creating or testing any rules or detection mechanisms, a capture of network 

traffic was first obtained of the proof-of-concept X.509 covert channel. Rather than re-

creating the covert channel communications for every test, a static packet capture file 

provided the consistency required for the researcher to control all possible variables to give 

the most accurate test results. If a static capture was not used, there is the possibility that other 

network features on the systems in the network can introduce various unwanted network 

traffic into the environment. One such example is that of a computer checking the internet for 

updates, an action that may not be consistently present or otherwise if a static file is not used 

for the tests. 

The Suricata system was configured with no rules as a starting control test. This 

represents the before test in this before-and-after study design. As rules and detection methods 
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were designed, they were tested in the system using the same network traffic capture as the 

starting control test. This represents the after tests. 

This study began with only looking at the Subject Key Identifier extension, which is 

used in Reaves’ proof-of-concept code. This field is only one of many different extensions 

present in the X.509 specification (Cooper et al., 2008). Subsequent detection mechanisms 

were explored beyond the one field to detect possible misuse of other available extensions. As 

the tests were conducted and data analyzed, small modifications were made to the detection 

mechanisms to evaluate the performance of the different methods, aiming for the most 

efficient and effective method. Short, limited signatures and regular expressions vs. extensive, 

yet specific, signatures and regular expressions were explored and tested, as well as anomaly-

based detection mechanisms. 

By gathering RAM and CPU performance metrics of the system both before and after 

the detection mechanisms were deployed, the research can clearly show the significance of 

the impact of the detection mechanism on the overall performance of the intrusion prevention 

system, or lack thereof. The measurements can be used to tune the methods, so they are as 

performant as possible without sacrificing true-positive detection rates. It is important to keep 

in mind, though, that a high true-positive detection rate was not the primary objective of this 

study. 

Sampling Frame 

In quantitative studies, the researcher attempts to select a sample of the population 

being studied in a way that the sample can represent the population as a whole (Kumar, 2014). 

Selecting a sample of the population may be necessary in studies where the entire population 

cannot reasonably be a part of the study. While selecting samples of a population for a study 
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may be necessary based on time and resource constraints, it is not without drawbacks. The 

researcher is only able to use the sample to estimate the entire population’s reaction to the 

study (Kumar, 2014). Still, appropriately selected samples can produce reasonably accurate 

results. 

Utilizing all possible variants of network traffic including all possible protocols and 

various packet lengths and structures for the tests in this study was not feasible. Therefore, a 

representative sample was selected. Non-random sampling is used when the size of a 

population is not known (Kumar, 2014). As the whole population of possible network traffic 

packet contents is not known, non-random sampling was used. In some non-random sampling 

scenarios, the researcher may utilize their own judgement as to what sample of the population 

can provide the best sample to fulfil the objectives of the study. This is called purposive 

sampling (Kumar, 2014). 

To answer the research question of this study, a sample that includes traffic exhibiting 

Reaves’ X.509 covert channel is necessary. In order to describe the possible impacts of 

detecting this traffic on a larger population of network traffic on the Internet, additional traffic 

needs to be selected as a part of the sample. Network traffic that was captured during a cyber 

defense competition was selected due to its wide variety of traffic types. Additionally, this 

network traffic made available for future research was not generated for a specific purpose, 

but rather was a capture of various types of traffic on a real network.   

Data Collection 

The main metrics collected during this study were the CPU and RAM utilization of the 

intrusion detection system. These performance statistics were collected on the system as a 

whole during the inspection of traffic, as well as by Suricata as it relates to the CPU clock 
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cycles, or ticks, of each rule configured on the system. The CPU and memory usage have a 

direct effect on the number of events processed by an intrusion prevention system; an 

overloaded CPU can lead to dropped network packets and therefore fewer events processed 

(Hu et al., 2017). Rules that demonstrate a higher processing impact would then theoretically 

reduce the number of packets or bandwidth a system can inspect than a system with a more 

efficient rule, all other computing resources being equal. 

During each of the tests conducted, data was collected from instrumentation described 

in the next section of this chapter. A few specific metrics were collected from the tools to 

determine the CPU and RAM utilization of the system while processing network traffic. 

When collecting the CPU utilization, the specific percent of CPU utilization was noted in one 

second intervals during the testing. Each of the values over the timeframe of an individual test 

were used to calculate the mean value of CPU utilization for one specific test. A similar 

method was conducted using the number of ticks consumed to check one packet against an 

IDS rule as well as the quantity of random access memory consumed by the system in 

kibibytes (KiB). 

It should be noted that additional system resources may be consumed by introducing 

these various performance tracking solutions. However, the design of this study is to analyze 

the performance of various rules on the same system, not across separate systems or 

hardware. Therefore, because these performance trackers are enabled during the testing of 

each rule, the theoretical performance impacts are the same across all tests. 
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Instrumentation  

Tools built into many Linux-based operating systems were leveraged to accurately 

measure the CPU and memory utilization of the system. Additionally, rule profiling built in to 

Suricata was used to measure specific rule performance details.  

One utility used in this research is the mpstat utility. This measures the CPU 

utilization of a system as often as the user would like, up to as frequently as once every 

second. Since the time it takes to process all packets in a given test is much longer than one 

second, sampling every second was sufficient to capture the utilization while packets were 

being processed. In this study, mpstat was used to measure the CPU utilization of the system 

while Suricata was processing and inspecting the network traffic. The tool shows a number of 

CPU utilization statistics, two of which were essential to this study: % user time and % 

system time. The % user time shows the percentage of CPU utilization for executing 

commands at the user or application level, and the % system time shows the percentage of 

CPU utilization for executing commands at the system or kernel level. Mpstat details CPU 

utilization percentages to the hundredth of a percent. 

The utility used in this research to measure the memory utilization of the system is the 

vmstat utility. Built in to CentOS, this utility operates much like the mpstat utility, measuring 

system performance as often as the user would like, up to as frequently as once every second. 

Since the time it takes to process all packets in a given test is much longer than one second, 

sampling every second was sufficient to capture the utilization while packets were being 

processed While vmstat can be used to measure statistics on the utilization of the CPU, 

memory, and input/output devices, this study used the tool primarily to collect information 

about memory utilization. By default, mpstat gives more detailed CPU utilization statistics 

than vmstat. Both mpstat and vmstat are widely known tools to measure resource utilization 
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on Linux systems, and have been employed by researchers on many previous studies (Ahmad 

& Qazi, 2018; Casalicchio & Perciballi, 2017; Tesfatsion, Klein, & Tordsson, 2018). 

The Suricata intrusion detection and prevention system can profile and report on the 

performance of the individual rules configured on the system. This is the main source of 

performance data on individual rules collected during this study. It is important to note that 

Suricata must be compiled with rule profiling options enabled as an option. While Suricata 

can generate reporting on a number of rules configured on the system at the same time, for 

this study only one rule will be configured and tested at a time to remove any interactions 

between rules that may affect the performance counters of any individual rule. 

Suricata rule profiling generates five key data points used in this study: ticks, checks, 

matches, max ticks, and average ticks. A tick refers to a single CPU clock tick and is therefore 

the number of CPU clock cycles spent on analyzing network traffic against a single rule. 

Checks refers to the number of times the system checked a network packet for a match against 

a specific rule. Matches is simply the number of network packets that a rule was found to 

match. Max ticks and average ticks refer to the highest number of CPU clock cycles spent 

analyzing one network packet and the average number of CPU clock cycles spent on each 

network packet analyzed, respectively. 

Validity and Reliability 

Two measures of quality in a quantitative study are validity and reliability. Validity is 

the concept of accurate and correct measurements in the study, and reliability refers to the 

accuracy of the measuring instrumentation (Heale & Twycross, 2015). As this study primarily 

leveraged performance information through CPU and RAM utilization data, this section will 

look at the validity and reliability of the instrumentation used to collect such data. 
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This study used multiple tools to collect CPU and RAM utilization data on the system: 

mpstat, vmstat, and the internal Suricata rule profiling features. Using multiple data collection 

methods in the study helps to verify the validity of the data that each method produces. Data 

that is not consistent between multiple instruments is a threat to the validity of the study 

(Onwuegbuzie, 2000a). All three of these data collection utilities can generate CPU utilization 

metrics and their results can be compared to ensure the accuracy and therefore internal 

validity of the measurements gathered. Additionally, the same instrumentation was used for 

all tests throughout the study, preventing additional instrumentation threat to internal validity 

(Creswell & Creswell, 2018). 

In many studies, population validity is a major threat to external validity. Population 

validity refers to how the results of the research on a small or subset population may be 

extrapolated to cover a larger population (Onwuegbuzie, 2000b). To discuss the population 

validity of this study, the Suricata intrusion detection system utilized as well as the network 

traffic used to test the rules should be presented. The exact results and data points of this 

study will likely not match up with external systems as the underlying hardware, such as the 

CPU, has different capabilities on different systems and will therefore perform differently. 

The relative test results when comparing rule treatments, however, should hold on other 

systems. Additionally, the specific results such as the number of CPU clock cycles spent on 

an individual rule and network packet will vary based on the contents of that network packet. 

While it is difficult to obtain a sample set of network traffic more indicative of all 

environments, the relative test results when comparing rule treatments should still hold on 

other systems.  
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To demonstrate the reliability of the instrumentation used in the study, subsequent 

tests, all variables equal, should continually produce consistent and stable results (Kumar, 

2014). Two methods that can be used to verify instrumentation reliability are the test/retest 

procedure as well as running parallel forms of the same test. The test/retest procedure 

employs the instrumentation during a test and notes the results. After, the same test is run 

under the same or similar conditions, and the results are noted once more. The results of the 

two test are compared, and the same or similar results suggest the instrumentation to be 

reliable (Kumar, 2014). The test/retest method was selected over running parallel studies so 

that the same instrumentation and environment could be utilized between tests.  

Additionally, by running multiple tests, this study aims to prevent any observational 

bias. Observational bias is when an insufficient sampling of the data has been collected, often 

when the phenomena being studied is not observed for a prolonged period of time 

(Onwuegbuzie, 2000b). Observational bias can be a threat to the validity of the study. Since 

this study conducted the same test repeatedly over a period of time, observational bias is not a 

threat. 

Data Analysis 

The data generated by the instrumentation described previously was collected from 

raw text files and gathered into a spreadsheet. The data then undergone editing, reducing, and 

analysis as recommended by Kumar (2014) to prepare the data for further statistical analysis. 

The primary goal of the editing and reducing phases was to organize the data in a spreadsheet 

in categories based on the data type, and to remove any data collected before and after the 

system began processing network traffic. 
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The data collected during the study was then interpreted and presented by using both 

inferential and descriptive statistics. Descriptive statistics provide a method to summarize and 

describe the data (Leavy, 2017). Two of the three kinds of descriptive statistics were used, 

those being measures of central tendency and measures of dispersion (Leavy, 2017). 

Measures of central tendency determine a single value to represent the sample, like mean, 

median, and mode values. In this study specifically, the median values were calculated and 

presented across test iterations of the same rule or lack thereof. Measures of dispersion 

provides a method to show the magnitude to which the individual items differ from each 

other. Standard deviation is the measure of dispersion that shows how individual values relate 

to all of the values within a set (Leavy, 2017). In this study, the standard deviation of the 

results was calculated and presented. The descriptive statistics were also presented visually 

using tables and bar charts. The third variation of descriptive statistics, frequencies, was not 

appropriate to describe the results of this study. 

Inferential statistics allow inferences to be made about the entire population (Leavy, 

2017). The null hypothesis was tested using null hypothesis significance testing, or statistical 

significance tests. While there are more than two groups of results, one for each of the rules 

tested, the t-test was chosen to compare the results of just two groups at a time in this before-

and-after study. 

Summary 

The purpose of this study was to examine the performance impacts of various rules 

and methods of detecting X.509 covert channels on an intrusion detection system. This 

chapter presented various research methodologies, detailing the specific research 

methodology selected to accomplish the purpose of this study. Details on the research method 
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design as they relate to this study were also discussed. Additionally, the specific 

instrumentation used for data collection was presented along with data processing, analysis, 

and statistical analysis techniques were reviewed and discussed. The next chapter presents the 

data that was collected as a part of this study as well as a detailed statistical analysis of the 

results of this study.  
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Chapter 4: Results 

The purpose of this study was to examine the performance impacts of various rules 

and methods of detecting X.509 covert channels on an intrusion detection system. Chapter 3 

outlined the research methodology and system design to accomplish the purpose of this study. 

Statistics were gathered on the CPU and RAM utilization of the system as well as metrics on 

the amount of CPU time each rule in the intrusion detection system consumed. This chapter 

presents the collected data and results in terms of answering the research question presented 

in chapter 1: How will validating X.509 certificate trust and detecting X.509 certificate 

extension misuse using an intrusion detection system affect the CPU and RAM performance 

of the system?  

Data Collection 

The focal point in the environment for this study is the Suricata intrusion detection and 

prevention system, as described in Chapter 3. To ensure consistency, the same static packet 

capture was used in each test. The packet capture used contained X.509 covert channel traffic 

along with various other network traffic that an intrusion detection system may process on 

most networks.  

During a single test, the Suricata system was started along with the vmstat and mpstat 

CPU and RAM utilization profiling tools. Vmstat and mpstat each kept a record of current 

resource utilization on the system every second. Subsequently, the packet capture was played 

back from an external system using tcpreplay across Suricata’s network interface. Once the 

packet capture was fully replayed, vmstat, mpstat, and Suricata were all shut down and the 

performance data generated during the test was saved in text files. Repeated tests were 
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conducted with all independent variables held equal to provide more accurate results. A total 

of 10 iterations of each test was conducted for this study, the same as in similar tests of 

intrusion detection systems when researchers have conducted repeated tests 10 times to 

provide accurate statistics (Hu et al., 2017). 

Each test of 10 iterations was conducted with a different rule or rule set configured in 

Suricata. Most tests were conducted with just one rule configured to give a better comparison 

of the performance impact each individual rule has on the system. Each of the rules verified 

various components of the X.509 certificate using different mechanisms. Each is described in 

detail in the results section in this chapter. 

After the tests were run and the data from each test was saved in separate text files, all 

of the data was gathered and loaded into a spreadsheet for further reduction and analysis. 

Each of the three types of data were loaded into separate spreadsheets: CPU utilization, RAM 

utilization, and Suricata rule performance data. Statistical analysis was then performed on the 

data which is presented in the following sections. 

Results 

After all tests were conducted, the data was collected and organized. Data collected 

using vmstat and mpstat was trimmed to remove data points collected prior to and after 

Suricata was processing network traffic. The tests that were conducted were grouped into 

categories based on the contents of the Suricata rules. The sections that follow first present 

details on the rules being tested followed by descriptive statistics and statistical tests (Leavy, 

2017). 
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Suricata Rules 

A total of 16 different Suricata rules were tested in this study to detect the existence 

X.509 covert channels. Three specific X.509 extensions were chosen as candidates for the 

study, as their contents could be routinely verified. As explained in more detail in Chapter 2, 

other extensions in the X.509 protocol have varied contents which makes them difficult to 

statically verify with an intrusion detection system rule. The three fields selected are the 

subject key identifier, authority key identifier, and key usage identifier. Each of these fields 

have common features among a vast majority of certificates surveyed in the Censys certificate 

repository such as length and how they are computed (Durumeric et al., 2015). Each of the 

rules used in this study are available in Appendix A. Table 1 provides a brief description of 

each of the rules created and tested during this study. 

Table 1. Generated Rules  

Rule ID Description 

1010 3-byte subject key identifier exists - TCP 

1011 3-byte subject key identifier exists - TLS 

1020 3-byte subject key identifier exists, and 4-byte length is 

incorrect - TCP 

1021 3-byte subject key identifier exists, and 4-byte length is 

incorrect - TLS 

1030 3-byte authority key identifier exists - TCP 

1031 3-byte authority key identifier exists – TLS 

1040 3-byte authority key identifier exists, and 4-byte length is 

incorrect – TCP 
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1041 3-byte authority key identifier exists, and 4-byte length is 

incorrect – TCP 

1050 3-byte key usage exists – TCP 

1051 3-byte key usage exists – TLS 

1060 3-byte key usage exists, 4-byte length is incorrect – TCP 

1061 3-byte key usage exists, 4-byte length is incorrect – TLS 

1070 All 3-byte identifiers do not exist 

1071 All 3-byte identifiers exist, but 4-byte lengths are incorrect 

1072 All 3-byte identifiers exist, but 4-byte lengths are incorrect 

– with distance modifier 

1080 Custom lua script 

1082 Custom lua script with 3-byte subject key identifier 

 

Single Extension Rules 

The rules created for each of the different extensions have similar features and can be 

categorized together for this test. First, basic rules were created to simply detect the presence 

of the specific X.509 extension in the certificate. Since each of these extensions has a very 

specific 3-byte identifier, this made up the content of the rules. The subject key identifier rules 

searched for 55 1d 0e in the certificate, the authority key identifier rules searched for 55 

1d 23 in the certificate, and the key usage identifier rules searched for 55 1d 0f in the 

certificate. 

Each of these extensions have specific content lengths that are commonly used as 

outlined in Chapter 2. If the extension was being used but with a content length that differed 
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from what is normal for the extension, the certificate could be marked as suspicious and an 

alert generated. This is a method of anomaly detection. To perform this detection, rules were 

created that looked for the existence of the extension as described in the previous paragraph as 

well as did not exhibit the expected length. In all cases, the ASN structure bytes can be used 

to determine the length of the field. Three rules were created that looked for the presence of a 

three-byte sequence and looked for a four-byte length sequence. If the three-byte identifier 

sequence exists but the four-byte length sequence does not, an alert was generated in the 

intrusion detection system. 

 

Tls and tcp rules. 

Rules were created for each of the previously mentioned single exteention rules both 

using Suricata’s TCP protocol identifier and a duplicate rule using Suricata’s TLS protocol 

identifier. Suricata includes four basic protocols that can be matched in a rule: TCP, UDP, 

ICMP, and IP. Some application layer protocols are also available including TLS, HTTP, and 

DNS, among others (OSIF, 2016). X.509 certificates will fall under both TCP and TLS 

protocols. TLS is an application layer protocol that is layered on top of TCP, a reliable 

transport protocol (Dierks & Rescorla, 2008). 

Multiple extension rules. 

The rules described in the previous section were created individually for each 

extension – that is, any one rule would only detect the existence of a single X.509 extension. 

All of these rules were combined into a single larger rule that checks for all of the features 

described above. This rule searches for and matches on the existence of three different three-
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byte extension identifiers, and the lack of three different four-byte extension length 

descriptors. This rule looks for the aforementioned content in any location in the entire 

contents of the packet. 

This rule was then duplicated and further modified with distance keywords. The 

distance keyword in a Suricata rule describes a relationship between the previous two content 

keywords. This limits the area in the packet payload that Suricata searches for the second 

content keyword based on the first content keyword (OSIF, 2016). In this rule, a distance of 0 

was specified for each ID and length content pairs. This meant that the four-byte length 

descriptors must be found after the three-byte extension identifier in the contents of the 

packet. 

Lua scripting. 

Lua is a programming language that Suricata rules are able to leverage for additional 

functionality when necessary. At times, the content matching features of a Suricata rule are 

not sufficient to perform accurate detection. The entire packet or payload being inspected can 

be sent to a lua script’s match function where additional computation or algorithms can be 

executed (OSIF, 2016). The lua script can be written to contain additional code to further 

inspect the contents of the network packet in question. 

To perform additional verification on the packet contents, tools outside of basic 

Suricata rules may need to be employed. In this case, additional verification of the contents of 

the subject key identifier extension requires tools beyond that of the basic Suricata rule. The 

data of the subject key identifier extension is normally created by computing the SHA1 hash 

of the subject public key field in the X.509 certificate (Cooper et al., 2008). There is not a 
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built-in method to compute a hash of specific fields in a certificate from within a basic 

Suricata rule.  

To perform additional verification of the subject key identifier extension, a custom lua 

script was created. The script has two major components: locating contents and computing a 

hash. First, the script locates the subject public key and the subject key identifier extension in 

the payload of the packet. Next, the script computes the SHA1 hash of the subject public key. 

Finally, the subject key identifier and the computed SHA1 hash are compared. If the contents 

match, it is assumed this field of the certificate is following the X.509 specification and an 

alert is not generated. If the data does not match, an alert is generated. The full lua script is 

included in Appendix B. 

CPU Utilization 

The CPU utilization data was gathered with the mpstat utility. Metrics on CPU 

utilization were taken every one second during the tests. Mpstat shows a number of CPU 

utilization statistics, 2 of which were essential to this study: % user time and % system time. 

The % user time shows the percentage of CPU utilization for executing commands at the user 

or application level, and the % system time shows the percentage of CPU utilization for 

executing commands at the system or kernel level. Combined, the % user time and system 

time shows the overall CPU utilization. All CPU utilization data was averaged over each of 

the 10 tests. Table 2 shows a description of the CPU utilization over each test, beginning with 

the test with Suricaca configured with no rules. 

Table 2. CPU Utilization 

Rule ID Mean (%) Standard Deviation 



77 

No Rules 27.6236 2.9923 

1010 30.4146 2.7286 

1011 28.9806 1.1932 

1020 30.4996 2.6162 

1021 30.112 2.4015 

1030 29.0348 1.8645 

1031 29.1704 1.7524 

1040 28.5676 1.5757 

1041 29.0866 1.9582 

1050 29.0112 1.1106 

1051 29.768 1.2298 

1060 28.2474 1.3781 

1061 29.5156 2.0205 

1070 30.383 2.4867 

1071 29.8928 2.0841 

1072 30.6368 2.0930 

1080 67.7278 1.6565 

1082 29.3386 1.2130 

 

When Suricata was configured with no rules, the overall average CPU utilization was 

25.69%. This number represents a baseline, or the before value in this before-and-after study. 

With individual rules configured, the CPU utilization ranged from 28.25% on the low end to 

68.52% on the high end. The 3-byte detection rules ranged from 28.98% to 30.41%, and the 

3-byte and 4-byte detection rules ranged from 28.25% to 30.50%. CPU utilization under the 
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combined detection rules ranged from 29.89% to 30.64%. The most expensive rule containing 

the custom lua script lead to 67.73% CPU utilization. 

Rule Profiling 

Another method for measuring the CPU utilization of each rule is by using Suricata’s 

built-in rule profiling features. The system keeps metrics on the total number of CPU clock 

cycles a rule consumes, reported as ticks, the number of times a rule was checked, and the 

average number of ticks per rule check. A higher number of average ticks per check indicates 

the rule has a more significant impact on the processor. Table 3 shows a description of the 

average number of ticks per check for each rule tested. 

Table 3. Average Ticks Per Check 

Rule ID 
Average Ticks  

Per Check 

Standard Deviation 

1010 4179.734 519.2998 

1011 3754.797 262.3186 

1020 4772.063 526.8026 

1021 4590.442 484.6253 

1030 4617.814 412.2188 

1031 4501.713 341.9629 

1040 4694.486 275.3798 

1041 4547.258 311.9209 

1050 3836.006 213.4287 

1051 3878.009 233.7582 

1060 4652.633 280.2987 
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1061 4764.856 352.2671 

1070 9365.476 871.6503 

1071 5601.855 641.7245 

1072 5671.773 518.2514 

1080 8122695314 132412.4226 

1082 8846.291 795.3751549 

   

 

With individual rules configured, the average number of ticks for a rule ranged from 

3754 on the low end to 8122695314 on the high end. The 3-byte detection rules ranged from 

3754 to 4617, and the 3-byte and 4-byte detection rules ranged from 4547 to 4772. The 

average number of ticks for the combined detection rules ranged from 5601 to 9365. The most 

expensive rule containing the custom lua script used 8122695314 ticks. 

Each of the rules above were also configured with either either the TLS or TCP 

protocol. When comparing the TLS and TCP rules, the TLS rules had a mean value of 4339 

ticks per check, a low of 3754, and a high of 4764. The TCP rules had a mean value of 4458 

ticks per check, a low of 3836, and a high of 4772. 

RAM Utilization 

The RAM utilization data was gathered with the vmstat utility. Metrics on RAM 

utilization were taken every one second during the tests. Vmstat monitors free memory in 

kibibytes (KiB) by default, or 1024 bytes. All memory utilization values are presented in KiB. 

Since Suricata was shut down between each of the ten iterations of a single test, the difference 

in free memory from the beginning of one iteration to the end was calculated and averaged 
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between all ten iterations of a test. Table 4 describes the memory consumed over the course of 

each 10-iteration test. 

Table 4. RAM Utilization 

Rule ID Memory Consumed (KiB) Standard Deviation 

No Rules 7877 519.517468 

1010 7536.4 429.69552 

1011 7965.2 504.069995 

1020 7447.2 1090.52178 

1021 7474 1016.71668 

1030 7244.8 939.207836 

1031 7560.4 817.577788 

1040 7540.4 725.749158 

1041 7477.6 672.407495 

1050 7361.2 840.833967 

1051 7534 1233.58243 

1060 7727.2 384.478036 

1061 7378.4 714.808394 

1070 7741.2 1033.07239 

1071 7394.4 1165.31225 

1072 7180 930.935014 

1080 9250.4 787.83186 

1082 7821.2 776.084635 
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With individual rules configured, the average memory utilization ranged from 7180 

KiB on the low end to 9250.4.2 KiB on the high end. The 3-byte detection rules ranged from 

7244.8 KiB to 7965.2 KiB, and the 3-byte and 4-byte detection rules ranged from 7378.4 KiB 

to 7741.2 KiB. The average memory utilization for the combined detection rules ranged from 

7180 to 7741.2. The most expensive rule containing the custom lua script used 9250.4 KiB of 

memory. 

Statistical Significance 

Statistical significance tests are used in research to test the null hypothesis (Leavy, 

2017). The null hypothesis is one that states there is no relationship between variables in the 

study. The null hypothesis in this study is: Validating X.509 certificate trust and detecting 

X.509 certificate extension misuse using an inline intrusion detection system does not affect 

the performance and throughput of the system. 

There are many statistical tests that can be conducted to test the null hypothesis. 

Examples include an analysis of variance (ANOVA), Cramer’s V, and Pearson product-

moment correlation (Leavy, 2017). Cramer’s V is used to determine the level of a relationship 

between variables. The Pearson product-moment correlation test is used to test both the 

strength and direction of a relationship between two variables. This study was not concerned 

with testing the strength of a relationship, but rather just showing that a relationship may or 

may not exist.  An ANOVA test is used to compare the results from more than two groups 

(Leavy, 2017). ANOVA was considered for this test since there are many different rules that 

were created representing different groups. However, the null hypothesis is strictly concerned 

with comparing the performance and throughput of the intrusion detection system without 

rules configured and with rules configured. Therefore, the testing of the null hypothesis can 
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be satisfied by directly comparing just two groups: performance metrics with no rules 

configured, and performance metrics with rules configured. 

A statistical test that was designed to compare the results of two research groups and is 

fitting for this study is the t-test (Leavy, 2017). The t-test was performed to evaluate the 

statistical significance of the data collected, specifically the CPU utilization data. The rule 

performance data was not used since there was no data collected when the system had no 

rules configured. The t-test was also used to calculate the standard deviation and population 

mean of each of the datasets. A 95% confidence level was chosen as the goal, giving an alpha 

p-value of less than 0.05 to affirmatively show statistical significance. This alpha level was 

chosen due to its popularity in prior research (Keppel & Wickens, 2004). Results with a p-

value less than 0.05 shows that the data is statistically significant and can disprove the null 

hypothesis. 

A t-test was performed on the CPU utilization data collected with mpstat. The CPU 

utilization of the system with no rules configured was tested against the CPU utilization of the 

system with the treatment rule to detect an incorrect length of the subject key identifier 

extension. This computation did show statistical significance with a t-value of 2.17073 and a 

p-value of 0.021786, less than the alpha p-value of 0.05.  

When conducting a t-test on the CPU utilization of the system with no rules 

configured against the CPU utilization of the system with the treatment rule with a custom lua 

script to detect an invalid subject key identifier, the results were also statistically significant. 

The test showed a t-value of 35.17655 and a p-value of 0.00001, much less than the alpha p-

value of 0.05.  
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Table 5 shows the t-value and p-value results of a t-test conducted between the 

baseline CPU Utilization when the system was configured with no rules and the CPU 

Utilization when the system had a rule configured. Nine of the seventeen rules tested showed 

statistical significance against the test with no rules configured. 

 

Table 5. Statistical Significance T-Test, CPU Utilization 

Rule ID t-value p-value Significant?*  

1010 2.06761 0.026681 Yes  

1011 1.26372 0.111227 No  

1020 2.17073 0.021786 Yes  

1021 1.94567 0.03374 Yes  

1030 1.2008 0.122696 No  

1031 1.33818 0.098749 Yes  

1040 0.83742 0.20667 No  

1041 1.22732 0.117756 No  

1050 1.30422 0.104295 No  

1051 1.98851 0.031089 Yes  

1060 0.56787 0.288569 No  

1061 1.57205 0.066676 No  

1070 2.1277 0.023719 Yes  

1071 1.86685 0.039149 Yes  

1072 2.47547 0.011737 Yes  

1080 35.17655 < 0.00001 Yes  
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1082 1.59345 0.064233 No  

* p-value < 0.05     

Summary 

This chapter presented the quantitative results of this study. To start the study, tests 

were conducted on the Suricata system when there were no rules configured. CPU and RAM 

utilization metrics were gathered. Subsequently, the same tests were conducted on the 

Suricata system with various rules configured. The goal of this study was to determine the 

performance impact that various detection rules have on an intrusion detection system when 

detecting X.509 covert channels. 

The tools used for data collection during the test were mpstat, vmstat, and Suricata’s 

built in rule profiling. Each of these tools saved the generated data in a file for later analysis. 

After the tests were conducted, the data was gathered from all tests and cleaned as 

recommended by Kumar (2014). Data points collected before and after Suricata was started 

and analyzing network traffic were discarded, and the data between tests was further 

combined and normalized. 

A descriptive analysis of the data was presented, showing the mean resource 

utilization values on the Suricata system under different rule configurations. The results 

generally showed that CPU utilization on the system was increased when Suricata had rules 

configured versus when the system did not have any rules configured. Some of the configured 

rules had a greater impact on the CPU utilization than others. The rule that used a lua script to 

detect an invalid subject key identifier had a far greater impact on the CPU utilization than all 

other rules. 



85 

Finally, a statistical analysis was performed between data collected when the system 

was configured with no rules and when the system was configured with the rule that detects 

the existence of the subject key identifier extension. A t-test was conducted with a goal of a 

95% confidence level. The calculated p-value showed that the results of the study were 

statistically significant. 
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Chapter 5: Conclusions 

The purpose of this quantitative before-and-after study was to examine the 

performance impacts of various rules and methods of detecting X.509 covert channels on an 

intrusion detection system. This chapter includes a discussion of the findings of the study, 

comparing the performance impacts of the various rules that were created. Also in this chapter 

is a discussion of the limitations of the study and recommendations for future research, 

followed by a brief summary.  

This chapter contains an interpretation of the findings as they relate to answering the 

research question: How will validating X.509 certificate trust and detecting X.509 certificate 

extension misuse using an intrusion detection system affect the CPU and RAM performance 

of the system? 

Limitations 

This study employed a quasi-experimental before-and-after design. The change in 

performance measurements can be described from the before test when the Suricata system 

had no rules configured to the after test when the Suricata system had rules for detectin X.509 

covert channels configured. While the total change can be measured, the observed changes 

cannot be related to specific independent variables (Kumar, 2014). In a quasi-experimental 

design, conclusive results cannot be obtained due to the non-random sampling of the 

population, unlike true experiments. In this study, the environment and instrumentation used 

in all tests was tightly controlled to minimize any possible differences in the population in an 

effort to limit any impacts of non-random sampling. 
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Three specific extensions became the focus of the detection rules created and tested 

during this study. While mechanisms for fully verifying the subject key identifier field were 

implemented, the rules created as a part of this study are not all-encompassing in detecting all 

X.509 covert channels. 

Network traffic that did include X.509 covert channels was used in each of the tests. 

Additional traffic that contained legitimate X.509 certificates and other types of network 

traffic was also used. The type of network traffic an intrusion detection system processes can 

have an impact on the performance of the system, including memory and CPU utilization (Hu 

et al., 2017). Different traffic flows experienced in different environments may produce 

different results than what was presented in this study. Additionally, this study did not use all 

possible variations and combinations of network packet contents during the study. A selected 

network packet capture was used, which may not be indicative of traffic occurring on the 

Internet as a whole. 

It is not possible to entirely limit outside variables from affecting the testing 

environment and therefore the results of the study. Known variables were controlled and 

accounted for to best limit any outside affects. A standalone virtual environment was used to 

host all of the systems that are a part of the test including the Suricata IDS. This allowed for 

repeated testing in the same virtual machine under the same environment, though any 

additional outside variables that may be introduced by operating in a hypervisor may have 

been present. There are a number of necessary supporting processes running on the systems, 

both the hypervisor and the IDS, that could have an effect on the performance of the system.  

It is possible that outside uncontrolled variables may have had an effect on the data and 

results of this study. 
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Additionally, the any human error or omission by the researcher may have had an 

effect on this study. While it is assumed that the researcher had the necessary knowledge and 

skills to complete a quasi-experimental before-and-after study of this nature, limited 

experience in research design and research experience in general may lead to an impact on the 

study. 

Discussion of Findings 

Previous research has suggested that X.509 certificates can be used for the transfer of 

arbitrary information as a covert channel mechanism (Scott, 2008). If an attacker controls 

both endpoints of the communication channel, certificates could be modified on the fly to 

transfer data. In fact, Jason Reaves (2018) had generated a proof-of-concept design to do 

exactly that. Reaves’ code used the subject key identifier extension of the X.509 certificate 

standard to transfer data as a covert channel. 

This study both created rules for the Suricata intrusion detection system to accurately 

detect this covert channel and verify portions of the X.509 certificate, but also evaluated 

performance impacts of those rules. Specifically, the CPU utilization, RAM utilization, and 

number of CPU cycles each rule consumes upon being checked was studied. The detailed 

findings presented in Chapter 3 show that performing X.509 covert channel detection in this 

way does have a performance impact on the intrusion detection system. 

As network traffic flows continue to grow in bandwidth, being able to process a high 

volume of traffic with an intrusion detection system is important. Previous studies have 

shown that increased computing resources, like more processor cores, does improve the 

packet handling capabilities of the intrusion detection system(Kabir & Hartmann, 2018). 

Increased processor performance had resulted in an increase of throughput the system can 
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handle (Saboor et al., 2013). Therefore, this study measured the CPU utilization that each rule 

caused on the system, since it is directly linked to the overall traffic processing capabilities of 

the intrusion detection system. 

Overall CPU Utilization 

To answer the main question of this study, the CPU utilization of the Suricata system 

was monitored both when the system had rules configured to detect X.509 covert channels, 

and when it did not. This allows for the measurement of the impact to the CPU of the rules, 

which also has an effect on the throughput capabilities of the system.  

 

Figure 3 Average CPU utilization under each rule. 

Figure 3 shows a graphical representation of the average CPU utilization during the 

10-iteration test of each rule. Nearly every test with rules configured exhibited a higher CPU 

utilization than when there were no rules configured in Suricata. As discussed in Chapter 4, 

not every test was statistically significant enough to disprove the null hypothesis, but some 

were. Based on the statistically significant data points, detecting X.509 covert channels with 
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an intrusion detection system does have an effect on the performance of the system. The 

hypothesis has been supported with the gathered data. 

TLS and TCP Rules 

A number of rules were created that inspected the contents of the packet for specific 

identifiers, such as the start of a particular X.509 extension. Duplicate rules with the same 

content keyword were created, but the matching protocol was changed so one of the duplicate 

rules used TLS as the matching protocol, and the other used TCP as the matching protocol. 

This was done to study the possible performance impacts of TLS vs. TCP detection. It is 

important to note that X.509 certificates are transferred over the TLS application-layer 

protocol, and TLS is layered on top of the TCP transport-layer protocol (Dierks & Rescorla, 

2008). 

In total, six pairs of TLS and TCP rules were created and tested. Overall, with a 10-

iteration test conducted for each rule, a total of 60 iterations were run for each TLS and TCP. 

When analyzing the rule performance details of all the TCP and TLS rules against each other, 

a very minor difference was found. TCP rules had a mean value of 4,458 ticks per check, and 

TLS rules had a mean value of 4,339 ticks per check. Figure 4 shows a graphical 

representation of the average number of ticks per check of each of the 12 total rules. 
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Figure 4 Comparing the average number of ticks between TLS and TCP rules. 

As shown in the figure, two rules configured with the TLS protocol actually averaged 

a higher number of ticks per check over the 10 iteration tests. This suggests the mean data is 

not strong. To verify this assumption, a t-test was conducted comparing the TLS and TCP 

data. The t-value is 1.26161, and the p-value is 0.104789, short of the alpha value of 0.05. The 

comparison of TLS and TCP rulesets in this study is therefore not statistically significant.  

Correct Length Detection 

The X.509 covert channel proof-of-concept code developed by Reaves (2018) used the 

subject key identifier extension exclusively for carrying arbitrary data. As such, it was the 

initial focus of this study. Two additional extensions, the authority key identifier extension 

and the key usage extension were also studied. These three extensions all have common 

lengths which can be verified by Suricata. While the X.509 specification allows some 

flexibility in calculating the identifiers, a vast majority of certificates use a consistent method 

for this calculation which produces a constant length field. Nearly 99.8% of the over 1.2 

billion certificates cataloged by Censys exhibited this feature (Durumeric et al., 2015). 
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In an effort to observe the performance impact of various rules, six different rules 

were created to verify these three extensions. These rules are broken down into two 

categories: rules that match the 3-byte extension identifier, and rules that match the 3-byte 

extension identifier and verify the 4-byte length description of the extension. The second set 

of rules will generate an alert if the extension exists, but the length of the field is incorrect. 

This is accomplished through searching for an exact match of the extension identifier and 

searching for an exact match of the length field. If the predefined length bytes are not found, 

an alert is generated. 

 

 

Figure 5 Comparing the average number of ticks between rules that only detect the identifier and rules that detect 

the identifier and verify the length of an extension. 

Figure 5 shows a graphical representation of the average number of ticks per check 

that each of the six aforementioned rules consume. The three rules that only check for the 3-

byte ID have a mean number of ticks of 4,128, and the three rules that check for the 3-byte ID 

and the lack of the predefined 4-byte length have a mean number of ticks of 4,670.  
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The rules that only check for the existence of the extension do not necessarily detect 

the existence of a covert channel, as regular legitimate certificates will also have the extension 

identifier if the optional extension is present (Cooper et al., 2008). Verifying the length is 

necessary to begin to verify the contents of the extensions. Simply alerting if the length is not 

correct is enough to accurately detect the X.509 covert channel created by Reaves (2018). 

Reaves’ covert channel by default uses the subject key identifier field by placing as many as 

10,000 bytes in the field, far more than the common length of 20. While the rules that detect a 

total of 7 bytes in the payload have a more significant CPU utilization than the rules detecting 

only 3 bytes, the additional data to detect in the payload is necessary for detecting X.509 

covert channels. 

As shown in the figure, all of the tests followed the same trend as described in the 

previous paragraph. A t-test was conducted on the data presented in this section to verify 

statistical significance. It was found that the data is in fact statistically significant. The t-value 

is 6.69173, and the p-value is < 0.00001, which is much less than the alpha value of 0.05, 

showing the data is in fact statistically significant. 

Combined Rule 

Each of the three sets of rules described in the previous section were then combined 

into a larger rule to further evaluate the impacts of larger rules. The three 3-byte rules to 

detect the presence of a specific extension’s identifier were combined into a larger rule that 

searches packets for nine bytes, three bytes in each of three groups. Additionally, the rules 

that also detect incorrect extension lengths were combined into a larger rule that searches 

packets for a total of 21 bytes. The combined 3-byte rule has three separate content keywords 

which means Suricata must search the entire packet for the existence of each of the three 
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contents, in this case the identifier of the three extensions. The combined 3+4 byte rule 

searched for the same, in addition to also searching for the absence of the expected 4-byte 

length identifiers.  

The mean number of ticks per check for rules that work with just one extension is 

3,770, and the mean number of ticks per check for the combined rules that work with three 

extensions is 7,483. The combined rules have a more significant impact on the CPU and 

search for a greater number of bytes within the payload of the packet than the single rules. To 

verify the statistical significance, a t-test was computed between the combined rules and 

individual rules. The t-value is 14.01388, and the p-value is < 0.00001, which is less than the 

alpha value of 0.05. This data is statistically significant. 

 

Figure 6 Comparing the average number of ticks between rules that detect one extension and combined rules that 

detect multiple extensions. 

Figure 6 shows the difference in the average number of ticks consumed by the 

individual rules and the combined rules. The combined rules search for more content in the 

packets than the individual rules and they have a greater impact. Interestingly, the combined 
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rules that verify the length as well as the extension identifier have a smaller impact on the 

CPU than the combined rules that only match the extension identifier. Since these rules have 

sections that are negated – that is, the rule will match if a set of predetermined bytes are not 

found in the payload – Suricata may be able to short-circuit its searching if the first contents 

are not matched before searching for other content. 

Lua Script 

Occasionally the available Suricata rule options are not enough to fully verify the 

contents of a packet. For this reason, Suricata includes the ability to define custom lua scripts 

to perform additional detection functions (OSIF, 2016). A lua script was created to further 

verify the contents of the subject key identifier extension. The script first searches for the 

subject public key and the subject key identifier in the payload. After locating those two fields 

a SHA1 hash is taken of the subject public key. If that hash does not match the subject key 

identifier, an alert is generated. 

This rule had a very significant impact on the CPU utilization of the system. The mean 

CPU utilization of the system with no rules configured was 28.9312%, compared to 

67.7278% with the lua script rule configured. The average number of ticks per check of the 

lua rule was 8,122,695,314. This is a significant increase over all of the other rules tested. Of 

all of the other rules tested, the minimum average number of ticks was 3,754 and the 

maximum was 9,365. 

The additional overhead demonstrated by this rule is quite significant, but fully 

verifying all of the contents of the subject key identifier extension requires additional features 

only afforded by a lua script. It is important to note that this script only verifies one extension 
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of the X.509 certificate. Thoroughly verifying as many components of the certificate as 

possible is likely to be extremely expensive if conducted through a custom lua script.  

Recommendations 

This study investigated the performance impacts of detecting X.509 covert channels in 

an intrusion detection system. A review of literature revealed the potential malicious impacts 

of covert channel usage as well as the need for detection of new malicious covert channels. As 

computer security is often thought of as a cat-and-mouse game between attackers and 

defenders, as attackers create new methods to carry out their goals, so to must the defenders 

work to detect these new methods.  

After conducting this study, it has become clear that various IDS rules can have an 

impact on the performance of the system based upon how it is written. In some cases, this 

impact can be quite large depending upon what exactly is being detected. Through the 

literature review, the potential malicious impacts of covert channel usage are apparent. 

Better Defined X.509 Extensions 

In order to accurately detect X.509 extension misuse, there must be a clear definition 

of exactly what the extensions in X.509 certificates must look like, what data they must 

contain, and in what format. In the current specification, the contents of some extensions are 

not well defined. Additionally, the X.509 specification allows for the creation of custom 

extensions that do not already exist (Cooper et al., 2008).  

In Reaves’ X.509 covert channel proof-of-concept code, one specific extension was 

used to transfer arbitrary data. It turns out that this extension, the subject key identifier, can be 

calculated based upon another field in the certificate. This allows for real-time verification of 
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the contents of this extension making the detection of extension misuse possible. Other 

extensions are not as clearly defined or cannot be easily verified on the fly. When designing 

verification capabilities, the ability to quickly verify the data in a certificate extension needs 

to be a priority. 

The feature that lead to accurate detection of the X.509 covert channel proof of 

concept code was the length of the extension. In the case of the subject key identifier 

extension, the most common length found was 20 bytes, while the covert channel placed 

much more data within the extension, upwards of tens of thousands of bytes. The problem, 

though, remains that the 20-byte length is not actually well defined in the X.509 specification. 

Therefore, this extension can still be technically correct and following the X.509 specification 

even if the length is not 20 bytes. The more well-defined each of the extensions can be in the 

specification, the easier it will be for defenders to detect extension misuse. 

Efficient IDS Rules 

IDS rule writers must continue to place the performance impacts of the rules they 

write as a high priority. The results of this study have shown that various rules created to 

detect the same item can have different impacts on the performance of the IDS. The literature 

review has shown that an overloaded IDS can lead to either smaller throughput of the system 

or the dropping of traffic, which can lead to not having the ability to detect true malicious 

attacks. 
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Future Research Recommendations 

There is plenty of space in this field for additional future research. Future 

continuations of the themes in this study can take two major different paths: rule performance 

studies and covert channel detection studies.  

Rule Performance 

Even though much previous research has been conducted on the throughput and 

performance of various intrusion detection and prevention systems, there are still plenty of 

questions that can be answered with future research in this space. This study looked at 

intrusion detection system rule performance in the confines of detecting X.509 covert 

channels. Future studies can look at performance of rules beyond just this one simple use 

case. 

A future study could critically examine the performance of existing rulesets that are in 

use in intrusion detection systems today. This study may attempt to pinpoint the specific rule 

options or features that have the highest cost in terms of resource utilization. The outcome of 

such research could inform the community as to which methods have a significant impact, 

allowing rule authors to more effectively create the most efficient rules possible. 

The rule that had the most significant impact on the CPU utilization and therefore 

throughput of the system was the custom lua script. A lua script was necessary in this case to 

fully verify the subject key identifier extension due to content specific SHA1 hashing features 

being unavailable in existing Suricata rule options. Another avenue of future research takes 

place around the lua script. Again, in an effort to reduce overall rule performance impacts, 

researchers could survey existing rules that use custom lua scripts, paying close attention to 

the specific features that the script was relied upon for. If these features were known, Suricata 
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developers would be able to attempt to build them directly into the Suricata detection engine, 

hopefully in a more performant and efficient manner than a custom lua script can perform. 

Covert Channel Detection 

Attackers are often looking for methods of bypassing network security controls like 

firewalls and intrusion detection systems. Covert channels have the ability to transfer 

information hidden within legitimate protocols and can be one tool in the attacker or malware 

author’s toolkit (Binsalleeh et al., 2014). This focused on just a few extensions in the X.509 

certificate that could be used as a covert channel. 

Future studies in covert channel detection should expand more fully upon the entire 

X.509 certificate to verify as many fields as possible. Previous research has theorized that 

additional fields and extensions could be utilized for a covert channel. Additionally, any 

protocol that is often allowed to pass through network firewalls can be a possible candidate 

for carrying a covert channel. While some research has been conducted on some of these 

protocols like DNS and ICMP, there is still room for additional research on detecting covert 

channels in these and new protocols. 

Summary 

This study brought forth literature that proved creating a covert channel using X.509 

certificates is possible. This study also showed that this covert channel is detectable by 

verifying the extensions used in the channel to the greatest extent possible. Some extensions 

in the X.509 specification are too broad to write effective detection mechanisms for them.  

The results of this study proved that rules written for an intrusion detection system can 

have an impact on the CPU utilization of the system. Literature has shown that this high 
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impact on the CPU can lead to a lower throughput of the system and the eventual dropping of 

network packets. This fact shows the importance of highly performant systems, especially as 

network bandwidth utilizations are on the rise. 

Finally, this study showed that different methods of detecting packet features can have 

varied impacts on the performance of the system. For full verification of some network 

protocol features, additional utilities beyond that of the rule options available in the Suricata 

detection engine are necessary. In this case, a custom lua script was used, and was shown to 

have a significant impact on the CPU utilization of the system. As such, future research 

should be devoted to this problem of further verifying network traffic and detecting covert 

channels in a more performant manner. 
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Appendix A: Suricata Rules 

#1010 - SubjectKeyIdentifier ID in payload - tcp 

alert tcp any any -> any any (msg:"Test Rule 1010 - SubjectKeyIdentifier ID"; content:"|55 1d 

0e|"; sid:1010; rev:1; priority:1;) 

 

#1011 - SubjectKeyIdentifier ID in payload - tls 

alert tls any any -> any any (msg:"Test Rule 1011 - SubjectKeyIdentifier ID"; content:"|55 1d 

0e|"; sid:1011; rev:1; priority:1;) 

 

#---- 

 

#1020 - SubjectKeyIdentifier Exists with len NOT 20 bytes - tcp 

alert tcp any any -> any any (msg:"Test Rule 1020 - SubjectKeyIdentifier ID Len"; 

content:"|55 1d 0e|"; content:!"|04 16 04 14|"; distance:0;  sid:1020; rev:1; priority:1;) 

 

#1021 - SubjectKeyIdentifier Exists with len NOT 20 bytes - tls 

alert tls any any -> any any (msg:"Test Rule 1021 - SubjectKeyIdentifier ID Len"; 

content:"|55 1d 0e|"; content:!"|04 16 04 14|"; distance:0;  sid:1021; rev:1; priority:1;) 

 

#--- 

 

#1030 - AuthorityKeyIdentifer ID in payload - tcp 

alert tcp any any -> any any (msg:"Test Rule 1030 - AuthorityKeyIdentifier ID"; content:"|55 

1d 23|"; sid:1030; rev:1; priority:1;) 

 

#1031 - AuthorityKeyIdentifer ID in payload - tls 

alert tls any any -> any any (msg:"Test Rule 1031 - AuthorityKeyIdentifier ID"; content:"|55 

1d 23|"; sid:1031; rev:1; priority:1;) 

 

#--- 
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#1040 - AuthorityKeyIdentifer Exists with len NOT 20 bytes - tcp 

alert tcp any any -> any any (msg:"Test Rule 1040 - AuthorityKeyIdentifier ID Len"; 

content:"|55 1d 23|"; content:!"|04 18 30 16 |"; distance:0; sid:1040; rev:1; priority:1;) 

 

#1041 - AuthorityKeyIdentifer Exists with len NOT 20 bytes - tls 

alert tls any any -> any any (msg:"Test Rule 1041 - AuthorityKeyIdentifier ID Len"; 

content:"|55 1d 23|"; content:!"|04 18 30 16 |"; distance:0; sid:1041; rev:1; priority:1;) 

 

#--- 

 

#1050 - KeyUsage ID in payload  - tcp 

alert tcp any any -> any any (msg:"Test Rule 1050 - KeyUsage ID"; content:"|55 1d 0f|"; 

sid:1050; rev:1; priority:1;) 

 

#1051 - KeyUsage ID in payload  - tls 

alert tls any any -> any any (msg:"Test Rule 1051 - KeyUsage ID"; content:"|55 1d 0f|"; 

sid:1051; rev:1; priority:1;) 

 

#--- 

 

#1060 - KeyUsage ID exists but wrong Bit String len in payload - tcp 

alert tcp any any -> any any (msg:"Test Rule 1060 - KeyUsage ID"; content:"|55 1d 0f|"; 

content:!"|04 04 03 02|"; distance:0; sid:1060; rev:1; priority:1;) 

 

#1061 - KeyUsage ID exists but wrong Bit String len in payload - tls 

alert tls any any -> any any (msg:"Test Rule 1061 - KeyUsage ID"; content:"|55 1d 0f|"; 

content:!"|04 04 03 02|"; distance:0; sid:1061; rev:1; priority:1;) 

 

#--- 
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#1070 - Combined - Does not have ALL of SubjKeyID, AuthKeyID, KeyUsage 

alert tls any any -> any any (msg:"Test Rule 1070 - BasicConstraints ID"; content:!"|55 1d 

0e|"; content:!"|55 1d 23|"; content:!"|55 1d 0f|"; sid:1070; rev:1; priority:1;) 

 

#1071 - Combined - Has all of SubjKeyID, AuthKeyID, KeyUsage, but not correct 

lengths. 

alert tls any any -> any any (msg:"Test Rule 1071 - BasicConstraints ID"; content:"|55 1d 

0e|"; content:!"|04 16 04 14|"; content:"|55 1d 23|";  content:!"|04 18 30 16 |"; content:"|55 1d 

0f|"; content:!"|04 04 03 02|"; sid:1071; rev:1; priority:1;) 

 

#1072 - Combined - Has all of SubjKeyID, AuthKeyID, KeyUsage, but not correct 

lengths, with distance 0 modifier 

alert tls any any -> any any (msg:"Test Rule 1072 - BasicConstraints ID"; content:"|55 1d 

0e|"; content:!"|04 16 04 14|"; distance:0; content:"|55 1d 23|";  content:!"|04 18 30 16 |"; 

distance:0; content:"|55 1d 0f|"; content:!"|04 04 03 02|"; distance:0; sid:1072; rev:1; 

priority:1;) 

 

#--- LUA 

 

#1080 - See if the Subject Key Identifier is the SHA1 of the subjectPublicKey 

alert tls any any -> any any (msg:"Test Rule 1080 - SubjectKeyIdentifier ID"; lua:subjkey.lua; 

sid:1080; rev:1; priority:1;) 

 

#1082 - If Subject Key Identifier is present, see if it is SHA1 of the subjectPublicKey 

alert tls any any -> any any (msg:"Test Rule 1082 - SubjectKeyIdentifier ID"; content:"|55 1d 

0e|";  lua:subjkey.lua; sid:1082; rev:1; priority:1;) 
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Appendix B: Custom Lua Script 

function string.tohex(str) 

    return (str:gsub('.', function (c) 

        return string.format('%02X', string.byte(c)) 

    end)) 

end 

 

function string.fromhex(str) 

    return (str:gsub('..', function (cc) 

        return string.char(tonumber(cc, 16)) 

    end)) 

end 

 

function init (args) 

    local needs = {} 

    needs["payload"] = tostring(true) 

    needs["packet"] = tostring(true) 

    return needs 

end 

 

function match(args) 

    a = tostring(args["payload"]):tohex() 

    b = tostring(args["packet"]):tohex() 

    local sha1 = require "sha1" 

     

         

    --Find the subjectPublicKey 

    if a:find("05000382010F00") then 

        i, j = string.find(a, "05000382010F00") 

        pubkeyinfo = string.sub(a, j+1, j+540) 



118 

 

        --55 1D 0E is identifier for subjkey, 04 16 04 14 is octet string -> octet string 20 

bytes 

        if a:find("551D0E04160414") then 

            i, j = string.find(a, "551D0E04160414") 

            subjkeyid = string.sub(a, j+1, j+40) 

        end 

 

        bytes = pubkeyinfo:fromhex() 

 

        hashed = sha1.sha1(bytes) 

        hashed = string.upper(hashed) 

 

        if hashed == subjkeyid then 

            io.write("\nMATCH SUCCESS\n") 

            return 0 

        end 

        return 1 

    end 

    return 1 

end 

return 0 
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Appendix C: Packet Capture Files 

The packet capture files used during all of the tests of this dissertation are located in 

an online github repository.  

• wrccdc.pcap – This capture contains a collection of typical network traffic. 

• malicious_text.pcap – This capture contains the transferring of a text file over 

the X.509 covert channel. 

• mimikatz_exe.pcap – This capture contains the transferring of the mimikatz 

executable file over the X.509 covert channel. 

 

The github repository is located at https://github.com/cmwelu/Dissertation 
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