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Abstract

3D Models are essential to modern-day Computer Vision (CV) applications, as
3D data representations are now being widely used instead of the already popular
2D image representation, for tasks such as object detection, classification, retrieval,
and modeling, etc. However, many different problems have been associated with
the representation, description, indexing, matching, retrieval, and classification of
3D models found in rapidly emerging domain-specific and 3D benchmarks datasets.
One of such problems is developing a robust, compact, yet computationally efficient
3D shape descriptor. Although simple to complicated knowledge-based 3D shape
representation and matching methods have been proposed, the simple methods usu-
ally lack efficiency and needed robustness (i.e. discriminating power), while the
complicated methods, with remarkably high retrieval and classification accuracies,
are either computationally prohibitive or rely on remarkably large surface points
for optimum performance, which negatively impact processing speed and storage.
Recently, the Deep Learning (DL) methods have been used to develop highly robust
and compact 3D shape descriptors which also produce remarkably high retrieval
and classification accuracies. However, the DL approaches are highly data-driven,
which requires a lot of training data and high-powered GPUs to run successfully.
Another important research problem is developing a 3D shape descriptor that can
generalise across a wider range of datasets, each of which presents unique retrieval
and classification challenges to the shape descriptor.

This thesis focuses on the knowledge-based approach to propose three novel,
robust, and computationally efficient methods for 3D shape retrieval and classifica-
tion. Our first novel research contribution is a local 3D shape descriptor called the
Augmented Point Pair Features Descriptor (APPFD). Our second novel contribu-
tion is the Hybrid Augmented Point Pair Signature (HAPPS), developed to further
improve the overall robustness of the APPFD, while providing invariance to rigid
3D objects. Finally, we propose an improved method called the Agglomeration of lo-
cal APPFDs with Fisher Kernel and Gaussian Mixture Model (APPFD-FK-GMM),
which aggregates d-dimensional local descriptors into a single more compact vector
representation, with improved performances. The proposed methods are statisti-
cally based, and able to effectively describe the local - global geometry of 3D mesh
or point cloud surfaces, using as low as 3500 points samples from each surface,
and capable of generalising across a wider range of datasets containing rigid and
non-rigid 3D objects. The latter method produces robust, compact, and concise 3D
shape signature that support more-efficient indexing and matching, for retrieval and
classification tasks.

The accuracies and robustness of our methods have thoroughly been examined
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and compared to several other state-of-the-art (data-driven and knowledge-based)
methods, using nine different standard SHape REtrieval Contests (SHREC) 3D
benchmark datasets, including the most recent. This thesis provides exhaustive
(quantitative and qualitative) comparative analyses of performance evaluation re-
sults, for each dataset and retrieval challenge. The following Information Retrieval
(IR) evaluation metrics were adopted to assess the performances (accuracies and
robustness) of all shape descriptors: Nearest Neighbour (NN), Firs- Tier (FT),
Second-Tierm(ST), e-Measurem(E), Discounted Cumulative Gain (DCG), mean-
Average Precision (mAP), normalised-Discounted Cumulative Gain (nDCG), Area
Under Curve (AUC), and Precision-Recall Curve (PRC) plots. Results of experimen-
tal evaluations reveal outstanding retrieval performances by our proposed methods,
compared with several other state-of-the-art methods.

We demonstrate the superiority of the HAPPS method over several other state-
of-the-art methods on the SHREC’18 protein dataset. In several other experimental
evaluations, our method still outperforms many of the state-of-the-art methods, in-
cluding ranking top 2 or 3 position in most cases, competing very closely with the
overall best performing methods for each of those retrieval challenges and datasets.
Generally, the APPFD method is robust to objects with holes (i.e. with large
missing surface parts) and noise, and we demonstrate that both the APPFD and
HAPPS methods are highly discriminative, efficient, and capable of effectively rep-
resenting 3D point clouds and triangular meshes. In addition, we demonstrate the
high performance of the APPFD-FK-GMM method, which rivals both the APPFD
and HAPPS methods, even with about 98% reduction of the final fv from these
methods, thus providing both robustness and compact representation of 3D objects
for easier indexing and faster matching.

Ekpo Otu iii



Declaration of Authorship

DECLARATION
This thesis has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

13.09.2021

Date Signature (Ekpo Ekpo Otu)

STATEMENT 1
This thesis is the result of my own investigations, except where otherwise stated.
Where correction services have been used, the extent and nature of the correction is
clearly marked in a footnote(s). Other sources are acknowledged by footnotes giving
explicit references. A bibliography is appended.

13.09.2021

Date Signature (Ekpo Ekpo Otu)

STATEMENT 2
I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations.

13.09.2021

Date Signature (Ekpo Ekpo Otu)

iv



Dedication

I dedicate this thesis, first to the almighty God for His grace, strength, and ability
to finish my Ph.D., despite the many challenges. Next, to my beloved child, Em-
manuella Ekpo Otu, for her understanding, endurance, patience, and cooperation
during my entire Ph.D. To my parents, siblings, and the Nigerian government in-
cluding others, too numerous to mention, my Ph.D. work and effort is also dedicated
to you.

v



Acknowledgement

It has now been possible for me to finish my Ph.D. study/research work, following
what seemed like an endless journey. This success story would not have been possi-
ble without my academic supervisors: Prof. Reyer Zwiggelaar, Prof. Yonguai Liu,
and Dr. David Hunter. You have been exceptional, selfless, kind, highly support-
ive, encouraging, and generous in providing me with the needed guidance, advise,
feedback, encouragements and much more. Besides supervising my Ph.D. research
to a successful completion, you all have inspired me to excellence in many aspects,
including that I have learned from your exceptional leadership styles, among other
qualities. I still struggled to find suitable vocabularies to express my gratitude and
describe my appreciation to you, most especially Prof. Yonguai Liu and Prof. Reyer
Zwiggelaar, but words would never be enough to appreciate and acknowledge your
support for me throughout this journey, and saying ”Thank you” would never do.

Special acknowledgement also goes to other academic and non-academic staff
of the computer science department, Aberystwyth University, who have been im-
mensely assisting and supportive to me during my Ph.D. Thanks to Dr. Myra
Wilson, Dr. Richard Jensen, Prof. Bernie Tiddeman, Ms. Michelle Schemes, Mrs.
Margaret Walker, Mr. Andy Spence, Prof. Chris Price, Dr. Edel Sherratt, Meinir
Davies, Dr. Hannah Dee, Dr. Amanda Clare, Mr. Dave Price, and all VGVG
members where one point or the other I have had the privilege of either getting your
support or learning from you. I also acknowledge Rosa Soto of the international
office, including Kim Broom, Paul Gatehouse, and the compliance team for all their
support. To all my friends and colleagues in the VGVG lab and department, too
numerous to mention, working alongside and sharing ideas with you was fun, en-
gaging, and inspiring.

Beyond the university, I greatly acknowledge the church family and leadership
at St. Mikes, Aberystwyth, where I have found deep sense of belonging, moral,
mental, and spiritual support. Special thanks to the leadership and members of
the music/worship team, and FLOW group, for your prayers, encouragements and
giving me the opportunity to serve. I specially recognise Dr. Richard Jensen and
Dr. (Mrs.) Elaine Jensen for all your support and prayers.

This acknowledgement would be incomplete without specially recognising Prof.
Ndem Ayara, Prof. Emmanuel Ikpeme, High-Chief, (Eld.) Prof. Eyo E. Nyong,
Amb.& Hon. (Mrs.) Nkoyo Toyo, Eld. Barr. Efefiom Ekong (SAN) and your dear
wife, Princess Uzodinma Ekong (of blessed memory), Dr. Solomon O. Ita, Prof.
(Mrs.) Susan Etim, Dr. (Mrs.) Caroline Aboh, and Dr. Enoima Umoh, for your
supports and encouragements regarding my Ph.D. programme. I also acknowledge

vi



3D Shape Description, Indexing, Matching and Retrieval

Ms. Yasmin Pemberton-Brown, Alh. Dr. Aminu Anas, and other friends for stand-
ing by me at the right time.

Finally, I specially acknowledge the Tertiary Education Trust Fund (TETFund),
Nigeria and the management of the Cross River University of Technology (CRUTECH),
Calabar, Nigeria, for some financial support, including the department of Computer
Science, Aberystwyth University for awarding me the CSD01 Scholarship. The gen-
erosity of the Aberystwyth University hardship fund is also greatly acknowledged,
without which it would have been impossible to complete my Ph.D.

Ekpo Otu vii



Contents

1 INTRODUCTION 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Originality and Contributions . . . . . . . . . . . . . . . . . . 7
1.6 Research Relevance and Application Areas . . . . . . . . . . . . . . . 10
1.7 Research Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7.1 Overview of Methods and Results . . . . . . . . . . . . . . . . 12
1.8 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 LITERATURE REVIEW 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 3D Object Representations . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Classification of 3D Objects . . . . . . . . . . . . . . . . . . . 18
2.2.3 Distance or (Dis)similarity Metrics . . . . . . . . . . . . . . . 21
2.2.4 3D Content-based Retrieval System (3D-CBRS) and 3D Search

Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5 3D Search Searching . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.6 Shape Descriptors Matching Approaches . . . . . . . . . . . . 28

2.3 3D Shape Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Characteristics of Appropriate Shape Descriptors . . . . . . . 31

2.4 Classification of 3D Shape Descriptors . . . . . . . . . . . . . . . . . 32
2.4.1 Global 3D Shape Descriptors . . . . . . . . . . . . . . . . . . 32
2.4.2 Local 3D Shape Descriptors . . . . . . . . . . . . . . . . . . . 34
2.4.3 Hybrid 3D Shape Descriptors . . . . . . . . . . . . . . . . . . 36

2.5 Approaches to 3D Shape Descriptors . . . . . . . . . . . . . . . . . . 37
2.5.1 Data-driven 3D Shape Descriptors . . . . . . . . . . . . . . . . 37
2.5.2 Knowledge-based 3D Shape Descriptors . . . . . . . . . . . . . 39
2.5.3 Categories of Knowledge-based 3D Shape Descriptors . . . . . 40

2.6 Statistically-based 3D Descriptors Review . . . . . . . . . . . . . . . 48
2.6.1 Point Pair-based Statistical 3D Shape Descriptors . . . . . . . 49

2.7 3D Shape Retrieval Challenges . . . . . . . . . . . . . . . . . . . . . . 51

3 RESEARCH STRATEGY, TECHNIQUES, AND TOOLS 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



3D Shape Description, Indexing, Matching and Retrieval

3.2.1 Defective Data . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Defective Data Handling . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Point Cloud Sampling . . . . . . . . . . . . . . . . . . . . . . 55
3.2.4 Affine Transformation (Scaling, Rotation, and Translation) . . 60

3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 3D Surface Normals Estimation . . . . . . . . . . . . . . . . . 63
3.3.2 Improved Surface Normals Estimation for 3D Point Cloud . . 66
3.3.3 3D Surface Normals Accuracy/Descriptor Robustness . . . . . 71
3.3.4 Improved Surface Normals Estimation Technique for Triangu-

lar Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.5 3D Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Shape Descriptor Construction . . . . . . . . . . . . . . . . . . . . . . 82
3.5 Database Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6 Shape Matching and Retrieval . . . . . . . . . . . . . . . . . . . . . . 84

3.6.1 Shape Descriptor Comparison . . . . . . . . . . . . . . . . . . 85
3.6.2 Distance or (Dis)similarity Matrices From Metrics . . . . . . . 86

4 METHODOLOGY 88
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Methods and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Augmented Point-pair Feature Descriptor (APPFD) . . . . . . 90
4.2.2 Histogram of Global Distances (HoGD) . . . . . . . . . . . . . 99
4.2.3 Hybrid Augmented Point Pair Signature (HAPPS) . . . . . . 100
4.2.4 Agglomeration of Local APPFD with Fisher Kernel and Gaus-

sian Mixture Model (APPFD-FK-GMM) . . . . . . . . . . . . 105
4.3 Evaluation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.1 Performance Evaluation Algorithm (Tools) . . . . . . . . . . . 109
4.3.2 Performance Evaluation Algorithm Inputs . . . . . . . . . . . 110
4.3.3 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . 112

5 EXPERIMENTAL EVALUATION RESULTS ANDDISCUSSIONS118
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 SHape REtrieval Contests (SHREC) 3D Benchmarks . . . . . 122
5.2.2 SHREC 2010 Non-rigid 3D Dataset . . . . . . . . . . . . . . . 123
5.2.3 SHREC 2011 Non-rigid 3D Watertight Dataset . . . . . . . . 123
5.2.4 SHREC 2012 Generic 3D Shape Dataset . . . . . . . . . . . . 124
5.2.5 SHREC 2014 Large Scale Comprehensive 3D Shape Dataset . 125
5.2.6 SHREC 2017 Non-rigid Point Cloud (PRoNTo) Dataset . . . . 125
5.2.7 SHREC 2018 Protein Shape Dataset . . . . . . . . . . . . . . 127
5.2.8 SHREC 2019 Protein Shape Dataset . . . . . . . . . . . . . . 128
5.2.9 SHREC 2020 Protein Shape Dataset . . . . . . . . . . . . . . 129
5.2.10 SHREC 2020 3D Geometric Relief Dataset . . . . . . . . . . . 131
5.2.11 ShapeGoogle: Random, Generic 3D Shape Dataset . . . . . . 133

5.3 Experimental Evaluations of The HAPPS Retrieval Method . 134
5.3.1 Experiment 1: Evaluating The Retrieval Performances of

The HAPPS-1 Method On SHREC’18 Protein Shape Dataset135
5.3.2 Experiment 2: Evaluating The Retrieval Performances of

The HAPPS-1 Method On SHREC’17 PRoNTo Dataset . . 142

Ekpo Otu ix



3D Shape Description, Indexing, Matching and Retrieval

5.3.3 Experiment 3: Evaluating The Retrieval Performances of
The HAPPS-1 Method On SHREC’10 Dataset . . . . . . . 148

5.3.4 Experiment 4: Evaluating The Retrieval Performances of
The HAPPS-1 Method On SHREC’11 Dataset . . . . . . . 156

5.3.5 Experiment 5: Evaluating The Retrieval Performances of
The HAPPS-1 Method On SHREC’19 Protein Dataset . . 163

5.3.6 Experiment 6: Evaluating The Retrieval Performances of
The HAPPS-1 And HAPPS-2 Methods On SHREC 2020
Protein Dataset . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4 Experimental Evaluations of The Retrieval Accuracies of The
APPFD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.4.1 Experiment 7: Evaluating The Retrieval Accuracies of The

APPFD Method On SHREC’12 Dataset . . . . . . . . . . . 174
5.4.2 Experiment 8: Evaluating The Retrieval Accuracies of The

APPFD Method On SHREC’14 Dataset . . . . . . . . . . . 177
5.5 Experimental Evaluations of TheAPPFD-FK-GMMRetrieval

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.5.1 Parameter Settings and Configurations for The APPFD-FK-

GMM Retrieval Method . . . . . . . . . . . . . . . . . . . . . 183
5.5.2 Experiment 9: Evaluating The Retrieval Performances of

The APPFD-FK-GMM Method On The SHREC’17 Dataset183
5.5.3 Experiment 10: Evaluating The Retrieval Performances of

The APPFD-FK-GMM Method On The SHREC’18 Pro-
tein Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.5.4 Experiment 11: Evaluating The Retrieval Performances of
The APPFD-FK-GMM Method On The SHREC’19 Pro-
tein Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.5.5 Experiment 12: Evaluating The Retrieval Performances of
The APPFD-FK-GMM Method On The SHREC’20 Relief
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.6 Experimental Evaluations of The HoGD Retrieval Method . . 194
5.6.1 Experiment 13: Evaluating The Retrieval Performances of

The HoGD Method On The SHREC’21 Protein Dataset . 195
5.6.2 Experiment 14: Evaluating The Retrieval Performances of

The HAPP-1 Method On The SHREC’21 Protein Dataset 196
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6 CONCLUSION AND FUTURE WORK 200
6.1 Overall Thesis Review . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.2 Review of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . 201

6.2.1 Contributions by The Local APPFD Method . . . . . . . . . . 201
6.2.2 Contribution by The Global HoGD Method . . . . . . . . . . 202
6.2.3 Contributions by The Hybrid HAPPS Method . . . . . . . . . 202
6.2.4 Contributions by The Global APPFD-FK Method . . . . . . . 205
6.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.3 Summary of The Retrieval Performances of Our Proposed Methods . 207
6.3.1 Summary of The Retrieval Performances of The HAPPS Method208
6.3.2 Summary of The Retrieval Performances of The APPFDMethod209

x Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

6.3.3 Summary of The Retrieval Performances of The APPFD-FK-
GMM Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.4 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.5 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . 215

A Thesis-related Publications 219
A.1 Nonrigid 3D Shape Retrieval with HAPPS: A Novel Hybrid Aug-

mented Point Pair Signature [175] . . . . . . . . . . . . . . . . . . . . 219
A.2 SHREC 2020: Multi-domain protein shape retrieval challenge [122] . 220
A.3 SHREC 2020: Retrieval of digital surfaces with similar geometric

reliefs [163] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.4 SHREC 2021: Retrieval and classification of protein surfaces equipped

with physical & chemical properties (Recent submission, March 2021) 221
A.5 SHREC 2021: Surface-based protein domains retrieval (Recent sub-

mission, March 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B Code and Data For Experimental Evaluations 223
B.1 Code To Allow Reproducibility of Our Experimental Results . . . . . 223

B.1.1 Code for the APPFD Algorithm . . . . . . . . . . . . . . . . . 223
B.1.2 Code for the HoGD Algorithm . . . . . . . . . . . . . . . . . . 223
B.1.3 Code for the HAPPS Algorithm . . . . . . . . . . . . . . . . . 224
B.1.4 Code for the APPFD-FK-GMM Algorithm . . . . . . . . . . . 224
B.1.5 Other Related Utility Code and Software . . . . . . . . . . . . 224
B.1.6 Performance Evaluation Codes . . . . . . . . . . . . . . . . . . 224

B.2 Data To Allow Reproducibility of Our Experimental Results . . . . . 224
B.2.1 Datasets, Ground Truths and Evaluation Code . . . . . . . . . 224

Ekpo Otu xi



List of Figures

2.1 Four possible surface representations of the Stanford bunny 3D model. (2.1a):
3D triangular mesh, consisting of vertices and edges (connectivity). (2.1b):
3D point cloud, consisting of unstructured points in [x, y, z] Euclidean
space. (2.1c): 3D voxels grids, which is made up of volumetric pixels
(cubes). (2.1d): Non-uniform Rational B-spline (NURBS) 3D surface,
which is exceptionally smooth. . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Two classes of 3D objects: Rigid and Non-Rigid, showing defec-
tive (non-water-tight) and non-defective (water-tight) surface meshes.
The Rigid and Non-Rigid objects can be combined in a dataset to
form the Generic 3D objects dataset as shown. Images, courtesy [xx,
yy, zz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 General overview of 3D Content-based Retrieval System. . . . . . . . 26

2.4 Broad overview of 3D shape descriptors in terms of classification and
computational approaches. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 3D shape descriptors, broadly classified into 3 groups: Local, Global
and Hybrid descriptors (i.e. local-local, global-global, or local-global
descriptors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Classification of Knowledge-based 3D shape descriptors . . . . . . . . 40

2.7 Comparison of 3D shape descriptors classification by two different literatures. 41

2.8 Example single view of different 3D objects. View-based 3D object
descriptor approach uses a single view or multiple views of 3D object
representation instead of the actual 3D model. . . . . . . . . . . . . . 42

2.9 A single 3D object (middle) represented by three 2D views obtained
from three different camera positions around the object. Image Source,
courtesy [54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 The Lightfield Descriptors extraction for a 3D chair model, cour-
tesy [214]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 3D shape descriptors based on Extended Reeb Graph - Courtesy: S.
Biasotti [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 3D mesh (left) to 3D Points Cloud (right). . . . . . . . . . . . . . . . 56

3.2 Random Points sampling in triangle, [173]. . . . . . . . . . . . . . . . 57

3.3 Barycentric coordinate system technique to points, Ps and normals,
Ns sampling from a triangular face, △A,B,C. . . . . . . . . . . . . . 58

3.4 3D model of a cow with different Euclidean similarity transforma-
tions (locations, scales, and rotations) but the same shape. Image
source: [102] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



3D Shape Description, Indexing, Matching and Retrieval

3.5 Visualisation of the 3D point cloud representation of a rigid 3D pipe
object. Figure 3.5a shows the coordinates of this object with very
large values, while Figure 3.5b shows the same object after being
scaled using the scaling factor mentioned above. . . . . . . . . . . . . 61

3.6 3D triangular face with vertices i.e. points (p1, p2, p3) and normal n.
In (a), the normal vector is pointing in the right direction (outward),
while in (b), the normal vector is pointing in the opposite direction
(inward), which is incorrect. . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Normal Vector for Vertex and Faces of a triangular mesh. . . . . . . . 64

3.8 Mesh to point cloud and normals. . . . . . . . . . . . . . . . . . . . . 65

3.9 Visualization of Airplane 3D point cloud with associated surface nor-
mals estimated with three different algorithms/tools. Accurately es-
timated normals points outward in all direction to the surface as seen
in Figure 3.9b, while inaccurately estimated normals are shown in
Figure 3.9a and Figure 3.9c. . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 Visualisation of rigid open pipe 3D point cloud with associated surface
normals estimated with three different algorithms/tools. Figure 3.10a
with k-NN search, where k = 11 and Figure 3.10b with r-NN search,
where r = 0.04 shows implementation of Algorithm 1 with accurately
estimated normals points outward in all direction to the surface, while
Open3D and PCL tools/libraries produced poor normals as shown in
Figure 3.10c and Figure 3.10d. . . . . . . . . . . . . . . . . . . . . . . 69

3.11 3D point cloud models with their estimated normal vectors. Fig-
ures 3.11a, iv-vi represent Cat, Standford Bunny, and Human-arm
3D models with their repective accurately-estimated surface normals
in Figures 3.11a, i-iii. Alternatively, Figures 3.11b, i-iii represents the
3D models of a Pipe model (with inconsistent normal orientation),
Pipe model (with one-directional normal orientation), and Human-
head model (with inward pointing normal orientation). . . . . . . . . 70
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3.13 Non-Rigid point clouds and their corresponding normals, estimated
with two different approaches, (a) normal vectors are estimated si-
multaneously using the Barycentric Interpolation (BI) approach de-
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5.20 PRC plots of the HAPPS-1 experimental run-3a‘, showing the re-
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Chapter 1

INTRODUCTION

1.1 Background

Presently, 3D data formats or representations are preferable to the already very pop-
ular 2D image representation, in several CV related projects/tasks, such as object
detection, retrieval, classification, detection, modeling, and robot navigation. Com-
putational techniques in 3D shape analyses and processing are highly relevant and
applicable in medicine, robotics, industrial applications, 3D games development, and
virtual reality, etc. Consequently, it has now become easier to practically acquire
3D models of any object due to freely available 3D modelling software, low-cost 3D
scanning/acquisition devices, and the ability to scan 3D shapes using mobile devices
equipped with photogrammetry [143] technology. As direct consequences of these:
(i) there is an exponential rise in the available number of 3D models on the internet
and domain-specific databases (e.g. the Protein Data Bank (PDB) [15] with biologi-
cal macromolecules [182, 118], the AIM@SHAPE shape repository [247], the national
design repository for Computer-aided Design (CAD) models [238], and CAESAR for
Anthropometry [5], etc.), (ii) several 3D benchmark datasets are rapidly-emerging,
such as the Princeton Shape Benchmark (PSB) [216] and the SHape REtrieval Con-
test (SHREC) benchmark datasets, and (iii) 3D models now have numerous appli-
cation areas (e.g. video games character and virtual reality 3D models). However,
an important aspect of research remains the development of concise, robust, and
efficient 3D shape representation and methods to facilitate matching and retrieval
of desired 3D objects from these repositories. The advantages of developing such
3D shape representations or retrieval methods are numerous. For example, if we
consider the scenario in Section 1.2 where an existing 3D model/design for an ad-
ditive manufacturing [264, 69] company needs to be obtained from a database of
millions of other 3D objects, a compact, concise, and robust 3D representation (3D
descriptor), including an efficient shape retrieval method is needed to obtain the
correct results in a time-effective manner. A key component of such retrieval meth-
ods is estimating a shape descriptor that can robustly represent shape information,
which should represent the underlying surface structure. Features, i.e. geometric
properties, or physical measurements, are extracted from the surface of a given 3D
object locally (for local shape descriptors), globally (for global shape descriptors),
or both for hybrid shape descriptors on which this study concentrates.

The process of developing appropriate shape descriptors for efficient matching,

1



3D Shape Description, Indexing, Matching and Retrieval

retrieval and classifiction basically constitute a ’3D shape search’ problem. Also,
in CV, Computer Graphics (CG), Pattern Recognition (PR), and other related dis-
ciplines, measuring the (dis)similarity between 3D objects, including developing a
shape descriptor that is generalizable across a wider range of datasets, are some
common research issues regarding objects classification, recognition, detection, and
retrieval tasks, etc. However, searching for a particular 3D object from an enor-
mous collection of 3D objects (3D repository) can be an incredibly challenging and
painstaking process, especially when the collection is un-organized into classes or
categories. Even if classification or categorization of objects are enabled for 3D
repositories, it is still difficult to find a query object within a category, especially
where the number of 3D objects within that category is large. A number of open
problems associated with 3D shape retrieval have not been satisfactorily addressed.
One of such problems is finding a concise representation of 3D shapes [54], but
majority of the existing 3D retrieval algorithms and matching techniques are too
complex, computationally expensive, or not sophisticated enough to accurately de-
scribe 3D shapes. A widespread problem remains that of semantic gap [79, 116],
which is concerned about the difference between representation of extracted fea-
tures from 3D shapes and their actual visual perception. The semantic problem
involves a collection of smaller problems, and ongoing research effort has been to-
wards resolving these. To address the 3D shape search or shape retrieval problems,
the problem of creating a concise representation of 3D shapes must first be solved,
which involves developing a concise, robust (i.e. highly discriminating) and efficient
shape descriptor to accurately represent 3D objects. A shape descriptor, however,
is a compact mathematical description of a given 3D object, often represented by
a vector, a graph, or real numbers, in such a way that its complexity is much less
than its corresponding original 3D representation (see Section 2.3 for further details
regarding 3D shape descriptors).

The motivation for this research is summarised in Section 1.2, and our main
goal is to build upon exiting techniques to propose a new set of compact, concise,
robust, and computationally efficient descriptor for 3D meshes and point clouds
retrieval. We begin by examining two broad approaches to 3D shape retrieval (data-
driven and knowledge-based, described in Section 2.5), and adopt the knowledge-
based approach considering that it does not require large training dataset or high
computing power to succeed. Next, we reviewed a wide range of knowledge-based 3D
shape descriptors/retrieval methods, where the statically-based approach is found
to be the most popular and convenient to implement considering its ability to reduce
3D objects (dis)similarity into merely histograms comparison. Statistical descriptors
also produce highly impressive results in 2D/3D objects detection, classification, and
retrieval tasks.

In this thesis, we propose a number of statistically-based 3D shape descriptors
that support efficient indexing and matching of rigid and non-rigid 3D objects (for
rigid shapes, the distances between points in different coordinate systems will not
change, while non-rigid shapes are subject to affine transformations from one co-
ordinate system to another). First, as part of our research contributions, a novel
statistically-based local 3D shape descriptor called the Augmented Point Pair Fea-
ture Descriptor (APPFD) is proposed, which is robust and computationally efficient.
It describes the geometry of local surface patches around key points for 3D mesh and
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point cloud data using minimal number of sample points from their surfaces. Sec-
ondly, considering that the APPFD is a local descriptor, which is most suitable for
non-rigid 3D objects, assuming the local patterns extracted will not change signifi-
cantly from the query shape to the database shape (i.e the shape in the database),
we propose two variants of the Hybrid Augmented Point Pair Signature (HAPPS),
to further improve the overall performances and robustness of the APPFD, includ-
ing providing invariance to rigid objects. The first variant, HAPPS-1 involves the
combination of the APPFD and a global Histogram of Global Distances (HoGD)
descriptors, while the second variant, HAPPS-2 combines the APPFD with a global
Multi-view 2D Projection (M2DP) [80] descriptor. Through extensive experimen-
tal evaluations, we demonstrate that the APPFD and the HAPPS retrieval meth-
ods have excellent retrieval accuracies on several benchmark datasets. However,
although the APPFD and HAPPS methods produces shape signatures that are con-
cise to store, easy to index, and straightforward to match, the lengths of their final
feature-vectors (fv) are very high-dimensional, which takes longer time to match.
Consequently, further investigation is carried out, into a potential technique that
could further shorten the length of the APPFD and/or the HAPPS fv to produce
a more compact final descriptor without losing retrieval accuracies. Finally, we in-
troduce an improved method called the Agglomeration of local APPFD with Fisher
Kernel and Gaussian Mixture Model (APPFD-FK-GMM), with the goal of aggre-
gating d-dimensional local descriptors into a single vector representation.

Currently, to the best of our knowledge, there is hardly a knowledge-based 3D
shape descriptor that has been tested across a wide variety of 3D datasets (each of
which presents a unique retrieval challenge to the shape descriptor), while record-
ing excellent retrieval performances across board. Besides, many of the existing
knowledge-based 3D shape descriptors (defined in Section 2.5.2) require 3D meshes
and point cloud with remarkably high Level-of-Details (LoD) for optimum perfor-
mance, which negatively impacts processing speed and storage. The knowledge-
based, statistical 3D shape retrieval methods we propose in this thesis are robust
across several 3D benchmark datasets, including having the ability to distinguish
between similar and dissimilar 3D objects. Our methods use comparatively incredi-
bly low number of surface points sample (i.e. low LoD), unlike other methods which
require objects with high LoD.

Evaluating the performances of one or more 3D shape descriptors across different
datasets is a challenging task. Thankfully, the annual 3D SHREC provides a frame-
work to systematically evaluate the performances of 3D shape retrieval methods (i.e.
3D shape descriptors) on a variety of 3D benchmark datasets, each of which present
unique retrieval complexities, and some consisting a mixture of rigid, non-rigid,
watertight as well as non-watertight 3D models. The SHREC framework allows for
unbiased comparison of a given shape descriptor against several others (e.g. state-of-
the-art descriptors) for a particular retrieval challenge or task. Following extensive
retrieval experiments, we adopt several standard Information Retrieval (IR) per-
formance evaluation metrics, such as the Nearest Neighbour (NN), First Tier (FT),
Second Tier (ST), E-measure (E), Discounted Cumulative Gain (DCG), mean Aver-
age Precision (mAP), normalised Discounted Cumulative Gain (nDCG), Area Under
Curve (AUC) and Precision-Recall Curve (PRC) plots, to compare the performance
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results (i.e. retrieval accuracies) of each of our proposed methods against several
other state-of-the-art methods, using several different 3D benchmark datasets pro-
vided by SHREC retrieval challenges, up to the most recent ones. The APPFD
method was evaluated against two different datasets: SHREC’12 and SHREC’14
datasets, which contains 1200 and 8987 3D objects, respectively. Next, we evalu-
ate the HAPPS method against six different datasets: the SHREC’10, SHREC’11,
SHREC’17, SHREC’18, SHREC’19, and SHREC’20 protein datasets, containing
200, 600, 100, 2267, 5298, and 588 3D objects, respectively. Finally, we adopt four of
the most recent SHREC datasets, which are the SHREC’17, SHREC’18, SHREC’19
and SHREC’20 relief (with 220 3D objects) datasets to evaluate our APPFD-FK-
GMM method. In each evaluation phase, we provide qualitative and quantitative
comparisons of our methods’ retrieval performances against several other state-of-
the-art methods for that particular retrieval challenge/dataset. Additionally, we
investigate effects of different (dis)similarity metrics on the overall performance of
shape descriptors by comparing the results of five distance metrics (Cosine, Eu-
clidean, Earth Mover’s Distance (EMD), Squared-Euclidean Distance (SED) and
Kullback-Liebner Divergence (KLD)) with each of our proposed 3D shape descrip-
tors and finally adopts the metric with the best overall performance accuracies for
that descriptor.

The results of all experimental evaluations are presented in this thesis, which re-
veals outstanding retrieval performances of all our proposed methods, compared with
several other state-of-the-art methods for each 3D shape retrieval challenges/task
that the performances of our methods are evaluated against. We demonstrate the su-
periority of the HAPPS-1 method over several other state-of-the-art methods on the
SHREC’18 protein dataset. In several other experimental evaluations, our method
still outperforms many of the state-of-the-art methods, including ranking top 2-3
in most cases, competing very closely with the overall best performing methods for
each of those retrieval challenges and datasets. Intuitively, 3D surface with holes
or other defects would result in the features or underlying geometry of that portion
of the local surface not to be accurately captured, represented,or described, thereby
adversely affecting the robustness/descriptiveness of a typical retrieval method (de-
scriptor) applied to such defective surface. Generally, however, the APPFD method
is robust to objects with holes (i.e. with large missing surface parts) and noise, and
we demonstrate that both the APPFD and HAPPS methods are highly discriminat-
ing, efficient, and capable of effectively representing 3D point clouds and triangular
meshes. In addition, we demonstrate the high performance of the APPFD-FK-GMM
method, which rivals both the APPFD and HAPPS methods, even with about 98%
reduction of the final fv from these methods, thus providing both robustness and
compact representation of 3D objects for easier indexing and faster matching. A
typical approach to 3D shape retrieval is to compute a compact representation (de-
scriptors) for all database 3D objects, which are then matched to determine the
(dis)similarity between any two objects. Our approach is capable of approximating
the performance of a standard metric for 3D objects matching, including provid-
ing the needed robustness and efficiency in a real-time 3D shape retrieval system.
Overall, the standard approach to the 3D shape search problem is the adoption of
a 3D-Content-based Retrieval System (3D-CBRS), fully described in Section 2.2.4.
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1.2 Motivation

Originally, this research is motivated by the following real-life scenario and prac-
tical need. When we consider the time and cost of designing a 3D model for any
given product by a parts manufacturing company who is into product design, for in-
stance, there is need to ascertain whether the product had previously been designed
by searching existing archive for the model or create a new one. To search, there
must be some sort of database that stores previous models for the company and a
search engine, which provides the functionality to find and re-use existing models
to accelerate new products design and overall production processes. By implication,
the company would be able to save a huge amount of time and cost. However,
assuming the 3D model designs of some products already exists and the company
has no effective means of checking or searching for previously designed/stored mod-
els but have to re-design or re-model such product(s), the result could be a huge
financial cost and time for the company if every product design must follow such
trend, considering the expenses for designing a single model. For example, if it costs
£10 each to develop a single model, a database including 1 million models which
10% of them are redesigned would amount to a total cost of £1m, which could be
saved through 3D shape retrieval and search engine implementation. Alternatively,
suppose there is a large database of 3D models containing the company’s product
design, and a 3D search engine already in place, what effective 3D search strat-
egy, methods, and techniques exists or could be implemented to retrieve desired 3D
models? The scenario described here became our primary motivation for embarking
on this research, and this thesis addresses these concerns by leveraging on existing
techniques to propose efficient 3D shape retrieval methods and techniques for feature
extraction, and robust signatures for 3D representation which rivals state-of-the-art
methods.

In addition, considering the wide application areas of 3D shape retrieval methods
and associated techniques (see Section 1.6), including the numerous attention at-
tracted by 3D content-based shape retrieval (3D-CBSR) [152, 169, 48], following the
successes of 2D Content-based Image Retrieval (CBIR) [246, 124, 189] over the past
two to three decades, we found that each sub-process of the overall 3D-CBRS, such
as data pre-processing, feature extraction, shape descriptor computation, indexing
and matching (see Section 3.1) has need or chances for improvements. Essentially,
the overall outcome of any Content-based Shape Retrieval (CBSR) system depends
on the computational accuracies and efficiency in each sub-stage of the system. For
example, while colour may be a particularly good feature for 2D images, extracting
such feature to represent a 3D surface would result to an incredibly low discrimi-
nating feature to represent the 3D object, which would adversely affect the overall
descriptiveness of the final shape signature for such object. Consequently, any CBSR
system adopting such retrieval algorithm would have poor overall performances. In
this thesis, we are further motivated to learn about the most effective methods and
techniques that could address these challenges we have identified, and to propose
improved alternatives to addressing them.
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1.3 Research Aim and Objectives

The primary goal of this research is to further investigate the 3D Shape search prob-
lem explained in Section 1.1 (which basically involves the process of developing an
appropriate 3D shape descriptor and matching method for efficient retrieval and
classification of 3D objects), with some of the open challenges associated with 3D
shape description, indexing, matching and retrieval, and be able to develop a new
set of compact/concise, accurate, robust and computationally efficient 3D shape re-
trieval methods, with the aim of providing improvements (or alternatives) to existing
methods, for efficient 3D CBSR framework, given a selection (i.e. ’benchmark’ ) of
rigid or non-rigid 3D triangular meshes and point clouds.

The most important aspect of any CBSR framework is the development of an effi-
cient and accurate shape signature (descriptor), which is an abstraction of the shape
used to semantically represent it. Shape descriptors are sometimes also referred to
as feature-vectors (fv), and are needed for matching, retrieval, and classification of
similar objects, given a query object. However, computing a shape descriptor typi-
cally follows a number of steps. The most crucial step is the extraction of features
from the surface of the 3D shape beside the pre-processing steps, such as smoothing,
normalization, etc. Efficient and accurate 3D descriptors (i.e. signatures) are those
which are (i) robust against noise, clutter, occlusion, redundant parts, holes/defects,
(ii)concise/compact, (iii) accurate, and (iv) efficient/easy to compute - see also the
characteristics of appropriate shape descriptors in Section 2.3.1. Such signatures
are also invariant under rigid, non-rigid, and affine transformation (rotation, trans-
lation, scaling). Intuitively, the accuracy (i.e. matching and retrieval results) of a
3D-CBRS is directly proportional to the accuracy of and robustness of the shape
signature used, including the matching technique adopted. However, shape signa-
ture accuracy and robustness depend on the expressiveness of the extracted features
from 3D surfaces being described. In view of these, this thesis considers the following
research objectives:

� Development of concise/compact, accurate, robust, and efficient 3D shape rep-
resentation (descriptor) to address the 3D Shape search problem and facilitate
3D objects matching, retrieval and classification.

� Development of a 3D shape descriptor or retrieval method that is widely appli-
cable, and generalisable across diverse and wider range of datasets and retrieval
problems.

� Addressing (i.e. improving upon) some of the research gaps in existing research
work, which include computational complexity, ambiguity, and accuracy of
shape retrieval methods.

� Propose a retrieval method that is capable of effectively and mathematically
represent 3D mesh and point cloud with the lowest number of vertices and
points as possible, while still meeting the robustness and descriptiveness cri-
teria of an effective 3D shape descriptor.

� Investigate theoretical aspects of practical importance in 3D shape represen-
tation, pre-processing, feature extraction, indexing, matching, retrieval, and
classification.
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� Finally, provide a simple and focused review of the knowledge-based 3D shape
descriptors, its various categorisation and computational techniques, includ-
ing highlighting the major difference between these kinds of descriptors and
the data-driven shape descriptors, with the goal that the reader (i.e. future
researchers) would be adequately informed to make a decision regarding the
choice of algorithms for their available dataset and computer vision problems.

1.4 Research Questions

Considering our primary research goal and the need to tackle the 3D Shape search
problem defined in Section 1.3, other numerous concerns highlighted in Section 1.1
(Background), Section 1.2 (Motivation), and Section 1.3 (Research Aim and Objec-
tives) also need to be addressed. This research, therefore, considers the following
research questions:

i. Several existing 3D shape descriptors are known for their robustness (i.e. bet-
ter performance) on specific retrieval or classification problem. What are the
chances and computing cost of developing a robust, compact, and computationally-
efficient 3D shape descriptor, that can generalise well (i.e. with incredible per-
formance accuracy) across a diverse range of 3D datasets/retrieval challenges?

ii. Considering the overly popular deep learning (i.e. data-driven) approaches and
the highly robust 3D shape retrieval methods they propose, for solving 2D/3D
computer vision related problems, to what extent are the retrieval and classi-
fication performances of the traditionally hand-crafted (i.e. knowledge-based)
methods relevant, compared to those obtained by deep learning methods?

iii. Given that there are many useful approaches to 3D shape descriptors under the
knowledge-based category, which is the most applicable/appropriate approach
for developing a concise, accurate, robust, and computationally efficient signa-
ture that is widely applicable?

iv. Given a 3D surface with high LoD (having incredibly large number of surface
points), the intricate local surface, including the overall global structure and
topology of the object would be better represented than a surface with low LoD,
which, on the other hand, enhances storage and processing speed. However,
what is the possibility of robustly and effectively describing a 3D surface using
extremely low number of points, and still achieve high overall retrieval and
classification performances?

v. Does the overall performance of a given shape descriptor depend on the choice
of shape similarity metric used, and if true, how much bias does the metric have
on the robustness or performance of a 3D shape descriptor?

1.5 Thesis Originality and Contributions

Essentially, this section highlights the originality of this thesis and our research work
and presents a summarised overview of the contributions that we have made, con-
sidering our motivation (see Section 1.2) and primary goal (see Section 1.3) for this
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research. However, the reader is referred to Section 6.2 for additional information
regarding a review of our thesis contributions.

i We introduce a novel 6-dimensional local Augmented Point Pair Feature (APPF),
which consists of a new 2-dimensional local feature and a 4-dimensional local
point pair (Surflet-pair) feature [252] (see Section 4.2.1). The APPF encodes the
physical characteristics (i.e. geometrical properties) of a local surface region, or
Local Surface Patch (LSP), and is used to improve the overall performance of the
surflet-pair feature, for a more accurate and robust representation/description
of 3D meshes and point cloud surfaces. Unlike the latter, our 2-dimensional LSP
feature, does not require surface normals, making its computation extremely
fast, efficient, and straightforward. In addition, extra computational steps are
not required for our 2-dimensional feature extraction from that of the surfle-
pair feature extraction. Detailed description of this contribution (i.e. APPF) is
presented in Section 4.2.1 and Figure 4.4.

ii The feature extraction sub-process for our methods rely on key points, rather
than all the points from the 3D surface. We adopt the voxel-grid downsam-
pling approach, instead of the conventional methods. After the voxel-grid down-
sampling algorithm has been applied to each 3D point cloud object, we observe
that for some model, the down-sampled points are not located directly on the
surface of the point cloud (see Figure 3.19a). Using k-NN algorithm (where k=1)
we develop a simple and quick method that searches each original point cloud
surface for all the 1-closest points to the down-sampled points and return these
as the actual down-sampled points. The outcome is visualised in Figure 3.19b,
where all the down-sampled points are now properly located on the surface of
the point cloud. This process is computationally very efficient considering that
the k-NN algorithm is only searching for one point per iteration, and has con-
tributed to the overall high performance of our final retrieval and classification
method.

iii Following the APPF in (i), we propose and apply a novel statistically-based
3D shape representation called the APPFD (see Section 4.2.1), which involves
bucketing each feature dimension of the locally extracted APPF into a multi-
dimensional histogram, using up to 8 bins (i.e. b(APPFD) = 8) in each feature
dimension. The APPFD have been widely applied to 3D shape retrieval tasks
(see Section 5.4), where it records some great overall retrieval performances,
which in most cases, outperforms or performs just as well as several other state-
of-the-art methods for the retrieval challenges or tasks.

iv We also introduce another novel statistically-based global shape descriptor called
the HoGD, which is very intuitive, computationally very efficient, and easy to
compute, thus capturing the global structure of 3D objects into a 1-dimensional
histogram (see Section 4.2.2). The goal of proposing such descriptor is to combine
it with the APPFD in order to complement the later and produce a resultant
hybrid 3D retrieval method capable of describing both local and global properties
of 3D objects, for overall improved performances.

v We propose and apply a novel hybrid 3D shape descriptor called the HAPPS
(see Section 4.2.3), which combines the descriptive powers of both the local
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APPFD and the global HoGD 3D descriptors to provide a more effective rep-
resentation of 3D surfaces. An immensely popular real-world 3D Shape search
problem is the protein shape retrieval and classification challenges [157, 122, 32,
33, 123, 65]. We then applied the HAPPS method for the SHREC’18 dataset
and SHREC’20 retrieval tasks. Experimental results demonstrated the superi-
ority of the HAPPS-1 method over every other state-of-the-art methods for the
SHREC’18 dataset [175]. In the SHREC’20 retrieval task, the HAPPS-1 and
HAPPS-2 methods also demonstrated exceptional overall retrieval performances,
outperforming several other state-of-the-art methods, as well as rival the overall
best performing state-of-the-art method for that retrieval challenge [122]. In ad-
dition, the HAPPS method also performs optimally on several other benchmark
datasets (see Section 5.3).

vi We develop a new highly efficient method for 3D shape representation, called
APPFD-FK-GMM, where we harnessed the benefits of the Fisher Kernel (FK)
and Gaussian Mixture Model (GMM) to agglomerate our locally computed
APPFD into a more compact/concise, robust, and accurate single global de-
scriptor. Experimental results with the APPFD-FK-GMM retrieval method is
first contributed towards shape retrieval of 3D surfaces with similar geometric
relief [231]. Although poor overall performance is recorded for this contribu-
tion, it did however outperform at least one other state-of-the-art method for
that retrieval challenge. Subsequent experimental results (Section 5.5) of the
APPFD-FK-GMM method on 3 other most recent benchmark datasets demon-
strates its exceptional retrieval performances, where it outperforms several other
state-of-the-art methods, including the HAPPS method.

vii To the best of our knowledge, our work is the first to consistently evaluate its
shape retrieval methods on several standardised 3D shape retrieval benchmark
datasets by SHREC (see Section 5.2.1), which is developed with the primary
goal of testing the robustness and performances of different 3D shape retrieval
algorithms. It is important to mention that each of the SHREC retrieval chal-
lenges pose distinct levels of retrieval challenges to shape retrieval algorithms.
The respective challenges for each SHREC dataset is summarised in their as-
sociated sub-sections described under Section 5.2. This means that a retrieval
method or algorithm which can maintain great evaluation performance across
different datasets is proven to be exceptionally reliable and robust against sev-
eral shape retrieval issues. We evaluated our retrieval method across several
SHREC dataset and it recorded very high-performance evaluation. We there-
fore conclude that, with very minimal tweaks/improvements, the methods we
propose in this thesis are suitable for several other computer vision tasks, such
as detection, classification, etc. In summary, the 3D shape descriptors (retrieval
methods) we have proposed in this thesis have been applied to address diverse
range of 3D shape retrieval problems and task, thus contributing the most to sev-
eral global SHREC retrieval challenges and tasks for 3D objects (see Chapter 4).
Through series of thorough experimental evaluation and analyses, the retrieval
performances of our methods have been compared against a substantial number
of other state-of-the-art 3D shape retrieval methods, for each of the datasets we
tested our methods against.
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viii In Section 2.3 through to Section 2.6, we provide some useful and updated review
of 3D shape descriptors, highlighting the major differences between data-driven
and knowledge-based 3D shape descriptors, their advantages and disadvantages
in computer vision applications, and the choice of the knowledge-based over the
data-driven approach as in this thesis. The aim of this review is to provide a
clear roadmap for new researchers in this field to make quick decision regarding
retrieval methods to adopt for their retrieval experiment.

1.6 Research Relevance and Application Areas

Presently, the ability to retrieve existing 3D objects from a 3D object database helps
to facilitate tasks for professionals in several application contexts, allowing them to
quickly obtain desired shapes without spending much time re-modeling existing ones.
In addition, several content-based 3D shape retrieval techniques and algorithms are
widely applicable to other computer vision tasks as well as in computer graphics,
digital geometry processing, and pattern recognition communities. For example,
extracted 3D features or shape descriptor computed for 3D shape retrieval task can
as well be employed for 3D shape classification, 3D object recognition (i.e. 3D-face
recognition), 3D object detection, or 3D registration and alignment tasks.

Generally, the application contexts for which the techniques and methods imple-
mented in this research are relevant include:

� Bioinformatics (Biology): Proteins can be described as non-rigid surfaces
representing their solvent-excluded surface [157]. Since 3D structures of pro-
teins are better preserved than their sequences, it is inadequate to compare
amino acid sequences of the proteins by sequence comparison alone, because
it would be impossible to detect the similarities between any two homolo-
gous proteins by only comparing their sequences, therefore detection of partial
dis(similarities) between related multi-domains protein surfaces is of main im-
portance in drug discovery pipelines, adverse drug event prediction and in the
characterization of molecular processes and diseases.

� Entertainment, Games and Augmented Reality: There has been rapid
development and interest in 3D games lately. The video game industry uses 3D
models as assets for computer and video games. The movie industry uses 3D
models as characters and objects for animated and real-life motion pictures.
Augmented Reality (AR) overlays digital content and information onto the
physical world – as if they exist in the physical world. In AR, 3D models are
integrated in real time, with actual or scaled size in a particular surrounding
using the camera. Similarity search for existing 3D models databases enable
reuse and adaptation of 3D models for game development, movie, and enter-
tainment industry in general, thus reducing production costs, while speeding
up its production delivery.

� 3D Digital Catalogue and Cultural Heritage: It is now possible to take
a virtual tour of several museums in the world and get a 3D view of thousands
of artefacts displayed at these museums. For example, the Isabella Stewart
Gardner Museum [165] has a virtual 3D tour called “Thirteen Works: Explore
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the Gardner’s Stolen Art”. The tour allows for virtual tour of the museum
while learning about the thirteen pieces that were stolen in the early 1990s.
MyMiniFactory [167] platform, for example, also has the largest collection of
3D scanned statues and artifacts from around the world. The digitized scans
of these 3D models are freely available and widely used by educators, artists,
and the 3D printing community. Many other digital catalogues exist also,
such as Command module Columbia (CM-107) [9], etc. However, effective 3D
searching and retrieval techniques, and methods are therefore required to be
able to sieve through these large collections of 3D models.

� 3D Medical Image Analysis: Detailed 3D models of glands and organs,
which may be created with multiple 2D image slices from Magnetic Reso-
nance Imaging (MRI) [248] or Computed Tomography (CT) [30] scan, are
now widely used in the medical industry for disease detection, prevention, and
control. Furthermore, 3D volume data are often generated in medical imaging
applications using MRI scans, and a possible application lies in automatic di-
agnosis support by analysis of organ deformations, by matching actual images
with medical database of known deformations [28].

� Engineering and Architecture: In architecture, it has now become more
convenient to demonstrate proposed buildings and landscapes using 3D mod-
els, instead of traditional, physical architectural models. In computer-aided
design (CAD), manufacturing (Computer-aided Manufacturing (CAM)), and
engineering (CAE), 3D models are used as designs of new components, such as
mechanical parts, automobile, and other structures from original vehicle parts.
Consequently, Architects, Technicians and Engineers in architecture industry
and manufacturing companies need to be able to exploit the large CAD, CAM
and CAE model databases during their design and manufacturing processes.
It is possible with human intervention to inspect contents of these databases
manually and physically, but the processes are awfully expensive and time con-
suming. Development of retrieval methods and search algorithms to automate
some of the process is therefore important, in order to improve productivity.

Other areas of application include: Agriculture, Security, Industrial inspec-
tion [183], Autonomous Driving and Robot Navigation (i.e. loop closure detec-
tion [80] among several others).

1.7 Research Outcome

In this thesis, we develop and apply new methods to address the 3D Shape search
problem by separately considering the challenges of descriptor robustness versus
compactness, and ease of computation. Our methods are capable of accurately rep-
resenting 3D surfaces in a concise (compact) and descriptive (robust) manner, by
using comparatively incredibly small number of points sample (between 3, 500 to
4, 500 points), including a non-complicated shape matching technique and distance
metrics. In addition, results of extensive experimental evaluation demonstrates that
our methods generalise very well across several different ’benchmark’ datasets and
domains. Specifically, the contributions of this thesis to the area of 3D shape match-
ing, retrieval and classification are manifold as already outlined in Section 1.5.
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1.7.1 Overview of Methods and Results

To avoid unnecessary repetition, we refer the reader to Section 6.3, where we present
a detailed review of the retrieval results (i.e. performances accuracies) for each of
the 3D shape retrieval method we propose in this thesis.

1.8 Organization of Thesis

This thesis presents our entire research work, which is organised into six chapters.
This chapter already provides a general introduction regarding the work involved in
this research with adequate background and overview of our research, including aim,
objectives, as well as a summary of our research contributions. This chapter also
explain real life scenarios where our research outcome could be applied, which forms
part of our research motivation. The remaining parts of this thesis is organised as
follows:

Chapter 2: In this chapter, we begin by providing definition to some of the terms,
techniques and functionalities which are most relevant to this thesis and research
work. Next, we give an insight into a few of the available formats that 3D objects are
presented including types of 3D objects representation, followed by classifications
of 3D objects. This chapter also provides detailed review of 3D shape descriptors
(i.e. retrieval methods), including the types, classification, their advantages, and
disadvantages. Two broad approaches to 3D shape descriptor computation: the
data-driven approach and the knowledge-based approach are discussed also, and we
reveal how the knowledge-based approach plays a significant role to the success of the
now extremely popular data-driven approach, which largely depends on hand-crafted
low-level features and to some extent, experts’ knowledge. The characteristics of
appropriate shape descriptors are also highlighted here. Finally, we conclude this
chapter by providing a concise review of statistically-based 3D shape descriptors,
under the knowledge-based category, which is the basis for the methods we propose
in this thesis. However, we also discuss some of the challenges that different dataset
presents to 3D shape retrieval algorithms and insights into how defective data can
be handled.

Chapter 3: We dedicate this chapter to most of the implementation techniques
needed for our proposed 3D shape retrieval and classification methods. Here, we
provide in-depth description for our research strategy, where essential techniques and
issues, such as data pre-processing, point cloud sampling, feature extraction, 3D key
points detection/determination, as well as shape descriptor construction, indexing,
matching and the different types of (dis)similarity metrics implemented in our work,
are addressed. We adopt and implement about five different (dis)similarity metrics
for matching of our proposed 3D shape descriptors - overview of these metrics are
provided in this chapter.

Chapter 4: This chapter essentially focuses on our research methodology, which
involves the major contributions of the work propose in this thesis. Our proposed
methods for describing 3D objects (meshes and point clouds) are presented, which
include all the three broad classifications of shape descriptors (global, local, and
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hybrid) described in Section 2.4. We provide detailed background to each of the 3D
shape descriptors (i.e. retrieval methods) we propose in this thesis. Performance
evaluation is an essential part of any IR system or algorithm, which allows us (i.e.
researchers) to assess how well a particular algorithm or retrieval method performs
on a particular dataset and retrieval problem. In this chapter, we provide adequate
information regarding the evaluation techniques we have adopted in this thesis,
where we describe the tools, terminologies and processes involved, as well as the
different performance evaluation metrics used to measure the overall performance
of different methods.

Chapter 5: This is another especially important chapter of this thesis, where we
present experimental evaluation results and discussions, regarding all our proposed
methods described in the previous chapter. Datasets are needed to evaluate the per-
formances of these retrieval methods. This chapter first presents and describes up
to ten different benchmark datasets used in this thesis to evaluate the performances
of our methods, and highlight a few principal issues regarding these datasets, in-
cluding the retrieval challenges that each of these datasets present to shape retrieval
algorithms. The evaluation strategy we use is by applying each of the methods
we propose on at least two different datasets. For a given retrieval method and
a dataset, we run series of experiments using different parameters and/or distance
metrics, where the qualitative and quantitative results of these different parameter
settings are presented and analysed. We then compare the retrieval performances of
this method to the performances of several other state-of-the-art methods for that
dataset and further provide comparative analyses. These processes are repeated for
all other datasets and methods described in this thesis. We conclude the chapter
with a review/summary of all the experimental evaluations performed in the various
sub-sections of the chapter.

Chapter 6: This chapter provides a summary to the entire work presented in this
thesis. We begin the chapter by providing an overall review of the entire thesis,
followed by a concise review of the contributions we have made, which include con-
tributions from each of the 3D shape retrieval methods we propose in this work.
Next, we provide the key summary of the retrieval performances of each of our pro-
posed methods. We then conclude this chapter by providing some of the findings of
this research and points the reader to potential future research directions.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter begins by introducing the concepts, techniques, and processes which are
most relevant to this thesis and our research work, such as 3D object representations,
3D-CBRS, 3D shape search engine, 3D shape descriptors, distance/(dis)similarity
metrics, etc. 3D objects are available in many different representations and file for-
mats, each having different data structure which constitutes various challenges to
shape retrieval algorithms. This chapter provides overview of 3D object representa-
tions, including detailed review of the two most popular ones: 3D triangular meshes
and point cloud representations, including their respective suitability for certain CV
and PR tasks. Their advantages and disadvantages are also considered in the review,
including the reasons why we fully adopt these representations for our experimental
evaluations.

Two broad classifications of 3D objects are presented, which are: rigid and non-
rigid 3D models, including the two major deformations or defects which are present
in any of these classes of 3D objects (i.e. water-tight 3D objects and non-water-tight
3D objects). We discuss the effects of each of these classes and defects on shape
retrieval algorithms because they play a key role in feature extraction and shape
descriptor performances of 3D objects. For example, the algorithm developed to
process rigid, water-tight 3D object would certainly fail to produce the same results
when applied to non-rigid, non-water-tight 3D objects, etc. In addition, we provide
a concise and detailed review of 3D shape descriptors (retrieval methods) in the lit-
erature of the past two to three decades, including an overview of each of the three
broad classifications of these descriptors (global, local and hybrid), their advantages,
and disadvantages. Alternatively, two broad perspectives (approaches) regarding 3D
shape descriptors computation are thoroughly examined: (i) Data-driven approach
and (ii) Knowledge-based approach, to 3D shape descriptors or retrieval methods.
However, our research work completely adopts the knowledge-based approach, and
we provide a more detailed review of this approach, including justification for adopt-
ing this approach.

Further in-depth analyses of several other sub-categories of 3D shape descrip-
tors within the knowledge-based approach, including the statically-based 3D shape
descriptors (which is the basis for our thesis and research work) are provided in
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this section. We reveal how the knowledge-based approach plays a significant role
to the success of the now extremely popular data-driven approach, which largely
depends on hand-crafted low-level features and to some extent, experts’ knowledge.
Finally, we conclude this chapter with an overview of 3D retrieval challenges (i.e.
highlights of how various abnormalities in datasets, such as holes, degeneracies, and
duplicates in vertices, faces, and edges, etc.) affect shape retrieval algorithms due to
certain factors: dataset representations, object’s benchmarks design, data sources
or capturing devices used to acquire the 3D models.

2.2 Definition of Terms

There are core terminologies, techniques, naming conventions and processes, etc.,
which are most relevant to this thesis and our research work. In this section, we
would try our best to provide detailed introduction, definitions, and description of
these key aspects.

2.2.1 3D Object Representations

It is particularly important to consider objects representation when developing solu-
tions for 3D shape retrieval and other CV applications involving three dimensional
objects. This is because the design of shape analysis algorithms strictly depends on
the input data-type or representation, whereby the algorithm designed to process
3D triangular meshes, for example, would fail to work for another type of represen-
tation, such as voxel representation of the same 3D object. Besides, 3D objects can
be represented in several different ways, and finding an appropriate representation
for shape that is amenable to its surface matching is still an open research issue in
computer vision [95]. In this section, we provide an overview of two most common
types of surface representations for 3D objects.

Unlike 2D images which have a rather unique representation of (n x n = n2) 2D
grid of picture elements (i.e. pixels) containing grey scale or colour values, many
different representations exist for 3D shapes making them more difficult to process.
It is therefore important to discuss the various forms by which 3D shapes are com-
monly represented in CG; highlight the advantages and disadvantages of each form
of 3D representation for different CV/CG applications; and discuss the preferred
choice of 3D representation for this research study.

3D objects are basically represented as polygonal meshes (triangular meshes) or
point clouds. Variety of other possible representations exist, such as parametrized
surface patches (Non-uniform Rational B-spline (NURBS) surfaces [89, 194]), and
Constructive Solid Geometry (CSG) (voxel-grids [262]), etc. However, polygon sur-
faces [259, 222, 233, 12] are the most common surface representation. Figure 2.1
depicts the 3D model of the famous Stanford bunny in four possible representations:
mesh, point cloud, voxels and NURBS. Many other representations exist [247], but
we mention only these four, for brevity. Because certain CV applications require
specific kind of 3D format, it is possible to convert between these forms of object
representations with the help of freely available software tools, such as Trimesh [47],

Ekpo Otu Chapter 2 15



3D Shape Description, Indexing, Matching and Retrieval

Meshio [207], Open3D [279], Visualization ToolKit (VTK) [108] libraries, etc. How-
ever, our thesis implementation relies only on the polygon mesh and point cloud
object representation. We provide further details regarding 3D mesh, point cloud
and voxel representations in the next sub-sections. Since NURBS surfaces are pa-
rameterised, outside the scope of our research implementations, and not commonly
used, we do not include this in further discussions. However, the reader is referred
to [89, 194], for more details regarding the NURBS surface representation.

(a) Mesh (b) Point Cloud (c) Voxel (d) NURBS

Figure 2.1: Four possible surface representations of the Stanford bunny 3D
model. (2.1a): 3D triangular mesh, consisting of vertices and edges (connectiv-
ity). (2.1b): 3D point cloud, consisting of unstructured points in [x, y, z] Euclidean
space. (2.1c): 3D voxels grids, which is made up of volumetric pixels (cubes). (2.1d):
Non-uniform Rational B-spline (NURBS) 3D surface, which is exceptionally smooth.

3D Mesh Representation

Surface meshes are the general form of object representations because, given a suffi-
cient number of vertices, they can represent almost any object [97]. 3D meshes are
built up from simple primitives like points, lines and planes (i.e. faces). Represent-
ing 3D objects with a mesh is possible using either of the following functions:

� Implicit functions: f(x, y, z) = 0,

� Parametric functions: (x(u, v), y(u, v), z(u, v)), or

� Simple mathematical functions: z = f(x, y)

For any given 3D mesh, a variety of file formats, such as .obj, .off, .std, .ply,
.stl, .vtk and .wrl etc., exist for storing polygon mesh’s data structure, comprising
of vertices, faces, and edges (connectivity) information [259]. Other properties of
the mesh, like the unit normal normals, colours, and texture-coordinates for each
vertex can also be part of the data. The vertices property in a 3D mesh file in-
cludes coordinates of points in 3-dimensional space i.e. [vx, vy, vz] coordinates. The
faces property represents triplets of vertices that makes up each face of a triangular
mesh, and quadruplets of vertices for a quadrilateral mesh (quad mesh). However,
triangular mesh is the most suitable mesh representation for most computer vision
and graphics applications. The edge property is used to store connectivity that
exist between any two vertex coordinates that makes up the mesh’s surface. The
vertices, faces, and edges properties of a given 3D mesh can be dubbed as features,
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but the vertex coordinate is the most informative because it contains information
on topology and overall shape structure, and is the basis for which all other prop-
erties/features, like vertex normals, face normals, faces, edges, texture coordinates,
are derived.

Most 3D shape descriptors like Spin Images [96], Surflets-Pair relation Histogram
(SPRH) [252], etc. are designed to work with triangular meshes. Point cloud data,
on the other hand, mostly always contain only the [px, py, pz] coordinates of points
that forms the topology and structure of the 3D shape they represent. Besides
the points coordinates, a typical point cloud file, like the .pcd [141], may contain
other properties like points normals [nx, ny, nz], RGB colours, light intensity details,
moment invariants (j1, j2, j3) and viewpoint information, etc.

3D Point Cloud Representation

Point clouds are the raw output of many 3D scanning devices and sensors, such
as Microsoft Kinect [258], LiDAR [257]. They could also be output from camera
and photogrammetry software [208, 209]. Beside these three main sources, point
clouds can also be generated from triangular meshes using a process called mesh
sampling, thus point clouds and polygonal (triangular) meshes are the two main
representations for 3D data, and they are closely interlinked. For example, 3D
objects are represented using polygonal meshes with vertices and faces, but the
vertices alone could be interpreted as a point cloud and represents the underlying
surface geometry. Similarly, the points in a point cloud are likened to the vertices
of a mesh, through triangulation and surface extraction [14], and represent the
underlying surface of the 3D object.

3D Voxel Representation

Voxel (i.e. volumetric pixels) is a term used to represent a volume in 3D space,
similar to the word, pixel, which represents a picture element in 2D space. The
following explanation clarifies the concept of voxels. Basically, 2D and 3D computer
graphics are represented as vector or raster graphics. Considering 2D image, for
example, while mathematical equations are used to describe a 2D image represented
as vector graphics, array of color values are used to describe raster graphics, instead.
In 2D vector graphics, a vector with two components, p = [x, y] is used to described
each point of a line or a polygon, while three components vector, p = [x, y, z] is used
in the case of 3D vector graphics. Similar to 2D raster graphics, where 2D images
are divided into a number of evenly sized rows and columns, the volume in a 3D
raster graphics is divided into evenly spaced rows and columns in three different
directions (up-down, in-out, and left-right) which divides the 3D space into cubes
known as voxels (i.e. volume elements), each of which has a 3D coordinate within
the volume (see Figure 2.1c). Voxels are commonly used 3D representation for the
output data from an Ultrasound, CT Scan, and MRI, etc. However, one of the
disadvantages of this kind of 3D object representation is that they contain a great
deal more data and exponentially larger than 3D polygonal surfaces, which adds up
to a lot of memory. According to [260], a direct consequence of this difference is
that polygons can efficiently represent simple 3D structures with lots of empty or
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homogeneously filled space, while voxels are good at representing regularly sampled
spaces that are non-homogeneously filled.

Why Mesh and Point Cloud Representations

3D modelling software, such as Blender, Autodesk, SketchUp, FreeCAD, QGIS,
etc., are typically used for generating triangular meshes. In addition, triangular
meshes can as well be generated from a point cloud via surface reconstruction pro-
cess described in details in [14]. Basically, it is quite difficult to visually distinguish
triangular mesh vertices only from the point cloud, identification of neighboring
points is challenging and time consuming, visualization, extraction of surface and
estimation of its properties such as curvature is difficult, etc. However, while tri-
angular meshes are quite convenient for many computer graphic tasks, point clouds
are ideal for processing and extracting information from 3D objects. In line with
this, our implementations consider the extra steps of generating point clouds from
triangular meshes.

A few CV tasks, such as 3D shape registration [16] can succeed by utilising only
raw point cloud or mesh vertices as input to the Iterative Closest Point (ICP) al-
gorithm, various other tasks, such as shape retrieval relies upon a more compact
and descriptive form of input (signature or descriptors) to its matching algorithm,
rather than utilizing the 3D objects (raw meshes or point clouds) themselves. In
this thesis, we only depend upon two properties of a given 3D shape: (i) the [x, y, z]
coordinate of mesh vertices, v(x,y,z) or point cloud points, p(x,y,z) and (ii) their as-
sociated normal vectors or surface normals, n(x,y,z). Although, for mesh input, we
rely upon the vertices and faces properties, from which a point cloud representation
of the mesh would be generated, including estimation of their corresponding asso-
ciated normals. Therefore, the input to our retrieval algorithm is primarily [x, y, z]
coordinates of points (point cloud) and their associated normals. Basically, if the
input 3D objects are raw point cloud data, their normals property are not usually
given by default. We however derive these using the techniques in Section 3.3.2 (see
Figures 3.9, 3.10 and 3.11), depending on the representation of the input shape.
For instance, the feature extraction technique for our proposed APPFD (see Sec-
tion 4.2.1) strictly relies on 3D coordinates of points on the surface, and their cor-
responding normal vectors. i.e. {Ps, Ns}, where {Ps ⊂ pi : (px, py, pz)i, i = 1...N},
and {Ns ⊂ ni : (nx, ny, nz)i, i = 1...N}. N is the total number of points in the point
cloud, or vertices in the triangular mesh. Details of technique(s) for generating
(sampling) point clouds from meshes are provided in Sections 3.2.3 and 3.2.3.

2.2.2 Classification of 3D Objects

In the previous section, we discussed four common data structures used to represent
3D objects - mesh, point cloud, voxel, and surface representations. Naturally, every
3D object appears in a rigid or a non-rigid form. Similarly, considering any of the
above-mentioned representations of 3D objects, two aspects are important, which
are: (i) rigidity and (ii) fluidity. This means that 3D objects can either be rigid
or non-rigid. It is important to consider this classification for 3D objects when de-
veloping shape retrieval methods that would describe them, because performances
of 3D shape descriptors (retrieval methods) are different for each of these classes of
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dataset. For example, the Global D2 and A3 shape distribution histogram descrip-
tors by [174] are reported to perform better on rigid 3D models, yielding excellent
retrieval results but not on non-rigid models.

Figure 2.2: Two classes of 3D objects: Rigid and Non-Rigid, showing defective
(non-water-tight) and non-defective (water-tight) surface meshes. The Rigid and
Non-Rigid objects can be combined in a dataset to form the Generic 3D objects
dataset as shown. Images, courtesy [xx, yy, zz]

Our preliminary studies and experimental findings reveal that shape descriptors
which perform well with rigid objects did not do so with non-rigid objects and vice
versa. The experimental evaluations of the shape distribution histogram descrip-
tors [174] also confirms this. 3D shape retrieval tasks are therefore considered in
two broad perspectives: (i) the rigid CAD model retrieval, and (ii) the non-rigid
shape retrieval, The publications in [138, 227, 23] and [241] survey most of the
work in non-rigid 3D shape matching and retrieval, while the publications in [166,
145, 217, 274] and [37] reveal research efforts on rigid 3D CAD/CAM shapes re-
trieval. In addition, the third broad categorisation also exists, which is the generic
3D models retrieval. This involves the concept of developing 3D shape descriptors
and matching methods that are suitable for both rigid and non-rigid 3D models
aims to solve 3D retrieval challenges for the generic class of 3D models for either or
both. The SHREC 2012 [131] and SHREC 2014 [130] tracks were developed with
this in mind, for instance. These broad categorisations of shape retrieval problems
allow researchers the ability to evaluate how best their retrieval method performs
on the different broad classes of 3D models (rigid, non-rigid, and generic datasets),
which is very important for practical implementations in real-life scenarios where
3D objects contain a wide combination of both rigid and non-rigid 3D objects.

As illustrated in Figure 2.2, rigid and non-rigid 3D objects represented particu-
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larly as triangular meshes can be water-tight or non-water-tight. Water-tight meshes
are known to have minimal or no issues during shape analysis, data processing, and
feature extraction, etc. On the other hand non-water-tight objects pose lots of chal-
lenges to shape analysis algorithm and adversely affects the future extraction and
shape descriptor computation process. Non-water-tight 3D object simply includes
an object with missing surface parts (i.e. with small or large holes as shown in Fig-
ure 2.2), which does not enclose a volume, making it difficult for retrieval methods to
determine the complete structure or topology of the object. The larger the missing
parts the more difficult it gets to accurately describe such an object. In most cases,
all database 3D objects would first need to be manually repaired to make them
water-tight before subsequent feature extraction and shape descriptor algorithms
are applied to them. If that happens, then real-time application is impossible to
achieve with these kind of defective objects and very few known methods exist which
are capable of dealing successfully with non-water-tight 3D objects, such as all the
methods discussed in [142] and one of our research contributions in [175], which is
also suitable for real-time application, because the HAPPS method does not need
to manually repair the objects prior to feature extraction and subsequent retrieval
functions.

We stress here that the techniques we have implemented in this thesis are not
restricted to water-tight 3D objects alone. Since our retrieval algorithm primarily
processes point clouds by default, and given a polygonal mesh as input, we first
convert it to point set representation. We also do not introduce a constraint that
the input mesh needs to be water-tight or orientable, in order to extract any of our
proposed descriptors. Secondly, among the two-broad classification of 3D objects or
datasets (i.e. rigid and non-rigid), and the third class (i.e. generic), discussed in this
section, we have been able to evaluate our retrieval algorithms mostly with the non-
rigid and generic datasets only, due to the wide availability and ease of access to these
datasets and their respective ground truths, unlike the rigid 3D objects datasets,
which is not common and not widely available in the public domain. However, we
could have scanned a sizable number of rigid 3D objects to develop our own 3D
CAD models dataset(s) and ground truth file(s) in order to enable us independently
test the performance of our retrieval algorithms strictly on the rigid 3D datasets and
analyse these methods for their suitability in non-rigid objects retrieval problems.
We chose not to go this route due to the scope of this thesis and for the following
reasons: (i) recent research directions in 3D shape retrieval are mainly focused on
the generic 3D objects and non-rigid 3D objects datasets, (ii) the generic dataset
already contains reasonable number of rigid 3D objects, and (iii) the ground truth
for the rigid 3D dataset or benchmark we create would need to be verified with a
number of other state-of-the-art retrieval methods in comparison with the results
returned by our retrieval methods before an unbiased conclusion can be drawn to
ascertain the performance of our method on the rigid-dataset we would have created.
This, we fear might take an exceedingly long time and further broaden the scope
of this thesis. We instead hope to take this route as part of our future research
direction on this topic.
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2.2.3 Distance or (Dis)similarity Metrics

Distance metrics are measures used to quantitatively define the (dis)similarity be-
tween any two shapes. They simply compare how much alike two different data ob-
jects are. Defining two objects’ similarity largely depends on the descriptor and/or
signature used to represent the objects (3D in our case). There are many different
distance or (dis)similarity metrics in literature and so far, there is no one metric that
suits all shape matching and retrieval cases. For example, the 1D Earth Mover’s
Distance metric is only expected to return good matching results for 1D histograms,
such as shape distributions (i.e. A3, D1, and D2 descriptors etc.) [173], whereas it
would perform poorly on other types of signatures like our proposed HAPPS de-
scriptor as demonstrated by our experimental results (see Table 5.12, Figure 5.20,
Section 5.3.3), for example. When two objects are matched using a similarity met-
ric, a floating-point value (within the range of 0.0 and 1.0, i.e. [0, 1]) is returned.
This value is known as the “similarity score”, where 0 is the lowest and 1 the highest
score. Two objects are said to have a high degree of dissimilarity if the distance be-
tween their signatures (i.e. similarity score) is small, whereas a high similarity score
will translate to a low degree of similarity between the objects. Generally, where d
is a distance metric and two 3D objects are given by their respective feature-vector
(fv), as fv1 and fv2, then:

� Similarity(fv1, fv2) = 1, if d(fv1, fv2) = 0

� Similarity(fv1, fv2) = 0, if d(fv1, fv2) =∞

In summary, different metrics perform differently for comparing different shape
signatures. We demonstrate this in our results presented in Figure 5.20, Sec-
tion 5.3.3. Since a similarity measure must be selected to determine how close
one signature is to another, in our experimental evaluations therefore, we applied
five different metrics in order to test and finally select the metric which returns bet-
ter overall matching results for our respective final shape signatures - represented
as feature vectors (fvs). The problem of shape matching is therefore converted to
computing the distances between two d-dimensional fvs: hQ, hD ∈ Rd, where hQ

and hD are feature vectors of the query and database shapes, respectively. Details
of these distance metrics are presented as follows.

Euclidean Distance

This is the most used distance metric, which can provide the best proximity measure
for dense or continuous data. Generally, the Euclidean distance between two points
a and b is the length of the path connecting them, and a generalized term for the
Euclidean norm is the L2 norm or L2 distance [255]. Mathematically, the Euclidean
distance between hQ, hD ∈ Rd is computed according to Equation 2.1, where the
subscript, i is used to denote the i’th component of the shape descriptor.

δL2(hQ, hD) = ∥hQ − hD∥2 =

√√√√ d∑
i=1

(hQi − hDi)2 (2.1)

Ekpo Otu Chapter 2 21



3D Shape Description, Indexing, Matching and Retrieval

Cosine Distance

Unlike other distance metric which measures the straight-line distance between data
objects, the Cosine similarity metric measures the angle between two objects, or their
L2-normalized dot product. Determining cosine similarity between two objects is
the same as finding the cosine of the angle between the objects. Considering that
Cos(0°) = 1.0, Cos(90°) = 0.0, Cos(180°) = −1.0, and Cos(360°) = 1.0, then
the cosine similarity score between two objects would certainly be less than 1.0
for any other angle (between these objects) greater than 0°. The Cosine similarity
metric is therefore a measure of orientation rather than magnitude. For example,
two vectors with the same orientation would have a cosine similarity score of 1.0,
whereas two vectors at an angle of 90° to each other would have a cosine similarity
score of 0.0. Similarly, two vectors diametrically opposed to each other would have a
cosine similarity score of −1.0, irrespective of their magnitudes. Mathematically, the
Cosine distance between two feature vectors: hQ, hD ∈ Rd is given by Equation 2.2.

cos(hQ,hD) =
hQ · hD

∥hQ∥ ∗ ∥hD∥
=

∑d
i=1 hQihDi

(
√∑d

i=1 (hQi)
2) ∗ (

√∑d
i=1 (hDi)2)

(2.2)

Earth Movers’ Distance (EMD)

The EMD is a metric used to evaluate (dis)similarity between two multi-dimensional
distributions in some feature space where a distance measure between single features
(ground distance) is given. Mathematically, EMD is also known as Wasserstein met-
ric [261]. Intuitively, given two distributions, one can be seen as a mass of earth
properly spread in space, the other as a collection of holes in that same space. Then,
the EMD measures the least amount of work needed to fill the holes with earth [43].
We decided to implement this distance metric in our work owing to its numerous
successes in 2D image processing [196]. More details regarding this metric can be
found in [196, 197].

The Wasserstein metric can be used to compute the distance between two 1D
distributions (i.e. shape descriptors in our case). Given two descriptors, say hQ and
hD, the Wasserstein distance is considered as the minimum amount of work required
to transform hQ into hD, where work is measured as the amount of distribution
weight that must be moved, multiplied by the distance it has to be moved. If we
consider our shape signatures as a Cumulative Distribution Function (CDF), then
for a single signature, hQ with d-dimension, its CDF, hC

Q is defines by Equation 2.3.

hC
Q[d] =

d∑
i=0

hC
Q[i] (2.3)

We therefore compute the EMD between our signatures, hQ and hD with d-dimensions
according to Equation 2.4.

EMD(hQ, hD) =
d∑

i=1

|hC
Q[i]− hD

C [i]| (2.4)

.
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Kullback-Leibler Divergence (KLD)

In mathematical statistics, the Kullback–Leibler divergence (also called relative en-
tropy) is a measure of how one probability distribution is different from a second,
reference probability distribution [114, 113, 184]. Generally, when we consider two
distributions of probability P and Q. Usually, P represents the data, the observa-
tions, or a probability distribution precisely measured. Distribution Q represents
instead a theory, a model, a description, or an approximation of P . The Kull-
back–Leibler divergence is then interpreted as the average difference of the number
of bits required for encoding samples of P using a code optimized for Q rather than
one optimized for P [256]. We imagine our final 3D shape signatures: hQ and hD

(for which we want to compare) to be two probability distributions, and assume that
the KLD similarity score between them would be a measure of how either hQ or hD

diverges from the other. Intuitively, if the KLD divergence is low, then the two
objects represented by hQ and hD are similar to the degree of the KLD similarity
score, else, they are not similar. Hence, for discrete probability distributions hQ and
hD having the same dimension, d (i.e. defined on the same probability space, d),
the KLD from Q to P is defined by Equation 2.5.

DKL(hQ∥hD) =
∑
i∈d

hQ(i) log

(
hQ(i)

hD(i)

)
= −

∑
i∈d

hQ(i) log

(
hD(i)

hQ(i)

) (2.5)

Since log(a
b
) = log(a)−log(b), Equation 2.5 can then be re-written (i.e. re-implemented)

as shown in Equation 2.6

DKL(hQ∥hD) =
∑
i∈d

hQ(i) log(hQ(i))−
∑
i∈d

hQ(i) log(hD(i)) (2.6)

Practically, is asymmetric and we found that DKL(hQ∥hD) ̸= DKL(hD∥hQ). It is
therefore important to state that the results we obtained with the KLD similarity
metric (see Section 4) was with DKL(hQ∥hD), and not DKL(hD∥hQ).

Jensen-Shannon Divergence (JSD): Alternatively, another divergence metric,
called the Jensen-Shannon Divergence (JSD) [153, 63], exist that can also quantify
the statistical difference (distance or similarity) between two probability distribu-
tions. The JSD metric is an extension of the KLD, where it uses the later to
compute a normalised score, between 0 (identical) and 1 (maximally different), for
base-2 log. Such score is smooth and symmetrical (i.e. DJS(P ||Q) == DJS(Q||P ))
as opposed to that of the KLD metric. Essentially, the JSD can be calculated based
on Equation 2.7.

DJS(P ||Q) = 0.5 ∗DKL(P ||M) + 0.5 ∗DKL(Q||M) (2.7)

Where M is given as: M = 0.5 ∗ (P +Q).
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Considering these desirable characteristics of the JSD the choice of the KLD
metric, instead, for our 3D shape matching tasks is mainly due to its popularity
and success. The KLD has been very widely used in machine learning, statistics,
signal processing, and content-based shape matching/retrieval. Secondly, the JSD is
significantly more computationally challenging to implement, not very suitable for
real data, and behaves well only when both distributions (i.e. P (x) and Q(x)) being
matched are small. The KLD metric, on the other hand, is easier to compute and
performs well on large distributions, such as the final feature-vectors of our APPFD
method which is very high-dimensional (i.e. up to 200k dimensions), whereas the
JSD failed to match such distributions.

Squared Euclidean Distance (SED)

The SED is simply the square of the standard Euclidean distance, and the SED
between two 1-D arrays (i.e. shape descriptors), hQ and hD are given by Equa-
tion (2.8), which can be simplified to be:

δ2L2
(hQ, hD) = (hQ1 − hD1)

2 + (hQ2 − hD2)
2 + (hQ3 − hD3)

2 + · · ·+ (hQd − hDd)
2

where hQ and hD has dimension, d.

δ2L2
(hQ, hD) = ∥hQ − hD∥22 (2.8)

According to [255], the Squared Euclidean distance is not a metric, as it does not
satisfy the triangle inequality [105], nor does removing the q parameter and its
associated terms (see Equation (2.9)) render the SED function into a norm or semi
norm for the same reason. However, it is a more general notion of distance, namely a
divergence (specifically a Bregman divergence [22]), and can be used as a statistical
distance. The Pythagorean theorem is simpler in terms of squared distance (since
there is no square root); if pq ⊥ qr; then:

δ2L2
(p, r) = δ2L2

(p, q) + δ2L2
(q, r) (2.9)

However, in computer science (and especially computer graphics, simulations, and
video game development), the usage of traditional Euclidean distance and norm
functions (in certain contexts) can be sometimes considered non-optimal due to its
dependence on the square root operation, which in many cases can be prohibitively
slow. Algorithms based on comparisons between multiple distances or magnitudes
can forgo the Euclidean metric and can instead utilize SED as an optimization, as
relations between arbitrary non-negative values (in our case, distances) in a tuple
should remain preserved after all values become squared (the SED values) [255].

In Section 3.6, we provide further details on how each of these distance met-
rics are used to compare the similarity between two 3D objects (i.e. query model
and database models) given 3D objects that are represented by different retrieval
methods (descriptors).
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2.2.4 3D Content-based Retrieval System (3D-CBRS) and
3D Search Engine

Definition 2.2.1 A 3D-CBRS (also known as 3D shape search engine) is an appli-
cation that accepts a 3D model as input query, then retrieves other 3D models from
a specified 3D models database, and ranks these retrieved models by their degree
of similarity to the query model. This system/application enhances the process of
searching a 3-dimensional collection (i.e. database of 3D objects) to retrieve similar
objects to a query 3D object.

The concept of 3D-CBRS involves the application of CV techniques to 3D shape
search problems (i.e. the problems of representation, pre-processing, description,
indexing and matching of 3D objects) in order to retrieve similar objects from a
database of 3D objects. Much of the recent work on 3D-CBRS can be found in [228]
and [268]. The content-based concept in 3D-CBRS refers to a search approach that
analyses the physical properties of surfaces (measurements), which is the mathe-
matical contents or measurements of 3D objects, such as shape descriptor or fea-
ture vectors, rather than their abstract contextual contents (meta-data), such as
keywords, tags, colours or appearances. In Figure 2.3, we present a clarified and
detailed overview of 3D-CBRS, where the entire process is broken down into three
stages, thus:

� DB 3D Input: Involves using a particular/target database of 3D objects (e.g.,
the SHREC’10 dataset described in Section 5.2.2) and performing the follow-
ing CV processes on the dataset: pre-processing, feature extraction, shape
descriptor construction, and indexing the descriptors for all 3D objects in the
database.

� Query 3D Input: Given a single 3D object for which we want to find other
similar 3D objects from the target database, exact CV processes performed
for the target database objects are performed on the query object, such as
pre-processing, feature extraction, and shape descriptor construction, except
indexing.

� 3D Output: Also known as matching and retrieval stage, involves loading up
the indexed database-object descriptors, matching each of these descriptors
with the query-object descriptor to find matches (similarities). i.e. those in-
dexed database-object descriptors which are similar/close to the query-object
descriptor. These matches (i.e. similar database 3D objects to the query 3D
object) may also be ranked based on pre-determined threshold and top ones
can be returned as output to the user of the search engine.

Essentially, the “DB 3D Input” stage is generally referred to as the off-line phase,
while the last two stages (“Query 3D Input” and “3D Output”) are generally re-
ferred to as the on-line phase by most content-based shape retrieval researchers, for
example [64]. It is possible to design the 3D-CBRS using several approaches. For
example, a user of the system can query the 3D database using a query 3D object,
a 2D sketch representation of the query 3D object or a text-based approach which
involves the meta-data of the query 3D object. If the sketch-based or text-based ap-
proaches are adopted during the on-line phase, then, the retrieval system would have
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Figure 2.3: General overview of 3D Content-based Retrieval System.

been designed to support database indexing of 3D objects using exact approaches,
respectively. The literature in [64] provides more details regarding these. However,
this thesis and our research implementations strictly adopts the 3D query object
approach due to its suitability and robustness over the other approaches.

The following six key aspects are considered in 3D-CBRS: (i) Object representa-
tion, (ii) data pre-processing, (iii) feature extraction and optional feature selection,
(iv) shape description, (v) indexing, (vi) matching and retrieval. In this section, we
only provide detailed description of the first aspect (i.e. 3D object representation),
which is an important aspect to consider for any shape analysis task, including
shape retrieval, while the other five aspects are thoroughly described as processes
(i.e. as part of our research strategies and techniques) in Section 3.1. However, the
3D-CBRS is incomplete without an effective performances evaluation mechanism for
shape descriptors (or retrieval algorithms) prior to deployment. In Section 4.3, we
provide details of the performance evaluation approach and metrics we have adopted
to validate our 3D shape retrieval methods or descriptors.

2.2.5 3D Search Searching

The final stage of Content-based Shape Retrieval (CBSR) pipeline is to search for
3D object(s), where the user is expected to submit a query object to the CBSR
system (3D search engine) and be able to retrieve similar ones already in the ob-
ject’s database. During user search, the query object is first described (i.e. we
apply exactly the same features extraction and shape descriptor functions that were
applied to all other shapes in the database from which we want to retrieve similar
objects) to obtain a query signature, which is then compared to the signatures of
database objects already indexed, using a similarity function. Finally, based upon
similarity scores and matching results, the most relevant results, sorted according
to our similarity function are returned. It is important to mention that the relevant
results that would be returned are different for different similarity metrics or func-
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tions, because they (results) strictly depend on the similarity function or similarity
metric (see Section 2.2.3) used.

Prior to searching, shape descriptors are first computed, and used to represent
the input query and the database objects. During shape matching, the degree of
similarity/(dis)similarity between two descriptors (query object descriptor and each
of the database objects’ descriptor) is compared using a suitable (dis)similarity or
distance metric d : M×M −→ R, where M represents space of descriptors. Let us
denote the query object’s descriptor as Q ∈M, and a collection of other descriptors
associated to the database objects as Di ⊂ M : i = 1...N , where Di are objects
of the same type as the query object. Then, the 3D objects in the collection are
represented by a set of indices 1, ..., N . The distance metric, d used, depends on the
type of descriptor computed, and we adopt about five choices of distance metrics,
d (described in Section 2.2.3) for performance evaluation purposes. Suppose d is
a measure of (dis)similarity between the query object and the database objects,
then the database object with descriptor Ds1 would be the descriptor of object with
the “best match” to the query object, having an identifier, s1 (regarded as the i-th
match, where i = 1 in this example) which is the “highest ranked” similarity “score”.
This is expressed in Equation (2.10)

d(Q,Ds1) = min
1≤i≤N

d(Q,Di), s1 ∈ {1, ..., N} (2.10)

In information retrieval and pattern recognition, finding the “best match” to a
query object is usually a problem. However, we choose to retrieve only K ≤ N
ranked objects for the user as the retrieval results of his/her query, where for our
retrieval performance evaluation purpose, K = 32, as described in Section 4.3.3.
However, depending on the retrieval application, a user can specify how many ob-
jects, K, should be retrieved. Then, the K matched results (retrieved objects),
which are the most similar to the query object, are ranked so that their descriptors
Ds1 , ..., DsK (s1, ..., sK ∈ {1, ..., N}, i ̸= j =⇒ si ̸= sj) satisfy Equation (2.11).

d(Q,Dsi) ≤ d(Q,Dsi+1
), 1 ≤ i ≤ K − 1 (2.11)

Several 3D query and retrieval systems (i.e. 3D search engines) have been de-
veloped, such as 3D retrieval engine at Utrecht University [243], Princeton Shape
Benchmark [239], the University of Konstanz 3D model similarity search engine [29]
and the National Taiwan University 3D model retrieval system [36, 35], among oth-
ers. 3D retrieval system employs a number of methods and software tools [7] as
well as shape matching techniques such as the ones described in [91] (such as the
ones we describe in Section 2.2.6). The main idea behind content-based retrieval
systems is to develop a platform that uses these techniques to enable users to per-
form object query by similarity of contents. Compared to traditional 2D image
techniques or textual keyword searching, 3D objects retrieval task is not as easy.
However, 3D objects searching usually perform better when using 3D descriptors
than using there textual keywords or 2D image representations. This is because it
may be more difficult to adequately describe a 3D object or properly label (name)
all the 3D objects in a dataset in such a way as to provide uniqueness and search
efficiency when conducting a 3D search with textual keyword, for example. On the
other hand, 2D image-based technique involves the projection of 3D objects into 2D

Ekpo Otu Chapter 2 27



3D Shape Description, Indexing, Matching and Retrieval

space [230], where some useful 3D information are lost in the process. Besides, some
useful properties of the 3D objects, such as size, height, volumes, etc, are difficult
to capture in the 2D space. However, the effectiveness of this approach somehow
depends on the application or problem we are trying to solve, and there are a lot
of exiting techniques which involves the projection of a single 3D object to multiple
2D images, and proves to be useful in some application.

3D retrieval system (search engines) uses either local or global shape descriptors
for its similarity measure. When a query is made to the system, the retrieval engine
calculates the query object’s descriptors and compares the result to all the stored
descriptors from the database, using a distance function. The distance function
then measures the similarity between the query object and those of all the objects
in retrieval system’s database. When this has been done, the search engine sorts
database objects in terms of increasing distance values. Shape descriptors are crucial
in 3D object retrieval, especially when dealing with a large repository of 3D objects.
In Section 2.3, we provide a detailed overview of 3D shape descriptors, including
their classifications (see Section 2.4), thus provide a reference for constructing or
adopting a shape descriptor for 3D object retrieval system project.

2.2.6 Shape Descriptors Matching Approaches

Searching through a database of 3D objects for an object of interest (query object)
can be achieved by either of two broad approaches to shape descriptors matching.
They are:

i local descriptor matching (see Section 2.2.6): which involves aligning points (or
vertices) from the query object to the points of each object in the database to
find correspondences (i.e. how well the points or vertices fit, or are close to,
each other). A technique similar to the popular ICP algorithm [52], such as the
signature of histograms of orientations [235] is typically adopted for this kind of
matching.

ii global descriptor matching (see Section 2.2.6): which involves reducing each
3D object in the database, including the query object into a feature-vector,
also known as shape signature (i.e. a concise mathematical description of its
shape characteristics), then compare the descriptor of the query object to the
descriptor of each of the database objects to find a match. For this approach to be
achievable, the database shape descriptors must first be indexed (see Section 3.5).

Unlike the global approach (see Section 3.6 and Figure 3.22 for clarity), the lo-
cal approach to 3D shape matching is very expensive because it involves matching
multiple points or key points descriptors of the query object with multiple points
or key points descriptors of each of the database object. The local approach is
computationally expensive and time consuming, assuming there are exceptionally
a substantial number of models in the database, as it would require all individ-
ual items in the database to be evaluated every time a query is made. The global
approach, however, generally involves dimensionality reduction of all database and
query models. Each database 3D object consists of a set of 3D points connected by
edges (in the case of triangular meshes) or raw points (in the case of point clouds),
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which are transformed to a feature-vector (i.e. a set of floating-point numbers) using
some mapping or function for each of the 3D objects, thus reducing the problem of
finding similar shapes to finding vectors of numbers that are similar to each other
between query and database objects.

There are various kinds of data structure for addressing this situation (Graphs,
K-d Tree, B-trees, Heaps, hash table, etc.), which turns the problem into a proximity
search in a vector space. Some of these data structures are fast and others slow. The
goal behind reducing 3D objects to a concise vector of features is to enable them to be
comparable and to use the fast data structures, which would result in faster query.
For this reason, the choice of the global approach becomes a preference over the
local approach when considering 3D querying and retrieval. In this thesis, we adopt
the global shape descriptor matching approach (see Section 3.6 and Figure 3.22
for more details), instead, due to its simplicity and ease of computation, and in
order to obey some of the needs expressed in Section 2.3.1 (i.e. characteristics of
an appropriate shape descriptor). In the sub-sections that follow, we provide an
overview of these two approaches to shape descriptor matching, and describe our
actual implementation of global descriptors matching in Section 3.6.

Local Descriptors Matching

Here, several key point descriptors, [K ×D] (which describes the local geometrical
properties of the underlying 3D surface) would have been computed and indexed for
a single 3D object, where K is the number of detected key points per 3D object;
D is the dimension or size of each local descriptor, Ki; and the value of K differs
for each 3D object. Then, local descriptors matching technique for this type of
shape signatures representation generally involves finding correspondence between
the local descriptors of X = [Kx×D] and Y = [Ky×D], where X and Y are the two
3D objects we want to match, for instance. Alternatively, k-NN (which involves
using any of the distance metrics, like Cosine to find the nearest Cosine neighbours
between X and Y local descriptors), brute-force, etc., are some of the most common
approaches in literature for local descriptor matching. The Bag-of-Words (BoW)
technique is also a common approach used to combine and match locally-extracted
descriptors. However, as already stated, we do not implement any of these matching
techniques for this thesis.

Global Descriptors Matching

With this approach to shape descriptor matching, we ensure that for a single 3D
object, only one final signature/descriptor is computed, which is a global shape
descriptor as described in Section 2.4.1. During global matching, we compare any
two 3D objects as follows. The distance (see Section 2.2.3) between their global
descriptors (which are d-dimensional feature-vectors) are computed. The normalised
distance value, which lies between [0, 1] determines how similar the two shapes are.
Our global and hybrid descriptors (described in Section 4.2) were first computed
and stored (indexed) for all the 3D models present in each dataset. Then, we
considered each descriptor in turn, as a query descriptor, for matching/comparison
with every other descriptor in the dataset to obtain their respective similarity score,
which is recorded during each match. We then sort a collection of these similarity
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scores for all pairs of matching, to create a ranked list, which is sorted based on the
similarity scores. With the ranked list, we finally compute a distance/(dis)similarity
matrix, DM . The DM contains retrieval scores for the shape retrieval algorithm
and distance metric used for that particular dataset.

2.3 3D Shape Descriptors

Definition 2.3.1 A 3D Shape Descriptor is simply a concise mathematical repre-
sentation (i.e. a d-dimensional feature-vector) of a given 3D object. It is commonly
also referred to as 3D shape signature. According to [149], “3D Shape Descriptor
can be viewed as a ‘mapping’ from 3D object space to some high-dimensional vector
space”, and the primary goal of research in this field is to produce such “mappings”
that can preserve as much information as possible about a 3D object while producing
a resulting feature-vector representation in a possibly low-dimensional space.

Basically, a shape descriptor is a compact mathematical description of a given 3D
object, often represented by a vector, a graph, or real numbers, in such a way that
its complexity is much less than its corresponding original 3D representation. The
primary purpose of this study is to propose such a compact, yet computationally
efficient and highly discriminating signature for 3D mesh and point cloud retrieval,
and the above definitions are important in order to improve the efficiency and ef-
fectiveness of 3D shape recognition and retrieval engines. 3D shape descriptors are
derived by first extracting (identify and compute) salient and discriminating fea-
tures from 3D surfaces, which are then combined to form a compact mathematical
representation (vector) for the 3D object. 3D shape descriptors are indispensable for
a variety of computer vision, graphics, and pattern recognition tasks, etc. They play
a key role in 3D object retrieval tasks, which involves the process of querying a 3D
object against a database of 3D objects in order to find similar objects that closely
matches the query object. Therefore, it would be almost impossible or inconvenient
to directly match a raw 3D query object (i.e. triangular mesh or point cloud data
structure) with several other 3D objects in the database, irrespective of whether, or
not, the 3D database is small, without first describing the object, that is: convert-
ing the objects to shape descriptors. Describing 3D objects makes it easier to index
or store a large number of them and to quickly retrieve closest matches during query.

Several methods have been proposed for computing appropriate shape descrip-
tors for 3D shapes. A good 3D shape descriptor must be able to represent the
original 3D shape or data such that the descriptor (new representation) is invariant
to rotation, translation, and scaling, while being robust to noise, tessellation, and
occlusion. We give further details regarding the characteristics of an appropriate
shape descriptor in Section 2.3.1. The literature by [64] however noted that, unfor-
tunately, no existing shape descriptor has all these properties, and provided reason-
able arguments to support this claim. In their work, they proposed the Spherical
Harmonics Transform (SHT) 3D shape descriptor (see Section 2.5.3), stating that
the statistically-based shape descriptors such as the shape distributions [173] (see
our reviews in Sections 2.6) and feature vectors [53] are usually not discriminating
enough to distinguish between similar classes of objects.
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Until now, an exceptionally large number of different categories and approaches
to 3D shape descriptors have been developed and evaluated against several different
3D benchmark datasets by computer vision/graphics researchers, educators, and ex-
perts. However, research contributions within the last two-to-three decades contain
the most relevant and up-to-date research findings on 3D shape analysis, retrieval,
and pattern recognition. Moreover, it is somehow impractical to address all the
existing 3D shape descriptors in literature within the scope of our thesis. There-
fore, in the following sections, we provide a detailed and well-informed review of 3D
shape descriptors focusing on two broad perspectives (i) broad classifications of 3D
shape descriptors (see Section 2.4), and (ii) broad approaches to 3D shape descrip-
tors (see Section 2.5) as illustrated in Figure 2.4, where we review the various types
of 3D shape descriptors available in literature within the above-mentioned period.
Approaches and techniques we adopt to describe (i.e. compute descriptors for) 3D
meshes and point clouds for efficient 3D shape retrieval tasks are presented in Sec-
tion 3.

Figure 2.4: Broad overview of 3D shape descriptors in terms of classification and
computational approaches.

3D shape descriptors or retrieval methods deal with various forms of 3D ob-
jects representation (see Section 2.2.1). For example, some descriptors are designed
specifically for 3D triangular meshes [3, 249, 135], others are most suitable for raw
3D point cloud data [200, 263, 142], and many others are suitable for RGB-D, 2.5D
range scans, LiDAR data [73, 257], etc. However, the voxel data representations are
the most suitable kind of data for 3D shape descriptors utilizing the machine/deep
learning computational approach (for data-driven 3D shape descriptors, discussed in
Section 2.5.1). In our work and in this review, we focus primarily on those 3D shape
descriptors that are mostly suitable for 3D triangular meshes and raw 3D point
cloud data (for knowledge-based 3D shape descriptors, discussed in Section 2.5.2).

2.3.1 Characteristics of Appropriate Shape Descriptors

According to [54], six algorithmic criteria are needed to determine the invariance of
shape descriptors, thus: (i) Size of Vector: the size of the final shape descriptor or
feature-vector, fv, corresponding to a particular 3D object. (ii) Feature Extraction
Complexity: the complexity of the feature extraction and shape descriptor construc-
tion algorithms that produces the final 3D shape descriptor, (iii) Matching Complex-
ity: the complexity of the similarity measure between two shape descriptors being
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compared, (iv) Generality: specifies whether a specified 3D object descriptor can be
applied, for example, to topologically ill-defined 3D object as well as polygon soup,
(v) Geometric Invariance: specifies if the descriptor is invariant to affine/geometric
transformations, as illustrated in Figure 3.4, and (vi) Topological Invariance: which
specifies if the descriptor is independent of the polygonal representation. In ad-
dition, eight desirable properties that a good 2D/3D shape descriptor must have,
were mentioned by [64], as follows. A good shape descriptor must be: (i) quick to
compute, (ii) concise to store, (iii) easy to index, (iv) invariant under (dis)similarity
transformations (such as translation, rotation and scaling), (v) insensitive to noise,
i.e. robust or insensitive to sampling errors and some sorts of noises (such as topol-
ogy or geometric noises), (vi) independent of 3D object representation, tessellation,
or genus, (vii) robust to arbitrary topological degeneracies, and (viii) discriminating
of shape differences at many scales.

Developing a single shape descriptor that would satisfy all the above condi-
tions/criteria would be great, but remains an open research problem to the best of
our knowledge. For example, a given shape descriptor may only be robust to noise,
invariant under rigid (similarity) transformation (which is much more challenging
to describe and represent), and possibly discriminating of objects’ differences at
many scales, while another descriptor may be better in terms of being quick to
compute, concise to store, easy to index and probably robust to arbitrary topolog-
ical degeneracies, including being invariance under (dis)similarity transformations.
The choice of descriptor for a particular computer vision task would therefore de-
pend on the users’ preference and the task involved. In this thesis, we present
statistically-based 3D shape retrieval methods which have been able to satisfy most
of the above-mentioned criteria, including descriptor size/compactness with good
descriptive power. We summarise (list) our original methods in Table 4.1. More
details regarding these descriptors are provided in Section 4.2, while experimental
evaluations are detailed in Section 5.1.

2.4 Classification of 3D Shape Descriptors

Broadly, depending on the process of computation and usage, 3D shape descriptors
(retrieval methods) are classified into two main categories: local and global descrip-
tors. It has been possible to derive a third category, the hybrid descriptor, by a
combination of different variants of local descriptors, global descriptors or local and
global descriptors as illustrated in Figure 2.5. The process of computing each of the
three classes of descriptors is different. The hybrid descriptor or retrieval approach,
however, is intended to further improve upon the overall retrieval performances of
the resultant combined methods as opposed the individual performances of each of
the single descriptors. Detailed review of the types of 3D shape descriptors that
falls within each category are presented below.

2.4.1 Global 3D Shape Descriptors

Essentially, global 3D descriptors deal with the global nature of 3D objects. These
types of descriptors are more interested in the general aspect of a given object rather
than its details. Most 3D shape retrieval tasks make use of global shape descriptors,
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Figure 2.5: 3D shape descriptors, broadly classified into 3 groups: Local, Global
and Hybrid descriptors (i.e. local-local, global-global, or local-global descriptors).

such as the SHT [251], Shape distributions [174], Lightfield Descriptors (LFD) [214],
etc., which require the complete geometry of a 3D object. Over the years, several
global 3D descriptors have been studied and proposed in the literature, with the
most popular ones being the shape distributions which are based on statistical dis-
tributions of shape functions measuring geometrical properties of 3D objects. These
measurements are then binned into histograms. While there are wider range of pos-
sibilities to computing shape functions, the work by [174] proposed only five shape
functions listed below, which were chosen for their computational simplicity and
invariance.

� A3: represents the angle between three random points sample on the surface
of a 3D object.

� D1: represents the distance between a fixed point and one random point sample
on the surface of a 3D object.

� D2: represents the distance between two random points sample on the surface
of a 3D object.

� D3: represents the square root of the area of the triangle formed by three
randomly chosen points sample on the surface of a 3D object.

� D4: represents the cube root of the volume of the tetrahedron formed by four
randomly chosen points sample on the surface of a 3D object.

Global Features: Global descriptors are computed from global features (i.e.
measurements that characterises the global shape of a 3D object), and the five shape
functions listed above (i.e. A3, D1, D2, D3 and D4) are typical examples of global
features. According to [174], the distribution measuring distances between pairs of
random points (D2) is most effective compared to other retrieval methods. Other
examples of these type of features are the area, volume, statistical moments, and
Fourier transform coefficients [272], statistical moments of the volume/boundary
of 3D objects [180], measure of reflective symmetry (specified by two parameters)
to every plane through the object’s mid-point [101], and the Fourier transform of
the volume or the boundary of 3D object (i.e. the ratio of volume to surface of the
object), such as: (i) ratio of the cubed surface area of the hull and the squared volume
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of the convex hull, tagged “hull compactness”, (ii) ratio of object’s surface area and
the surface area of its convex hull, tagged “hull crumpliness”, and (iii) percentage of
the convex hull volume not occupied by the object, tagged “hull packing”, proposed
by [42].

Multi-view 2D Projection (M2DP)

One other typical example of a global 3D shape descriptors is the M2DP [80], which
is developed for 3D point cloud and applied to the task of loop closure detection.
M2DP involves the projection of 3D cloud to multiple 2D planes from which den-
sity signature of points in each plane are computed and combined to produce 196-
dimensional feature-vector, fv. In Chapter 4, Section 4.2.3, we adopt the M2DP
descriptor to further improve the performance of our APPFD, due to its success
and computational efficiency. For more details regarding the M2DP global descrip-
tor, we refer the reader to [80].

Generally, global feature-based descriptors (global descriptors) analyse 3D ob-
jects as a whole unit, but fails to capture the specific details of a 3D shape. Since
only global features are used to characterize the overall shape of objects these meth-
ods have straightforward implementation, but are not very discriminating about the
object’s details. Therefore, they can be used in combination with other methods
to improve retrieval performances and/or results. Secondly, global shape descrip-
tors are computationally efficient [91] and have proven to be effective methods for
describing rigid 3D models. Some global shape descriptors such as the shape distri-
butions can be used to represent objects from different broad categories [275]. They
are robust to noise and can distinguish wide categories of 3D objects.

The Key limitations of the global feature-based methods (global descriptors) are
that they fail to capture the specific details of a shape and overall, are not very
robust They fail to discriminate among locally dissimilar shapes [91], nor efficient at
discriminating objects that are globally similar but with different minute details in
their shapes [54]. In other words, global shape descriptors are capable of comparing
entire surface of 3D objects but unable to locally compare surface points for the
purpose of point matching. For this reason, local descriptors are essential. For a
broader overview regarding global features and shape descriptors, we refer the reader
to [275, 91, 228, 29].

2.4.2 Local 3D Shape Descriptors

The characterisation of local surface property is an open research problem that is
gaining more popularity over the years [231], and 3D shape descriptors have been
proposed, which are based on local features of object’s surface. Interestingly, local
shape descriptors have several key advantages, and matching 3D surfaces with local
shape descriptors has become a popular research trend within this period, basically
because local descriptors are able to efficiently describe surfaces with missing data,
clutter, occlusion, and they are affine-invariant. It is important to note that local
shape descriptors are computed from locally extracted features (i.e. local features)
from the surface on a 3D object. Local feature-based method describes a 3D ob-
ject using selected number of surface points and provide different approaches that
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considers the surface’s shape within a local neighbourhood of points on the entire
object’s surface. Consequently, a descriptor for each surface point is used and sev-
eral local descriptors are derived for a single 3D object instead of a single descriptor
for the entire 3D object.

Recently, researchers have also proposed methods using the BoW paradigm which
provides a framework to compare two 2D/3D objects using local descriptors. The
BoW approach has been successful in both text and 2D image retrieval, and has
shown promising results in 3D shape retrieval. In the BoW approach, local descrip-
tors are first computed for selected local surface patches or region (see Section 4.2.1)
around estimated key points for a given 3D object, then each of these descriptors is
assigned a frequency/probability value from a pre-constructed dictionary (i.e. vo-
cabulary or visual word). The vocabulary becomes the final feature-vector for the
object, which has dimensionality equal to the size of the vocabulary. Finally, a his-
togram of visual words or vocabulary is computed for the object, and two objects
can be matched by comparing their BoW histograms, similar to matching global
descriptors. The work by [170] used uniformly distributed depth-buffer views of
normalized 3D objects as features to construct local Scale-Invariant Feature Trans-
form (SIFT) descriptors and the BoW model was used to produce final histogram
of visual words. Then, the Kullback-Leibler divergence metric (see Section 2.2.3)
was used to determine the (dis)similarity between two BoW histograms. However,
while the BoW paradigm has been a common approach for combining local shape
descriptors, it is not the only way out for the complexity in local shape descriptors
matching. Several other local shape descriptors have been proposed independent of
the bag-of-words model.

The most popular approach to local shape descriptors remains the statistical
approach (see detailed review in Section 2.6) which involves computing histograms
of local (also global) features, where in this instance, local feature measurements
on the surface representing a given 3D object are binned into histograms and the
normalised histograms are used as the final local shape descriptors. The spin images
have been used as local descriptors (2D histograms counting the number of surface
points at various locations) by [213] and [144]. The work by [110] used curvature
based local descriptors (i.e. the mean and Gaussian curvatures), including shape
index, and curvedness. Alternatively, the Heat Kernel Signature (HKS) is another
type of popular local shape descriptor, which was introduced by [226]. Also, random
set of vertices were chosen from 3D triangular meshes as seeds by [117], who then ap-
plied Lloyd relaxation iterations to propose a local shape descriptor for 3D matching.

In addition to the characteristics of appropriate shape descriptors mentioned
in Section 2.3.1, a good local descriptor is one that must be able to account for
the local shape of the surface surrounding a given point. Local descriptor usually
requires a previous key point detection step, which complicates its adaptation to
recognize non-rigid objects [148]. Secondly, because local descriptors are computed
from surface regions (i.e. LSP) around key points, the challenge with these types
of descriptors therefore remains that of detecting appropriate and repeatable key
points. Key points detection for 3D objects is more complicated than for 2D im-
ages due to images having richer set of distinct features. However, [220] extended
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the Harris 2D key point detection to 3D objects, i.e. 3D-Harris. The literature
in [234] also reviewed several other techniques which have been proposed to perform
detection of repeatable and distinctive key points in 3D surfaces. In our work, we
implemented a number of popular state-of-the-art key points detectors for 3D mod-
els, but recorded several other issues aside from repeatability (see Section 3.3.5).
Part of our research goal and efforts has been to develop robust and computation-
ally efficient local 3D shape descriptor that satisfy most of the conditions mentioned
for appropriate shape descriptors (see Section 2.3.1). We therefore adopted an al-
ternative voxel-grid downsampling technique to select a set of points (used as key
points) for every 3D objects in the dataset. We describe this process in Section 3.3.5
and 3.3.5.

2.4.3 Hybrid 3D Shape Descriptors

The primary goal of the hybrid descriptor approach is to further improve the overall
retrieval performances of the global and local descriptors by combining either of
these descriptors as illustrated in Figure 2.5. For example, the work by [66] com-
bined two local descriptors: (i) the eccentricity function, which produced spatial
information about a 3D object and (ii) the local-diameter function describing local
surface of 3D model, to produce a global 2D histogram as the final shape descriptor
for a given 3D object. The literature in [263] formed a hybrid 3D descriptor known
as the Ensemble of Shape Function (ESF). In order to combine the descriptive pow-
ers of both local and global descriptors, the work by [4] combined the Viewpoint
Feature Histogram (VFH) global descriptor [201], and the Fast Point Feature His-
togram (FPFH) local descriptor to form a hybrid (FPFH + VFH) descriptor. In the
same manner, [242]combined three distributions (a distance histogram, a curvature
histogram, and an elementary volume histogram) to construct a hybrid descriptor
for 3D object indexing and retrieval. Two separate studies were performed by [178]
on 3D shape matching, where hybrid global descriptor was constructed by combin-
ing 2D and 3D descriptors. In one of their studies, they modelled the property of
an object using Fourier Transform descriptor technique, then combined 2D image
view of 3D object (panoramic views for unsupervised 3D object) [179]. In another
study, they combined 2D descriptors which captures the distance to surface points
from 6 sides of a cube with global 3D spherical harmonics, computed over the entire
3D object.

Essentially, the hybrid technique can be used to combine different statistically-
based 3D descriptors aimed at enhancing the overall performance of 3D shape re-
trieval. This approach is known for its exceptional performances, and literature
reviews have revealed its popularity due to several work utilising this approach to
3D shape description. However, the practicability of some hybrid-based techniques
is limited due to the high computational cost. To improve the retrieval efficiency
of 3D shapes, we propose a number of highly discriminative, yet computationally
efficient hybrid 3D shape descriptors for 3D meshes and point cloud shapes. In
order to address the practicability concern and fulfil most of the criteria specified
in Section 2.3.1, we compute our 3D shape retrieval methods with incredibly small
number of point samples, say betweenN = 3, 500 points toN = 10, 000 points, while
still recording impressive retrieval performance scores (see Section 4) compared with
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state-of-the-art methods for a given benchmark dataset and retrieval challenge. De-
tailed description of our hybrid descriptor methods is provided in Section 4.2.

In our work however, we identified and considered the gaps presented by the lo-
cal, global, and hybrid approaches to shape descriptors computation while proposing
improved solutions to shape retrieval, in each of these approaches, that accounts for
existing research gaps. We have mainly contributed to the local (see Section 2.4.2)
and hybrid (see Section 2.4.3) shape descriptors and evaluated their retrieval perfor-
mances using several performance evaluation metrics. We implement these descrip-
tors in Section 4.2. Therefore, our local and hybrid descriptors, which combines
the descriptive powers of both global and local descriptors, produce retrieval re-
sults with better performances across a wider range of 3D benchmark datasets - see
experimental evaluation sections, Chapter 4.

2.5 Approaches to 3D Shape Descriptors

According to [195], and [20], all methods involving analysis, feature extraction and
shape descriptor computations for 2D/3D shapes retrieval, classification, detection,
and recognition adopts either one of two broad approaches depending on the com-
putational technique adopted or the size of dataset. The first is the Data-driven
approach (see Section 2.5.1), and the second, Knowledge-based approach (see Sec-
tion 2.5.2). In Section 2.4, we discuss three broad classifications involving 3D shape
descriptors (global, local and hybrid), depending on mode of feature extraction and
final descriptors combinations. However, irrespective of their classifications, the gen-
eral process of 3D shape descriptors computation involves either of the two broad
approaches mentioned above. In this section, we provide detailed overview of these
two broad approaches to 3D shape descriptors computation, including reviewing
several different state-of-the-art 3D shape descriptors/retrieval methods that are
within each of the sub-categories of shape descriptors under each approach broad
approach, particularly, the knowledge-based approach, which forms the basis for our
research work and thesis contributions.

2.5.1 Data-driven 3D Shape Descriptors

Definition 2.5.1 Data-driven Approach: The data-driven approach to 3D shape
descriptors involves the application of Machine Learning (ML) or Deep Learning
(DL) techniques to learn representations from given dataset, thus yielding precise
outcome on even larger datasets.

The data-driven approach, which involves machine learning algorithms and tech-
niques have since been used in developing 3D shape descriptor [85], but have recently
gained popularity and attracted more attention with the emergence of the deep learn-
ing algorithms [84, 83]. Briefly, the general pipeline for the data-driven approach
to shape descriptor constructions is as follows: (i) The entire database or dataset
would have to first be divided into two sets (training and validation/testing set),
and training dataset (75% - 85% of original dataset) is presented to the machine-
learning (ML) or deep-learning (DL) algorithm that learns the patterns in the input
data. Typically, the original data itself could be used as input or set(s) of extracted
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features from the data. (ii) The input data is trained (i.e. the algorithm learns
patterns from the input data) until the algorithm converges to a potentially mean-
ingful descriptive model. This happens when some criteria are met, depending on
the parameter settings. The learning stage can either be supervised or unsupervised
learning. (iii) Following the training phase, the system is able to generate shape
descriptors for unseen data samples. In the case of supervised learning, the model
(ML/DL) needs to first be validated for accuracy using training and testing labels
which serves as ground truth, while unsupervised learning involves a different ap-
proach.

Unlike the knowledge-based approach (see Section 2.5.2), a key advantage of
the data-driven approach to computing 3D shape descriptors is that 3D features
are automatically learned from training data with little (in the case of supervised
or semi-supervised learning) or no (unsupervised learning) expert’s knowledge [20].
Secondly, this approach has the advantage of analysing and extracting meaningful
knowledge from large volumes of data. Unfortunately, despite its many benefits,
the data-driven approach to 3D shape descriptor computation is not without its
complications.

First, ordinary ML algorithms has not been robust enough to produce desired
accuracy or descriptiveness. Instead, the DL technique has been shown to record
better retrieval performances. However, the limitations with either of these ap-
proaches or techniques are: (i) they are highly parametrised, and (ii) the deep
learning method depending on remarkably high computer resources (hardware and
software) to achieve optimal/desired performance, therefore its suitability for prac-
tical real-time computer vision/graphics application remain an issue. Secondly, the
data-driven techniques can be computationally prohibitive due to the large volumes
of data they analyse, whereby they perform poorly when the size of data is small, and
raises plenty of research concerns. For example, PartNet: A Large-scale Benchmark
for Fine-grained and Hierarchical Part-level 3D Object Understanding [160] and
ShapeNet: A Large-scale Dataset of 3D Shapes [34] contains over 26,000 and 63,000
3D shapes, respectively. A few other large repositories like these exist which only
the data-driven technique is suitable for constructing their 3D shape descriptors.
Besides the remarkably high computational costs to construct shape descriptors for
these kinds of datasets using the data-driven approach, large amount of storage
space is also required. In summary, one of the key disadvantages of the Machine
Learning (ML)/Deep Learning (DL) methods or the data-driven approach is the
requirement of large amount of training data which limits their applicability and ef-
fectiveness. Therefore, the knowledge-based approach (see Section 2.5.2) is essential
and expert’s knowledge becomes important. This is because the knowledge-based
approach does not require a large volume of data to function.

Finally, the number of small-sized and domain-specific 3D shape repositories
which are suitable for the knowledge-based techniques (see Section 2.5.2) to 3D
shape descriptors (retrieval methods) greatly outnumbers the large-sized reposito-
ries used by data-driven techniques. As an example, detailed descriptions of 3D
shape repositories suitable for the knowledge-based techniques are provided in Chap-
ter 5.2. Alternatively, as a further proof, over 200 uniquely-related literatures have
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been cited and/or referenced in this thesis, and the research work by each of these
literatures utilises small-sized domain-specific databases for their experimental eval-
uations. Therefore, in this thesis we exclusively focus on the knowledge-based ap-
proach to 3D shape retrieval methods, as described in the next sub-sections, instead
of the data-driven approach. In this thesis, our primary focus is on the knowledge-
based approach to 3D shape descriptor computation due to the reasons explained
above, but in this section, we first provide a brief overview of the data-driven ap-
proach for the sake of clarity and comparison. However, for an in-depth analysis and
review of the data-driven approach to 3D shape descriptor computation, we refer
the reader to [128, 195].

2.5.2 Knowledge-based 3D Shape Descriptors

Definition 2.5.2 Knowledge-based Approach: The knowledge-based approach
to 3D shape descriptors involves the manual extraction of hand-crafted features from
3D objects for shape descriptors computation, by experienced and knowledgeable com-
puter vision/graphics experts and researchers.

In knowledge-based approach, features are extracted from data using hand-
crafted techniques. This approach involves human supervision or hard-coded rules
whereby experienced experts are needed to extract hand-crafted features from 3D
shapes for the construction of 3D shape descriptors. Unlike the data-driven ap-
proach which builds more generalizable shape descriptors (through large training
dataset), the traditional approach using knowledge-based techniques is task-specific,
less generic and does not require a large dataset in order to succeed. In this section,
we provide a comprehensive literature survey of local, global as well as hybrid 3D
shape descriptors which falls within the knowledge-based approach.

Reasons we adopt the Knowledge-based approach: Basically, the justifica-
tion for adopting the knowledge-based approach is mainly due to the limited data
available, computational efficiency, limited resources available, such as the Graphics
Processing Unit (GPU) and memory for storage. Unlike the knowledge-based ap-
proach, the data-driven approach further complicates the process of 3D descriptor
computation by depending on already extracted hand-crafted features and in most
cases, already computed shape descriptors from expert’s knowledge. For example,
low-level features such as spin images, curvature (Gaussian curvatures, mean curva-
tures, principal curvatures etc.), and Average Geodesic Distance (AGD) have been
used in the literature by machine learning algorithms to build shape descriptors [75,
219, 280]. Also, other spectral descriptors such as the HKS [25], Wave Kernel Sig-
nature (WKS) [8] are local 3D descriptors which have become the building blocks
of many data-driven 3D shape descriptor approaches in the literature [155, 24, 18],
which inspired researchers to construct data-driven shape descriptors in the spectral
domain. All these features and descriptors are derived using the knowledge-based
hand-crafted feature technique in the first place. What is even more interesting is
that researchers who adopt purely the data-driven approach to 3D shape descrip-
tors uses the HKS and WKS as an evaluation standard for the performance of their
descriptors [265, 20]. Above reveals that the success of the data-driven approach, to
a great extent, depends on the knowledge-based approach in the first place. To this
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end, the need and importance of the knowledge-based approach cannot be overem-
phasised.

2.5.3 Categories of Knowledge-based 3D Shape Descriptors

Essentially, depending on the different 3D models data type utilised, and the cor-
responding 3D shape retrieval method, existing knowledge-based approach to 3D
shape descriptors can further be sub-divided into four categories: (i) View-based,
(ii) Transform-based, (iii) Graph-based (Structural), and (iv) Statistically-based ap-
proaches to 3D shape retrieval methods. The literature in [54] equally overviewed
these four categories (but referred to Graph-based as Structural-based), including
a fifth category, the normative aspect. In contrast, the literatures in [228, 229]
and [275] categorised 3D shape descriptor into three broad categories, as follows:
(i) Feature-based, (ii) Graph-based, and (iii) Geometry-based and/or Others, re-
spectively. In the Feature-based category, three other sub-categories of 3D shape
descriptors were reported by [228, 229], which are: Global-features (Global-feature
Distribution), Spatial-map, and Local-features; while [275] expanded descriptors
in this category to four other sub-categories, thus: Global-features, Spatial-map,
Local-features, and Distribution-based. In the second category (i.e. Graph-based),
both [228, 229] and [275] agreed on the following three sub-categories: Model-graph,
Skeletal, and Reeb-graph. However, there was a contradiction in their mention of
the third category. Here, four other sub-categories: View-based, Volumetric Error-
based, Weighted Point set-based, and Deformation-based were mentioned by [228,
229]. The literature in [275] did not however name their third category, but men-
tioned three individual 3D shape descriptors: The Extended Gaussian Images (EGI),
Complex Extended Gaussian Images (CEGI), and 3D Zernike moments in their
“others” categories, whereas in our classification (see Section 2.5.3), these three
descriptors are categorised under the Transform-based group. We provide a side-
by-side comparison of the classification of 3D shape descriptors by both [228, 229]
and [275] in Figure 2.7.

Figure 2.6: Classification of Knowledge-based 3D shape descriptors

Recently, the literature survey by [103] provided five categorisations for 2D and
3D shape descriptors, thus: (i) View-based, (ii) Histogram-based, (iii) Transform-
based, (iv) Graph-based, and (v) Hybrid 3D Descriptors. We do not consider their
fifth categorisation (i.e. Hybrid 3D Descriptors) to be suitable in this context of
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shape descriptors categorisation, primarily because the hybrid shape descriptors fall
within a broader classification of 3D shape descriptors, encompassing both the data-
driven and knowledge-based, as described in Section 2.4 - see Figure 2.5. Secondly,
based on the context of this thesis, the hybrid 3D shape descriptor does not exclu-
sively belong to the knowledge-based approach to 3D shape descriptors. In addition,
the hybrid descriptors mentioned by [103] are simply a combination of individual
descriptors that may already belong to either or all the other categories, which are
classified mainly based upon their method of feature extraction and shape descriptor
computation, rather than just final combination.

(a) 3D descriptors grouping by [228, 229] (b) 3D descriptors grouping by [275]

Figure 2.7: Comparison of 3D shape descriptors classification by two different literatures.

Considering all the reviews of 3D shape descriptors classification in the literatures
we have indicated in this section, such as those in [228, 229, 275] and [103], it becomes
obvious that classifying existing 3D shape descriptors to commonly agrees with
several different research hypothesis is a non-trivial task, due to the overwhelming
number of available descriptors over the past decades. However, in this thesis, we
have been able to clearly provide 3D shape descriptors classification which, to a great
extent, agrees with the categorisations of other literatures we have mentioned [228,
229, 275, 103], but different in context and scope. As previously stated, in this
thesis, we only briefly review knowledge-based 3D shape descriptors within the four
sub-categories in Figure 2.6, as outlined in the following sub-sections. Although [54]
provided detailed analysis of 3D shape descriptors within these sub-categories, their
review, however, was limited to just a few mention and additional 3D retrieval
methods have since been developed which are not mentioned in [54].

View-based Approach:

Generally, view-based descriptor technique deals with the similarity of two 3D ob-
jects which appears similar from all viewing angles. This technique uses a single
view or multiple views of a given 3D object for its representation. Digital or virtual
cameras may be used to obtain a collection of these views. For example, Figure 2.8
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illustrates a single view of several 3D objects, while Figure 2.9 show a single 3D
object represented by three 2D views around the 3D object. In order to obtain dif-
ferent views of the same object, the camera angle would have to change each time a
shot is taken or each object is rotated at different angles to a fixed camera for each
shot. Human beings have the ability to visually recognize any object from single
view. The work by [192] explored the issue of whether 3D model recognition should
rely on internal representations that are inherently 3D or on collections of 2D views.
They showed that in a human visual system, a 3D model is represented by a set of
2D views [54].

Figure 2.8: Example single view of different 3D objects. View-based 3D object
descriptor approach uses a single view or multiple views of 3D object representation
instead of the actual 3D model.

The view-based 3D shape descriptors have been widely used in CAD applica-
tions. According to [36, 6], the Fourier descriptor and the Zernike moments are
the most widely used features to represent 2D views of 3D objects. Popular de-
scriptors that fall within this category are the Lightfield Descriptor (LFD) [214],
the depth buffer-based descriptor (BBD) [181], aspect graph [127], and adaptive
view clustering (AVC) [134], etc. A 3D descriptor from [273] that is made up of
rotationally invariant 2D images Fourier descriptor, was introduced by [171], using
a set of depth-buffer images viewed from 42 viewpoints as the final feature-vectors
representing a given 3D object. A total of 422 possible combinations of two sets
of feature-vectors were derived from matching two 3D objects by minimizing the
distance between these combinations. Alternatively, a single view of a 3D object
was used as a query by [44], where, for each 3D model several 2D views/images were
derived as signature. Clustering algorithm was then applied to these 2D views to
select a single view as a representative of each cluster using a shock-graph, thereby
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keeping the total number of views for each 3D object small. 3D object recognition
was then performed by matching a view associated with the query 3D object with
those of other database 3D items using shock-graph matching. In this implemen-
tation, the shock-graph had indexing problem which resulted to linear search of all
database 2D views during retrieval phase.

The view-based descriptor technique was used in [64], by computing 13 thumb-
nail images representing the silhouette (outer shape boundary) of the 3D object as
seen from 13 orthographic view directions. They implemented a 2D sketch query
interface for retrieval, where a descriptor comprising a number of binary images is
acquired during the pre-processing phase, for every 3D object. Then, during the
query phase, a 2D image sketch or a 2D image representation of 3D objects in the
database can be used as a query to retrieve 3D database objects whose binary images
matches the query sketch/image. Similarly, the work by [146] applies view-based
technique to 3D shape retrieval employing a query user interface that is 2D. Es-
sentially, 3D shape retrieval is done by matching the descriptors of the query 2D
sketches with those of the 3D objects in the database by simply using 2D image
matching technique. Additionally, the view-based strategy by [250] described a 3D
shape descriptor using 3 silhouette images perpendicular to the [x, y, z]-axes of a
canonical coordinate system, and [214, 36] applied same, for 3D shape retrieval, us-
ing a light field descriptor (Zernike moments and Fourier descriptors) which matches
10 silhouettes (i.e. 2D images), derived from 10 evenly-distributed viewing angles on
the viewing sphere of a given 3D object. This concept is illustrated in Figure 2.10.
Matching two 3D objects is therefore reduced to the minimal dissimilarity gotten
by rotating the viewing sphere of one light field descriptor relative to the other.
Although the Lightfield descriptor has the advantage of being highly discriminating
among several other 3D shape descriptors, it utilises a higher storage and compu-
tational costs than most other descriptors. Various other view-based methods exist
in literature [115].

However, 3D shape retrieval using the view-based approach involved four main
stages: (i) view capture, where images of different views of a single 3D object is
being captured with the help of a fixed or moving camera; (ii) view selection, where
only the best representative 2D views of the 3D object are filtered out from the
many views that were previously captured in order to avoid redundancy and high
computational costs. (iii) feature extraction, where 2D features are extracted from
the respective multi 2D views of images representing a particular 3D shape, and (iv)
object matching, requires many-to-many matching of multiple 2D views of two 3D
objects, unlike the existing 2D image retrieval tasks that are based on one-to-one
matching of images between two images.

The downside of the view-based 3D shape descriptors approach is manifold:
First, considering the feature extraction stage of the view-based approach, men-
tioned above, the spatial correlation among different 2D views need to be strictly
considered, and this is still an open research problem which requires further inves-
tigation. Secondly, due to the special characteristics of 3D data, it is still difficult
to extract features for multiple 2D views of a single 3D object with concavity and
self-occlusion. Secondly, due to the many-to-many matching of the multiple 2D
views of 3D objects, it becomes incredibly challenging to determine how best to
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Figure 2.9: A single 3D object (middle) represented by three 2D views obtained from
three different camera positions around the object. Image Source, courtesy [54].

conduct many-to-many view matching and estimate the relevance among different
3D objects. However, for more information regarding the view-based approach to
3D shape retrieval, we refer the reader to [54, 67, 276].

Figure 2.10: The Lightfield Descriptors extraction for a 3D chair model, cour-
tesy [214].

Transform-based Approach:

Transform-based approach to 3D shape descriptors involves the transformation of
the 3D shape from 3D Euclidean space representation to another space representa-
tion [54]. Popular 3D shape descriptors that fall within this category are: Spherical
Harmonics Transform (SHT), Spherical Extent Function, Radial Spherical Extent
Function, Extended Gaussian Images (EGI) [88], Complex Extended Gaussian Im-
age (CEGI) [100], Spin Images [96], 3D Zernike Moments [168], etc. Another type
of 3D descriptor, the Reflective Symmetries [101] also falls within this category. Re-
flective Symmetry of 2D and 3D shapes is a problem of finding the main axes of
symmetry (i.e. reflective symmetry for an arbitrary 3D model for all planes through
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the model’s center of mass, even if they are not planes of symmetry), or determining
that none exist. We provide a brief review of only the popular descriptors within
this category below. The reader is referred to [64, 101, 168, 88, 96, 100], for more
in-depth reviews of these descriptors.

The SHT is a rotational invariant 3D shape descriptor whose main idea is to
decompose a 3D model into a collection of functions defined on concentric spheres
and to use spherical harmonics to discard orientation information (phase) for each
one, thus yielding a shape descriptor that is both orientation invariant and descrip-
tive [64]. The literature in [251] described a 3D surface by computing spherical
harmonics for spherical extent function, a method which needed pose normaliza-
tion in order to be rotational invariance. Comparison between two 3D objects was
achieved using the Euclidean distance between the Fourier transforms of the object’s
descriptors. A general Spherical Harmonics approach (only applies to function on
a voxel grid or spherical functions) was used to transform rotational-dependent
shape descriptors into rotational-independent ones by [270], where they computed
a rotational invariant spherical harmonics descriptor through spherical function de-
composition. Their method took care of the need for pose normalisation due to the
final descriptor being rotation invariant. However, because the SHT uses a Voxel
grid-based representation, many fine details are lost.

The EGI method characterises a 3D model in terms of its distribution of surface
normal vectors. It is designed mainly for pose normalization/determination and
used histogram to record the variation of surface area with surface orientation [88].
In their work, [64] aligned the EGI for each model based on its principal axes,
and compared two aligned EGIs by computing their L2 difference. Several other
works has been done using the EGI descriptor, including a variant of the EGI, the
CEGI mentioned above. The main advantages of the EGI descriptors include hav-
ing unique representation for convex objects without occlusions, avoiding the more
difficult problem of local feature matching, and because it does not contain any di-
rect distance information, it is considered translation invariant [275]. Also, they are
good at discriminating between fabricated and natural objects, but not that good
at making detailed class distinctions [229, 228]. However, it does not contain any
direct distance information and presents confusion in non-convex objects [275].

The 3D Zernike moments is a rotation invariant shape descriptor that captures
object coherence in the radial direction as well as in the direction along a sphere [228].
It is a wonderful descriptor for 3D shapes dissimilar in local parts, has the advan-
tages of capturing global information about a 3D object, and does not require closed
boundaries [168]. Zernike moments can be described as a projection of the function
defining an object onto a set of orthonormal functions within a unit sphere. They
can be considered as the magnitudes of a set of orthogonal complex moments of the
3D shape and the natural extensions of spherical harmonics-based descriptors [275].
In summary, the 3D Zernike moments has an advantage of superiority over others in
this category with regards to discrimination power, noise sensitivity, and data redun-
dancy. Also, allows for easy 3D shape reconstruction, but sadly, it always produces
high order moments due to the high instability of its geometrical moments [275].
Considering the above analysis, the Zernike moments fits within two categories: the
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view-based and transformed-based.

Another type of 3D shape descriptor within the transform-based category is
the Spin Images proposed by [96], which was developed to capture both local and
global features of 3D objects and supports a view-independent object recognition.
The Spin Images on the other hand, is essentially 2D histograms of the surface
locations around a point. They are invariant to rigid transformation [97], rotation,
scale, and pose invariant [50]. As a result, have been particularly successful in the
registration of range images, object recognition, and shape matching [26, 31, 39].
By adjustment of its support parameters, spin-images can be smoothly transformed
from global to local representations [97]. Describing 3D objects based on above
definition of spin images makes the spin images appear to be a part of either view-
based or statistically-based approaches. However, based on the above definition, we
can see that spin images shares similar characteristic with view-based approaches.
For detailed description and more in-depth analysis of the spin images 3D shape
descriptor, we refer the reader to the following literatures: [97, 26, 31, 39, 54, 50].
However, according to [101], The main characteristic of most transform-based 3D
shape descriptors is their ability to describe the global properties of a 3D object,
and they are defined over a canonical parametrisation (i.e. sphere). Unfortunately,
also, these classes of shape descriptors require a priori registration into a canonical
coordinate system, which is difficult to achieve robustly [64].

Graph-based (Structural) Approach:

The structural approach to 3D shape descriptors involves the use of high-level infor-
mation (e.g. a skeleton or a graph) to describe the structure of 3D objects. A typical
example of 3D shape descriptor that falls within this category is the graph-based
shape retrieval method, which describes the structural components of 3D objects,
that are attributed with geometric characteristics and their relational connections
with each other) [2]. In the graph-based approach, the structural description of 3D
object is created using the Attributed Relational Graph (ARG or Extended Reeb
Graph (ERG) [11] concept, where meaningful components of the object can be ex-
tracted using a segmentation algorithm, which are then represented as the nodes of
a graph, and the relationship of the components with each other are represented as
the edges of the graph [2]. Following this approach, the problem of shape matching
is therefore transformed into the problem of matching the ARG/ERG of a query 3D
object with that of the objects stored in the database [151, 107]. The graph-based
approach is illustrated in Figure 2.11, which is the 3D model of a dog (left) with its
corresponding skeletal graph (ERG) representation (right), based on 3D segmenta-
tion of its body parts (middle). The general idea is to derive 1D skeletal curves from
a 3D object such that each curve represents a significant part of the object. These
curves are then converted to an attributed graph representation (a skeletal graph),
which can be used for indexing, matching, segmentation, correspondence finding,
etc.

The structural approach to 3D descriptors is also termed the graph-based ap-
proach, and is further sub-divided into three categories: (i) Reeb Graphs (ii) Skele-
tal Graphs and (iii) Model graphs [229]. First, the Reeb Graph is a topological
structure that encodes the connectivity relations of the critical points of a Morse
function [112] defined on an input surface. It is also seen as a schematic way of
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Figure 2.11: 3D shape descriptors based on Extended Reeb Graph - Courtesy: S.
Biasotti [11].

presenting a Morse function [54]. For a detailed explanation regarding the RG ap-
proach refer the reader to [54]. The skeletal approach, on the other hand, uses
skeletal graph to encode geometric and topological information about a 3D object.
With each node of the skeletal graph a topological signature vector is associated by
encoding the topology of the sub-trees rooted at the node. Thereafter, indexing of
the skeletal graph is achieved by storing the topological signature vector for each
node. Overall, the model graph-based approaches are mainly suitable for describing
the rigid CAD/CAM 3D models, but are difficult to apply to non-rigid models such
as humans and animals, although [281] tried implementing a similar approach to
model graphs for the retrieval of non-rigid shapes.

In summary, the reeb graph and skeletal graph approaches are applicable to both
rigid and non-rigid 3D models represented as voxels, while the model graph-based
approaches are only applicable to rigid models. According to [86] model graphs are
extracted from solid model representations used by most CAD systems, with an
exception of the model graph-based approach by [281], which is also applicable to
non-rigid shapes. However, for structural/graph-based 3D descriptors, the complex-
ity of the exact computation of a metric obeying the triangle inequality prevents
practical application. Hence, the efficient implementation of approximate match-
ing methods is a current research issue. In addition, a pure graph-based method
is overly sensitive to noise and details, including having a limited discriminating
power, because only topology is considered and minor changes in topology may
result in significant differences in similarity. As a result, the graph-based method
is often combined with other methods in order to improve overall discriminative
abilities [229].

Knowledge-based Approach Summary and Statistically-based Approach

Shape retrieval methods in each of these categories are not completely disjoint, which
implies that there are commonalities between them. For example, it is possible to
convert the spin images shape descriptor from a view-based to a transform-based
descriptor and vice-versa in terms of computational approach, by adjusting its pa-
rameters. Alternatively, the Spin Images shape descriptor can be categorised either
as a global or a local descriptor (see Sections 2.4) based on its parameters settings.
Considering all the approaches to 3D shape descriptors, we found the statistical
approach to be the most dominating (i.e. popular) in literature and convenient in
terms of implementation. The statistical approach to shape descriptors computation
also accounts for several recorded successes in 2D and 3D content-based shape re-
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trieval tasks over the decades according to literature reviews (see Section 2.6), where
they have recorded highly impressive performance evaluation results for detection,
classification, and retrieval tasks, etc. Motivated by its successes and popularity,
this thesis focuses on the statistically-based approach to 3D shape descriptors (re-
trieval methods), which we extensively review in the next section.

Technically, the statistical approach to 3D shape descriptors is based on the
distribution of local and/or global measurements of surface properties (i.e. features)
of a 3D object, instead of directly using these measurements. This approach has the
advantage of reducing the 3D shape similarity measurements to simple histograms’
comparison. Several shape functions (i.e. surface properties measurement) can be
utilized to calculate histograms. However, most of these functions are typically
invariant to rotation and to translation. For example, considering the local and
global approaches, the local approach, such as the curvature histogram, are able to
identify various classes of objects, but are however not robust to noise, although the
global approaches are inefficient in discriminating globally similar objects having
minor fine details. In Section 2.6, we provide a detailed review of statistically-based
3D shape descriptors, which are directly related to our work in this thesis.

2.6 Statistically-based 3D Descriptors Review

As we already mentioned in Section 2.5.3, the statistically-based 3D shape descrip-
tors are descriptors based on the distribution of local, global, or both measurements
of surface properties (features) of a 3D object, instead of directly using these mea-
surements. They may use single or multi-dimensional indexing (i.e. histogram),
including tree-based approach, which is helpful for searching for similar objects from
a large database. Extracted features from 3D surfaces are mostly presented as a 1-
dimensional or multi-dimensional feature vectors. Observably, the statistically-based
approach to shape descriptors have become the most popular in literature for describ-
ing 2D/3D objects, perhaps, due to their relative ease of computation and efficient
indexing characteristics. For instance, five global signatures were computed directly
from 3D meshes in [173, 174]. These signatures were expressed as shape distribu-
tions sampled from shape functions that measures the global geometric properties
of 3D objects. The shape description approach by [173, 174] reduced the problem of
3D objects matching to the comparisons of their respective histogram distributions.
Matching histogram distributions is easier than traditional shape matching methods
which deal with issues such as pose registration, model estimation and finding fea-
ture correspondences [173]. Regarding what type of measurements can be derived
from 3D surfaces for distribution, features, such as moments, Fourier coefficients,
volume, etc., have been extracted from the surface of a mesh [272]. Another work
by [66] combined two local features, the eccentricity function, which gives spatial
shape information, and local-diameter function describing local patches around a
shape, into a 2D histogram.

A statistical representation of 3-dimensional shape is introduced in [252]. In
their work, they first defined 3D local reference frame (LRF) for each pair of ori-
ented points (surflet-pairs) on the surface of a 3D mesh, and derived a 4-dimensional
feature that parameterizes the intrinsic geometrical relation of these surflets. The
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4-dimensional feature is binned into a multi-dimensional histogram, using 5-bins
in each feature dimension to return a 625-dimensional feature vector as a final de-
scriptor (signature) for a given 3D object. Inspired by this, the literature in [136]
extended the 4-dimensional feature in [252] to 6-dimensions and obtained an even
higher dimension of 15625-dimensional signature. This approach to 3D shape de-
scriptor can be applied directly on 3D mesh representation according to [252] and
point cloud [136]. However, their computation utilises all the vertices (mesh) and
points (point cloud) models that they describe. This approach raises serious con-
cerns about efficiency as a total of k(k−1)/2 features are returned from a surface of
k surflets, resulting in remarkably high and redundant values for each iteration. In
addition, the surflet-pairs based techniques in [252] and [136] return features which
are invariant to rotation, scale, translation and robust to noisy data, but fail to deal
with local surface dissimilarities and large-scale problems, while the Adaptive Hy-
brid Descriptor in [136] produces signature with excessively large dimensions, and
employs all points on the surface of the shape it describes.

Two other local shape descriptors, the Point Feature Histogram (PFH) [201],
and FPFH, developed by [198], also employs similar feature extraction techniques
to that of [252]. Three common aspects between PFH and FPFH are: (i) Both
methods present local shape descriptors, (ii) Both descriptors are computed for the
entire surface points for point clouds only, (iii) Both PFH and FPFH descriptors
are only suitable for 2.5D scans (Pseudo single position range images) [202]. The
computational complexity of the PFH is O(nk2), where (nk2) is the number of key
points and neighbours. However, the FPFH extends PFH with some optimization
steps, such that only direct surflet-pairs (pi, ni) between the query point and its
neighbourhood are taken into consideration, negating the fully connected graph
approach, i.e. k(k − 1)/2 features used by other similar descriptors mentioned in
this section [198]. This took the complexity of the PFH down to O(nk), because
while the PFH uses a fully-connected graph of k(k − 1)/2 between all points, k in
the neighbourhood of the key point, the FPFH considers only the direct connections
between a given key point and its neighbouring points. In addition, the FPFH adopts
only three of the 4-dimensional features proposed by [252] and used also in PFH.
Generally, the feature extraction technique employed by [252, 136, 198], and [203]
strictly depends on both [x, y, z] coordinates of 3D surface and their corresponding
normal vectors. For surface with noisy data, it is difficult to accurately estimate
surface normals for its points. Although some robust methods have been proposed
for accurate surface normals estimation for meshes and point cloud, the results of
these methods vary with datasets. Intuitively, the smoother the surface of any given
shape, the more accurate its normal vector estimation is likely to be.

2.6.1 Point Pair-based Statistical 3D Shape Descriptors

As already indicated in Sections 2.5 and 2.4, several approaches have been proposed
in the literature for local and global 3D surface description. Although the literatures
in [13] and [78] already provides comprehensive and up to date reviews of 3D shape
descriptors, we would briefly review literatures regarding the 3D shape descriptors
summarized in Table 2.1, in line with this thesis and our research focus.

Ekpo Otu Chapter 2 49



3D Shape Description, Indexing, Matching and Retrieval

S/N. Descriptors (Year) Size Category Use Case

1 SPRH (2003 [252]) 625 Global Mesh classification

2 PFH (2008 [200]) 625or125 Local Point cloud alignment

3 FPFH (2009 [198]) 33 Local 2.5D Scans registration

4 PPF (2010 [51]) 4 Hybrid Point cloud recognition

5 ADH (2017 [136]) 15,625 Local Point cloud classification

6 PPFH (2018 [27]) 512 Local Point cloud matching

Table 2.1: Point Pair Features-Based 3D Shape Descriptors.

A global shape descriptor for 3D mesh classification is introduced by [252], where
they computed the histogram of oriented point-pair relations, called the Surflet-
Pairs Relation Histogram (SPRH), which describes the relative geometrical prop-
erties between two-points by a 4-dimensional feature. Similarly, another 3D local
shape descriptor called the Adaptive Hybrid Shape Descriptor (ADH) was proposed
by [136], which extends the 4-dimensional features of [252] to six dimensions. Similar
to the features in [252], given two oriented points (pi, ni) and (pj, nj), the Point Pair
Feature (PPF) [51] extracts four different simple relations from that of [252], thus:
F (pi, pj) = (α, β, γ, δ), where α = ∠(ni, nj), β = ∠(ni, d), γ = ∠(nj, d), δ = ∥pi−pj∥
and d = pi − pj. These features are extracted globally for all points in the point
cloud and matched locally, thereafter for two shapes (object and scene) comparison,
hence we consider the PPF a hybrid descriptor. In a more recent work by [27] only
two features F (pi, pj) = (δ, γ) were adopted from PPF for their proposed Points
Pair Feature Histogram (PPFH). A hybrid 3D descriptor known as the Ensemble
of Shape Function (ESF) was formed by [263]. In order to combine the descriptive
powers of both local and global descriptors, the work in [4] combined the Viewpoint
Feature Histogram (VFH) global descriptor [201], and the FPFH local descriptor
to form a hybrid (FPFH + VFH) descriptor. The above reviews certifies to the
popularity and relevance of the point pair-based 3D retrieval method. Although,
most of the work reported here are tested on a different kind of 3D data, such as
the range scans or RGB-D data, the methods in this thesis completely dwells on the
standard 3D triangular mesh and point cloud data.

The statistically-based methods to 3D descriptor consider pure geometry of 3D
surface to represent extracted features of a given 3D object by a single descriptor,
which is a fixed-sized or fixed-length n-dimensional feature-vector of values for all
the 3D objects in the dataset. However, the size or length of the feature-vector
(descriptor) could be as low as 1,024-dimension as in D2 global 3D descriptor [174]
or very as high as 262,209-dimension as in HAPPS hybrid descriptor, described in
Section 4.2.3), depending on the method/algorithm used to compute the descrip-
tor. It is important to note however, that there is a trade-off between robustness
and compactness considering the length of the final descriptor. We explain this in
Chapter 4. In summary, we consider the 3D shape descriptor of any given object
as a point in a high dimensional (i.e. n-dimensional) feature space. Therefore, any
two objects are considered to be similar if they are close to each other in this space,
using distance metric (see Section 2.2.3) for their comparison.
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2.7 3D Shape Retrieval Challenges

In this section, we provide an overview of 3D shape retrieval challenges while in
Sections 3.2.1 and 3.2.2, we further discussed how defective data or various abnor-
malities in datasets (such as holes, degeneracies, and duplicates in vertices, faces,
and edges, etc.) affects shape retrieval algorithms due to certain factors: dataset
representations, object’s benchmarks design, data sources or capturing devices used
to acquire the 3D models.

Deriving a shape signature that can capture the geometry and physical properties
of a defective 3D object accurately and effectively is difficult. For example, how can
the volume of a hollow 3D object (i.e. a 3D object with large missing parts), such
as the objects found in PRoNTo dataset [142] be computed? considering that such
a signature must be invariant to affine transformations, robust to noise, missing
parts, and occlusion, etc. In addition, most 3D shapes in large databases, such
as SHREC’14 [132] with 8987 3D objects, or PSB [191] with 1814 3D objects, are
represented by un-organized sets of degenerate polygons, which are non-manifold.
Other datasets, such as the SHREC’17 PRoNTo dataset [142] contains 3D shapes
that are represented by point cloud with large part of missing surfaces and noise.
Several of the available 3D objects are represented in a complex or rather challenging
manner, often containing noise, holes and/or missing parts, disjointed, wrongly-
oriented, self-intersecting and overlapping polygons. Automatically, repairing the
degeneracies in these poorly represented 3D objects during shape analysis/processing
(in order to produce manifold surfaces) remains a difficult research problem and
sometime require manual human intervention to solve ambiguity [74, 10]. While
recent work [45] has proposed automatic solution to address the holes on 3D surfaces
from range scans (e.g., SHREC’17 Point cloud Retrieval of Non-rigid Toys (PRoNTo)
dataset), however, their method does not generalize well for all 3D objects, especially,
objects with different and overly complex topological representations, such as those
type of 3D objects in [132].
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Chapter 3

RESEARCH STRATEGY,
TECHNIQUES, AND TOOLS

3.1 Introduction

This chapter provides in-depth research strategy, tools, and essential techniques (ap-
plicable to our proposed methodology and major contributions in Chapter 4, listed
in Table 4.1, and described in Section 4.2). These techniques include: data pre-
processing, point cloud sampling, feature extraction, 3D key points detection/determination.
Strategies, such as shape descriptor construction, indexing, matching are also de-
scribed, including the different types of dissimilarity metrics implemented in our
work.

In line with the last paragraph of Section 2.2.4, although six aspects were men-
tioned, there are primarily four central (core) aspects to Content-Based Shape Re-
trieval (CBSR), which include: (i) Feature extraction, (ii) Shape description con-
struction, (iii) Database indexing, and (iv) Shape Matching and retrieval. Preceding
these aspects is another important (though optional) aspect, “Data Pre-processing”,
which is usually implemented to refine and present the input 3D shape(s) in a suit-
able format before the above-mentioned techniques are implemented. Each of these
research strategies and techniques are explained in the sections that follow.

3.2 Data Pre-processing

In order to bring all database objects into a concise form and deal with issues (i.e.
scales, translation, noise, varying surface details, degeneracies, etc.) that may occur
with different objects, it is often necessary to apply data pre-processing functions
to the objects. Determining which pre-processing function is applicable depends on
the type and/or format of the input data presented to the shape analysis algorithms
(such as those described in Section 2.2.1). For example, the input 3D objects may
either be a polygonal mesh or point cloud, and could also be represented in different
scale, translation, noisy, faulty, or with varying surface details. Therefore, we have
developed and implemented several pre-processing algorithms, including adopting
some from existing research for our shape retrieval methods, including: (i) point
cloud sampling, (ii) affine transformations (scaling, translation, rotation), and (iii)
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faulty 3D models handling (noise removal, surface smoothing, hole filling, degen-
erate, and duplicate vertices and/or faces removal, etc.) for mesh and point cloud
data, whenever the need arises.

3.2.1 Defective Data

Intuitively, defects in the data structure of 3D object representation would most
likely lead to inaccurate shape description of the object. In addition, key processes
such as surface points sampling (see Section 3.2.3), and surface normal estimation
(see Section 3.3.1) are likely to be affected by defective/faulty 3D objects, resulting in
undesirable outcomes. The fundamental computational principle of GIGO (garbage-
in, garbage-out) explains this hypothesis. Algorithms and methods designed to
operate on vertices, faces, edges, or other properties of a 3D mesh expects consistent
ordering in the structures of the input data they receive. When the orderings are
inconsistent, altered or have data with incomplete details, duplicates, etc., several
issues listed below erupts, thus:

i. The algorithm may fail and return error,

ii. The algorithm may run and return incorrect, undesirable output,

iii. Subsequent methods using the undesirable output eventually produces undesir-
able final output, etc.

3.2.2 Defective Data Handling

In view of the challenges posed by defective data, the need for data pre-processing
prior to features extraction, therefore, cannot be overemphasized, especially for 3D
surfaces which are more complicated to deal with compared to 2D images. Several
different data pre-processing functions can be applied on 3D surfaces, such as surface
triangulation, surface smoothing, hole filling, re-meshing, surface re-sampling (up-
sampling or down-sampling), artefacts removal (removal of degeneracies in vertices
or faces of mesh), etc. Depending on the application, some or all these pre-processing
functions may be needed. In Section 2.2.2, we described two categories of 3D sur-
faces: the water-tight and the non-water-tight 3D surfaces. Usually, the latter is
considered to be defective. Some 3D benchmark dataset, such as SHREC’12 (see
Section 5.2.4, Figure 5.3) and PSB [191] contains a combination of defective (non-
water-tight) and non-defective(watertight) 3D objects. Therefore, considering such
datasets, not all the above-mentioned pre-processing functions may be needed for
all the data it contains.

Developing an intelligent application that automatically detects which objects
in the dataset are defective or not is incredibly challenging. For example, consider
a heterogeneous dataset (i.e. benchmark dataset containing mixed variety of 3D
shapes, each having different levels of defects or no defect), some of the data may
require just one of the pre-processing steps to be performed on them while others
may require two or more pre-processing steps. In our implementation, we develop
function(s) that includes the implementation of some particularly useful operations,
such as smoothing, hole filing, etc. Unfortunately, the smoothing function would
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over-smooth an already smooth 3D object, for example. In addition, especially for
larger heterogeneous datasets like the SHREC’12 [131] and SHREC’14 [132] datasets,
which contain variety of mixed models with different pre-processing needs, the chal-
lenge remains that, it is exceedingly difficult, frustrating, and tedious task to loop
through each of these data in turn to correct their respective defects.

Considering the above, a one-solution-fits-all technique that solves this kind of
open research problem is yet to be developed. However, in this thesis, the approach
we adopt to address the pre-processing needs of large heterogeneous dataset, such
as the ones mentioned here above is outlined as follows:

i. first apply our features extraction method automatically on all the raw datasets.
Defective files were identified as they returned errors. They were either manually
corrected, repaired, or noted in the case of minor defects,

ii. following the above steps, all 3D objects with common pre-processing needs were
identified for the entire dataset, and preprocessing algorithms, like smoothing
and removal of degeneracies, applied automatically on the whole objects in the
dataset,

iii. those shapes whose defects needed some complicated pre-processing steps that
could not be resolved via the automatic process, were selectively dealt with,
in order to correct the defects. For instance, a particular 3D mesh file in the
SHREC’14 dataset contains two separate objects (a 3D object and disjointed
3D text) as a single object. As a result, point sampling feature extraction
completely failed to apply on this file because the algorithm expects every file
to include data structure for a single object, not multiple,

iv. in another investigation, we decided to completely spot and remove all de-
fective 3D meshes from the SHREC’12 dataset, re-configure its corresponding
ground-truth file accordingly and re-evaluated our retrieval method on the re-
maining supposedly better meshes. The results (not included in this thesis)
reveal tremendous performance improvements, evaluating our method on only
those 3D objects without defects i.e. from 1,200 models to about 1,068 models.
Unfortunately, we did not investigate further with this approach due to the need
to also implement other state-of-the-art methods (whose code was not given)
using the new Ground Truth (GT) of 1,068 models, and be able to compare our
method.

Unfortunately, there is still a problem with approaches (i) to (iii) to addressing
defects in a benchmark data, because the pre-processing needs for a particular set
of data in the dataset may adversely affect other set of data without such need, and
vice-versa. For example, if a dataset contains a 3D shape - A, with smooth surface,
and another shape - B, with very “rough surface”, automatically applying smooth-
ing filter on the entire database (in attempt to correct those shapes whose surfaces
are rough), would fix shape B, while completely altering the overall topology and
structure of shape A due to unnecessary smoothing of shape A, which eventually
results to over-smoothing of shape A.
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The only unambiguous way to resolve the above problem would be to selectively
apply smoothing to B instead of doing so automatically on all database models, but
the challenge, again, is that for large datasets of say 1000+ models, this approach
would make the pre-processing task nearly impossible. Therefore, this remains one
key research challenge in 3D shape retrieval for large and heterogeneous datasets.

The overall goal of data pre-processing is to ensure that different 3D shapes are
fairly comparable, by bringing them into a concise form through the application of
similar transformations across all database objects. Considering that 3D shape re-
trieval involves two phases (i.e. online and offline [228]), during features extraction
and shape descriptor construction, our overall shape descriptor method is devel-
oped to automatically take care of above-mentioned pre-processing steps both for
the offline (database indexing phase, described in Section 3.5) and online (query
shape) feature extraction and descriptor construction phase. Secondly, we under-
stand that our retrieval method can be applied to various 3D datasets, and each of
these datasets may contain 3D models with different representations: polygon mesh
or point cloud representation, with polygon mesh being the most common (see Sec-
tion 2.2.1), we design our retrieval method to handle pre-processing for these two
data representations accordingly. Therefore, we would consider the process of point
cloud sampling from 3D triangular mesh next.

3.2.3 Point Cloud Sampling

The shape retrieval algorithms we implement in this research are applicable to both
3D triangular meshes and 3D point clouds, but not other formats of 3D object rep-
resentations (discussed in Section 2.2.1). However, it is possible to convert from one
representation to another depending on the need. Given a triangular 3D mesh as
input, vertices of the mesh could be used directly as point cloud without the con-
nectivity information (edges) that makes up the faces of the mesh. Alternatively,
points can be sampled from every triangular faces of the input 3D mesh to form
point cloud. The later approach is better illustrated in Figures 3.1 and 3.8. While
triangular meshes are quite convenient for many computer vision and/or graphic
tasks, there are a number of reasons why extracting features and constructing de-
scriptors from 3D point clouds is rather preferable to their mesh representation,
including that point clouds are ideal for processing and extracting information from
3D objects. Secondly, while the complicated objects may be less well represented
than the simple ones, we agree that the number of points sampled should be de-
termined by the complexity of the objects, the number of triangles for example.
However, for a given dataset, we are interested in the same number of points for all
its available objects. We assume that having fixed number of points sample (evenly
dispersed over shape’s surfaces) for every database shape has the advantage of a
stable probability distribution for all the shapes.

For the majority of our research implementations and experimental evaluations
in this thesis, given a triangular mesh as input, we first sample N points from
the mesh to form a point cloud P , using the points sampling technique described
by [173], and implemented in the Trimesh library [47]. We used N = 4200, for
example, in the SHREC’18 and SHREC’10 datasets, while the PRoNTo dataset is
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originally presented as an un-organised point cloud data with [x, y, z] coordinates
that contains approximately N3000min to 4200max points. Further details regarding
these datasets and several others used to evaluate our shape retrieval methods in
this thesis are adequately described in Section 5.2.

Figure 3.1: 3D mesh (left) to 3D Points Cloud (right).

The research contribution by [173] described a Monte Carlo sampling method
that loops through all triangular faces for a given 3D mesh, and for each triangle
that makes up a face, random points, Sf are generated w.r.t. the area of the trian-
gle. Collectively, the points, Pf for all triangles making up the mesh’s surface are
returned as point cloud, P generated for the input 3D shape. This technique can be
successfully implemented using the open-source utility in the Trimesh library [47].
The surface points sampling techniques by [173] has the advantage of generating un-
biased random points, sampled evenly according to the area of the individual faces
of the triangular mesh from which the points are sampled – therefore larger faces are
sampled more often and hold more point samples along their surface than smaller
faces. The pseudo-code for this random point sampling techniques as in [173] is
outlined below:

Step 1: Given a triangular face with vertices A, B and C, compute the area for
each face in a mesh and store into an array.

Step 2: Store the cumulative area of triangular faces visited, into an array.

Step 3: Select a face (at random), with probability proportional to its area. To do
this, a random number between 0 and the total area sum (cumulative area)
is generated, and a binary search is performed on the array of cumulative
areas, to select a number (value), which corresponds to one in the stored
(accumulated) area.

Step 4: For each selected triangle (face) in Step 3., with vertices A, B and C, two
random numbers r1 and r2, between 0 and 1, are generated. Finally, point-
coordinates are constructed on the surface of this selected face by evaluating
equation 3.1. Overall, uniform random points are produced on the surface of
a mesh, w.r.t. the surface area of each faces, by taking the square-root of r1,
see Figure 3.2.

P = (1−
√
r1)A+

√
r1(1− r2)B +

√
r1r2C (3.1)
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Figure 3.2: Random Points sampling in triangle, [173].

Mesh to Point Cloud Sampling: Barycentric Interpolation Technique

Assuming that the complex surface of a 3D model is represented by a triangulated
approximation defined by three non-collinear vertices: A, B, and C (see Figure 3.3a),
any point, p ∈ △A,B,C is on the line segment between one vertex and some
other point p′ on the opposite edge (see Figure 3.3b). The ability to represent the
position of any such point, p (located within the bounds of △A,B,C) with three
real numbers (i.e. scalars), α, β, and γ is particularly important in Computer
Graphics. Barycentric coordinates can be used to express this position according to
Equation (3.2), where α, β, and γ are the three scalars representing the barycentric
coordinates of p, such that α + β + γ = 1, for p ∈ △A,B,C (i.e. normalized
barycentric coordinates). Alternatively, γ = 1− α− β and α + β ≤ 1 [211].

p = αA+ βB + γC. (3.2)

� p is within the bounds of the triangular face, ⟨A,B,C⟩ if and only if:
0 ≤ α ≤ 1,
0 ≤ β ≤ 1,
0 ≤ γ ≤ 1.

� p is outside the bounds of ⟨A,B,C⟩ if any of the coordinates is less than zero
or greater than one:
α < 0 or α > 1,
β < 0 or β > 1,
γ < 0 or γ > 1.

� p is on an edge (i.e. on one of the lines joining the vertices of the triangle) if
any of the coordinates is zero. Which line/edge it is depends on which one of
the coordinates is zero.

� p is on either of vertices, A, B, or C if any two of the coordinates are zero.
Which vertex exactly depends on which two coordinates are zero.

The barycentric coordinates, [α, β, γ] of a point, say p, can be used as a weighting
factor for properties (i.e. normals, colours, and texture coordinates) of the vertices,
A, B, and C of the triangle bounding p [210]. Similarly, [α, β, γ] allows p to be
expressed as a weighted average of the vertices of △A,B,C. That is, they can be
expressed as the area of sub-triangles △BCp (denoted by α), △CAp (denoted by β)
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(a) Typical triangular face (△A,B,C) de-
fined by three non-collinear vertices: A, B,
and C.

(b) Random point, p within △A,B,C is on
a line segment between point B and point
p′ on the edge, C̄A.

(c) Point, p expressed as a weighted average
of 3 sub faces,△BCp (green),△CAp (red),
and △ABp (blue) within △ABC.

(d) Each sub-triangular face is represented
by barycentric coordinate (i.e. areal coor-
dinate), α (green), β (red), and γ (blue)

(e) Associating the same normal, n ob-
tained at point, p within a triangular face,
△ABC to every other points on the same
surface/face.

(f) Linearly interpolated normal, np at ran-
dom point, p using normals, na, nb, and
nc of the three vertices, A, B, and C of
△A,B,C.

Figure 3.3: Barycentric coordinate system technique to points, Ps and normals, Ns

sampling from a triangular face, △A,B,C.

58 Chapter 3 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

and △ABp (denoted by γ) divided by the overall area of △ABC (see Figure 3.3d).
For this reason, they are called areal coordinates. In computer graphics, barycentric
coordinates are used for Ray-Tracing (to test for intersection), as well as Rendering
(to interpolate triangular face information). However, in 3D models, triangular face
information (i.e. normals, color, and texture coordinates) is often associated with
vertices rather than the triangular face itself. In our work, we are particularly in-
terested in only the normals, np to every point, p sampled from within △ABC.

The same normal, n could be associated to every point on the face of △ABC
using the formula in Equation (3.3) - see also Figure 3.3e, but that is a bad idea
and would give rise to what is known as flat shading [17] in computer graphics.
Theoretically, if the barycentric coordinates are used to compute the position of a
point located on the triangle using the triangle vertices, then any other data defined
at the triangle’s vertices (such as normals, colours etc.) can also be interpolated in
exactly the same way [211]. Therefore, the normal, np at point, p within △ABC
could be expressed as the linear interpolation of the normals at the vertices of
△ABC. This interpolation is given by Equation (3.4) and visualised in Figure 3.3f.

n =
(B − A)× (C − A)

∥(B − A)× (C − A)∥
(3.3)

np =
α(p× na) + β(p× nb) + γ(p× nc)

∥α(p× na) + β(p× nb) + γ(p× nc)∥
(3.4)

1

2
∥(A−C)× (B−C)∥2 (3.5)

α =
Area of △BCp

Area of △ABC

β =
Area of △CAp

Area of △ABC

γ =
Area of △ABp

Area of △ABC

(3.6)

The area of the triangular face, △ABC can be computed as given by Equa-
tion (3.5), while the area of each of the sub-triangles (represented by α, β, and
γ) within △ABC can be computed as given in Equation (3.6). Finally, for every
new point, pi that is randomly generated using the barycentric coordinate system
technique, the areas of three sub-triangles recomputed and a corresponding normal
vector, ni is instantly derived. In order to obtain the number of samples for each
triangular face (i.e. △ABC), all the triangle areas are first summed up and con-
verted to a probability distribution. Multiplying the number of points sample, N
by the distribution gives the number of samples per face.

Defective 3D Objects Processing

Generating (sampling) points from 3D mesh to form point cloud produces a “cloud”
of points that depicts the input 3D mesh - see Figures (3.1) and (3.8). Intuitively,
the robustness of any final shape descriptor or feature computed directly depends
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on the surface quality of input objects. For example, when the mesh is deformed
(i.e. have holes (non-watertight), duplicate faces, edges, and vertices, etc.), the de-
fects would also be reflected in the sampled point cloud thereby affecting subsequent
features extracted from such mesh or point cloud. To deal with the deformations
in the input data, we first apply some pre-processing functions such as hole fill-
ing, smoothing, and cleaning to remove degeneracies and duplicates, etc., to clean
and/or repair the faulty triangular meshes, using existing software library, codes
or packages [223]. Essentially, the reader is referred to Section 3.2.2, for a more
detailed approach regarding how defective 3D mesh/data have been handled for all
the implementations in this thesis.

3.2.4 Affine Transformation (Scaling, Rotation, and Trans-
lation)

The shape of an object is the geometric information that remains after the effects
of affine transformations (i.e. rotation, scaling/rescaling, and translation) has been
removed (factored out) from the object [104, 275]. We illustrate this concept in
Figure 3.4. Therefore, for two shape descriptors to be comparable, affine transfor-
mations must be applied to each of their objects to ensure that the final descriptors
constructed from these objects are invariant to affine 3D transformations. Scaling
and translation are easy to deal with as described below, but rotation invariance is
difficult. However, we ensure that rotation invariance is wrapped into our respective
shape descriptor implementation for each 3D object (see Section 4.2).

Figure 3.4: 3D model of a cow with different Euclidean similarity transformations
(locations, scales, and rotations) but the same shape. Image source: [102]

In order to ensure that all final descriptors computed from shapes are translation
invariant, each input shape (point cloud) is centred on its centroid. That is, for a
point cloud P = pi(i = 1 : N), with N points and centroid,

pc =
1

N

N∑
i=1

pi

we apply a translation-invariant transform to P thus: P = P − pc. Likewise for
scale invariance, a uniform scale, S is applied to each point (of the point cloud)
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in all directions such that the Root Mean Square (RMS) distances of each of these
points to its centroid is 1. Mathematically, for a point cloud P = pi(i = 1 : N) with
N points, S is applied such that√√√√ 1

N

N∑
i=1

||Spi || = 1

For point cloud with normals, the estimated normals are not affected by the scaling
and translation transforms. We show practical implementations (visualizations)
of the above-mentioned affine transformations on 3D rigid point cloud shape in
Figure 3.5. In Figure 3.5a, we observe the coordinates of the object without affine
scaling ranged between [0,−400], [200,−500], and [200,−100] for the x−coordinate,
y − coordinate, and z − coordinate, respectively, while in Figure 3.5b, all the three
coordinates ranged between [−1, 1] after RMS-scaling transform has been applied
to it.

(a) Unscaled point cloud. (b) Scaled point cloud.

Figure 3.5: Visualisation of the 3D point cloud representation of a rigid 3D pipe
object. Figure 3.5a shows the coordinates of this object with very large values,
while Figure 3.5b shows the same object after being scaled using the scaling factor
mentioned above.

3.3 Feature Extraction

Features must first be extracted from 2D/3D objects to compute shape signatures
or descriptors for such objects. The extracted features and computed descriptors

Ekpo Otu Chapter 3 61



3D Shape Description, Indexing, Matching and Retrieval

have greater impact on the overall performance outcome of application (like re-
trieval, classification, recognition, detection etc.) involving them. For this reason,
the process of features extraction and shape descriptors computation are consider-
ably very important for any application involving 2D or 3D data. Following features
extraction processes is shape descriptor computation, where a compact mathemati-
cal representation (descriptor or signature) of extracted features is computed for a
given shape/object. Details about this are presented in Section 3.4.

Secondly, in computing descriptors for 3D shapes, algorithms do not use the
input 3D data as they are; instead, low, or middle-level features are first extracted
from the input data and used for constructing the shape descriptors. For example,
geometric features such as Gaussian curvature, mean curvature [137], and Shape
Index (SI) [110], etc., which constitute local feature extraction have been used in
the literature. Experiments have also shown that constructing shape descriptors
from extracted features leads to robust shape retrieval methods compared with us-
ing the original 3D data features as input. This is because, unlike 2D image data
which could directly be used by machine learning algorithms [24] in the case of
data-driven approach, for example, the raw 3D data are not rich in features. Fea-
ture extraction, therefore, is an important process and one of the key preliminary
aspects of content-based retrieval.

Finally, most 3D shape descriptors, including the ones we implement in this
research work requires that some sort of features (such as surface normals, local
surface characteristics (deformations), or surface geometry measurements) are ex-
tracted first. In this section, we provide details of useful features and their extraction
techniques - which are most relevant and are implemented in our research work.

Definition 3.3.1 k-Nearest Neighbours (k-NN) Algorithm : This is the
most-commonly used technique for several applications, including classification and
clustering. Basically, it is a technique used to get all k closest/nearest points or nodes
to a given point of interest, by finding the spatial distance between these points in
the most efficient way. The number of nearest neighbours (i.e. optimal value of
k) highly depends on the data used. The k-NN algorithm returns the “index” and
“distance” of each of the derived neighbouring points to the interest point, where (for
the implementations in this thesis) these “indices” are used to derive the actual k
points, for the next phase of our implementation (performing Covariance analysis or
fitting a plane to derived k points, for Principal Component Analysis (PCA)-based
surface normal estimation in point cloud).

Definition 3.3.2 r-Nearest Neighbours (r-NN) Algorithm : This algorithm
is used to find all neighbouring points or nodes within a sphere of radius, r to a
given point or point of interest, and returns the “index” and “distance” of each of
the derived neighbouring points to the interest point, where (for the implementations
in this thesis) these “indices” are used to derive the actual k points, for the next phase
of our implementation (performing Covariance analysis or fitting a plane to derived
k points, for PCA-based surface normal estimation in point cloud and selection of
LSP for our proposed APPFD method).

In line with the above definitions for the k/r-NN algorithms, Scikit-Learn [125],
a scientific Python library implements two different nearest neighbors classifiers:
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“KNeighborsClassifier”, which implements learning based on the k nearest neigh-
bours of each query point, where k is an integer value specified by the user, and
“RadiusNeighboursClassifier”, which implements learning based on the number of
neighbours within a fixed radius, r of each training point, where r is a floating-point
value specified by the user. We adopt these implementations for this thesis.

3.3.1 3D Surface Normals Estimation

One fundamental feature of any 3D surface is the unit normal vector (i.e. surface
normals), from which many other geometric features, physical surface measurements
and final shape descriptors are possibly computed. Surface normals can be estimated
for mesh, as well as point cloud representations of any given 3D object. Each surface
normal (normal vector), n corresponds to a respective surface point, n of a given
3D mesh or point cloud object. In addition, several other features or algorithms for
feature extraction, object recognition, segmentation, and registration, etc., strictly
rely on the surface normals. However, the sampling method in [173, 47] only gener-
ates point cloud from mesh, and requires additional steps to estimate the “normal”
to each point in the generated point cloud, which is computationally very expensive
and slow. In order to address this concern in our implementations, we modified the
code in [47] to compute the surface normal simultaneously also, ni for each sampled
point, pi during the sampling phase, using a computer graphic Barycentric Interpo-
lation (BI) technique fully described by [190] and NumPy broadcasting capability
for faster computation. Further details regarding our implementation can be found
in Section 3.3.4 - “Improved Surface Normal Estimation Technique”.

(a) Outward-pointing Face Normal (b) Inward-pointing Face Normal

Figure 3.6: 3D triangular face with vertices i.e. points (p1, p2, p3) and normal n. In
(a), the normal vector is pointing in the right direction (outward), while in (b), the
normal vector is pointing in the opposite direction (inward), which is incorrect.

Surface Normals Estimation for 3D Mesh

Depending on the shape descriptor to be computed, surface normals can be esti-
mated for either vertices or faces of a triangular mesh. Given a 3D triangular mesh
with vertices and faces data, the “unit normal vectors” pointing outwards from each
of the vertices (i.e. vertex normals) or faces (i.e. face normals) of the shape can be
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derived in a number of ways. However, the techniques to normal vector estimation
for vertices and faces of a triangular mesh are different. For example, if we consider
three points (p1, p2, p3) that makes up a triangular face as illustrated in Figure 3.6,
taking the cross product of the edges (i.e. vectors), [p1 − p3] and [p1 − p2] returns
a vector for that face, which can be normalized to form its unit normal vector (i.e.
face normal).

Alternatively, to derive a normal vector for any given vertex, say p1, as illus-
trated in Figure 3.7, a common method would be to take the average of all normals
to the faces associated with p1. For example, Figure 3.7 shows a typical triangular
mesh patch with five faces (Nface1, Nface2, Nface3, Nface4, and Nface5). The normal
vector at vertex p1 (Nvertex), can be derived as shown in Equation (3.7). For more
details on vertex normal estimation from triangular meshes, refer to [232], and [94].

Nvertex =
Nface1 +Nface2 +Nface3 +Nface4 +Nface5

5.0
. (3.7)

In summary, consider any triangular face, say in Figure 3.7, with vertices (p1, p2, p3)
as in Figure 3.6, computing its unit normal vector n is remarkably simple and
straightforward. n would be the vector cross product of vectors (p1 − p3) and
(p1 − p2), where p1, p2 and p3 are points in R3 space . The result is then nor-
malized to unit vector. However, if the triangle has zero area, the result is invalid
due to an improperly defined normal. This formulation is illustrated in Figure 3.6,
and in order to achieve the result in Figure 3.6a, with outward-pointing normal
vector, the vertices (p1, p2, p3) of the triangle must be ordered anti-clockwise, else,
the result in Figure 3.6b is attained.

Figure 3.7: Normal Vector for Vertex and Faces of a triangular mesh.

Surface Normals Estimation for 3D Point Cloud

Point cloud has become the most preferred type of data for algorithms involving
surface normals, as opposed to just using mesh vertices and their associated nor-
mal vectors [27, 82, 147, 200, 225, 106]. Most datasets are presented as raw point
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cloud data without their corresponding surface normals information. In most in-
stances where the datasets are given as triangular meshes, point clouds could also
be estimated using surface points sampling technique described in Section 3.2, as
illustrated in Figure 3.8. In any of these cases, there is the need to estimate surface
normals for these point clouds, using existing techniques, since the majority of the
feature extraction techniques in our research implementations completely rely on
the unit normal vectors (surface normals) of the given shapes.

Similar to 3D mesh vertices, unit normal vectors can also be estimated for all
points of a 3D point cloud using any of various existing techniques/methods for point
cloud normals estimation, such as the commonly used methods described in [133,
159, 87]. However, it is largely unclear which of these methods are preferable for
which application as there is the trade-off between quality and speed [109].

The most common approach to normal vector estimation for point cloud is us-
ing principal component analysis (PCA) on the covariance matrix obtained from
k − neighbourhood or r − neighbourhood of points to the interest point pi. The
same approach is presented in [199, 212]. Generally, the PCA-based normal vectors
estimation is faced with ambiguous orientation of the estimated normals as shown
in see Figure 3.11b, and this remains an open problem till date. According to [212],
“a key issue is determining the size of the region over which a normal vector is com-
puted. A common technique involves taking all the points lying within a sphere of
radius r, centred on the query point pi. Unfortunately, such heuristic would require
CPU expensive queries on a KD-Tree to determine the points inside the sphere”.

Figure 3.8: Mesh to point cloud and normals.

In most cases, the estimated surface normals using PCA-based approach pro-
duces results with inaccuracies. For example, in Figure 3.11b, i-iii, we visualize the
point cloud models of a Pipe with inconsistent and incorrectly oriented normal vec-
tors. Figure 3.11b, ii shows a point cloud model of a Human-head with almost all of
its normal vectors pointing inwards. However, one solution to the orientation prob-
lem, as suggested by [204] is to redirect each surface normal to be consistent with
majority of normals’ orientation within the specified k − neighbourhood. Another
suggestion by [201], is using viewpoint information, if it is known. Unfortunately,
nearly all point cloud dataset are without viewpoint information and the point cloud
sampled from 3D meshes lacks same as well, although, if pṅ < 0, n is pointing out-
ward, and If pṅ > 0, n should be flipped, i.e. n = −n. On a manifold 3D surface,
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which encloses a complete volume, there seems to be little or no issue with this ori-
entation check, but on a non-manifold surface, this final checking for the orientation
or direction of the normal vector seems ambiguous, resulting to inconsistent normal
orientation across the whole 3D surface.

3.3.2 Improved Surface Normals Estimation for 3D Point
Cloud

Unfortunately, correct and computationally efficient way to estimate surface normals
from raw point cloud data is still an open research challenge. For retrieval algorithms
that depend on point cloud data and their corresponding surface normals but are
provided with 3D meshes, we described the possibility, ease, and accuracy of sam-
pling points and their corresponding normals from 3D mesh for such algorithm.
However, some datasets, such as the SHREC’17 PRoNTo dataset (see Section 5.2)
present only raw point cloud data as input and the retrieval algorithm would have
to estimate corresponding surface normals for such point cloud objects. The con-
ventional approach to achieving this is the use of a PCA-based technique mentioned
previously (also, see Algorithm 1), which is computationally expensive, among other
issues. An alternative approach would be to first convert the input point cloud data
to triangular mesh and then apply the Barycentric approach to point sampling on
the 3D mesh (see Section 3.2.3), but converting point cloud to mesh and back to
point cloud and normals is not without cost.

We note here, that Algorithm 1 is adapted from [201]. However, considering
that the dataset source in [201], which provides their algorithm with view point
coordinate, is different from ours, which does not provide view point coordinate, we
implement a slightly different technique which checks if the direction of the “eigen-
vector” with the least “eigen-value” is less/greater than zero to negate the result,
as seen in line 10 of our Algorithm 1, for outward pointing normal.

Fortunately, in this research, the majority of our datasets (see Section 5.2) were
presented as triangular mesh and not point cloud, except for SHREC’17 PRoNTo
dataset. Therefore, we did not have to deal much with surface normals estimation
directly from point cloud. However, since the number of points for each 3D object
in the SHREC’17 dataset were below 5,000 (i.e. between 3, 000 to 4, 500), we sim-
ply implemented the PCA-based technique to estimate their surface normals for our
algorithm. In order to ensure an efficient computation and accurate point cloud nor-
mal estimation (as shown in Figure 3.11a), we selected a reasonable parameter for
the size of r or k neighbours around each point for which normal we are estimating.
The process to accomplish this are outlined in Algorithm 1 and summarised below.

Let pi be a point in point cloud, P for which we want to compute a unit normal
vector. Let pk be the local neighbourhood of K points selected around pi using
k/r-NN (nearest neighbour) algorithm. We then fit a plane to pk using Covariance
analysis (i.e. PCA-based technique), and return the eigen-vector with the least
eigen-value as the “normal vector” to the point of interest, pi. Also see [176, 205].
These steps are repeated for all pi ∈ P , according to Algorithm 1. Finally, a check
is performed to ensure that the vectors are pointing outward (mostly needed for
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Algorithm 1: Normal Estimation for 3D Point Cloud (adapted from [201])

1: INPUT: Point Cloud, Ps ⊂ {pi, i = 1...N}; Parameters, r = 0.04 or k = 11
which determines the size of pi’s neighbourhood, Pi for Covariance analysis on
pi. Where pi ∈ Ps is the interest point for which normal vector is to be
computed, and N ≈ 4, 500, the total number of points in Ps.
.

2: OUTPUT: Normal vector, Ns ⊂ {ni, i = 1...N} for point cloud, Ps

.
# Estimate normals.

3: [Ps,Ns] = normalEstrimation(Ps, r = 0.15, k = 15)
# Initialise empty array for [Ps, Ns].

4: [Ps, Ns] = [ ]
# Loop through all pi ∈ Ps.

5: for all pi in Ps do
6: extract patch, Pi, using k/r-NN

# Compute Covariance Matrix (M) for Pi.
7: MPi

= [Pi · P T
i ]

# Compute the eigV als and eigV ecs of MPi
.

8: [eigV als, eigV ecs] = linalg.eigh(MPi
)

# Sort all eigV ecs in decreasing ORDER of eigV als.
9: eigV ec[3] = ArgSort(eigV ecs, eigV als)

10: Direction check: if pi ˙eigV ecs > 0, then eigVecs = -eigVecs
# Return least eigV ecs = eigV ecs[3] as ni of pi.

11: [Ps, Ns].append(pi, eigV ecs[3])
12: end for

# Repeat loop ∀ pi ∈ Ps.
13: return [Ps, Ns]
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points from 3D scanners). This technique has one main parameter, k or r in k-NN
or r-NN algorithm, that influences the result of the estimated “normal vector” for
each points cloud, and depends on how dense or sparse the input point cloud is (i.e.
number of points sampled from mesh). In our implementations, we however, inves-
tigated both k-NN and r-NN on rigid, non-rigid, water-tight, and non-water-tight
models and it was found that the implementation with k-NN search gave better and
more desirable “normal vector” estimation results.

(a) Open3D tool [278] (b) Algorithm 1 (c) PCL tool [199, 4]

Figure 3.9: Visualization of Airplane 3D point cloud with associated surface nor-
mals estimated with three different algorithms/tools. Accurately estimated normals
points outward in all direction to the surface as seen in Figure 3.9b, while inaccu-
rately estimated normals are shown in Figure 3.9a and Figure 3.9c.

Established research by Open3D [278] and Point Cloud Library (PCL) [199, 4],
for example have applied similar PCA-based technique to point cloud normals esti-
mation and recorded remarkable success. We visually compared the results obtained
with our PCA-based point cloud surface normals estimation algorithm with those
returned by Open3D and PCL as shown in Figure 3.9. The basis for this compari-
son is to check that our algorithm was retuning acceptable results (estimated surface
normals) and if not, we adopt the best tool/technique from existing tools, since in-
accurately estimated normals would adversely affect our final shape descriptor. As
we see in Figure 3.9b, our implementation (Algorithm 1) appears to estimate more
desirable surface normals for the airplane model than methods with Open3D (see
Figure 3.9a) and PCL (see Figure 3.9c). The results of our method were also good
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across different range of datasets (rigid, non-rigid, water-tight, and non-water-tight
models).

(a) Algorithm 1, k-NN, k = 11 (b) Algorithm 1, r-NN, r = 0.04

(c) Open3D tool (d) PCL tool [199, 4]

Figure 3.10: Visualisation of rigid open pipe 3D point cloud with associated surface
normals estimated with three different algorithms/tools. Figure 3.10a with k-NN
search, where k = 11 and Figure 3.10b with r-NN search, where r = 0.04 shows
implementation of Algorithm 1 with accurately estimated normals points outward
in all direction to the surface, while Open3D and PCL tools/libraries produced poor
normals as shown in Figure 3.10c and Figure 3.10d.
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(a) Accurate Normals

(b) Inaccurate Normals

Figure 3.11: 3D point cloud models with their estimated normal vectors. Fig-
ures 3.11a, iv-vi represent Cat, Standford Bunny, and Human-arm 3D models with
their repective accurately-estimated surface normals in Figures 3.11a, i-iii. Alterna-
tively, Figures 3.11b, i-iii represents the 3D models of a Pipe model (with inconsis-
tent normal orientation), Pipe model (with one-directional normal orientation), and
Human-head model (with inward pointing normal orientation).
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3.3.3 3D Surface Normals Accuracy/Descriptor Robustness

Accurately estimated surface normals must have consistent orientations, pointing
inward or preferably outward, as illustrated in Figure 3.11a, i-iii. To a considerable
extent, however, the descriptiveness and robustness of a normal vectors-dependent
shape descriptors (such as our proposed APPFD (see Section 4.2.1) and other points
pair feature-based shape descriptors) depend on the accuracy of the estimated sur-
face normals of the underlying 3D shape. Therefore, inconsistencies in normal vector
orientations would adversely affect the descriptiveness and robustness of any shape
descriptor or signature that depends on such surface normals (normal vectors) fea-
ture.

(a) Normals, BI sampling (b) Rigid point cloud (c) PCA-based normals

Figure 3.12: Rigid point clouds and their corresponding normal vectors, estimated
with two different approaches, (a) normal vectors are estimated simultaneously us-
ing the Barycentric Interpolation (BI) approach described in Section 3.2.3, and (c)
normal vectors are estimated using the PCA or Covariance technique in Algorithm 1,
after point sampling technique explained in Section 3.2.3. Left: Point clouds of me-
chanical parts, and their corresponding normals estimated during sampling phase.
Middle: Rigid point clouds of mechanical parts. Right: Point clouds of mechanical
parts, and their corresponding estimated normals using PCA.

In our research implementations which requires the surface normals feature, we
instead adopt BI technique (described in Section 3.2.3) for surface points sampling
and normal vectors estimation that is computationally very efficient and reliable,
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with remarkable results similar to that in [190]. The BI approach involves simulta-
neously estimating corresponding surface normals for all randomly generated points
during mesh to point cloud conversion (described in Section 3.2.3), as opposed to
only sampling the points and subsequently implementing the PCA-based approach
to normal estimation. In addition, this approach is capable of producing consis-
tently oriented, outward pointing, and accurately estimated normal vectors for the
sampled (generated) point cloud, as shown in Figure 3.11b, i-iii, where the point
cloud models of a Cat, Bunny, and Human-hand, respectively have their estimated
surface normals positioned accurately and pointing outwards from their respective
surfaces.

Unfortunately, there is no known computational technique specially developed
to judge the accuracy (i.e. how “good” or “”bad) of estimated surface normals other
than mere inspection (visualisation). Empirically, the expectation is that a normal
vector at any point on a flat surface (i.e. triangular face, as in Figure 3.6) must be
perpendicular to the surface plane containing the point, to be adjudged as accurate.
Alternatively, an accurately-estimated surface normal at any point on a curved sur-
face is expected to be perpendicular to the tangent touching the surface and that
point. Open source software and codes, such as MeshLab, Blender, VTK, Open3D,
PCL, Matplotlib, etc., provide functions/tools to visualize 3D surfaces (mesh and
point cloud) and inspect their normal vectors. Such visualizations are shown in
Figures 3.8 and 3.9.

Further examples show several point clouds of rigid (see Figure 3.12) and non-
rigid (see Figure 3.13) 3D shapes respectively (middle), and their corresponding
surface normals estimated using two different approaches - one to the left and the
other right of Figures 3.12 and 3.13. The surface normals visualised to the left are
those from the improved BI approach (see the section that follows), while those
visualised on the right-hand side are from the PCA-based approach. The visualisa-
tions on the left hand side of Figures 3.12 and 3.13, i.e. Figures 3.12a and 3.13a,
depicts the simultaneously estimated surface normals during points sampling stage,
for both rigid and non-rigid 3D point cloud models, respectively, while on the right,
i.e. Figures 3.12c and 3.13c, the estimated surface normals are derived from further
computation using PCA-based approach. Besides having computational speed and
memory efficiency advantage, it is also very obvious in Figures 3.12a and 3.13a, that
improved BI approach to point cloud normals estimation is much better (accurate)
than the PCA-based approach.

3.3.4 Improved Surface Normals Estimation Technique for
Triangular Mesh

As previously described, given a 3D triangular mesh, points can be sampled from
every triangular face that make up the mesh to form point cloud as illustrated in
Figures 3.1 and 3.8. The points sampling method described in Section 3.2.3 for ran-
domly generating N points from the surface of a mesh is limited because additional
implementation is needed to estimate surface normals for the sampled point cloud
which adds to the complexity of the overall retrieval system. The ideal solution
would be to estimate corresponding unit normal vector, ni = {nx, ny, nz}i ∈ Ns, for
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(a) Normals, BI sampling (b) Non-rigid point cloud (c) PCA-based normals

Figure 3.13: Non-Rigid point clouds and their corresponding normals, estimated
with two different approaches, (a) normal vectors are estimated simultaneously us-
ing the Barycentric Interpolation (BI) approach described in Section 3.2.3, and (c)
normal vectors are estimated using the PCA or Covariance technique in Algorithm 1,
after point sampling technique explained in Section 3.2.3. Left: Point clouds of
Bird and Teddy with their corresponding normals estimated during sampling phase.
Middle: Non-rigid point clouds of Bird and Teddy. Right: Point clouds of Bird and
Teddy with their corresponding estimated normals using the Covariance analysis
(PCA).
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every sampled point, pi = {px, py, pz}i ∈ Ps and simultaneously return point cloud
and normal vectors, i.e. (Ps, Ns) in one run, during the sampling stage.

Using the traditional PCA-based approach described in [212] and [199] to esti-
mate the surface normals (as in Figure 3.12c) for an already sampled point cloud
would require looping over all points in the cloud. For 3D shapes with arbitrarily
large number of points (point cloud), this process of looping over all points (in-
cluding selecting surface regions for each point) for PCA would be very expensive,
thus may adversely impact the overall performance and complexity of the retrieval
system. To ameliorate this, the code in [47] can be modified to simultaneously also
compute normals ni for each sampled point pi during points sampling phase using a
computer graphic BI technique and NumPy broadcasting capability for faster com-
putation.

In this section, we describe a point cloud sampling technique similar to the one
described in Section 3.2.3 [173], for sampling (generating) point cloud Ps, with N
points from a mesh, using the concept of barycentric coordinate system [21]. How-
ever, this approach is an improvement over the point cloud sampling technique
proposed by [173], because corresponding unit normal vector, ni ∈ Ns is simultane-
ously estimated for each sampled point, pi ∈ Ps where Ps ⊂ pi and i = 1...N , during
random points sampling phase. The barycentric approach presents an overall faster
and efficient solution to point cloud surface normals estimation, which also produces
accurate and outward-pointing (this is because the points in the original points have
been put in a certain anti-clockwise order, leading the normal vectors computed to
always pointing outward), unlike the previous techniques in [173] (Section 3.2.3) or
PCA-based approach that only returns point cloud, P and expects further com-
putational steps for surface normals estimation, which are prone to issues such as
ambiguity and inconsistent normals orientation. However, in future work (see Sec-
tion 6.5), it may be useful to do an ablation study about which method is better for
shape retrieval between using the BI based approach or the one estimated from the
sampled points vis PCA approach, rather than just criticising the latter.

3.3.5 3D Key Points

When we consider a typical 3D surface of, say, a rectangular-shaped table, for exam-
ple, which is represented as points (or point cloud), the most noticeable or important
points on this surface would be the four points at each corner of the table top, in-
cluding each of the four points at the base of each of the legs of the table. Similarly,
when we consider the point cloud of a human head, the points each of the eyes,
ears, nose, mouth, cheeks, chin, and forehead would be considered as noticeable and
important points. These type of points are known as salient points and must be
capable of uniquely representing the topology of the surface it represents. For exam-
ple, each of the red points for Chair, Tea Cup, Fish, and Round Table in Figure 3.14
can be considered as salient points.

When describing a 3D surface, it is possible to extract features from or within ev-
ery point which makes up the geometry of that surface. However, while this approach
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(a) Chair (b) Tea Cup

(c) Fish (d) Round Table

Figure 3.14: Four different 3D point cloud surfaces (black points), taken from the
SHREC’12 dataset, showing sub-sampled points (bold, red points) which we consider
as key points. Figures 3.14(a), 3.14(b) and 3.14(d) represent rigid-shapes, while
Figure 3.14(c) represent non-rigid-shape. Note: Some of the red colors are showing
as pink, due to being on the back, rather than front side of the 3D visualisation,
hence are partially occluded.
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would be computationally inefficient, most of the surface points are not unique, thus
extracting features from such no-important points would be unnecessary (i.e. in-
significant for describing such surface). Salient points are therefore needed, to save
computational resources (time and memory) and provide useful features and more
representative surface details for any given surface. Although random selection or
sub-sampling of original points set might also be useful during feature extraction
and surface description, but the overall outcome would not be without deficiency,
since some salient points may be omitted during random sampling and more in-
significant points may be included. In the following sub-sections, we provide more
details regarding 3D key points and the techniques adopted for this research.

Key points (also known as interest points) are salient points on a given 3D sur-
face, which represents a sub-set of the entire surface points. Key points can be
used to identify dominant or salient regions of the surface. Figure 3.14 shows four
different 3D point cloud surfaces (black points) with derived key points (red points).
Detecting salient points on a 3D surface (like point cloud) data not only save com-
putational cost, but helps to improve the quality of locally extracted features from
the surface. However, the process of detecting such salient points on 3D surfaces is
more difficult than in 2D images, because images have richer set of distinct features.
Generally, irrespective of whether 2D, 2.5D images, or 3D surfaces, the issues of key
points saliency and repeatability (as explained by [221], Boroson and Ayanian [19])
plays a significant role during key points detection.

3D Key Points Determination

Developing a suitable 3D shape feature representation has become vital in content-
based retrieval system (CBRS). These features are directly extracted from the ver-
tices or points that make up the surface of 3D models, and must represent the
intrinsic physical properties of the surface. To deal with the large number of ver-
tices and faces (as in 3D mesh) or points (as in 3D point cloud) on the surface of a
given 3D model, local or global descriptors are typically computed around a selec-
tion of salient points (key points) on the surface of the model. Similarly, in order to
avoid the computational complexity that is required when extracting features from
all 3D surface points or vertices, such features must be extracted from a minimal
set of points, commonly referred to as key points. Although key points detection
and/or extraction presents great challenge and remains a key research problem, es-
pecially for 3D shapes which requires that the detected surface points (key points)
must meet certain repeatability criteria [19, 58], in this research, however, we are
mainly interested in the use of existing 3D key points detector or key points selection
technique as part of our data pre-processing pipeline, rather than proposing new key
points detection method(s).

Determination Technique: Several key points detection techniques for 3D shapes
(mesh or point cloud data) exists in literature [58], but only few techniques are suit-
able for 3D point cloud data. For example, the Harris 3D key points detector [220]
and intrinsic shape signature – ISS [277]. Others, like a variant of Harris 3D key point
detector [221], are designed to operate on 3D triangular meshes; NARF 2.5D [225] is
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(a) (b)

(c) (d)

Figure 3.15: Visualization of down-sampled 3D point cloud shape, with 10, 500
points, using voxel-grid down-sampling techniques with varying voxel-sizes. In Fig-
ure 3.15(a), Voxel Size = 0.06, sub-sampled points returned = 1, 050. Figure 3.15(b)
had Voxel Size = 0.10, sub-sampled points returned = 397. Figure 3.15(c) had Voxel
Size = 0.15, sub-sampled points returned = 190, while Figure 3.15(d) had Voxel Size
= 0.20, sub-sampled points returned = 105.

Ekpo Otu Chapter 3 77



3D Shape Description, Indexing, Matching and Retrieval

suitable for sensor or depth-images, while THRIFT [59], generalized as SIFT 3D [58],
are designed to work with range scans, for example.

3D Point Cloud Key points: In order not to reinvent the wheel, we imple-
mented and tested the suitability of the Harris 3D and ISS 3D key points detec-
tors across a wide variety of dataset types, such as the SHREC’11 [139] watertight
dataset (see Section 5.2.3), which contains non-rigid 3D shapes and SHREC’12 [131]
generic dataset (see Section 5.2.4), containing both rigid and non-rigid shapes, using
publicly available code from Point Cloud Library (PCL) [199]. Only the Harris-3D
technique seem to return meaningful results for rigid and non-rigid watertight shapes
as visualised in Figure 3.17. Figures (3.17a)-(3.17c) showed reliable results of the
Harris-3D key points detector on non-rigid watertight shapes, while Figures (3.17d)-
(3.17f) showed poor results for some rigid 3D point cloud shapes. Overall, the Harris
3D key points detector technique failed completely on non-watertight shapes (rigid
and non-rigid).

Problem with Existing 3D Key Points Detectors

After several implementation attempts with existing 3D key points detection meth-
ods, we found out that for a given 3D shape (point cloud), the traditional 3D key
points detectors like Harris-3D produced inconsistent key points at different runs
(with all parameters remaining unchanged), which violates key points repeatability
criteria. The resultant key points also contain outliers (see Figures 3.17(d)-(f)), even
for the non-rigid watertight shapes in most instances, as seen in Figures 3.16(a) and
(b). Accepting these results (i.e. key points with outliers) for the next phase -
“key points feature extraction” and/or “shape descriptor construction” phase (see
Section 3.4) would require additional pre-processing steps to remove outliers, which
could impose further computational cost to our overall feature extraction pipeline.

Furthermore, for all the datasets we adopted for this study (see Section 5.2),
none of the above-mentioned 3D key points detectors met the repeatability criterion
expected for a good key points detector according to [58, 221, 19]. Therefore, there
was need for a better and more stable or reliable approach that can ameliorate the
3D key points detection uncertainties experienced with the above-mentioned and/or
existing techniques.

Alternative to 3D Key Points Detectors

As a better alternative to 3D key points detection for our datasets, we adopt the
voxel-grid down-sampling technique by [278] to select sub-set of sub-sampled points
(key points) around which features are extracted for each input 3D shape. These
down-sampled points (i.e. key points) are capable of correctly representing the entire
geometry of the sampled surface. We provide more details regarding the voxel-grid
down-sampling technique in the following sub-section.

Voxel-grid Down-sampling: Intuitively, voxel can be understood as a volumetric
pixel as with pixels in a 2D bitmap images. It represents a value on a regular grid
in 3-dimensional space. Voxel grid on the other hand is a structure obtained by
subdividing the minimum bounding box of a point cloud into voxels. Figure 3.18
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(a) Bird.off (b) Gorilla.off

Figure 3.16: Harris-3D key points with outliers detected for non-rigid, watertight,
3D Bird Figure 3.16(a) and Gorilla Figure 3.16(b) point cloud shapes, taken from
the SHREC’11 watertight dataset. The point clouds are coloured in White, key
points are coloured in Red, and the outliers (ill-defined blobs) are circled with Yellow
marker.

gives a clever illustration of voxel and voxel grid. As shown in Figure 3.18, an ini-
tial voxel bounding all point cloud data in 3D Euclidean space R3 is sub-divided
into subset voxels by grids along x, y, and z coordinates in a Cartesian coordinate
system. Each voxel in the subset is represented by an index V (i, j, k), where i ∈
[0;Nx − 1], j ∈ [0;Ny − 1], and k ∈ [0;Nz − 1]. Further description of voxels, voxel
grid and voxelization is available in [81].

Practically, the sub-set of points returned from any 3D key points detection
technique mentioned above are points that enclose the entire surface and accurately
represent the topology of the 3D object. Likewise, down-sampling a 3D point cloud
object produces a sub-set of the original point cloud which also accurately represents
the overall topology of the the original 3D object, as we show in Figure 3.15.

Voxel-grid Down-sampling (3D Point Cloud)

The voxel grid down-sampling technique for 3D point cloud objects employ a two-
step approach: (i) Bucketing a collection of points from the input point cloud into
voxels. (ii) Computing the average of all points contained in each occupied voxel-
grid, to generate one representative point for that grid.

Figure 3.15 shows a point cloud shape of a Cat with 10, 500 points, that has been
down-sampled using four different voxel size parameters. Figure 3.15(a) returned
1, 050 sub-sampled points with a voxel size of 0.06, Figure 3.15(b) returned 397 sub-
sampled points with a voxel size of 0.10, Figure 3.15(c) returned 190 sub-sampled
points with a voxel size of 0.15, while Figure 3.15(d) returned 105 sub-sampled
points with a voxel size of 0.20. From the above, we see that the voxel size parame-
ter influences the number of sub-sampled points returned and the greater its value,
the fewer the number of down-sampled points returned, and vice-versa. As illus-
trated in Figure 3.15(d), even the least set of sub-sampled points (i.e. 105 points)
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(a) Cat.off (b) Reptile.off

(c) Rabbit.off (d) Fold-Lamp.off

(e) Book.off (view1) (f) Book.off (view2)

Figure 3.17: Harris-3D keypoints detected for rigid and non-rigid watertight 3D
point cloud shapes. The point clouds are coloured in white, while key points are
coloured in red. Figures (3.17a)-(3.17f) are point clouds of non-rigid shapes and their
detected key points, except Figure 3.17d, which is the point cloud of rigid shape and
its detected key points. All shapes are taken from the SHREC’11 watertight dataset
described in Section 5.2.3.
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with voxel size of 0.20 accurately represent the topology of the original Cat shape
and properly captures the intrinsic geometry of the shape. In addition, unlike all
the other 3D key points detector techniques we implemented, the down-sampling
technique produced a stable solution by returning better key points result across
different types of datasets (i.e. rigid, non-rigid, watertight, and non-watertight).
Therefore, we adopted the voxel-grid down-sampling technique as an alternative to
traditional 3D key points detectors.

Figure 3.18: Voxel grid spanning a volume in a 3D space bounded by (xmin, xmax),
(ymin, ymax), and (zmin, zmax). (∆x, ∆y, ∆z) represent voxel size, while (Nx, Ny, Nz)
are the number of voxels in each direction [81].

In summary, we expect the outcome of voxel-grid down-sampling technique on
3D point cloud data to be a sub-sample of the original data, with reasonably smaller
number of points representing the original point cloud. However, this is never the
case with this approach, as the average of the points in each occupied voxel is
calculated as its representative. Also, the position of the voxel would affect its
representation. This means that the method may be sensitive to the noise, oc-
clusion and appearance, including disappearance of points (see Figure 3.19). We
applied a simple computational trick to resolve this, as illustrated in Figure 3.19b.
The number of resultant sub-sampled points is directly proportional to the size of
voxel-grid (i.e. voxel size) used during down-sampling, as clearly illustrated in Fig-
ure 3.15(a)-(d). Like the key points detection technique, the choice of points cloud
voxel down-sampling technique, as pre-processing step has the advantage of further
reducing the size of input data, thereby reducing computational time on future pro-
cessing of the data (i.e. feature extraction).

After the voxel-grid down-sampling algorithm has been applied to each 3D point
cloud object, as part of the preprocessing steps, we observe that for some model, the
down-sampled points are not located directly on the surface of the point cloud (see
Figure 3.19a). Using k-NN algorithm (where k=1) we develop a simple and quick
method that searches each original point cloud surface for all the 1-closest points to
the down-sampled points and return these as the actual down-sampled points. The
outcome is visualised in Figure 3.19b, where all the down-sampled points are now
properly located on the surface of the point cloud. This process is computationally
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(a) Down-sampled points returns outlier
points for some 3D objects.

(b) Outlier points replaced by their respec-
tive 1-NN on the surface.

Figure 3.19: Visualisation of a point cloud of a non-rigid 3D object (black points)
with its down-sampled points (bold red points), showing some outliers after down-
sampling in Figure 3.19a. We applied k-NN algorithm (where k = 1) to replace each
of the outliers with its closest point on the surface of the point cloud, resulting in
the outcome shown in Figure 3.19b.

very efficient considering that the k-NN algorithm is only searching for one point per
iteration. However, we adopt the Numeric Python (NumPy) broadcasting technique
as the best alternative to FOR-loop which slows down iterative processes.

3.4 Shape Descriptor Construction

Having extracted some features from 3D objects, the next action is to compute and
index a compact mathematical representation of extracted features (i.e. descriptor
or signature) for each 3D shape or object. Essentially, a shape descriptor defines
the respective algorithms we have utilised to describe our database objects, and the
outcome of a shape descriptor is a feature-vector (fv). For example, when a 3D
object is used as input to a descriptor algorithm (i.e. shape retrieval method), the
output would be a fv. This concept is illustrated in Figure 3.20.

However, throughout this thesis, we have used the terms: shape descriptors,
shape retrieval algorithms and shape retrieval methods interchangeably to refer to
the same thing. Consequently, we refer to the outputs of shape retrieval methods
as shape descriptors, or feature-vector (fv).

In Section 2.3, we defined and provided detailed overview of 3D shape descrip-
tors, including the different types and categories of 3D descriptors that are available
in literature over the last few decades. We described in details the two broad ap-
proaches and/or techniques (i.e. data-driven and knowledge-based) commonly used
to compute 3D shape descriptors and identified the knowledge-based approach to
fall within the scope of our research. Further classification of the knowledge-based
approach reveals other sub-categories of 3D shape descriptors based upon their com-
putational approach, such as the normative aspect, structural, transformed-based,
view-based, and statistical approaches to 3D shape descriptor construction.

In order to have proper understanding of our research work, we initially re-
implemented a suitable number of existing local, global, and hybrid 3D shape de-
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Figure 3.20: 3D descriptor (shape retrieval method) accepts 3D object as input and
returns feature-vector, (fv) as output used to quantify the 3D object.

scriptors methods, such as the Shape Distribution (A3, D1, D2, D3) [174], Surflet
Pair Relation Histogram [252], Spin Images [95], M2DP [80], and many others, using
the dataset described in Section 5.2.11. We also performed several experiments (not
included in this thesis) on varied sizes and types of datasets, such as rigid, non-rigid,
watertight, and non-watertight 3D models, described in Section 2.2.2, using different
parameter settings for each experimental run. Several observations were made and
qualitative results were noted, some of which are recorded in Section 4. Following
this, we implemented and proposed a number of novel local, global and hybrid 3D
shape descriptors as major contributions of our research. They are: The APPFD,
HAPPS, HoGD, and Agglomeration of Local Augmented Point Pair Features De-
scriptor with Fisher Kennels and Gaussian Mixture Model (APPFD-FK-GMM).
Details of these proposed descriptors implementation are provided in Section 4.2.

3.5 Database Indexing

Indexing a dataset basically involves the process of quantifying a given dataset using
a shape descriptor, signature or feature-vector representing each 3D object in the
database. After deciding on which features to extract and which shape descriptor
algorithm to implement, the next step is to implement (define) our shape retrieval
method. Then, to index the 3D shapes in a given dataset, we apply the defined
shape descriptor to each 3D object in the database, extract intended features, com-
pute defined descriptor, and write the output signature (feature-vector) to a file,
which are retrieved for later similarity comparison. Generally, the goal of features
extraction and shape descriptor computations is to produce a set of shape signa-
ture or feature-vectors that effectively represent database objects without having to
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use all the complex original data. The concept of database indexing is depicted in
Figure 3.21, where 3D features are extracted and shape descriptors computed for
each of the 3D objects in the database (left), with size = M , where M is the total
number of shapes in the database. Then another database (right) is created, which
contains respective signatures (feature-vectors) for each of the 3D objects in the first
database.

Figure 3.21: 3D Objects Database Indexing: We take a given dataset of 3D objects,
extract features and apply our descriptor algorithm to each 3D object to obtain
feature-vectors, and then storing these signatures back in a new database.

Compact representation of data allows for effective indexing and enables much
quicker comparison of two 3D objects than would otherwise be possible, because
rather than indexing and matching the complex 3D structures (represented as mesh,
voxels, or unorganised points), simple and compact mathematical representations
(feature vectors) are indexed and compared instead. During indexing, the idea is to
efficiently store the computed compact representations (descriptors/signatures) for
all database objects in a way to allow easy access in the future during shape matching
and retrieval. Therefore, shape descriptors govern how the database objects are
quantified.

3.6 Shape Matching and Retrieval

Having completed all the previous shape analysis procedures (i.e. data pre-processing,
feature extraction and shape descriptor construction, including database indexing)
for a given dataset of 3D objects, such as SHREC’2017 PRoNTo dataset for example
(see Section 5.2.6), the final task is to compare the indexed signatures for any two 3D
shapes (i.e. the query shape and each of the database shape) using a distance met-
ric or similarity function and produce a (dis)similarity score. The distance metrics
and/or similarity functions take two feature-vectors (i.e. the output of the process
in Section 3.4) as inputs and then output a (dis)similarity score (a number that
represents how “similar” the two feature-vectors are). This concept is illustrated in
Figure 3.22, whereby given two feature vectors (Signature #1 and Signature #2),
representing the query 3D objects and a database 3D object, a similarity function
(say Euclidean distance) is used to determine how similar the two 3D objects are.
Therefore, the similarity between two 3D objects is defined as the distance between
their respective signatures or descriptors. The smaller their distance value, d, the
more identical the two objects are and vice versa.

At this point, it may be necessary to evaluate the “qualitative” and “quantita-
tive” performances of our signature(s) or shape retrieval algorithm(s). To achieve
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Figure 3.22: Comparing two 3D objects represented by their signatures (feature-
vectors, fv), using a distance metric and/or similarity function to return a similarity
score.

these, the information retrieval (IR) performance evaluation metrics described in
Section 4.3.3 are needed. Prior to performances evaluation, we first produce a
(dis)similarity or distance Matrix, DM, described in Section 4.3.2, for a given bench-
mark dataset (say SHREC’17 PRoNTo dataset) by computing the distances between
all pairs of signatures describing all 3D objects in the dataset. Any of the dis-
tance/(dis)similarity measures/metrics described in Section 2.2.3 can be used. For
each distance metric, we compute a single DM for evaluation purpose. Details of
this computation is provided in Section 3.6.2. The DM , together with the classifi-
cation file or ground truth are needed by the performance evaluation mechanism or
software tools in order to compute qualitative and quantitative evaluation results.
We describe these performance evaluation processes in details in Section 4.3.

3.6.1 Shape Descriptor Comparison

The similarity or (dis)similarity (i.e. distance) between any two 3D objects can
primarily be obtained using two major approaches: (i) local matching approach and
(ii) global matching approach, depending on whether the final shape descriptors rep-
resenting the 3D objects are local or global descriptors. For example, if several key
points descriptors, [K ×D], are returned per 3D object, where K is the number of
key points detected and D, the size or dimension of each key point descriptor, then
the local descriptor matching approach is required, but if a single [1×D] descriptor
is returned per 3D object, them the global descriptor matching approach would be
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useful, instead. An overview of each of these shape descriptors matching approach
is provided in the sub-sections that follow. However, regardless of whether local or
global matching is involved, distance/(dis)similarity metrics is required to match
any two descriptors or signatures. There are several standard metrics for comput-
ing distances (i.e. comparing shape similarity) between two descriptors and we had
provided detailed description of five of these in Section 2.2.3. Before (dis)similarity
comparison, we normalise each signature (feature-vector), S for every 3D object,
such that their absolute sum is equal to 1, as expressed in Equation (3.8), where d
is the dimension of the feature-vector or number of bins in the histogram if the final
signature is a 1D histogram. The primary purpose of normalisation is so that the
method is robust to the variation in the number of sampled points and variations in
scaling between different 3D objects.

d∑
i=1

S[d] = 1 (3.8)

After shape descriptor normalisation, local or global matching is done using any
of the distance metrics described in Section 2.2.3. In this thesis, we implement the
global matching approach/technique described in Section 2.2.6, using five standard
(dis)similarity metrics (see Section 2.2.3). The choice of the global technique is due
to its simplicity (ease of implementation), computational speed and efficiency, unlike
the local descriptor matching, which is associated with prohibitive cost of computa-
tion. For our 3D shape retrieval method implementations, however, descriptors are
computed locally, but concatenated and matched globally.

3.6.2 Distance or (Dis)similarity Matrices From Metrics

In Section 2.2.3, we provided a general overview and detailed description of the
distance/(dis)similarity metric, and provided further details on each of the distance
metrics we have used in our implementations and reported in this thesis. In Sec-
tion 4.3.2, we also provide adequate details regarding distance or (dis)similarity
matrix, Distance Matrix (DM). In this section, we will briefly describe how we used
each of the five distance metrics described in Section 2.2.3 to produce a distance
matrix, DM data structure (see Section 4.3.2 for details). DM acts as a preliminary
retrieval result which is needed for final performance evaluation of our shape retrieval
algorithm (descriptor). Among the many different distance or (dis)similarity met-
rics that exist in literature, the Euclidean distance metric (see Equation (2.1)) has
become one of the most popular metric for similarity matching. However, we applied
the following five metrics for the similarity measurements of our various descriptors
in order to finally adopt the ones with better results for our shape matching/retrieval
algorithms.

� Euclidean Distance Matrix DM: For a given 3D database where shape
signatures have been computed and indexed for all the 3D objects in the
database, we defined a DM function that computed the Euclidean distance
between all pairs of signatures after normalisation (as in Equation (3.8)) and
return a pairwise distance matrix: D = M ×M , where Dij is the distance
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between the shape descriptor for 3D object i and descriptor for object j, and
M is the number of 3D objects in the database. The distance formula used in
this case is given in Equation (2.1). That is:

ED(hQ, hD) = δL2(hQ, hD) =

√√√√ d∑
i=1

(hQi − hDi)2

.

� Other Distance Matrices DMs: Following the above computation of DM
using the Euclidean distance metric for pair-wise descriptor matching, in or-
der to perform matching with any other distance metrics described in Sec-
tion 2.2.3, we simply replace the Euclidean metric formula in the DM function
with such metric. For example, if we consider the Cosine distance metric
for shape/descriptor matching, we would simply replace Equation (2.1) with
Equation (2.2), and return a matrix: D = M×M , where Dij is (1 - Cosine dis-
tance) between the shape descriptor for 3D object i and descriptor for object
j.

Besides experimental evaluations approach where we compared our retrieval
methods with those of several other state-of-the-art, part of our evaluation ap-
proach/strategy was to investigate the performances of different (dis)similarity met-
rics on each of our retrieval method. We observed that the best performing distance
metric for one method may not perform so well for another methods or dataset.
However, for each retrieval problem/task and dataset, we selected the best perform-
ing metric - see results sections in Chapter 4.

Ekpo Otu Chapter 3 87



Chapter 4

METHODOLOGY

4.1 Introduction

This chapter essentially focuses on the major contributions of the work in this the-
sis. Our proposed methods for describing 3D objects (meshes and point clouds)
are presented, which includes all the three broad classifications of shape descriptors
(global, local, and hybrid) described in Section 2.4, and are listed in Table 4.1. Next,
we provide detailed background to each of the proposed 3D shape descriptors (i.e.
retrieval methods) in this thesis. In our shape descriptor implementation approach,
we consider an oriented raw point cloud data structure, with [x, y, z]T coordinates as
the de-facto input to our shape descriptor algorithm. By ’oriented’, we refer to point
cloud and their associated or corresponding normal vectors. Datasets are needed to
evaluate the performances of these retrieval method. We present and describe the
datasets for which our proposed methods have been evaluated against in Chapter 5
(see Section 5.2).

Performance evaluation is an essential part of any IR system or algorithm, which
provide researchers with tools to assess how well a particular algorithm or retrieval
method performs on a particular dataset and retrieval problem. In this chapter
(precisely Section 4.3), we provide adequate information regarding the evaluation
techniques we have adopted in this thesis, where we describe the tools, terminolo-
gies and processes involved, as well as the different performance evaluation metrics
used to measure the overall performance of different retrieval methods. However,
the retrieval performances of each of the shape descriptors, which are presented in
this chapter, are provided in Chapter 5. There, the experimental results and testing
for each of our retrieval methods on various 3D benchmark datasets are compared
with several other state-of-the-art methods.

Earlier (see Section 3.1), we already laid strong foundations toward all the pro-
posed 3D shape retrieval methods we present in this chapter, by providing compre-
hensive details regarding our research strategies, tools, and techniques, and explain-
ing important concepts which are applicable to our retrieval methods and algorithms
implementation. Such techniques and concepts include data pre-processing, point
cloud sampling from meshes, affine transformation, feature extraction, surface nor-
mal estimation, 3D key point detection and point cloud down-sampling using voxel
grid, etc. For instance, the primary data input to our algorithms is the raw point
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S/N Descriptor Name Approach Category Abbrev. Size

1 Histogram of Global Distances Statistical Global HoGD 65

2 Augmented Point Pair Feature Descriptor Statistical Local APPFD 15625, 262144

3 Hybrid Augmented Point Pair Signature Statistical Hybrid HAPPS 117845, 262209

4 APPFD Agglomeration with Fisher Kernel
and GMM

Statistical Local -
Global

APPFD-
FK-GMM

4,210 / 162,
312510 / 186

Table 4.1: List of our proposed 3D shape retrieval methods (descriptors).

cloud data as mentioned previously. However, given a triangular mesh, instead as in-
put to our algorithm, we implement a mesh to point cloud random sampling method
based on barycentric interpolation technique, described in Section 3.2.3, which si-
multaneously determines corresponding normals for the samples point cloud. With
the raw point cloud data, our method adopts a simple Covariance analysis (see Sec-
tion 3.3.2), with carefully selected k-NN parameters, to estimate fairly accurate
point cloud normals if needed by the shape descriptor algorithm. Because the accu-
racy of the estimated surface normals is critical to the retrieval methods we propose,
we provide further analysis regarding surface normal estimation from 3D mesh and
point cloud, and visually examine the results we get in comparison to those from
existing methods.

Another critical aspect of our base retrieval method, the APPFD local descrip-
tor, is key point detection for which local features are extracted. In Section 3.3.5, we
overview the different 3D key points detection technique in literature and reveal how
unsuitable they are to most of the datasets we evaluate in this thesis. We therefore
adopt the voxel-grid downsampling approach as the best alternative to traditional
3D key points detectors, which are not exceptionally reliable. In order to determine
the (dis)similarity between two 3D objects, their respective shape descriptors are
compared using a suitable distance metric. In this chapter, we further explain the
implementation of the five different shape similarity (distance) metrics, such as the
Euclidean metric, Cosine metric, Earth Mover’s Distance metric, Kullback-Leibler
Divergence metric, and Squared Euclidean Distance metric (see Section 3.6.2), which
we have tested with our retrieval methods (descriptors). In Section 5.2 we intro-
duce several 3D benchmark datasets for which our retrieval methods were evaluated
upon. The 3D objects in these datasets include rigid, non-rigid, watertight and
non-watertight models, and majority of the datasets contain 3D triangular meshes,
except one (SHREC’17 PRoNTo dataset), which contain raw 3D point cloud models.
Standardised tools and methods are required to evaluate algorithm performances on
the respective datasets. In Section 4.3, we describe several commonly used perfor-
mance evaluation tools and metrics in Information retrieval.

4.2 Methods and Algorithms

In Sections 2.3, 2.4, and Section 2.6, we provide details of most relevant 3D shape
descriptors, including the different types and categories of 3D descriptors that are
available in literature. We also examined the two broad approaches and/or tech-
niques to 3D shape descriptors construction (data-driven and knowledge-based) in
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Section 2.5. As previously mentioned, the knowledge-based approach reveals other
sub-categories of 3D shape descriptors based upon their computational strategies.
These are the normative aspect, structural, transformed-based, view-based, and sta-
tistical approaches to 3D shape descriptor construction. In this section, we specifi-
cally provide the implementation details of our proposed 3D shape descriptors which
are essentially within the knowledge-based category and the statistical-based 3D
shape descriptors sub-category.

4.2.1 Augmented Point-pair Feature Descriptor (APPFD)

The APPFD is a local 3D object descriptor made of local features that capture the
geometric characteristics or properties of surface patches, each centred at a point
(i.e. key point), pki = [x, y, z] or vertex, vki = [vx, vy, vz] of 3D point clouds or
meshes, respectively. The APPFD incorporates the geometric relation between pki
and its r-nearest neighbours (i.e. surface patch at pki). Implementing the APPFD
algorithm involves the following stages: (i) point cloud sampling and surface nor-
mals estimation, (ii) key point, pki determination, (iii) local surface patch (LSP)
or region, Pi selection, (iv) PPF and APPF extraction per LSP, and (v) final key
points descriptor (i.e. APPFD) computation for each LSP for “local” APPFD. It
is also very possible to compute of final APPFD using all the locally-extracted and
vertically-stacked APPFs from each 3D model for “global” APPFD. We have pro-
vided detailed description of stages (i) and (ii) in Sections 3.3. In this section, we
would describe the remaining three stages - (iii) LSP selection, (iv) PPF and APPF
extraction, and (v) APPFD computation for each LSP. This last step is very impor-
tant and reveals exactly how our locally-extracted novel 6-dimensional PPF arrays
are converted to a multi-dimensional histogram, which is flattened to produce the
novel APPFD.

Figure 4.1: Illustration of Local Surface Patches (LSPs) or Regions, Pi =
{Pi, i = 1...K}, which are extracted around their corresponding key points pki =
{pki, i = 1...K} (red), from which local features, APPF are extracted to compute
our final descriptors, APPFD for a given 3D shape.
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Local Surface Patch (LSP) Selection

For a given 3D object represented as a point cloud P , with K key points, {pki , i =
1 : K}, we extract K LSPs or regions {Pi, i = 1 : K}, by using the fast KD-Tree
algorithm, cKDTree in Scientific Python (SciPy) package [186] to select neighbour-
hood of points, Pi within a specified radius (r ≈ 0.20min, 0.50max) around each
pki . We illustrate the LSP extraction concept in Figure 4.1, where for each LSP
(i.e. Pi), the actual number of points in the spherical r-neighbourhood varies, hence
the size of the selected surface region also varies. This number of key point neigh-
bourhood that makes up the LSP is controlled by the r or k parameters, for r-NN
or k-NN algorithm, respectively and depends on the density of points in the point
cloud data. Figure 4.1 illustrates the LSPs Pi = {Pi, i = 1...K}, for a given 3D
object, centred around each key point, pki = {pki, i = 1...K} (in red colour), where
K here, represents the number of LSP and/or key point for a single 3D object. We
show the variation in the number of r-neighbourhood or k-neighbourhood points pj,
extracted for each LSP, Pi about a key point, pki. This variation depends on the
topology of the surface region and/or points density in that region. Similarly, the
sizes of the LSP differs as we have also illustrated in Figure 4.2, showing different
3D point cloud models (in blue colour), each having a single LSP, Pi (in red colour)
with different patch (LSP) sizes.

(a) Hand model (b) Rock model (c) Pipe model

Figure 4.2: Each of the blue points are three different point cloud representations
of human hand, rock and pipe 3D shapes. The red points in each of them depicts a
single LSP, {pn = (xn, yn, zn)

T ∈ Pi}.

PPF and APPF Extraction for each LSP

In our work, the PPF and the APPF are extracted locally for every LSP, Pi (Pi if nor-
malised) and/or key point, pki derived from a 3D surface. After point cloud sampling
and surface normal estimation, the next step to APPFD is to compute key points,
{pki , i = 1, 2, 3, · · · , K} and locally extract 4-dimensional PPF, f1 = (α, β, γ, δ)
as in [252] from points combination in {Pi, i = 1 : K} around each key point
{pki , i = 1 : K}, where K is the number of key points for a given 3D object. For
every pair of points, [pi, pj] and their estimated normals, [ni, nj] i.e. oriented points,
[(pi, ni), (pj, nj)] in Pi, where i ̸= j and pi is the origin with respect to the con-
straint in Equation (4.1) holding TRUE, a transformation-independent Darboux
frame U, V,W is defined thus: U = ni, V = U × ((pj − pi)/δ), W = U × V . This
formulation is clearly depicted in Figure 4.3.
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Figure 4.3: An instance of a single surflet-pair, i.e. {(pi, ni), (pj, nj)}, which is a pair
of points (pi, pj) and their corresponding normal vectors (ni, nj). In this example, a
fixed or Local Reference Frame (LRF), U, V,W is defined at point pi, from which the
angular differences α, β, γ, between normals ni and nj, and the distance δ between
points pi and pj are extracted.

|ni · (pj − pi)| ≤ |nj · (pj − pi)| (4.1)

Alternatively, pj becomes the origin (i.e. point with the larger angle between
its associated normal and the line connecting the two points) if the constraint in
Equation (4.1) is FALSE, and the variables in Equation (4.1) are reversed. f1 is
then derived for the source point as follows:

α = arctan(W · nj, U · nj), α ∈
[
−π

2
,
π

2

]
(4.2)

β = V · nj, β ∈ [−1, 1] (4.3)

γ = U · pj − pi
∥pj − pi∥

, γ ∈ [−1, 1] (4.4)

δ = ∥pj − pi∥ (4.5)

Secondly, f2(pi, pj) = (ϕ, θ) is extracted for every possible combination of points
pair, [pi, pj] in Pi, because f1 is not robust enough to capture the entire geometric
information for a given LSP. In addition, the PPF approach opens up possibilities
for additional feature space. Therefore, as illustrated in Figure 4.4, ϕ is the angle of

the projection of the vector
−→
S onto the unit vector

−→
V2, while θ is geometrically the

angle of the projection of the vector,
−→
S onto the unit vector

−→
V1, where

−→
V1 = pi− pc,−→

V2 = pi − l, and
−→
S = pi − pj, with pc = 1

ni

∑ni

i=1 pki (i.e. LSP centroid), and
l = (pki − pc), the vector location of pki with respect to its LSP. Note that pi, pj, pc,
and l are all points in R3 space, although l is a vector. In summary, a step-by-step
procedure for our PPFs and/or APPF extraction has been provided in Algorithm 2
for more clarity. Algorithm 3 and Algorithm 5 is called from within Algorithm.
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Algorithm 2: 6D APPF Extraction Procedures for LSPs (needed by Al-
gorithm 3 or Algorithm 4)

1: INPUT: Oriented Local Surface Patch, (Pi, Ni) from normalised and scaled
point cloud, Ps computed in Algorithm 4. Where Pi = lspExtraction(Ps, r),
i = 1...K, and K is the number of key points.
break

2: OUTPUT: 6-dimensional APPF feature, f3(Pi) = (ϕ, θ, α, β, γ, δ) for input
LSP, Pi.
break.
# Extract 6D APPF for every oriented point-pair combination in LSP, Pi

around a key point, pk.
3: for all [(pi, ni), (pj, nj)] in Pi do
4: # Compute Darboux Frame (U, V, W)
5: # First, evaluate constraint in Equation (4.1), for pi as “Origin”.
6: if |ni · (pj − pi)| ≤ |nj · (pj − pi)| then
7: U = ni, V = U × ((pj − pi)/δ), W = U × V .

# Compute 4D PPF, f1 = (α, β, γ, δ) for (pi, pj) in Pi [252]
8: Extract (α, β, γ, δ) according to Equations (4.2), (4.3), (4.4), and (4.5),

respectively.
break.
# Compute 2D PPF, f2 = (θ, ϕ) for (pi, pj) in Pi

9: Compute pc =
1
ni

∑ni

i=1 pki , l = (pki − pc),
−→
V1 = pi − pc,

−→
V2 = pi − l, and

−→
S = pi − pj

10: Derive α and ϕ based upon Figure 4.4.
# Get 6D APPF for (pi, pj) - concatenate f1 and f1

11: f3[(pi,ni),(pj ,nj)] = (ϕ, θ, α, β, γ, δ)
12: else
13: Perform steps in if block, but for pj as “Origin”.
14: end if .

# Return f3[(pi,ni),(pj ,nj)] to f3(Pi)

15: end for

Basically, α, β, γ are the angular variations between (ni, nj), while δ is the spatial
distance between pi and pj. In Euclidean geometry, each of the projections ϕ and

θ is considered angle between two vectors. For example, ∠1⟨
−→
S ,
−→
V1⟩ and ∠2⟨

−→
S ,
−→
V2⟩

are equivalent to θ and ϕ respectively. These angles are derived by taking the scalar

products of (
−→
S ·
−→
V1) for ∠1, and (

−→
S ·
−→
V2) for ∠2 about a point pi in a given LSP. Math-

ematically, scalar products defined in this manner are homogeneous (i.e. invariant)
under scaling [254] and rotation [156]. For this reason, our 2-dimensional local geo-
metric features, ϕ, θ are considered rotation and scale invariant for 3D shapes under
rigid and non-rigid transformations.

Interestingly, the pairwise points, pi and pj in the fully-connected graph for each
LSP are not selected by a separate computational steps, because they are already
part of the surflet-pair (pi, ni and pj, nj). Additionally, as a major improvement
over the feature extraction techniques mentioned in Section 4.2.1, our proposed
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Figure 4.4: Local Surface Patch (LSP), Pi with pairwise points (pi, pj) as part of a
surflet-pair relation for (pi, ni) and (pj, nj), with pi being the origin. θ and ϕ are
the angles of vectors projection about the origin, pi. θ is the projection angle from
vector ⟨pi−pj⟩ to vector ⟨pi−pc⟩ while ϕ is the projection angle from vector ⟨pi−pj⟩
to vector ⟨pi − l⟩. The LSP centre is given by pc, key point is given as pki where
i = 2. Finally, l is the vector position of pki − pc.

2-dimensional geometric features (ϕ and θ - see Figure 4.4) does not rely on esti-
mated surface normals, making them faster and very efficient to compute. Thus, the
robustness of f2(pi, pj) = (ϕ, θ) is unaffected by inaccuracies in estimated surface
normals (if there exist any). Overall, ϕ and θ provides a unique signature for every
surface patch (LSP), as they represent an extraction of unique physical (angular)
measurements within each local surface region, and offers additional descriptiveness
to the signature of Pi.

Final Local APPF Descriptor for Each LSP

Lastly, assuming we want to adopt the “local” matching approach explained in Sec-
tion 3.6.1 and Section 6.5 for our shape retrieval or classification task, then a “local”
APPFD can be computed (according to Algorithm 3 or 4) as follows: For every
possible combination, q of oriented point pair, pi, pj = [(pi, ni), (pj, nj)] in an LSP,
(Pi, Ni), q(q − 1)/2 6-dimensional APPF: f3 = (f2 + f1) are locally obtained thus:
f3(pi, pj) = (f2(pi, pj), f1(pi, pj)) = (ϕ, θ, α, β, γ, δ). As stated, an LSP characterised
by 250 points would have 250(250− 1)/2 = 31125 APPF array which are then ver-
tically stacked, resulting in f3 = [31125× 6] array. To obtain a “local” APPFD for
the LSP, this f3 is therefore discretized into a multi-dimensional histogram using
4, 5, 6, 7 or 8 bins in each feature-dimension of the multi-dimensional histogram. If
the number of bins (i.e. bAPPFD = 7), then the flattened histogram would give 76 =
117649-dimensional single local descriptor (APPFD) per LSP, which is normalized.
With this approach, if there are K key points (i.e. K LSPs), then there would be
K “local” APPFDs.
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Figure 4.5: Overview of our novel 3D APPFD framework (for “local” matching).
Rather than extract features from all surface points, we first down-sampled all sur-
face points and used as key points (red), instead. 6-dimensional features are then
extracted from local neighborhood (LSP) of each key point and binned into a multi-
dimensional histogram, which is then flattened and normalized to produce final key
point feature-vector tagged “local” APPFD. For a single 3D object, [K×D] “local”
APPFDs, where K is the number of key points and D, the descriptor/fv dimension.

A scientific Python (i.e. SciPy) package called “binned statistic dd(args...)” im-
plements the multi-dimensional histogram function, which we adopt during the bin-
ning stage (to avoid re-inventing the wheel). In addition, we optionally implement
a simple function that replaces all zero bins with a common value, lower than the
lowest non-zero value occurring in the histogram. The essence of this is to pre-
vent error during descriptors’ matching with metrics such as the KLD or JSD.
The percentage of the non-zero values can be selected as 25%, 50%, 75%, 98%, or
any other value depending on the dataset. For all our implementations, we used
98%× lowestNoneZero val.

For an implementation where the resulting combination of the “local” APPF
are binned into a multi-dimensional histogram, using bAPPFD = 8 in each feature
dimension of the multi-dimensional histogram, the result would then be a 86 =
262, 144-dimensional feature vector as the final shape descriptor. Because S(pi, pj)
as well as Aug(pi, pj) are rigid transformation invariant, then the resultant “local”
APPFD would be transformation invariant as well. Overview of the “local” APPFD
is shown in Figure 4.5.

Final Global APPF Descriptor for All LSP

Alternatively, if we rather chose to adopt the “global” matching approach explained
in Section 3.6.1 and Section 6.5 (as is the case in this research) for our shape re-
trieval or classification task, then a “global” APPFD can be computed (accord-
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ing to Algorithm 3 or 4) as follows: For every possible combination, q of oriented
point pair, pi, pj = [(pi, ni), (pj, nj)] in an LSP, (Pi, Ni), q(q − 1)/2 6-dimensional
APPF: f3 = (f2 + f1) are locally obtained thus: f3(pi, pj) = (f2(pi, pj), f1(pi, pj)) =
(ϕ, θ, α, β, γ, δ), then vertically stacked together and discretized into a multi-dimensional
histogram with bins = 7 in each feature-dimension, flattened and normalized to give
76 = 117649-dimensional single local descriptor (APPFD) per 3D shape. In another
experimental implementation, the resulting combination of our local APPF were
binned into a multi-dimensional histogram, using 8 bins in each feature dimen-
sion. This results in a 86 = 262, 144 dimensional feature vector as our final shape
descriptor. Since S(pi, pj) as well as Aug(pi, pj) are rigid transformation invariant de-
scriptors, APPF (pi, pj) or APPFD(P ) is therefore transformation invariant, where
P is a normalized input point cloud. Overview of our novel APPFD is shown in
Figure 4.6.

Figure 4.6: Overview of our novel 3D APPFD framework (for “global” matching).
Rather than extract features from all surface points, we first down-sampled all sur-
face points and used as key points (red), instead. 6-dimensional features are then
extracted from local neighborhood (LSP) of each key point, and stacked together
for all patches. Finally, we bin these features into a multi-dimensional histogram,
which is then flattened and normalized to produce the final feature-vector tagged
“global” APPFD. This method is effective for both full and partial 3D objects, such
as those in PRoNTo (see Section 5.2.6). We show full object here only for illustration
purpose.

APPF Binning Technique

Following the successful extraction of our APPF for each LSP around a key point,
which are represented by six parameters (ϕ, θ, α, β, γ, δ), we attempted several bin-
ning strategies in order to derive a robust and more compact representation of
these features (APPF) as our final shape descriptor. For example, we tried the 2-
dimensional binning strategy similar to those in [27, 77, 267, 76] for pairs of feature
dimension, i.e. (ϕ, θ), (α, β), and (γ, δ), then subsequently concatenate the resultant
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flattened histogram as the final descriptor. We tried 4 and 5 bins in each feature-
dimension as in [252]. In addition, we tried six individual 1-dimensional bins, similar
to [198], after which we concatenated the six resulting histograms to one. However,
similar to [252], using 6-dimensional binning strategy yielded the best overall results.
This binning technique involves using a multi-dimensional histogram approach to
bucket our extracted 6-dimensional APPF, whereby, for the b(APPFD) = 8 parame-
ter, a final descriptor of 86 = 262, 144-dimensional fv would be produced.

Review of The APPFD Retrieval Method

The Augmented Point Pair Feature Descriptor (APPFD) is a 3D object descriptor
made of local features that capture the geometric characteristics or properties of sur-
face patches, each centred at a point (key point), pki = [x, y, z], which incorporates
the geometrical relation between pki and its r-nearest neighbours (i.e. surface patch,
Pi at pki). The APPFD is derived by three sub-steps for each LSP: (i) extracting
4-dimensional local PPF, f1 = (α, β, γ, δ), (ii) Augmenting f1 to a 6-dimensional
feature - the Augmented PPF, using additional 2-dimensional local angular feature,
f2 = (θ, ϕ), depicted in Figure 4.4, and (iii) Binning the 6-dimensional augmented
feature f3 = (θ, ϕ, α, β, γ, δ) into one or multi-dimensional histograms to yield the
final local APPFD.

The PPF and our APPF involve two sets of oriented points, (p1, n1) and (p2, n2),
on a 3D surface, which are typically employed to encode the underlying surface ge-
ometry. Essentially, the APPFD augments the 4-dimensional feature of [252] into a
6-dimensional feature using additional 2-dimensional feature, ϕ and θ, where ϕ and

θ are geometrically the angles formed by projecting vector
−→
S onto the unit vector−→

V2, and
−→
S to

−→
V1, respectively (see Figure 4.4). The 4-dimensional PPF used by [252]

were extracted globally for all surface points. We extracted the same features, but
locally for each LSP centred on their respective key points.

In computing the APPFD for our experimental evaluation and shape retrieval
tasks, we sampled points and their normals, (Ps, Ns), whereN = 3500 andN = 4200
represents the number of points, N from each 3D shape. Then, we compute K key
points, {pki , i = 1 : K}, around which LSPs, {Pi, i = 1 : K} and their corresponding
normals, {Ni, i = 1 : K} are extracted within a specified radius, r = 0.40− 0.50 for
each pki , where Pi ∈ Ps and Ni ∈ Ns. For every possible combination, q of (pi, ni)
and (pj, nj) in an LSP, (Pi, Ni), we extract the 4-dimensional surflet-pair feature,
S((p1, n1), (p2, n2)) = (α, β, γ, δ) defined in Equations (4.2 - 4.5), and another 2-
dimensional angular feature, Aug((p1, n1), (p2, n2)) = (ϕ, θ). Finally, for each pki with
q combination, S and Aug features are combined to obtain q(q− 1)/2 6-dimensional
aAPPF, thus: APPF (p1, p2) = (SPi

(p1, p2), Aug(p1, p2)) = (α, β, γ, δ, ϕ, θ), which
are binned into a multi-dimensional histogram with 5 ≤ bin ≤ 8 in each feature-
dimension (for example, if bin = 7 and the number of locally extracted feature
is 6, then 76 = 117, 649-dimensional feature-vector), flattened and normalized to
give bin6-dimensional local descriptor per 3D object. Note that bin = b(APPFD)

parameter, which we further discussed in Chapter 4. In conclusion, our APPFD
algorithm presents a shape descriptor technique where features are extracted locally
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Algorithm 3: APPFD Algorithm for 3D Mesh

1: INPUT: Mesh M , voxel down-sampling radius: vs, number of bins for each
feature dimension: b, key point’s neighbourhood radius: r, moving-least-square
smoothing radius: rmls, number of points: N , to sample from M .

2: OUTPUT: D-dimensional feature-vector (APPFD) for point cloud P . Where
D = bf , b = b(APPFD), and f = f3(Pi).
break.
# Sample N points from M to get Point Cloud, P .

3: P = sampleMesh(M, N).
# Apply Moving Least Square (MLS) smoothing method by [199] on P .

4: P = msl(P , rmls).
# Apply affine Transform (Scale Point cloud), Section 3.2.4.

5: Apply uniform scale, S to pi in P, s.t.
√

1
N

∑N
i=1 ||Spi || = 1.

# Estimate normals, Ns for P .
6: Ps, Ns = normalEstimation(P ).

# Determine 3D Key points (Voxel-grid Downsampling by [278]),
Section 3.3.5.

7: pk = Pi = voxelDownsample(Ps, vs).
# Initialise empty array of f3(Pi) for Pi

8: f3(Pi) = [0, 0, 0, 0, 0, 0].
# Extract LSP (Pi) for Ps, as in Figure 4.1

9: for all i in size(pk) do
10: Pi(i=1...K) = lspExtraction(Ps, r)
11: compute f3 = [θ, ϕ, α, β, γ, δ] - using: Algorithm 2.

# Append f3 to f3(Pi)

12: f3(Pi) ← f3
13: end for
14: hDD = histogramDD(f3(Pi), b).

# Replace all zero bins with 98% of lowest non-zero value in Hist.
15: hDD = replaceZeroBins(flattened(hDD), weight = 98%)
16: APPFD = normalize(hDD)

and combined to compute a single feature vector (fv) per 3D object. We summarise
the computational steps for the APPFD retrieval method for 3D mesh and point
cloud input in Algorithm 3 and Algorithm 4, respectively.

� 3D Triangular Mesh Retrieval with APPFD: Algorithm 3 is invoked
to compute the APPFD for 3D triangular mesh dataset. This algorithm first
produced point cloud representation of each input 3D mesh, by randomly sam-
pling N points, Ps from the triangles that constitute facets of the mesh, and
simultaneously estimating corresponding normals, Ns using Barycentric coor-
dinate system sampling approach described in 3.2.3. Next, a MLS smoothing
method is optionally applied, depending on the dataset and nature of the sur-
faces of 3D objects it contains. In order to ensure that two 3D models are
comparable during matching, we apply uniform scale, S in all direction to all
points in the input cloud, such that the RMS distance of each point to the
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origin is 1. Subsequently, key points are derived and LSP selected around each
key point, then local APPF are extracted to compute the final local APPFD.

� 3D Point Cloud Retrieval with APPFD: Algorithm 4 outlines the steps
we take to compute the APPFD considering point cloud as input data. Similar
to the steps in Algorithm 3, we adopt the Voxel-grid down-sampling approach,
which is found to return a sub-sample of the entire point cloud that accurately
represent the entire topology and geometry of our shape, to determine our
interest points (key points), instead. The rest of the implementation steps for
this algorithm are the same with those in Algorithm 3.

Algorithm 4: APPFD Algorithm for 3D Point Cloud

1: INPUT: Point Cloud: P , voxel downsampling radius: vs, number of bins for
each feature dimension: b, key point’s neighbourhood radius: r,
moving-least-square smoothing radius rmls.

2: OUTPUT: D-dimensional feature-vector (APPFD) for point cloud P . Where
D = bf , b = b(APPFD), and f = f3(Pi).
break.
# Apply MLS smoothing method by [199] on P .

3: P = msl(P , rmls).
# Apply affine Transform (Scale Point cloud), Section 3.2.4.

4: Apply uniform scale, S to pi in P, s.t.
√

1
N

∑N
i=1 ||Spi || = 1.

# Estimate normals, Ns for P .
5: Ps, Ns = normalEstimation(P ).

# Determine 3D Key points (Voxel-grid Downsampling by [278]),
Section 3.3.5.

6: pk = Pi = voxelDownsample(Ps, vs).
# Initialise empty array of f3(Pi) for Pi

7: f3(Pi) = [0, 0, 0, 0, 0, 0].
# Extract LSP (Pi) for Ps, as in Figure 4.1

8: for all i in size(pk) do
9: Pi(i=1...K) = lspExtraction(Ps, r)
10: compute f3 = [θ, ϕ, α, β, γ, δ] - using: Algorithm 2.

# Append f3 to f3(Pi)

11: f3(Pi) ← f3
12: end for
13: hDD = histogramDD(f3(Pi), b).

# Replace all zero bins with 98% of lowest non-zero value in Hist.
14: hDD = replaceZeroBins(flattened(hDD), weight = 98%)
15: APPFD = normalize(hDD)

4.2.2 Histogram of Global Distances (HoGD)

For this implementation, we adopt a simple approach for the HoGD, inspired by the
notion that a shape is represented by a discrete set of points, sampled on its surface,
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which forms the external, as well as internal, contour of the shape. We then consider
a set of normalized vectors δi = ∥Pc − pi∥i between the centroid Pc =

1
N

∑N
i=1 pi of

a given 3D object to all other points, pi ∈ P , on its surface, where P and N are the
entire points and number of points, respectively, that makes up the point cloud of a
given shape. Such normalized vectors δi are regarded as global features whose dis-
tribution (histogram) is capable of expressing the configuration of the entire shape
relative to its centroid, and is a rich description of the global structure of the shape.
We bin these global features into a 1-dimensional histogram, with number of bins
≈
√
N , integer, i.e.

√
P ≈ 65 bins, normalized to give HoGD, which is very fast and

straightforward to compute, with P = 3500 and 4200, as in APPFD. We provide
an overview of the HoGD in Figure 4.7.

The computation steps for the HoGD global descriptor for either 3D triangular
mesh or point cloud is provided in Algorithm 5. It is important to note that the
robustness of this algorithm is directly proportional to the number, N of vertices
or points contained in the input data, whereby, for 3D objects with fewer number
of points, such as those in the PRoNTo dataset with an average of 3,500 - 4,000
points per 3D scan object (see Section 5.2.6), the effect of the HoGD would be neg-
ligible. Alternatively, for 3D objects with very high number of points or vertices,
such as the SHREC’18 Protein models with an average of 100k vertices/points (see
Section 5.2.7), the HoGD descriptor robustness is noticeable. However, in line with
the objectives of this thesis and the characteristics of a good 3D shape descriptor
provided in Section 2.3.1, we limit our implementations of the HoGD method to a
very minimal set of at most N = 4, 500 3D surface points.

The primary goal of the HoGD method is to provide additional capability and
“global” surface characteristics to our “local” APPFD method, which is most suit-
able for describing local surface geometry. Practically and theoretically, we expect
that the resultant outcome of combining these two retrieval methods would pro-
vide a more robust “hybrid” 3D shape retrieval method that is most suitable for
describing complex 3D surfaces.

4.2.3 Hybrid Augmented Point Pair Signature (HAPPS)

As discussed in Section 2.4, shape descriptors can be categorised into two main
groups: local and global. Combining two or more descriptors (e.g. local-local, local-
global, or global-global) yields a third category, the hybrid descriptor, which is aimed
at improving the resultant performance of the combined descriptors. The Hybrid
Augmented Point Pair Signature (HAPPS) is a 3D shape descriptor in the third
category, computed from a combination of two separate descriptors: (i) local Aug-
mented Point Pair Feature Descriptor (APPFD), and (ii) global Histogram of Global
Distances (HoGD) and/or Multi-view 2D Projection (M2DP) [80] descriptors, each
of which are computed using hand-crafted features extracted from 3D surface. De-
tails of the APPFD are provided in Section 4.2.1, while details of the HoGD can be
found in Section 4.2.2. We already provided a brief overview of the M2DP descriptor
in Section 2.4.1. During experimental evaluations, we use the parameter, N = 3, 500
and N = 4, 200 as in previous cases with APPFD and/or HAPPS-1.
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Figure 4.7: Overview of Histogram of Global Distances (HoGD), which involves
binning the distances, δ = ∥Pc − pi∥ between the centroid Pc and all other points
pi on the surface of a given 3D object. (a) shows a 3D Stanford Bunny with its
centroid Pc and N points {pi, i ∈ 1...N} on its surface, with normalized distances,
δ as global features. (b) represents a 1D-histogram of these features, while (c)
represents the final feature vector, which is the normalized histogram bin counts,
and used as the global descriptor for the Bunny.

The HAPPS is simply an improvement over the APPFD, aimed at achieving
better retrieval performances. Although the APPFD is capable of robustly repre-
senting 3D shapes, we found that for some retrieval problems, such as the Protein
shape retrieval challenges (SHREC’18 Protein dataset in Section 5.2.7, SHREC’19
Protein dataset in Section 5.2.8, and SHREC’20 Protein dataset in Section 5.2.9)
a closer inspection of protein shapes for these respective retrieval challenges re-
veal identical local surface characteristics and somewhat uniqueness in the global
structures of these Protein models, hence the need to extend the capability of the
APPFD and effectively capture both local and global characteristics of the these
types of 3D objects (i.e. Protein models in this case). Consequently, we separately
combined two global 3D descriptors: The HoGD and the M2DP with the APPFD
to derive two variants of hybrid descriptor, which we call the Hybrid Augmented
Point Pair Signatures (HAPPS), referred to as HAPPS-1 and HAPPS-2, i.e. hy-
brid descriptors formed by combining local APPFD with global HoGD and M2DP,
respectively. Alongside the APPFD, the HAPPS algorithm was first introduced in
our publication [175] and recorded extremely high-performance scores across several
3D benchmark datasets. Figure 4.8 presents an overview of the HAPPS algorithms.

The HAPPS-1 Descriptor Implementation

Our novel hybrid descriptor (the HAPPS-1) is derived by combining the final flat-
tened and normalised multi-dimensional histogram of the local APPFD with the
normalized 1-dimensional histogram of the global HoGD. The resultant descriptor
is therefore a 15, 625 + 65 = 15, 690-dimensional, or a 117, 649 + 65 = 117, 717-
dimensional, or a 262, 144+ 65 = 262, 209-dimensional feature-vector, depending on
which value is used as the APPFD bin size, bAPPFD. For example, using bAPPFD = 5,
we obtain a final APPFD descriptor of 56 = 15, 625-dimensional feature-vector,
and using bAPPFD = 8, we obtain a final APPFD descriptor of 86 = 262, 144-
dimensional feature-vector. The bin size for the HoGD global descriptor is approx-
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Algorithm 5: HoGD Algorithm for 3D Triangular Mesh or Point Cloud

1: INPUT: Triangular Mesh: M , or Point Cloud: P , with N number of vertices
or points in M or P , respectively.

2: OUTPUT: 65-dimensional feature-vector (HoGD) for M or P . Where
65 ≈

√
N .

3: if InputData = M then
4: //Sample N points from M to get Point Cloud, P .
5: P = sampleMesh(M, N)

6: Apply uniform scale, S to pi in P , s.t.
√

1
N

∑N
i=1 ||Spi || = 1

7: else
8: if InputData = P then

9: Apply uniform scale, S to pi in P , s.t.
√

1
N

∑N
i=1 ||Spi || = 1

10: end if
11: end if
12: //Compute Point Cloud Centroid: Pc.
13: Pc =

1
N

∑N
i=1 pi, where pi ∈ P .

14: //Compute normalised vector: δi.
15: features = [...]
16: for all pi in P do
17: δi = ∥Pc − pi∥i
18: features← δi
19: end for
20: hist = histogram(features, b =

√
N)

21: HoGD = normalize(hist)

imately bHoGD = 65. Essentially, the five parameters: N, vs, r, b(APPFD), and
b(HoGD) affects the overall the performance of the HAPPS retrieval method, with
the b(APPFD) and a bit of b(HoGD) parameters having the most influence, including
that they determine the size (compactness) of the final descriptor. These parameters
are adequately explained in Section 5.3.1. Also, see Table 5.11 for a typical example
of the parameter settings (i.e. how these parameter values are combined) for the
HAPPS retrieval method.

Matching between two 3D objects is done simply by returning the spatial dis-
tance between feature-vectors of the two objects, using any of the distance metrics
described in Section 2.2.3. In Section 5.3, we have provided experimental evalua-
tions and retrieval results using the HAPPS-1 retrieval method, and first compared
these results with those of several state-of-the-art retrieval methods in one of our
publications [175]. In that work, we first tested the robustness and descriptiveness
of the HAPPS-1 retrieval method by evaluating its retrieval performances on three
publicly available datasets from various standard SHREC benchmarks datasets of
3D objects. Table 4.2 identifies some basic properties of these datasets. However,
we refer the reader to Section 5.2 for more details regarding a comprehensive list
of 3D object datasets we evaluate our retrieval method against in this thesis. The
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Figure 4.8: Overview of HAPPS algorithm.

choice of these datasets for testing the HAPPS-1 retrieval method was due to their
diverse acquisition technique, diverse retrieval challenges, diverse surface represen-
tation, shape quality and possible application scenarios.

No. Dataset (Year) Quality Size Model Type Use Case

1 SHREC-PSR
(2018) [121]

Very
High

2,267 3D Polygon
Mesh

Retrieval

2 PRoNTo
(2017) [269]

Poor 100 3D Point
Cloud

Retrieval

3 SHREC-10
(2010) [140]

High 200 3D Polygon
Mesh

Retrieval

Table 4.2: Three different 3D shape retrieval benchmark datasets used to evaluate HAPPS
method.

The HAPPS-2 Descriptor Implementation

Basically, the HoGD “global” descriptor already has that characteristics (compu-
tational efficiency, simplicity, speed, etc.) needed to form a “hybrid” descriptor in
conjunction with APPFD. This is confirmed by the successes recorded with the
HAPPS method on several different 3D benchmark datasets, such as the SHREC’18
Protein dataset. However, the choice of another global descriptor (preferably the
M2DP, due to its success in loop-closure detection [80], compactness and high com-
putational efficiency - speed) to combine with our APPFD to form another variant
of a hybrid descriptor, the HAPPS-2, was to be able to determine, with further
evidence, the influence and robustness of the APPFD local descriptor, or to what
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extent these global descriptors contributed to the overall HAPPS retrieval method.
The M2DP descriptor is extremely fast to compute and returns a 196-dimensional
feature-vector, while the APPFD descriptor returns 117, 649-dimensional fv, depend-
ing on the parameter value for the b(APPFD) bins. Therefore, combining these two
descriptors, the resultant HAPPS-2 descriptor becomes a 117, 649 + 196 = 117845-
dimensional fv, considering that b(APPFD) = 7. See Figure 4.8 for an overview of
the general HAPPS descriptor algorithm or retrieval method. Each of these final
descriptors (local and global) are first normalised within the range [0, 1], before con-
catenation. This ensures that their resultant hybrid descriptor is within the same
range, before matching. However, it would be interesting to further investigate the
impact of combining two or more descriptors with variable lengths (i.e. 117, 649 and
196), using different similarity metrics and selected datasets.

HAPPS Descriptor Experimental Settings and Running Time

All the parameters used for the implementation of our retrieval methods (APPFD,
HoGD, and HAPPS) are presented in Table 4.3. In sample experimental run-A
and run-B, we show the parameter settings for the HAPPS-1 and the HAPPS-2 re-
trieval methods, respectively. Note that the b(HoGD) parameter does not apply to the
HAPPS-2 method. These two parameters of the APPFD: (i) vs, a parameter that
determines the size of an occupied voxel grid [279], thus, the number of returned
key points, during point cloud down-sampling (see Section 3.3), and (ii) r, which
controls the size of LSP for each key point, influences the overall performances of
the HAPPS retrieval algorithms. For example, r is directly proportional to the sizes
of the LSP selected from the input 3D surface. This implies that the greater the
value of r, the larger the sizes or number of local point neighbourhood of each LSP
selection, and vice versa. Alternatively, vs is inversely proportional to the number
of sub-sampled points (key points), which means increasing the value of vs reduces
the number of key points, and vice versa. During our experimental implementa-
tions, several N , r and vs parameter value combinations were tested in order to find
best possible combinations that yields optimum results. Depending on the size of
dataset, the computational time and memory can be affected by these parameter
settings. Therefore, we carefully selected the configurations summarized in the fol-
lowing tables, for the respective experimental runs with several different datasets:
Table 5.4, 5.8, 5.11, 5.13, 5.16, 5.17, 5.19, and 5.25. Further analyses regarding these
parameter settings are summarised in Section 5.3.3. These experimental runs, their
results for respective benchmark datasets/retrieval challenges, and discussions are
presented in Chapter 4.

The HAPPS algorithms are implemented in Python 3.60 and depending on the
size of the dataset, all experiments are carried out on either of our: (i) HP Pavilion,
Windows 10 Home, x64-based PC, with the following configurations. Processor:
Intel(R) Core(TM)i3-5157U CPU @ 2.50GHz 2.49GHz. Installed memory(RAM):
8.00GB, and (ii) Windows 7 desktop PC with Intel Core i7-4790 CPU @ 3.60GHz,
32GB RAM. On the first machine, it took an average of 25Seconds to compute the
HAPPS-1 for a single 3D object, using the parameters mentioned in the preprocess-
ing steps (see Sections 3.2 to 3.3.5). Alternatively, it took an average of 23 secs and
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Dataset: SHREC Parameter Settings

Experiment(s) Algorithms N r vs b(APPFD) b(HoGD) Dist.Metric

run-A HAPPS-1 3500 0.50 0.32 7 65 Cosine
run-B HAPPS-2 3500 0.50 0.32 7 n/a Cosine

Table 4.3: Typical parameter settings for the APPFD, including the HAPPS-1&2
methods having two experimental runs: run-A and run-B, having exactly the same
parameter values. The parameters: P , r, vs, b(APPFD), and b(HoGD) are explained
in Section 5.3.

45 secs to compute HAPPS-1 and HAPPS-2, respectively, about 1 Sec to extract
(Ps, Ns), and roughly 0.3secs each, to compute the HoGD and M2DP per 3D object
on the second machine.

4.2.4 Agglomeration of Local APPFD with Fisher Kernel
and Gaussian Mixture Model (APPFD-FK-GMM)

The Gaussian Mixture Model (GMM)

The GMM is a type of clustering algorithm, where each cluster is modelled according
to a different Gaussian distribution, hence the name, Gaussian Mixture Model. The
GMM provides a flexible and probabilistic approach to data modelling using soft as-
signment of data points into clusters, as opposed to the hard assignments approach
used by the k-means algorithm. The probabilistic approach of this model entails
that a single data point could be generated by any of the Gaussian distributions
with a corresponding probability. Generating a GMM-based model is possible by
first introducing a latent variable, ξ for each data point (that defines which Gaussian
generated a particular data point), with the assumption that each data point was
generated using some information about ξ. To achieve this, the Expectation Max-
imisation (EM) algorithm is involved. We refer the reader to [161] for an in-dept
information regarding the EM algorithm as it is beyond the scope of this thesis. In
a nutshell, the EM algorithm is an efficient density estimation technique for missing
data, that is most-commonly used with clustering algorithms, such as the GMM.
In addition, EM is a technique for performing a challenging maximum likelihood
estimation on data, given its ξ variables, by first estimating the values for the latent
variables, then optimising the model, and repeating these two processes until the
model converges.

The Fisher Kernel (FK) Framework

The FK, defined as K (Mi,Mj) = V T
Mi
I1VMj

(where I is the Fisher information
matrix), is a function used in statistical classification to compare the similarity
between two objects, Mi and Mj based on a set of measurement for each object and
a statistical model (i.e. Gaussian Mixture Model, for example). Fisher Vector (FV)
can be used to combine the power of generative statistical model, such as the hidden
Markov model and discriminating method, such as the support vector machine. The
Fisher information measures the amount of details in an observed random variable,
M about an unknown parameter, ρ of a distribution that models M , and used to
calculate the covariance matrices associated with maximum-likelihood estimates.
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The FK uses the Fisher score, which is defined as: VM = ∇ρ logP (M |ρ), where ρ
is a set of parameters, and the function converting ρ to P (M |ρ) is a log-likelihood
of the probabilistic model. In IR the FK is commonly applied to image descriptors
for classification or retrieval problems. It has the advantage of producing a compact
and dense representation, which is desirable in shape classification and retrieval
problems. In our implementation, we adopt the FK framework described in [93].

Improving The APPFD or HAPPS Descriptor

Through experimental evaluations, we demonstrate that the APPFD and the HAPPS
retrieval methods have excellent retrieval accuracies on several benchmark datasets
(see Sections 5.3 and 5.4). However, the lengths of their respective final fv is very
high-dimensional, as result of the b(APPFD) parameter and the number of feature-
dimension in the APPF, which is 6-dimension. That is, the higher the value of
both the b(APPFD) parameter and the APPF, the better the retrieval performance
as proven by our experimental evaluations in Chapter 4. For a 6-dimensional APPF
and b(APPFD) = 8, we get 86 = 262, 144-dimensional fv, which is remarkably high
dimensional, although very descriptive. Similarly, for a 5-dimensional APPF and
say b(APPFD) = 5, we get 55 = 3, 125-dimensional fv, which is comparatively in-
credibly low dimensional, but very poorly descriptive for a given 3D object, using
this method. Considering the former case, where the final desirable descriptor (fv)
from the APPFD or HAPPS retrieval method is remarkably high, it takes longer to
match the shape descriptors of two 3D objects, and for a larger dataset, such as the
SHREC’14, SHREC’18, SHREC’19 datasets, etc., computational time and memory
would most likely be affected, depending also on the machine’s configuration. This
motivated further investigation into a technique that could further shorten the final
APPFD and/or HAPPS fv, to produce a more compact final descriptor without
losing retrieval accuracies, which led to the agglomeration of local APPFD with
FK and GMM (APPFD-FK-GMM) approach: a method which aims to aggregate
d-dimensional local descriptors into a single vector representation.

Considering the success and contributions of the FK and GMM approach in
the 2D domain [93, 218], we adopted the APPFD as the basis for the new 3D
shape retrieval method: Agglomeration of local APPFD with Fisher Kernel and
Gaussian Mixture Model (APPFD-FK-GMM). The two main stages of the APPFD-
FK-GMM algorithm are as follows: (i) Computing local APPFD for selected key
points, and (ii) Key points APPFD aggregation with FV and GMM. We have
already provided sufficient details regarding feature extraction technique and shape
descriptor computation steps for the APPFD in Section 4.2.1. Therefore, in this
section we only focus on the second stage, which is the agglomeration techniques
for locally extracted APPFD using the fisher kernel and Gaussian mixture model.
Precisely, the FV computation approach involves an initial step of training a GMM,
as a generative probabilistic model, given aggregated key points local APPFDs for
all database 3D objects, including the application of FK technique with the help
of this trained model and local APPFDs for a given 3D object to derive a single
signature, the APPFD-FK-GMM for that 3D object. The final stage of this process,
therefore, consists of computing a global FV for each input 3D object given their key
points APPFDs. Figure 4.9 shows the processing pipeline of the APPFD-FK-GMM
algorithm.
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Figure 4.9: Overview of APPFD-FK framework.

APPF Binning Technique for The APPFD-FK-GMM Method

Unlike the initial binning technique for the APPFD algorithm (see Section 4.2.1),
where we compute a multi-dimensional histogram of the extracted 6-dimensional
APPF to produce a final signature per 3D object, which is very high in dimension,
and consumes additional computational time during descriptor matching, the bin-
ning technique adopted for the APPFD algorithm used in the APPFD-FK-GMM
method is very efficient and involves binning each feature dimension of the extracted
6-dimensional APPF into 1D histogram of between 8 to 40 bins, and concatenating
the final 1D histograms, which results in a very low dimensional final local fv (say
210-dimension, if b(APPFD) = 35) for each key point and/or LSP. These local LSP
descriptors are combined for each 3D object and for all the objects in the dataset
and used to train a GMM.

Fitting Our Data To Gaussian Mixture Model (GMM)

As already stated in “APPF Binning Technique” section, for each 3D object and
for all the objects in the dataset, the local LSP descriptors are combined together
to train a GMM (i.e. “fit” a GMM to our data). The SkLearn library in Python
provides a class to train a GMM on sample distribution in order to estimate the
parameters of the distribution with the help of the EM algorithm. This training
relies on a parameter, G which specifies the number of underlying processes used to
generate the data when defining the model. Assuming the number of processes are
unknown, (such as in our case where we are using an unsupervised approach and a
variable number of local APPFD for each 3D object) a range of different values of
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G could be tested, using either of Akaike or Bayesian Information Criterion (AIC or
BIC), to determine which of the values would converge the model, then the model
with the best fit is chosen. In our implementation, we tested the following values
for G = [8, 10, 12, 15, 20, 24, 40] and found G = 10 to give good approximation.
Finally, we trained our GMM with 10 Gaussian, using diagonal covariances for all
experimental runs.

The Fisher Vector (FV): APPFD-FK-GMM

The FV encoding on the other hand, is an approximate and improved case of the
FK that stores the mean and the covariance deviation vectors per component k in
a GMM and each element of the local shape descriptors together. Following the
example in [218], let I = (bx1, . . . , bxN) be a set of d-dimensional feature vectors
(e.g. APPFD local descriptors) extracted from a 3D surface. Let ρ = (µk,Σk, πk :
k = 1, . . . , K) be the parameters of a GMM fitting the distribution of descriptors.
The GMM associates each vector bxi to a mode k in the mixture with a strength
given by the posterior probability:

qik =
exp

[
−1

2
(bxi − µk)

TΣ−1
k (bxi − µk)

]∑K
t=1 exp

[
−1

2
(bxi − µt)TΣ

−1
k (bxi − µt)

] .
For each mode k, consider the mean and covariance deviation vectors

ujk =
1

N
√
πk

N∑
i=1

qik
xji − µjk

σjk

,

vjk =
1

N
√
2πk

N∑
i=1

qik

[(
xji − µjk

σjk

)2

− 1

]
.

where (j = 1, 2, . . . , d) spans the vector dimensions. The FV of 3D object I is
the stacking of the vectors buk and then of the vectors bvk for each of the K modes
in the Gaussian mixtures:

Φ(I) =



...
buk
...

bvk
...

 .

According to [93], the FV describes how the set of descriptors deviates from an
average distribution of descriptors, modeled by a parametric generative model. In
summary, the FV encoding aggregates a large set of local shape descriptors into a
high-dimensional vector representation by fitting a generative probabilistic model
(i.e. the GMM) to the descriptors and encoding the derivatives of the log-likelihood
of the model with respect to its parameters, ρ.

Finally, given the trained GMM-based model from the previous step (see Sec-
tion 4.2.4) and local key points APPFDs for a given 3D object, the Fisher Kernel
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described in Section 4.2.4 is used to compute a final global FV for the 3D object,
which is L2 and power-normalized. We achieved this with the help of [111]. How-
ever, the FV derived with the FK are high-dimensional, which can impact computa-
tional speed during matching of the FVs of any two 3D objects, including that such
high-dimensional vectors cannot be efficiently indexed. Then application of a linear
dimensionality reduction technique, such as the PCA significantly reduced the di-
mensionality of the final descriptor, making it more compact, while still retaining its
robustness. For example, given local APPFDs with 210 and 15,625 dimensions, a FV
with 4,210 and 312,510 dimensions, respectively are returned, which represent a sin-
gle 3D shape, and applying the PCA to either of the 4,210 and 312,510-dimensional
FVs while retaining 99% of their information reduces the dimensions to 162 and 186
respectively, and still yield close matching results/retrieval accuracies. The primary
goal of applying a dimensionality reduction on the final global descriptor returned
by the APPFD-FK-GMM algorithm was to further produce a final shape descriptor
that is more compact, including to investigate the descriptor robustness thereafter,
in line with the characteristics of an appropriate shape descriptor outlined in Sec-
tion 2.3.1.

4.3 Evaluation Techniques

Performance evaluation is an essential part of information retrieval (IR) [206], such
as 3D-CBSR. It deals with processes that objectively assess the ability of retrieval
systems to meet users’ needs. Evaluating the performances of shape retrieval meth-
ods is of significant importance in 3D-CBSR to judge the similarity measurements
between 3D shapes. As described in Section 2.2.4, a complete 3D-CBSR system
involves four main stages, thus: feature extraction, shape descriptor construction,
indexing, matching and retrieval. Ideally, human judgement (user-based) can be
used to evaluate the accuracy and performance of the retrieval system by manu-
ally comparing how similar the retrieved shapes are to the query shape. However,
the user-based performance evaluation approach is highly ineffective for several rea-
sons, including: (i) When the retrieval results are undesirable, due to, perhaps a
bad (i.e. non-robust) shape descriptor, the entire CBSR system may have to be
re-implemented following descriptor re-implementation. (ii) It would be practically
ineffective to deploy reliable real-time applications for retrieval or classification tasks
if there is no way to measure performance before deploying the final CBSR system.
Therefore, there is the need for an effective performances’ evaluation mechanism.

Alternatively, system-based performance evaluation approach [99] involves the
use of software tools to quantify how well a retrieval method ranks retrieval results
that are relevant to the query shape with the abstraction that good evaluation
performance is subject to good ranking results. In this thesis, we adopt the system-
based performance evaluation approach for performance evaluation measurements
of our retrieval methods.

4.3.1 Performance Evaluation Algorithm (Tools)

In this thesis, we employ commonly used IR tools, which are described in Sec-
tion 4.3.3, to evaluate retrieval performance of our shape descriptors. The main
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goal of performance evaluation in IR system is to determine how different aspects of
the system (3D shape retrieval method) can retrieve shapes that are relevant to the
query shape. To effectively achieve this, system-based evaluation approach, which
involves the use of software tools, is needed. Granted, most of these evaluation tools
have already been developed by researchers. Although many of the available software
tools are only suitable for performance evaluation of other areas of IR, such as texts,
audios, and 2D images retrieval, RETRIEVAL (http://retrieval.ceti.gr) [90], a web-
based integrated information retrieval performance evaluation platform, and other
publicly available source codes by the Princeton 3D Shape Benchmark (PSB) [216],
are a few examples of existing software tools for performance evaluation of 3D re-
trieval methods. The PSB, for example, provides source codes for several perfor-
mance evaluation metrics such as Nearest Neighbour (NN), Precision-recall (PR),
First Tier (FT), Second Tier (ST), Discounted Cumulative Gains (DCG), etc. See
Section 4.3.3 for more on evaluation metrics. These codes can also be customized
to suit specific needs. In addition, the annual competition for 3D SHape REtrieval
Contest, SHREC [140, 132, 142, 269, 121, 157], also provides different source codes
for each of the retrieval challenges the competition addresses. Essentially, SHREC
organises several annual retrieval tracks, since 2006 [244] till present [122, 163], with
the goal of quantifying the performances of 3D shape retrieval methods over a vari-
ety of application domains.

Unlike the user-based performance evaluation approach which is more challeng-
ing and costly due to the need for methods to be equally developed, trained and
followed by a user interface of similar level of functionality [90], adopting system-
based approach (which involves the use of already existing software tools) for perfor-
mance evaluation takes away computational burden from the user (i.e. researcher).
Rather than re-invent the wheel, we adopted the respective software evaluation tools
provided by the different benchmark datasets and SHREC for which our retrieval
methods are evaluated upon.

4.3.2 Performance Evaluation Algorithm Inputs

Following the successful implementation of shape retrieval method (see Section 4.2)
for a given benchmark dataset, retrieval results such as (dis)similarity matrix (DM),
Ranked List (RL), and Binary Ranked Lists (BRL) data structures, are computed. A
combination of these results with a Classification Index (CI) or Ground Truth (GT)
data are needed as inputs to an evaluation system (software tool, see Section 4.3.1)
for performance evaluation of the retrieval method. Details about these retrieval
results and/or data structures are presented in the following sections.

Distance/(Dis)similarity Matrix (DM)

Distance/(Dis)similarity Matrix, also known as self-similarity or distance matrix
(DM), represents the dissimilarity of all pairs of shapes in the database. For N
shapes, the DM is a sequence of N by N floating point values (between 0.00 and
1.00), where the value at position i∗N+j represents the distance, i.e. (dis)similarity
between shapes i and j. A distance value of 0.00 returned from matching any
two shape descriptors (query descriptor and database descriptor) indicates that the
descriptors (matched shapes) are identical, while larger values, say 0.82, indicate

110 Chapter 4 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

greater dissimilarity between the two matched descriptors representing two different
3D shapes. However, all distance values must be positive and can be arbitrarily
large(for un-normalised descriptors). Typical examples of self-similarity matrices
are presented in Figures 5.15 and 5.17.

It is helpful to examine the general structure produced by each type of shape
descriptor and its corresponding Distance Matrix, besides generating other plots like
the PRC. For any given DM, the cooler (blue) colour indicates Closeness or greater
similarity, while the hotter (red) colour indicates Furthest or greater (dis)similarity.
For all the 3D benchmark datasets we experimentally evaluated our retrieval meth-
ods against in this thesis, shapes are categorized into groups known as Classes,
therefore, in all the DM plots (see Section 5.3.1, Figures 5.18, 5.15), for example, we
expect to see a contiguous sets of C-rows (and also C-Columns), each corresponding
to a shape class, such as Cars, fishes, chairs, human, etc., where C is the number
of classes or groups for a given dataset. For example, C = 107 for the SHREC’18
protein shapes dataset [121] and C = 10 for the PRoNTo dataset [269]. The fifth
column in Table 5.1 reveals the value of C for all the other datasets evaluated in
this study.

In the distance/(dis)similarity matrix plot for each retrieval method and bench-
mark dataset evaluated, we expect to see a C × C pixel blue square for each
class/group along the diagonal, with hotter colors everywhere else in the same
row. This shows that a particular group is close to itself and far from others when
the shape descriptor signatures are compared using spatial distance metric, like
Euclidean-distance, cosine-distance, etc.

Ranked Lists (RL)

Given a set of users’ queries, a shape retrieval algorithm searches through the bench-
mark database of 3D shapes and returns an ordered list of responses called the ranked
list(s), RL. The greater the ranked position (value) of a relevant item (shape) in the
RL, the less valuable such item (shape) is to the user, because it is less likely that
the user will examine such item (shape) due to time, effort, and cumulated informa-
tion from objects already seen (refer to E-measure in Section 4.3.3). The evaluation
of the algorithm then is transformed to the evaluation of the quality of the ranked
list(s).

Binary Ranked Lists (BRL)

In binary ranked lists, the binary relevance values of 1 and 0 are used instead, to
replace the retrieved item (shape) ID with the relevance value, where 1 represents
relevance of the ranked item (shape) to the query item (shape), and 0 irrelevant.

Classification Index (CI)/Ground Truth (GT)

For all the benchmark datasets evaluated in this thesis except ShapeGoogle (see Sec-
tion 5.2 and Table 5.1), a Classification Index (CI)/GT file (i.e. *.cla) is provided.
The CI/GT file specifies two important pieces of information for the performance
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evaluation algorithm that returns PR scores and other performance evaluation statis-
tics like NN, FT, ST, E, and DCG, etc. First, the classification file indicates the
order that shapes appear in the rows and columns of the (dis)similarity matrix,
DM . Second, it provides a grouping of the shapes so that the performance evalua-
tion algorithm can determine relevant matches (shapes belonging to the same class
as the query shape) from irrelevant ones. For more details on classification index
or Ground Truth file format for 3D shapes retrieval, refer to the Princeton Shape
Benchmark (PSB) classification file format documentation in [1].

The “performance evaluation algorithm” uses a CI and a DM computed with
any shape retrieval method to produce statistics and visualisations that facilitate
evaluation of the retrieval results. The retrieval results determine how many of the
top-ranked shapes are from the same class as the query shape.

4.3.3 Performance Evaluation Metrics

In information retrieval (IR), evaluation metrics are used to measure how well the
retrieved results satisfy the user’s query. Although the performance evaluation of a
shape retrieval method depends on the application domain, in order to make a thor-
ough and unbiased evaluation of a 3D shape retrieval method with high confidence
(due to the subjectivity of human similarity judgement [164]) different evaluation
metrics are needed to measure different aspects of shape retrieval behaviour. To
this end, several commonly used metrics (in information retrieval) are adopted to
measure the performances of our 3D shape retrieval algorithms on different datasets.
The performances of several other retrieval methods are also compared using these
metrics.

In this thesis, at least 8 IR performance evaluation metrics: NN, FT, ST, E,
DCG, normalised Discounted Cumulative Gain (nDCG), mAP, and the PRC plots,
have been considered to evaluate our retrieval methods. However, while none of
these evaluation measures are new, their detailed descriptions (i.e. how each metric
computes/evaluates the performance of a retrieval method) are included in this
section for the reader to understand the results presented in Section 4. The first
three statistics: NN, FT, and ST indicate the percentage of the top K matches that
belong to the same class as the query shape. However, in all three cases, an ideal
matching result (where all the other shapes within the query’s class appear as the
top matches) gives a score of 100%.

Nearest Neighbour (NN)

For the NN metric, K = 1, and provides an indication to how well a nearest neigh-
bour classifier would perform.

First Tier (FT)

Considering the percentage of shapes in the query’s class that appear within the
top K matches, where K depends on the size of the query’s class, the FT metric
indicates the recall for the smallestK that could possibly include 100% of the shapes
in the query class [215]. For this metric, K = Cq − 1.
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Second Tier (ST)

The ST metric produces similar result to FT, but is a little less stringent with K
being 2(Cq − 1) (i.e. K is twice as big). It is similar to the ”Bull’s Eye Percentage
Score” [215], where K = 2Cq.

E-Measure (E)

The idea behind E-measure is that a user of a search engine is more interested in the
first page of query results than in later pages. Therefore, this metric only considers
the first 32 retrieved items (shapes) for every query for its calculation. It is regarded
as a composite measure of precision and recall for a fixed number of retrieved results,
and mathematically defined according to Equation (4.6). Essentially, E-measure
combines precision and recall into a single value for the performance evaluation of
the entire system [98].

E =
2

( 1
P
+ 1

R
)

(4.6)

Alternatively, the value of E-measure (see Equation (4.9)) can also be derived by
first computing the F-measure, which is the weighted harmonic mean of precision
and recall, given by the definition in Equation (4.7)

Fα =
(1 + α)× precision× recall

α× precision× recall
(4.7)

where α is the weight. Assuming α = 1, the weight of the precision and recall values
will be the same, hence:

F = 2× precision× recall

precision+ recall
(4.8)

E = 1− F (4.9)

The E-measure has a maximum value of 1.0 and the higher its value, the better the
matching results (for two 3D shapes).

Discounted Cumulative Gain (DCG)

The DCG provides a clue of how well the overall retrieval results would be viewed by
the user. Correctly retrieved shapes near the front of the ranked list are more likely
to be seen than correctly retrieved shapes near the end of the list. Mathematically,
if the ith shape is in the correct query class, DCG is given as:

1 +
∑

(
1

log(i)
) (4.10)

This sum is then normalized by the maximum possible value if the first C − 1 items
(shapes) were all in the correct class where C− 1 is the size of the class without the
query item (shape).

It is helpful to review Ranked Lists (RL) and BRL! (BRL!) (see Section 4.3.2)
in order to understand the formulation for the DCG metric. Consider the BRL!
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results, where item (shape) IDs are replaced with relevance values, the cumulative
gain vector, G:

G = [1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1...]

at ranked position i is derived by summing from first position, i.e. 1 to i when i
ranges from 1 to the length, l of the ranked list. Assuming the position i in the gain
vector, G is G[i], the cumulative gain vector CG is then recursively defined thus:

CGi =

{
G1 if i = 1
CG(i−1) +Gi otherwise

The size of the gain vector, G = l is equal to the number of 3D shapes, N for
each respective benchmark dataset we evaluate our retrieval method against. For
example, G is a 100, 200, 600, and 2, 267-sized vectors for SHREC’17, SHREC’10,
SHREC’11, and SHREC’18 datasets, respectively. If Gi = 1, then the ith retrieved
item (shape) is in the same class of the query item (shape), and otherwise, if Gi = 0.

The comparison of matching algorithms is then equal to compare the cumulative
gain, and the greater the rank, the smaller the share of the item (shape) value added
to the cumulative gain [71]. A discounting function is needed which progressively
reduces the item (shape) weight as its rank increases but not too steeply, thus:

DCGi =

{
G1 if i = 1
DCG(i−1) +

Gi

log2(i)
otherwise

Normalised Discounted Cumulative Gain (nDCG)

According to [121], the value, DCGi is divided by the maximal value possible (i.e.
the value obtained by the ground truth) as follows:

DCG =
DCGN

1 +
(∑|C|

j=2

)
1

log2(j)

(4.13)

where N is the total number of items (shapes) in the database and C the classes size.
This value is a good summary of the comparative evaluation of the performance of
different retrieval methods, and a normalized value, nDCG of the DCG is therefore
computed over all methods, and compared to the average value, avgDCG, as in
Equation (4.14).

nDCG =
DCGN

avgDCG
− 1 (4.14)

where negative value indicates that the performance of the method is under the
average, and a positive value indicates that the performance of the retrieval method
is above average [121]. In all our performance evaluation results where we applied
the nDCG metric, the values returned are positive (see Section 4). This indicates
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that those our retrieval methods on the respective benchmark datasets where those
methods are experimented performed well, even in cases where our results did not
outperform state-of-the-art methods (see results in Section 5.5.5 and Table 5.46, for
example).

Precision (P)

Precision metric is defined as the ratio of retrieved items(shapes) which are relevant
to a query item (shape), thus revealing the probability (P ) of the shape retrieval
method to retrieve relevant shapes [49, 46, 154]. The precision metric can be seen
as the percentage of retrieved items that are correct, and is formulated as:

Precision = P (relevant|retrieved) = #(relevant items retrieved)

(#relevant items)
(4.15)

Recall (R)

Recall measures the ratio of retrieved items(shapes) that are relevant, given a query
item (shape). It reveals the probability (P ) that a relevant shape is retrieved by the
query or the capability that only relevant shapes are retrieved [49]. The recall metric
can be seen as the percentage of correct items that are retrieved, and is formulated
as:

Recall = P (retrieved|relevant) = #(relevant items retrieved)

(#relevant items)
(4.16)

Precision-Recall (PR) Curve

Whereas precision and recall are two fundamental measures often used to evalu-
ate the performance of information retrieval method (shape matching algorithm),
Precision-Recall Curve is the combination of the two metrics (Precision and Recall)
into a single plot that describes the relationship between precision and recall in a
ranked list of matches.

In principle, precision is the percentage of retrieved items(shapes) that are rel-
evant, while recall is the percentage of relevant items(shapes) that are retrieved.
These PR concepts and notations are clarified in Figure 4.10 and the PR contin-
gency table, Table 4.4 that follows.

Relevant Not Relevant
Retrieved true positive (tp) false positive (fp)

Not Retrieved false negative (fn) true negative (tn)

Table 4.4: Precision-Recall contingency table.

Key PR Metrics:

Precision =
tp

tp+ fp
=

tp

Retrieved
(4.17)
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Figure 4.10: Precision-Recall concepts and notations.

Recall =
tp

tp+ fn
=

tp

Relevant
(4.18)

Accuracy =
(tp+ tn)

(tp+ tn+ fp+ fn)
=

Correct

All Database Shapes
(4.19)

Error = 1− Accuracy (4.20)

The precision-recall curve (see Figure 5.13 for example) is used in IR to show
the tradeoff between precision and recall for different values. A high value for both
precision and recall shows that the retrieval method returned accurate (i.e. high
precision) and positive (i.e. high recall) results. Likewise, a high area under the PR
curve represents high precision, as well as high recall, and high precision represents
a low fp rate, while high recall represents a low fn rate.

According to [154], an obvious alternative that may occur to the reader is to
judge an information retrieval system by its accuracy, that is, the fraction of its
classifications that are correct. In terms of the contingency table (see Table 4.4),
shape retrieval accuracy can be formulated as shown in Equation (4.19), while the
error of the retrieval method can be derived as given in Equation (4.20). However,
it’s a bad idea to depend on accuracy measure, and possibly the error measure, in an
IR system because accuracy is, more commonly, a description of systematic errors
(i.e. a measure of statistical bias), thus a measurement system can be accurate
but not precise, precise but not accurate, neither, or both. For example, if an
experiment contains a systematic error, then increasing the sample size generally
increases precision but does not improve accuracy [126].

AP or mAP

As the name suggests, average precision is a scalar metric that averages all precision
values where a relevant item (shape) have been retrieved, and represents the average
precision performance of a shape retrieval method over all relevant items(shapes)
up to a ranking position [90]. According to [129], AP measure is a single-value
that evaluates the performance over all relevant items(shapes). It is not an average
of the precision at standard recall levels, but the average of precision values at
each relevant item (shape) retrieved. For example, considering a query with five
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relevant items which are retrieved at ranks 1, 2, 4, 7 and 10, the actual precision
value obtained when each relevant item is retrieved would be 1, 1, 0, 0.75, 0.57 and
0.50, respectively. Therefore, the average precision would be 0.76 [71]. Finally, AP
summarises the PR curve or plot as the weighted mean of precisions achieved at
each value, with the increase in recall from the previous value used as the weight:

AP =
∑
n

(Rn −Rn−1)Pn (4.21)

where Pn and Rn are the precision and recall at the nth threshold. A pair
(Rk, Pk) is referred to as an operating point [126]. The mean average precision
(mAP) presents an overall performance evaluation of the shape retrieval method, by
finding the average precision for each query item (shape) and computing the mean
average precision over all query items(shape). It is also considered to be robust in
quantifying the overall performance of a retrieval method [154].
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Chapter 5

EXPERIMENTAL EVALUATION
RESULTS AND DISCUSSIONS

5.1 Introduction

This chapter presents the result of our experimental evaluations. First, we present
and describe up to ten different benchmark datasets used in this thesis to evaluate
the performances of our proposed methods, and highlight some critical issues re-
garding these datasets, including the retrieval challenges that each dataset present
to 3D shape retrieval algorithms (i.e. descriptors). Although we provide some re-
sults of experimental evaluation for the performance of our proposed HoGD “global”
method, using the SHREC 2021 [188] 3D protein benchmark dataset (not described
in this thesis), detailed description of all other 3D benchmark datasets upon which
the retrieval accuracies and robustness of our proposed methods have been tested
are provided in Section 5.2.

For all the different 3D shape retrieval methods proposed in this thesis (see
Section 4.2), their retrieval accuracies (i.e. performances) on several different stan-
dardised 3D benchmark datasets (mentioned above) are presented and discussed,
following thorough experimental evaluations. Essentially, for each of these retrieval
methods (our proposed methods and state-of-the-art methods), we present both
qualitative and quantitative performance evaluations, reported against some spe-
cific 3D SHREC benchmark datasets to which the method has been applied. In
addition, we compare and analyse the overall performances (results) for each of our
proposed methods on a given dataset with the performances of several other state-
of-the-art retrieval methods for that particular dataset, using at least six standard
and commonly used IR performance evaluation metrics described in Section 4.3.3,
which are: NN, FT, ST, E, DCG, and PRC, including nDCG, mAP, and AUC.

It is important to mention here, that as part of our experimental evaluation
strategy, rather than testing the robustness of our shape retrieval methods (descrip-
tors) using a single dataset that have different variations such as noise/distortions,
holes, occlusion, deformations, level-of-details, etc., we instead choose to evaluate
the retrieval performances of our methods and descriptors, using several different
standardized 3D shape retrieval benchmark datasets described in Section 5.2. We
consider this strategy to provide a more trusted and unbiased approach to testing
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the effectiveness of retrieval methods, descriptors robustness, and scalability, be-
cause each of these datasets presents varieties of complicated and unique retrieval
challenges to any retrieval algorithm applied to it. Unlike earlier work such as [174,
64] and several others, whose strategy was to use a single 3D database where each
3D model has different variations of noise, cracks/holes, tessellation, LoDs, etc., our
experimental evaluation strategy to robustness testing (i.e. retrieval results) reveals
how our solutions (retrieval methods) perform on a wider range of 3D datasets and
against a variety of retrieval challenges that each of these datasets present.

In addition, rather than use synthetic dataset containing fewer number of 3D ob-
jects for our robustness testing and performance evaluation, the choice of SHREC’12
(having 1,200 3D shapes), SHREC’18 (having 2,267 3D protein conformers) and par-
ticularly SHREC’14 (having 8,987 3D shapes), each withan exceptionally large num-
ber of diverse and complex 3D models, for example, is basically for us to determine
the suitability of our proposed solution in real-world applications. As previously
stated in Section 4.2.3, for most of the shape retrieval methods we present in this
thesis, our algorithms are implemented in Python 3.6.0 and all experiments are
carried out on either of our: (i) HP Pavilion, Windows 10 Home, x64-based PC,
with the following configurations. Processor: Intel(R) Core(TM)i3-5157U CPU @
2.50GHz 2.49GHz. Installed memory (RAM): 8.00GB, and (ii) Windows 7 desktop
PC with Intel Core i7-4790 CPU @ 3.60GHz, 32GB RAM, depending on the size of
the dataset.

Note that for each experimental run reported in this chapter, we first apply
each retrieval method described in Section 4.2 (with a given parameter setting for
that method) on a single 3D benchmark dataset, and compute 3D shape descriptors
(local, global, or hybrid, depending on the retrieval method used) for all the 3D
objects in that dataset. Next, we compute a single distance/(dis)similarity matrix
(DM) per method/experimental run on the whole dataset. The DM represents the
(dis)similarity of all pairs of 3D objects in the given dataset. For N objects, the
matrix is a sequence of N by N floating point numbers, where the numerical value
at position i∗N+j represents the (dis)similarity between objects i and j. A value of
0.00 indicates that the descriptors for objects i and j are identical, and larger values
indicate greater (dis)similarity between the two 3D objects. All of our (dis)similarity
measures have positive values. We refer the reader to Section 4.3.2 for additional
details regarding this. Finally, this DM and the GT data/information are plugged
into an evaluation software tool described in Section 4.3.1 and Section 4.3.3 to pro-
duce quantitative evaluation results, including the PRC plots.

The idea or reason behind measuring (dis)similarity among the objects in the
database to produce N by N matrix (DM) instead of just between the objects in the
database and the query objects is this: Computing a DM is needed by the evaluation
algorithm. This computation considers each item (3D object descriptor) in the
database as a query object, Qi which is then matches to the remaining items in the
dataset. For example, assuming there are 10 items (i0, i1, i2, i3 · · · i9) in the database,
Q1 = i0: i0 is matched with itself and the other nine objects, which produces 10
(dis)similarity scores for line 1, using Q1. Similarly, Q2 = i1: i1 is matched with
i0, itself, and the remaining eight objects, which produces 10 (dis)similarity scores
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for line 2, using Q2. Also, Q10 = i9: i9 is matched with the remaining nine objects
and itself, which produces 10 (dis)similarity scores for line 3, using Q10, etc. The
overall results of this is a 10 by 10 DM of (dis)similarity scores for the dataset, which
is needed by the evaluation code, designed to accept such format of measurements
output to produce the results we get. Finally, however, for production purposes, the
matching technique or algorithm does not need to output a DM. Direct querying of
indexed database descriptors are rather used to match with newly extracted query
object descriptors and the final results are ranked/sorted according to similarity
values. The evaluation algorithm is designed to compute or derive RLs from DM -
see Section 4.3.2.

5.2 Datasets

This section introduces a variety of 3D shape benchmark datasets which have been
used for testing our shape retrieval methods. Most of these datasets are made of 3D
triangular meshes (i.e. contains vertices and connectivity information) while others
contain unstructured data types, such as point cloud objects (refer to Section 2.2.1
for more details on 3D object representations). The datasets we have adopted for
this thesis covers a very wide range and classes (categories) of rigid and non-rigid 3D
models such as human, vehicles (cars, semi-trucks, etc.), animals, furniture, arte-
facts, buildings, mechanical parts, toys, biological structures, and insects, etc. A
summary of essential information regarding each of the datasets described in this
section is provided in Table 5.1. However, the choice of all these datasets presented
in this thesis for testing/evaluating the performances of our retrieval methods is
largely due to their diverse acquisition technique, diverse retrieval challenges, di-
verse surface representation, shape quality and possible application scenarios.

In Table 5.1, the “Database Size” column reveals the total number 3D objects
that each benchmark dataset contains, while “Shapes/Class” lists the number of 3D
objects contained in each class. Also as shown in Table 5.1, some benchmarks (i.e.
SHREC’10, SHREC’11, SHREC’12, SHREC’17, SHREC’20, and ShapeGoogle) have
fixed number of objects per class, while others, such as the SHREC’14, SHREC’18
protein, SHREC’19 protein, and SHREC’20 protein, have variable number of objects
per class. Finally, it is worth mentioning that in addition to the 3D objects data,
each of these shape retrieval benchmarks (databases) also provide a CI or GT data
(i.e. .cla file) for performance evaluation of shape retrieval methods and/or algo-
rithms, except the ShapeGoogle dataset, which was only used for raw experimental
testing of our techniques and never used to evaluate our methods against any state-
of-the-art ones. Some benchmarks also include evaluation code which allows the
retrieval performances of several different retrieval methods (including the methods
we propose) to be measured with the exact same criteria, for quantitative, as well
as qualitative evaluations and comparisons.

In summary, several 3D retrieval benchmarks exist, such as the ones in [139, 245,
68, 271, 131, 132, 142, 139, 140] and [119] among others. Each of these datasets
presents a unique challenge to shape retrieval algorithms. Some benchmarks contains
only 2.5D range data [240], or a combination of 3D mesh and scenes objects for recog-
nition, such as the datasets in [106, 150] and [193]. Other benchmarks provide point
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cloud data containing only the geometry of points, i.e. [x, y, z] coordinates, for exam-
ple, the PRoNTo (Point Cloud Retrieval of Non-rigid Toys) dataset [142]. However,
many other benchmarks, like the Princeton Shape Benchmark (PSB) [245], McGill
dataset [57], SHREC’10 [140], SHREC’11 [139], SHREC’14 [132], SHREC’16 [68],
SHREC’19 [119, 56], etc. provides their data as triangular meshes.

5.2.1 SHape REtrieval Contests (SHREC) 3D Benchmarks

In 2016, the Network of Excellence AIM@SHAPE [247] began to organize SHREC [244],
which at the time only used 3D polygonal models from the Princeton Shape Bench-
mark (PSB) [191]. In 2017, AIM@SHAPE expanded the SHREC retrieval to multi-
ple tracks, including watertight 3D shapes, protein shapes and 3D face models, etc.
Since SHREC 2009 [72] till presently, the SHREC competition has been organized
in collaboration with Eurographics Workshop on 3D Object Retrieval, 3D Object
Retrieval (3DOR) [56, 55]. 3DOR is the dedicated workshop series for methods,
applications and benchmark-based evaluation of 3D object retrieval, classification,
and similarity-based object processing [55].

Since 2006, SHREC has received huge attention within and outside the research
community, including the current year, 2020, where it provides multiple tracks of
retrieval and classification challenges. However, the ultimate goal of SHREC is to
provide a platform for researchers working in 3D object retrieval field to present
and evaluate the effectiveness of state-of-the-art 3D-shape retrieval methods, using
a common performance evaluation criteria and tools - see Section 4.3. Following the
efforts of previous track organizers, SHREC provides many resources to compare
and evaluate 3D retrieval methods.

Choice of 3D Shape Retrieval Benchmarks

In conjunction with the above goal of SHREC, the robustness (i.e. performances)
of our proposed 3D shape retrieval methods or descriptors in this thesis are tested
against several different SHREC 3D datasets listed in Table 5.1. We described each
of these datasets in the sub-sections that follow. It is important to note that each
of these datasets (databases) has its own uniqueness and presents different chal-
lenges to shape retrieval algorithms. For example, the shape retrieval method for
the SHREC’17 [142] dataset would have to worry about common scanning prob-
lems, mainly caused by object’s self-occlusions, for non-rigid point cloud data. This
dataset is characterized by missing surface parts (see Figure 5.5) and the primary ob-
jective of the track was to evaluate shape retrieval methods that can be computed
directly and efficiently from point clouds. A brief description of the SHREC’17
dataset, and the motivation for using it, is presented in Section 5.2.6.

All evaluated datasets in this thesis contain greater number of 3D shapes than in
databases used for recognition [204, 96, 58, 150], registration [73, 198, 199, 227], and
segmentation [199] research. Experimental results (see Section 5.1) show that our
proposed retrieval methods perform very well on these variety of data sets, each of
which presents different challenges associated with the 3D data. Therefore, we ex-
pect that our feature extraction method would produce better performance outcome
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on other computer vision tasks such as 3D detection, recognition, segmentation, and
registration etc.

5.2.2 SHREC 2010 Non-rigid 3D Dataset

SHREC’10 - Shape Retrieval Contest of Non-rigid 3D Models: Basically, this is a
McGill Articulated Shape Benchmark database [237] that consists of 255 non-rigid,
watertight (manifold) 3D models represented as watertight triangle meshes. They
are classified into 10 categories. The maximum number of the objects in a class
is 31, while the minimum number is 20. 200 models are selected (or modified)
to generate the test database for SHREC 2010 track [140] in order to ensure that
every class contains equal number of models. Note that similar to all other SHREC
retrieval tracks, the SHREC’10 track provides source code and ground truth data for
evaluating quantitative retrieval statistics of shape retrieval algorithms, which then
enables results from new methods to be fairly comparable to the original benchmark
result.

Figure 5.1: Sample of 3D shapes in SHREC’10 database, grouped into 10 classes
and each class contains 20 shapes [140].

Motivation for Using SHREC’10 Dataset/Retrieval Challenge: Previ-
ous efforts have mainly been devoted to the retrieval of rigid 3D models, and thus
comparing non-rigid 3D shapes is still a challenging problem in content-based 3D
object retrieval. Therefore, this track (SHREC’10) is devoted to promote the devel-
opment of non-rigid 3D shape retrieval [140].

5.2.3 SHREC 2011 Non-rigid 3D Watertight Dataset

SHREC’11 - Shape Retrieval Contest of Non-rigid 3D Watertight Meshes: To aug-
ment the number of 3D models in the SHREC’10 track, SHREC’11 [139, 139] em-
ployed a large-scale database consisting of 600 non-rigid 3D objects that are created
by their group using some modelling software and codes. They classified the models
properly to make sure that every class holds equal number of models. The models
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are represented as watertight triangle meshes. Some of the models were recreated
with permission and are originally from different publicly available databases: such
as McGill database, TOSCA shapes, PSB, etc.

Figure 5.2: Sample of 3D shapes in SHREC 2011 database, classified into 30 cate-
gories [139].

Motivation for Using SHREC 2011 Dataset/Retrieval Challenge: Simi-
lar to, and in addition to that of SHREC’10, the motivation for the SHREC’11 track
was to evaluate the performance of 3D shape retrieval approaches on a large-scale
database of non-rigid 3D watertight meshes generated by the group [139, 139]. As
shown in Figure 5.2, this dataset contains a set of models which have similar overall
appearances but belong to various categories because they are different in the details
of local regions or/and topological structures. This makes the new benchmark more
challenging than other non-rigid 3D databases [139].

5.2.4 SHREC 2012 Generic 3D Shape Dataset

SHREC’12 Track - Generic 3D Shape Retrieval: Generic 3D shape retrieval is a fun-
damental research area in the field of content-based 3D shape retrieval [131]. The
SHREC’12 track contains 1,200 triangular meshes that are equally classified into 60
categories, with each category having 20 different shapes. They are comprised of
rigid models, non-rigid models, including mechanical parts as shown in Figure 5.3.
For more details about this dataset, we refer the reader to [131].

Motivation for Using SHREC 2012 Dataset/Retrieval Challenge: Our
motivation for using this dataset is that generic models have more variations com-
pared to professional models, for example, a chair can have diverse shapes and it
may have wheels or not; a table can be round or rectangular. These variations make
it more difficult for a retrieval method to be able to identify and retrieve models in
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a particular class, thus posing some level of challenge. Additionally, generic models
include the 3D objects that we see often in everyday life, hence the need to develop
a retrieval solution for such models.

Figure 5.3: Example 3D models in Generic 3D Dataset. [131].

5.2.5 SHREC 2014 Large Scale Comprehensive 3D Shape
Dataset

The SHREC’14 Track: Large Scale Comprehensive 3D Shape Retrieval:, presents
8,987 triangle meshes that are classified into 171 categories, is made up of a collection
of relevant models in major previously proposed 3D objects retrieval benchmarks
such as the Engineering Shape Benchmark (ESB) [92], McGill 3D Shape Benchmark
(MSB) [217], Watertight Model Benchmark (WMB) [70], Bonn Architecture Bench-
mark (BAB) [253], and others. This dataset contains different types of models, such
as Computer-Aided-Design/Manufacturing (CAD/CAM), generic, architecture, and
articulated models. Figure 5.4 show example models in ESB, MSB, WMB, and BAB
datasets.

Motivation for Using SHREC 2014 Dataset/Retrieval Challenge: We
are motivated to test the robustness of our algorithm and retrieval method on this
dataset because it is the most exhaustive dataset in terms of the number of semantic
query categories covered, as well as the variations of model types for hand-crafted
features. It also combines generic and domain-dependent model types and therefore
rates the retrieval performance with respect to cross-domain retrieval tasks [130].
Refer to [130], for more information regarding this dataset.

5.2.6 SHREC 2017 Non-rigid Point Cloud (PRoNTo) Dataset

SHREC 2017 - Point-Cloud Shape Retrieval of Non- Rigid Toys : According to [142],
the dataset in SHREC 2017 contains 100 different models that are derived from 10
different real objects. Each object has been scanned in 10 distinct poses by ar-
ticulating them around their joints. Objects were scanned using the Head and
Face Color 3D Scanner (http://cyberware.com/products/scanners/ps.html). The
point clouds acquired by these scans suffer from missing parts resulted from self-
occlusions of the objects. The scanned point clouds were randomly rotated across
XY Z axis and they contain in average 4K uncoloured points each. The file for-
mat was chosen as the ASCII Object File Format (*.off ) [185], where they are only
vertex information. The 3D points-cloud with missing parts are intended to test
signatures robustness against scanning problems since real-time interaction with 3D
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Figure 5.4: Example 3D models in ESB, MSB, WMB and BAB datasets, combined
to produce SHREC 2014 dataset. [132].

scanners/objects are expected to be part of our everyday lives in the near future as
suggested by the growth of Virtual and Augmented Reality and the new 3D plat-
form from Microsoft [177], which will include many 3D features in its products [142].

Motivation for Using SHREC 2017 Dataset/Retrieval Challenge: The
tasks for this track present a 3D shape retrieval problem where a shape retrieval
method has to worry about common scanning problems, mainly caused by object
self-occlusions, however, it cannot be classified as a part-based shape retrieval task
because the gross structure of the shape is always presented (only fine details are
missing). According to [142], scanning problems occur as a result of occlusion, “when
the laser hits first one part of the model leaving another part of the model unseen
(in the same direction pointed by the scan head). These objects with missing parts
are intended to test signatures robustness against scanning problems since real-time
interaction with 3D scanners/objects are expected to be part of our everyday lives
in the near future as suggested by the growth of Virtual and Augmented Reality and
the new 3D platform from Microsoft, which will include many 3D features in its
products [269]”.

In addition, we have been interested in evaluating the robustness of our descrip-
tors and/or shape retrieval methods using a different type of surface representation
from the popular 3D mesh, hence our primary motivation for using the PRoNTo
dataset. Additionally, we expect that our proposed solution would be robust against
scanning problems for real-time interaction with 3D scanners/objects that are part
of everyday life.
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Figure 5.5: Samples of 15 Non-rigid point cloud 3D scans from SHREC’17 Track:
Point Cloud Shape Retrieval of Non-Rigid Toys. “Point clouds coloured by coordi-
nates Y ∗ Z”. [142].

5.2.7 SHREC 2018 Protein Shape Dataset

SHREC 2018 - Protein Shape Retrieval: This dataset contains 2, 267 unique pro-
tein structures/shapes called conformers. These shapes were distributed into 107
categories with an average class size of 21.18. Out of the 107 classes, 18 classes
had only one conformer each, and the largest class has a size of 110 conformers. In
Figure 5.6 we visualize 8 sample shapes from this dataset, taken from 8 different
classes. For additional details regarding this dataset, the reader is referred to [121].
Typically, a single 3D shape in this dataset is the Solvent Excluded Surface (SES)
of a protein molecule, which has been created from the molecule’s tertiary structure
(PDB format) using the EDTSurf software that produces a high-resolution water-
tight mesh. The mesh, which is triangulated, is simplified and used as input to our
shape retrieval algorithms - see Section 4.2.3.

Motivation for Using SHREC 2018 Protein Dataset/Retrieval Chal-
lenge: Proteins are macromolecules that display dynamic and complex surface
structure (composed of hundreds of thousands of atoms), and central to biologi-
cal processes [121]. They display multiple conformations differing by local (residue
side-chain) or global (loop or domain) structural changes at the atomic scale which
can drastically impact their global and local shape. Because proteins display mul-
tiple possible conformations in solution, the detection of shape similarity and/or
identity is of biological relevance in drug discovery processes and molecular charac-
terization of diseases. Also, protein shape retrieval [121, 119] has recently become
an import research focus, hence the motivation for testing our retrieval methods on
this dataset.
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Figure 5.6: Point cloud representation of sample shapes (i.e. conformers) in the
SHREC’18 protein shapes retrieval track, showing one conformer each from 8 out
of 107 different classes. Conformers 0001.off, 0021.off, 0074.off, 0115.off, 0096.off,
1327.off, 1547.off, and 2267.off are respectively from classes P16INK4A, CRABPII,
EIF1A, EIF1A-HisTag, HisTag, Bax, IFNA2A, and UIMC1-humanUbiquitin.

5.2.8 SHREC 2019 Protein Shape Dataset

SHREC’19 - protein shape retrieval challenge: Given that proteins are dynamic,
non-rigid objects and that evolution tends to conserve patterns related to their
activity and function, the SHREC’19 protein retrieval track aimed at retrieving
protein evolutionary classification based only on their surfaces meshes, and offers a
challenging issue using biologically relevant molecules [119]. In addition, we decide
to also test the retrieval performances of our shape retrieval methods on a much
larger Protein shape dataset: SHREC’19, considering the successes recorded with
our HAPPS-1 method on the SHREC’18 Protein dataset as reported in [175].

Dataset Creation and Ground Truth (GT) Generation: A total of 5,298
protein structures representing 241 SCOPe [33, 32, 62] database entries extracted
from 211 PDB entries, were randomly selected from SCOPe entries containing: i)
NMR structures (whose conformers display the same number of atoms), ii) Three
classes of proteins (i.e. α, α+ β, and α

β
), and iii) Entries with at least four ortholog

proteins [119]. More details on the selection criteria and final 3D protein shapes for
this dataset can be obtained from [119]. At the species classification level, this data
set is composed of 54 classes while at the proteins classification level, it is composed
of 17 classes. A summary of these classifications and class sizes are presented in
Table 5.2, while Figure 5.7 presents a visual representation of some of the shapes in
this database.

Motivation for Using SHREC 2019 Protein Dataset/Retrieval Chal-
lenge: The retrieval challenge for the SHREC’19 protein retrieval track was to
retrieve various conformations of identical proteins and various conformations of
ortholog proteins (proteins from different organisms and showing the same activ-
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Figure 5.7: Selected 3D shape samples from the SHREC’19 protein retrieval track.
Visualisation by: [61, 60]

ity). Compared to the SHREC’18 protein shape retrieval track [121], the 2019 track
was focused on the evolutionary relationships between proteins shapes. Accord-
ing to [119]: “As a consequence of the selection process of surfaces to be included
in the dataset, the selected proteins are similar in terms of size (from 32 to 161
amino-acids) with most of the structures being 66 to 111-amino-acids long. The
corresponding meshes are also of equivalent size, ranging from 54,000 to ˜270,000
points. Furthermore, because of the evolutionary relationships between them, the
shapes from the same class at the proteins level (reflecting the variety of shapes from
ortholog proteins) are expected to have a high level of similarity in their overall shape
as they share the same activities and functions in organisms that co-evolved from the
same ancestor. For these reasons, the discrimination between shapes at the species
level is expected to be more difficult compared to the proteins level”.

Level Average class size Largest class size Number of classes
Protein 311.65 1160 17
Species 98.11 1049 54

Table 5.2: Summary of 3D shapes and their grouping at the species and proteins
levels in the SHREC’19 protein benchmark dataset [119].

5.2.9 SHREC 2020 Protein Shape Dataset

SHREC 2020 - Multi-domain protein shape retrieval challenge: The dataset in-
cludes 588 proteins consisting of two domains (i.e. functional units of the proteins),
where only the corresponding triangulated meshes of their solvent-excluded surfaces
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(SES) [41] were provided as input to shape retrieval algorithms to retrieve the evo-
lutionary relationships between orthologous proteins (proteins that have the same
function in different organisms), and to retrieve the different conformations of an
individual protein. Although the dataset is limited in size, where only 588 pro-
teins were considered for this retrieval challenge, out of more than 160,000 protein
structures that are experimentally solved. We think that this work provides use-
ful insights into the current shape comparison methods performance and highlights
possible limitations to large-scale applications due to the computational cost.

Dataset creation: The SCOPe database [62, 33, 32] organizes the protein do-
mains according to their structural (2 top levels of the SCOPe tree) and evolutionary
(four bottom levels) relationships. Protein domains in the SCOPe database originate
from Protein Data Bank (PDB) experimental structures [15] and are characterized
by their PDBId and chainId, allowing for filtering based on these parameters. From
all entries implemented in the SCOPe tree (excluding entries from the “Artifacts”
and “Low resolution protein structures” classes), we kept only the entries from X-ray
crystallography PDB structures which composed of two domains. When multiple
copies of the same protein chain were present in the same PDB structure, the track
organisers only kept one of those copies to limit redundancies. Finally, all proteins
were required to have at least one orthologous protein, and classes with less than 10
members were discarded.

Motivation for Using SHREC 2020 Protein Dataset/Retrieval Chal-
lenge: Proteins are linear polymers (protein chains) made of several hundred amino-
acid residues, which fold into a specific, well-defined 3D structure. Many proteins
need to form a complex of several chains to become functional. For instance, the
human haemoglobin requires two α-globin and two β-globin chains to be fully func-
tional. Domains define the functional units of the proteins and are usually associated
with a specific function and/or interaction; it is thus commonplace for two proteins
to share one domain while their other respective domains differ. This characteris-
tic led to the development of databases classifying proteins according to both their
structure and the functions of their domains [122].

The SHREC2020 track on multi-domain protein shapes dataset [122] is de-
voted to the analysis of protein shapes generated from protein chains that comprise
two domains and evaluates the current ability of shape comparison (shape match-
ing/retrieval) methods proposed by six separate groups to tackle the protein sur-
face comparison problem. Compared to other known protein shapes datasets, this
dataset is exclusively composed by two-domains proteins while only one- domain
proteins were included in [121, 120]. As multi-domain proteins are commonplace at
the cellular level, the impact of additional domains on the protein shape retrieval
performances need to be evaluated. Recently, another dataset of protein surface
patches was published [65], encompassing both geometric and chemical features of
proteins surfaces. That dataset gathers partially overlapping patches rather than
complete proteins surfaces and is currently limited to structures that display spe-
cific functionalities, namely the ability to bind selected small molecules or to form
a protein-protein complex [122].
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Level Shapes by class (min / max) Number of classes
Protein 19 / 168 7
Species 12 / 63 26

Table 5.3: Number of shapes and number of classes in the SHREC’20 protein bench-
mark dataset, at the protein and the species levels. Source: [122].

Ground Truth (GT) Generation: The ground truth was generated using the
resulting SCOPe tree of two-domains proteins. Only the biggest domain (highest
number of amino-acid residues) was used to define two ground truth classifications,
namely the protein and species levels, which reproduce the SCOPe tree classifica-
tions at the protein and species levels, respectively. By using this protocol, 588
protein chains were retrieved, from 26 orthologs (proteins having the same activity
in different organisms such as the human and murine haemoglobin proteins) and 7
proteins (see Table 5.3). The solvent-excluded surfaces [41] were computed for all
the entries using EDTSurf [266] (non-protein atoms were discarded) after protona-
tion of the structure using propka [224, 172], and only the corresponding .off files
were provided on the track web- site (http://shrec2020.drugdesign.fr).

5.2.10 SHREC 2020 3D Geometric Relief Dataset

SHREC 2020 - Retrieval of Digital Surfaces with Similar Geometric Reliefs: The
dataset proposed for this challenge consists of 220 triangulated surfaces. Each one
of them is characterized by one of 11 different geometric reliefs. 20 base models
already used in [162] were selected to create the models. These models represent
pots, goblets, and mugs. The surfaces of these models are properly oriented, and
they are made of a single connected component. The topology of some models is
non-trivial (they may contain handles or tunnels) and may present a boundary, de-
pending on the object represented. Then, a set of 11 textures is selected from the
free dataset of textures available online from the site Texture Haven [236] that con-
tains a set of natural, high quality texture images made from scanned maps. Most of
these textures represent real bricks, floors, roofs surfaces and rock or wood materials.

Figure 5.8: Selected Samples of 3D Shapes in the SHREC’20 Retrieval of Surfaces
with Similar Geometric Relief Track. Image source: [163].

The organisers of this retrieval challenge transformed each texture into height
values suitable to create a geometric relief by converting each texture into a gray-
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scale image. The brightness and the contrast values of each image were tuned for
each image, based on the values that better enhance the details of the respective
color texture. The obtained height field map is applied to the models: initially, the
texture is projected onto the target model. Depending on the surface bending, this
procedure deforms the texture. To limit this effect, each model is particularly fixed
by hand in correspondence of significant distortions and parts of the surface with
complex geometry (like tight handles). Next, the vertices of the triangle mesh were
raised based on the gray-scale value of the previously processed image along the
normal vectors of the models. The same process is repeated for all the textures. A
couple of examples of the conversion of a texture into a height map are depicted in
Figure 5.9.

Finally, the models are slightly smoothed to minimize the perturbations in the
color derived from the gray-scale conversion of the textures and the models are sam-
pled with 50,000 vertices. Base models, height fields and examples of the final 3D
models are shown in Figure 5.8. The dataset creation process is summarised in
Figure 5.12.

(a) Texture 1(left), Height Map 1(right) (b) Texture 2(left), Height Map 2(right)

Figure 5.9: An example of the transformation process from texture to height map.
On the left and right for both Figures (5.9a) and (5.9b), the original textures are
shown, and the final height-map obtained, respectively, with the process explained
in Section 5.2.10. This process can end with a binary image (i.e. black and white, as
in Figure 5.9a, right) or a gray-scale one (like that in Figures (5.9b), right). Image
source: [163].

Motivation for Using SHREC 2020 Geometric Reliefs Dataset/Retrieval
Challenge: Given the nature of the textures selected , we think that in 3D pattern
retrieval the most challenging issue is to deal with free-form models, possibly with
more complex bending and non-trivial topology. Also, given the heterogeneity of
the textures selected and the geometry of the base models, methods that perform
well in this contest have a high chance of being equally valid in other contexts, with
little to no changes.

The challenge proposed in this shape retrieval contest is to group the models
only according to the geometric relief impressed on them, rather than their shape.
In other words, a perfect score is obtained if a method is able to define 11 groups of
20 models each, each group with the models characterized by one of the 11 different
geometric reliefs. See example of this expectation in Figure 5.10.
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Figure 5.10: A visual representation of the challenge proposed in SHREC’20 retrieval
of 3D shapes with similar geometric reliefs contest. A query model Q with a bark-
like relief impressed on its surface is selected. In the ideal case, models with a
bark-like relief are retrieved before than models with different reliefs, independently
of the global geometry of the models. The “check” and “cross” marks highlight
models that are relevant or non-relevant to the query. Image source: [163].

(a) Base Models (b) Textures (height maps) (c) Final Models (example)

Figure 5.11: (a): the 20 base models on which the reliefs are applied. (b): the
11 transformed textures used as height-fields on the base models (the brighter the
color, the higher is the value of the field in that point). (c): a sample of the final
models of the dataset of the contest. Image source: [163].

5.2.11 ShapeGoogle: Random, Generic 3D Shape Dataset

This group of datasets [38] are a collection of 200 triangular meshes made up of 20
classes of 3D shapes from different categories of commonly available objects such as
Biplanes, Tables, Chairs (Dining-chairs, Desk-chairs), Flying-birds, Fishes, Human-
heads, Human-arms, Humans, Handguns, Guitars, Helicopter, Jets, Swords, Cars
(Sedan, Racing-cars), Potted-plants, Shelves, and Ships, all randomly selected from
3D shapes in the Princeton Shape Benchmark (PSB) [216, 191]. Each class holds
10 shapes. As a result of the smaller size of this dataset allowed us to conduct
experiments to quickly test our initial set retrieval methods.

Motivation for Using the Random, Rigid/non-Rigid 3D Shape Dataset:
As outlined in Table 5.1, most of the publicly available 3D shapes are contained in
benchmarks datasets which are either rigid or non-rigid 3D shapes, but not generic

Ekpo Otu Chapter 5 133



3D Shape Description, Indexing, Matching and Retrieval

(a) Birds (b) Chairs (c) Helicopters (d) Jets (e) Humans

(f) Heads (g) Race Cars (h) Sedan Cars (i) Ships (j) Tables

Figure 5.12: Database of 200 3D shapes (ShapeGoogle) grouped into 10 classes
from (5.12a) to (5.12j). Each class contains 20 shapes in the same category. This
dataset consists of generic (i.e. it contains a mixture of rigid and non-rigid) 3D
shapes.

(i.e. rigid and non-rigid) such as the SHREC’12 [131]. In the early stage of this
research work, we needed some type of freely available dataset that would allow us
to quickly evaluate the implementation of existing techniques for 3D shape matching
and retrieval algorithms and assess the suitability of our earlier shape descriptors
implementation for both rigid and non-rigid 3D shapes. This dataset, which was
adapted from [38] became handy and particularly useful for these purposes.

5.3 Experimental Evaluations of The HAPPS Re-

trieval Method

In this section, we provide the experimental results of all experimental evaluations
using our HAPPS retrieval method (predominantly HAPPS-1) with selected 3D
datasets described in Section 5.2, and compare its retrieval accuracies to those of
other state-of-the-art retrieval methods evaluated with the respective datasets, using
about seven standard IR performance metrics described in Section 4.3.3, which are:
NN, FT, ST, E, DCG, mAP, and PRC (see Section 4.3.3). In summary, for these
experimental evaluations, we provide the results and overall retrieval performances
of testing the HAPPS method on eight different standardized benchmark datasets
for 3D shape retrieval: (i) SHREC’10 Non-rigid shape retrieval having 200 trian-
gular meshes, (ii) SHREC’11 - shape retrieval contest of non-rigid 3D water-tight
meshes with 600 3D objects, (iii) SHREC’17 PRoNTo, with 100 3D point clouds,
(iv) SHREC’18 protein shapes benchmark for Protein Shape Retrieval Contest, with
2,267 protein conformers, (v) SHREC’19 protein shape retrieval challenge, having
a dataset with 5,298 protein models (vi) SHREC’20 multi-domain protein shape
retrieval challenge, having a dataset with 588 protein models, (vii) SHREC’12 -
generic 3D shape retrieval with 1,200 rigid and non-rigid triangular meshes, and fi-
nally, (viii) SHREC’14 track - large scale comprehensive 3D shape retrieval, having
8,987 rigid and non-rigid 3D objects. Detailed description of all these datasets are
presented in Section 5.2. Additionally, for each experimental run with our retrieval
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method on some of the datasets, we present visualisation for the (dis)similarity
matrix values returned by the retrieval algorithm (i.e. descriptor) and matching
method (i.e. distance metric) for that experiment, in order to further examine how
the algorithm performs across each shapes and classes for a given dataset. Details
about the (dis)similarity matrix is described in Section 4.3.2.

5.3.1 Experiment 1: Evaluating The Retrieval Performances
of The HAPPS-1 Method On SHREC’18 Protein Shape
Dataset

For this experimental evaluation, we adopt six performance evaluation metrics, thus:
the NN, FT, ST, E, DCG, as well as the PRC graph to evaluate the retrieval per-
formances of the HAPPS-1 method on the SHREC’18 Protein shapes database. We
refer the reader to Section 4.3.3 for more details regarding these performance met-
rics. At first, we compare our retrieval performance results of the HAPPS-1 method
(run-1a), side-by-side, with the results of six other state-of-the-art retrieval meth-
ods reported in [121], which competed for the SHREC’18 Protein shape retrieval
challenge.

Experiment 1: Parameter Settings and Configurations

The APPFD is the basis for the HAPPS method. In Section 4.2.1 we described
the implementation processes involved in constructing the APPFD, which involves
point cloud sampling, key points determination (via voxel-grid down-sampling), LSP
selection around each key point, and multi-dimensional binning of the locally ex-
tracted APPF to form the APPFD. Each of these processes are characterised by
parameters. For example, the parameters: N, vs, r, b(APPFD), respectively, rep-
resents: (i) the number of points, N to sample from 3D triangular mesh to form
point cloud (we explain this in Section 3.2.3), (ii) the size of voxel grid, vs in which
a collection of points are bucketed to form an occupied voxel grid where an aver-
age point is derived. These averaged points produce the final down-sampled point,
which is a representative of all the points collected into the grid (we explain this in
Section 3.3.5), (iii) the specified radius, r around a key point in which neighbouring
points to the key point are selected to form a LSP (as explained in Section 4.2.1),
(iv) the number of bins, b(APPFD) in each dimension of the multi-dimensional his-
togram used to collect the local APPF to form APPFD (we provide more details
regarding this in Sections 4.2.1 and 4.2.1).

Basically, three key parameters of the APPFD: (vs, r, b) greatly affects the ro-
bustness performance of the final HAPPS retrieval method. However, the fourth
parameter, N controls the outcome of vs and r. That is, the size of the selected
LSP and the number of down-sampled points (key points) are directly proportional
to the number of points samples in the point cloud input data. In our implemen-
tations, the r parameter is used in k-NN algorithm to control the radius around
an interest point (key point, pki) for which neighbouring points to pki are selected
to form a LSP for pki . Secondly, the vs parameter is used by the voxel-grid down-
sampling algorithm to determine the size of voxel for which points are collected and
averaged during the down-sampling process explained in Section 3.3.5.
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Dataset: SHREC’18 Protein DB Parameter Settings

Experiment 1 Algorithm(s) vs r b(APPFD) b(HoGD) Metric

run-1a HAPPS-1 0.10 0.20 7 50 Cosine
run-1b HAPPS-1 0.30 0.50 7 65 Cosine
run-1c HAPPS-1 0.20 0.50 8 65 Cosine
run-1d HAPPS-1 0.30 0.60 7 65 Cosine

Table 5.4: Parameter settings for four different experimental runs (run-1a to run-1d)
with the HAPPS retrieval method on the SHREC’18 Protein dataset. Number of
points samples, N = 4, 500.

Considering that the overall performances of the APPFD and subsequently, the
HAPPS retrieval methods strictly depends on these three parameter combinations:
(vs, r, b), it is not immediately obvious which parameter settings/configurations
would produce optimal results for the descriptors (i.e. APPFD or HAPPS) on a
given dataset of 3D objects or retrieval problem. In order to determine this pos-
sibility (i.e. best parameters value combination), we had to perform extensive ex-
periments on every dataset we tested our retrieval methods upon, each time, with
a different parameters setting. Finally, we would have to evaluate the returned
retrieval results as indicated in Figures 5.13 and Table 5.6, for example, before it
becomes obvious which parameters value combination or configuration are best for a
given dataset or retrieval challenge. It is important, however, to note that different
“best parameters setting” are obtained for different 3D retrieval benchmark dataset
or retrieval challenge. That is, the parameters setting or configuration which yields
best retrieval performance results for 3D benchmark dataset A, for example, would
not necessarily produce the same best performance result for, say, dataset B, us-
ing the same retrieval method. In our experimental evaluations with the HAPPS-1
retrieval method for the SHREC’18 Protein dataset, we examined the outcome of
different settings (parameter values) for each of the above-mentioned three param-
eters, vs, r and b. We summarise these parameter settings in Table 5.4, and present
results of these experimental runs in Table 5.6.

Experiment 1: Results and Discussion

We carried out several experiments to test the performances of the HAPPS-1 re-
trieval method on the SHREC’18 Protein shapes dataset and compare our results
with existing ones, using various (dis)similarity metrics mentioned in Section 2.2.3 to
perform spatial matching between two shape descriptors for every experiment, but
presents only four results of such experiments with the Cosine distance metric. The
SHREC’18 protein retrieval track defines four types of classes: (i) Small classes, (ii)
Medium classes, (iii) Large classes, and (iv) All classes. We refer the reader to [121]
for more details regarding this dataset classification. The All classes is the most
important classification and for which ground-truth information (i.e. classification
file) is publicly available, hence our evaluations are based only upon the All classi-
fication ground-truth. Overall, the HAPPS-1 method yields the best results in all
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Method Class NN FT ST E DCG

3D-FusionNet [121] All 0.6890 0.4040 0.4590 0.3660 0.6810
HAPT4 [121] All 0.7700 0.4930 0.5840 0.4620 0.7550
SIWKS [121] All 0.1990 0.1090 0.1890 0.1140 0.4520
DEM [121] All 0.4210 0.2380 0.3190 0.2310 0.5550
WKS [121] All 0.7170 0.4100 0.4900 0.3770 0.7010
GSGW [121] All 0.5140 0.2610 0.3500 0.2470 0.5810
HAPPS-1 Run-1c All 0.8525 0.6669 0.7815 0.5783 0.8818

Table 5.5: Quantitative performance evaluation results of seven different shape re-
trieval methods: only the best of the different variants of (i) all six different state-
of-the-art retrieval methods submitted for the SHREC’18 protein retrieval contest,
and (ii) our HAPPS-1 (run-1c), tested on the SHREC’18 protein shapes dataset
using five standard IR metrics.

six performance evaluation criteria: NN, FT, ST, E, DCG, and PRC, over six other
state-of-the-art methods submitted for the SHREC’18 protein retrieval contest. We
summarise the results of this comparative analyses in Table 5.5 and Fig. 5.13. The
HAPT method (i.e. HAPT4) followed ours (i.e. HAPPS-1) in performance rank-
ings, while WKS and 3D-FusionNet became next, with similar performances. The
GSGW, DEM, and SIWKS recorded lower performances. We demonstrate these
results in the PRC plot shown in Figure 5.13.

According to [121], a total of six state-or-the-art retrieval methods (3D-FusionNet,
HAPT, SIWKS, DEM, WKS, and GSGW) were evaluated for the SHREC’18 Pro-
tein shapes retrieval dataset using seven standard IR performance evaluation met-
rics: The nDCG and six others: NN, FT, ST, E, DCG, and PRC, described in
Section 4.3.3. They reported a total of nine experimental results: Five from differ-
ent algorithms and four variants of the HAPT algorithm (HAPT1, HAPT2, HAPT3,
and HAPT4). Similarly, we carried out several experiments with our HAPPS-1 re-
trieval method on the SHREC’18 Protein dataset using all the performance metrics
in [121], except the nDCG. However, we present the performance evaluation results
of only four different most significant experimental runs (i.e. run-1a to run-1d, with
each run combining different parameter values as presented in Table 5.4 and Fig-
ure 5.14). The parameters are r = (0.20, 0.50, 0.60): the “radius-neighbouhood”
floating value used to determine LSP size; vs = (0.10, 0.20, 0.30): the “voxel-
size” parameter used by the voxel-grid down-sampling technique described in Sec-
tion 3.3.5; b(APPFD) = bm = 7, 8): the “bin size” used for the local-based APPFD
“multi-dimensional” histogram descriptor; and finally b(HoGD) = b = (50, 65): the
“bin size” used for the global-based “1-dimensional” histogram descriptor (see Sec-
tion 4.2.2). These comprehensive evaluation results are presented in Table 5.6.

As indicated in Table 5.4, the four different experimental runs for the HAPPS-1
retrieval method combined different parameter values, thus:

� HAPPS-1run-1a [r:0.20, vs:0.10, b(APPFD):7, b(HoGD):50],

� HAPPS-1run-1b [r:0.50, vs:0.30, b(APPFD):7, b(HoGD):65],
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Figure 5.13: Precision-Recall Curve (PRC) plot of seven retrieval methods for
SHREC’18 protein shapes retrieval dataset according to Table 5.5. Top-most PRC
plot (Blue color) is that of our HAPPS-1 method (run-1c), while the other six plots
are those of existing state-of-the-art methods in [121]. Here, we superimpose the
PRC plot of HAPPS-1 method on only the best variants of the six existing methods
in [121].

� HAPPS-1run-1c [r:0.50, vs:0.20, b(APPFD):8, b(HoGD):65],

� HAPPS-1run-1d [r:0.60, vs:0.30, b(APPFD):7, b(HoGD):65].

We compare these results (from HAPPS-1 retrieval method) side-by-side with all
the other results in [121] having nine experimental runs. Therefore, we present a
total of thirteen performance evaluation results for all experimental runs (nine from
[121] and four from our work), for the SHREC’18 protein shapes retrieval dataset as
shown in Table 5.6. In Table 5.6 and Figure 5.13, we show a summary of all results,
for previously submitted methods in [121], side-by-side with those of our proposed
method (the HAPPS-1) using the All classes classification ground-truth.

The four plots in Figure 5.15 shows the DM results of the four experimental
runs of our HAPPS-1 retrieval method mentioned above and presented in Table 5.4.
Figures 5.15b- 5.15d shows the DM of the three best performing experimental runs
which are also revealed in the PRC plot in Figure 5.14 and the results in Table 5.6,
while Figures 5.15a show worst performing run based on parameter combination (see
the yellow coloured PRC in Figure 5.14). In these DM plots, the cooler (i.e. Blue)
colours signifies more similarity, while hotter (Red) colours signifies less similarity,
between pairs of 3D shapes in the SHREC’18 database. The abbreviations: r, vs
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Method Class NN FT ST E DCG

3D-FusionNet [121] All 0.6890 0.4040 0.4590 0.3660 0.6810

HAPT1 [121] All 0.7130 0.4130 0.5340 0.4090 0.7190

HAPT2 [121] All 0.7030 0.4390 0.5410 0.4150 0.7200

HAPT3 [121] All 0.7120 0.4590 0.5600 0.4330 0.7340

HAPT4 [121] All 0.7700 0.4930 0.5840 0.4620 0.7550

SIWKS [121] All 0.1990 0.1090 0.1890 0.1140 0.4520

DEM [121] All 0.4210 0.2380 0.3190 0.2310 0.5550

WKS [121] All 0.7170 0.4100 0.4900 0.3770 0.7010

GSGW [121] All 0.5140 0.2610 0.3500 0.2470 0.5810

HAPPS-1run-1a All 0.4958 0.3563 0.4995 0.3249 0.6642

HAPPS-1run-1b All 0.8507 0.6609 0.7807 0.5746 0.8797

HAPPS-1run-1c All 0.8525 0.6669 0.7815 0.5783 0.8818

HAPPS-1run-1d All 0.8729 0.6648 0.7699 0.5746 0.8812

Table 5.6: Quantitative evaluation results with five standard retrieval performance
metrics, for seven distinct retrieval methods (6 state-of-the-art and our proposed
method) evaluated on the SHREC’18 protein shapes dataset. Our HAPPS-1 and
the HAPT methods submits four different variant of results, each with different
parameter combinations. We used the Cosine distance metric to produce the DM
for this experiment.

Figure 5.14: PRC plot of the HAPPS-1 method (run-1a to run-1d), on the
SHREC’18 protein shapes retrieval.
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APPFD-bin, and HoGD-bin are adequately explained in Section 5.3.1.

(a) r:20, vs:10, APPFD-bin:7, HoGD-bin:50 (b) r:50, vs:30, APPFD-bin:7, HoGD-bin:65

(c) r:50, vs:20, APPFD-bin:8, HoGD-bin:65 (d) r:60, vs:30, APPFD-bin:7, HoGD-bin:65

Figure 5.15: Distance matrix (2, 267 x 2, 267) plots of four different experimental
runs (run-1a to run-1d) with our Hybrid: APPFD+HoGD (HAPPS) method on
SHREC’18 Protein shapes dataset, using Cosine distance metric (mentioned in Sec-
tion 2.2.3) for spatial matching, and the different parameter settings presented in
Table 5.4. Note the difference in colour intensity between Figure 5.15a, which pro-
duced relatively poorer results, and the other three: Figures 5.15b - 5.15d, which
produced higher and better results.

The PRC plot in Figure 5.14 clearly shows this interesting pattern of how the
different parameter settings we used in Table 5.4 affects the retrieval performances
of the HAPPS-1 method on the SHREC’18 Protein shapes dataset. It is interesting
to see how the different parameters combination affects the retrieval performance
of the APPFD and eventually, the HAPPS-1 methods. As the size of local surface
region (i.e. LSP) around an interest point increases from r = 0.20 to r = 0.60,
while the number of overall interest point (i.e. key points) decreased, i.e. voxel-sizes
from vs = 0.10 to vs = 0.30, all performance statistics: NN, FT, ST, E, and DCG,
increases in the positive direction (see Table 5.6). There is a performance gain for
the FT, ST, E and DCG measures and drop for NN, as voxel-size, vs changes from
vs = 0.30 to vs = 0.20 (as indicated in the third experimental run: HAPPS-1run-1c,
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Table 5.6), while the size of LSP remains unchanged at r = 0.50, refer to Table 5.4.

In addition, we see from the PRC in Figure 5.14 that the APPFD-bin (i.e.
b(APPFD)) parameter has the highest influence on the overall results. Setting this
parameter to 7 (Table 5.4) in conjunction with smaller number of key points and
LSP controlled by the parameters: vs and r, respectively, produces a final feature-
vector of size: 76 = 117, 649 and the result is HAPPS-1run1 (Table 5.6) which is
comparatively very low compared to results of the other three experimental runs,
where the sizes of LSPs and number of key points are larger. Another interesting
observation in this experiment is the fact that setting the the APPFD-bin parame-
ter to 8 instead produces a feature-vector of size: 86 = 262, 144, which is extremely
high and defies the compactness characteristics of a suitable shape descriptor (see
Section 2.3.1) while also impacting on computational time. However, the results
returned (as shown in the PRC plot) reveals that with b(APPFD) = 7 and fine-tuning
the r and vs upward produces the same results, with a lower feature-vector size.
Although it is somehow difficult to see (in Figure 5.15) how different 3D shapes
(objects) relate with each other in terms of similarity, as explained in Section 4.3.2
because fines details are lost in the plot due to the size of the SHREC’18 protein
shapes database, which has 2,267 3D objects. However, a careful observation of the
four different DM plots would reveal that Figures 5.15b to 5.15d are generally very
similar (with darker blue colours) than Figure 5.15a as confirmed by Table 5.6 and
Figure 5.14.

Finally, as shown by HAPPS-1run-1d in Table 5.6, increasing the size of LSP
from r = 0.50 to r = 0.60 regains back the confidence of the NN statistic. Although
we did not have time to run further experiments, but from the trend revealed in these
experimental runs and several other not reported here, we conjecture that combining
the parameters r = 0.60, vs = 0.20, bm = 8, and b = 65 for the APPFD retrieval
method would produce best results for all performance statistics on the SHREC’18
protein shapes dataset. Also, following the trend reported by [121] and the results
we have achieved, our proposed HAPPS-1 is capable of maintaining overall best
performances for the other three Classes : Small, Medium, and Large.

Experiment 1: Comparative Analysis of The HAPPS-1 Retrieval Method
with SHREC’18 Protein Shapes Dataset

Following performances ranking of our APPFD/HAPPS-1 method on the SHREC’18
dataset is the Histograms of Area Projection Transform (HAPT) method, which
also showed the impressive results for all IR performance statistics compared to
the other state-of-the-art methods reported by [121]. Unlike every other state-of-
the-art methods evaluated with the SHREC’18 dataset, our points sampling, and
features extraction approaches returns a final shape descriptor that is computation-
ally efficient, yet robust enough to accurately distinguish between different protein
conformers. For example, a typical protein conformer in this dataset contains an
average of 100,000 vertices (i.e. points) and 300,000 faces, which takes up to 10GB
of storage capacity, and our proposed Hybrid method (HAPPS-1 used only 3,500
points (as indicated in Figure 5.15), with a further down-sampling to an average
of 195 key points, pKi

, while being very capable of providing results that outper-
forms several of these existing state-of-the-art methods on all retrieval performance

Ekpo Otu Chapter 5 141



3D Shape Description, Indexing, Matching and Retrieval

statistics, as presented and discussed above.

5.3.2 Experiment 2: Evaluating The Retrieval Performances
of The HAPPS-1 Method On SHREC’17 PRoNTo
Dataset

The aim of the SHREC’17 PRoNTo track was to create a fair benchmark to evaluate
the performances of shape retrieval methods (descriptors) on the non-rigid point-
cloud shape retrieval problem and to test shape descriptors which are able to capture
the main characteristics of 3D objects. In this experimental evaluation, we demon-
strate the retrieval performances of our proposed HAPPS-1 retrieval method on the
SHREC’17 dataset and compare our best results with results from the best perform-
ing methods submitted for the SHREC’17 retrieval task in [142]. For this retrieval
challenge, the performances of eight different state-of-the-art retrieval methods were
submitted for evaluation by eight participants, and each participant submitted a
minimum of 1 and a maximum of six different retrieval results (where each result
is an outcome of different experimental run of the same method, but with different
parameter settings). Therefore, a total of 31 experimental runs were submitted for
evaluation by the retrieval task in [142].

Experiment 2: Parameter Settings and Configurations

The parameter settings and combinations for this particular experimental evalua-
tion are already outlined in Table 5.8 and fully explained in Section 5.3.1. However,
the maximum number of points, N for each 3D scan model in the PRoNTo dataset
is between 3,500 - 4,200. This number of points is relatively small, which means
that the contribution for the global HoGD descriptor to the final hybrid HAPPS
retrieval method is very minimal, as explained in Section 4.2.2. In Table 5.8, we
report our experimental results with experimental run-2a, having the parameter
settings: vs = 0.30, r = 0.50, b(APPFD) = 8, and b(HoGD) = 50 (see Table 5.8), be-
cause these parameter settings are found to return better results compared to other
values, based on our experimental findings (not reported in this thesis). Finally,
setting the b(HoGD) between 45 and 65 bins, as in experimental runs-2b, run-2c and
run-2d, as in Table 5.8, had negligible impact on the overall performance of the
HAPPS-1, as already explained, but increasing the b(APPFD) parameter from 7 to
8 bins improved retrieval results of the HAPPS-1 algorithm for the PRoNTo dataset.

While computing the APPFD for the HAPPS-1 retrieval method used with the
SHREC’17 PRoNTo dataset, we adopt the steps specified in Algorithm 4, since the
PRoNTo dataset contains raw 3D point cloud, P as input. Therefore, the point cloud
sampling algorithm was not needed for this dataset. Considering that this dataset is
characterised by noisy point cloud, we first applied smoothing filter using the MLS
algorithm by [158], with radius parameter: rmls = 0.05. Arguably, we believe that
smooth surfaces offer a better representation for 3D surfaces, thereby increasing the
accuracy of features extracted from them. Next, we estimated the surface normals,
Ns for Ps, using Algorithm 1, and computed K key points, {pki , i = 1 : K}) with
the voxel down-sampling technique described in Section 3.3.5, around which LSPs,
{Pi, i = 1 : K}) and their corresponding normals, {Ni, i = 1 : K}) are extracted,
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Author [142] Method NN FT ST E DCG

Boulch SnapNet 0.8800 0.6633 0.8011 0.3985 0.8663

Giachetti POHAPT 0.9400 0.8300 0.9144 0.4156 0.9419

BPHAPT 0.9800 0.9111 0.9544 0.4273 0.9743

Li m3DSH-1 0.4000 0.1656 0.2778 0.1824 0.4802

m3DSH-2 0.4400 0.1867 0.2856 0.1932 0.4997

m3DSH-3 0.4400 0.1767 0.2878 0.1917 0.5039

m3DSH-4 0.4000 0.1511 0.2511 0.1712 0.4659

m3DSH-5 0.4200 0.1722 0.2767 0.1815 0.4930

m3DSH-6 0.4100 0.1700 0.2678 0.1712 0.4848

This Thesis HAPPS-1run-2a-kld 0.9900 0.7867 0.8744 0.4132 0.9367

HAPPS-1run-2b-cos 0.9900 0.7767 0.8844 0.4171 0.9325

HAPPS-1run-2c-cos 0.9900 0.7767 0.8844 0.4171 0.9325

HAPPS-1run-2d-cos 0.9900 0.7767 0.8844 0.4171 0.9325

Limberger GL-FV-IWKS 0.8200 0.5756 0.7244 0.3595 0.8046

GL-SV-IWKS 0.7000 0.5267 0.6678 0.3327 0.7562

MFLO-FV-IWKS 0.8900 0.7911 0.8589 0.4024 0.9038

MFLO-SV-IWKS 0.9000 0.7100 0.7933 0.3702 0.8765

PCDL-FV-IWKS 0.8200 0.6656 0.7978 0.3976 0.8447

PCDL-SV-IWKS 0.8900 0.6656 0.7911 0.3732 0.8613

Sipiran SQFD(HKS) 0.2900 0.2244 0.3322 0.2176 0.5226

SQFD(WKS) 0.5400 0.3111 0.4467 0.2507 0.6032

SQFD(SIHKS) 0.2900 0.2533 0.4133 0.2590 0.5441

SQFD(WKS-SIHKS) 0.5000 0.3100 0.4500 0.2634 0.6000

SQFD(HKS-WKS-SIHKS) 0.3900 0.2844 0.4389 0.2624 0.5722

Tatsuma CDSPF 0.9200 0.6744 0.8156 0.4005 0.8851

Tran BoW-RoPS-1 1.0000 0.9744 0.9967 0.4390 0.9979

BoW-RoPS-2 1.0000 0.9778 0.9933 0.4385 0.9973

BoW-RoPS-DMF-3 1.0000 0.9778 0.9978 0.4390 0.9979

BoW-RoPS-DMF-4 1.0000 0.9778 0.9978 0.4390 0.9979

BoW-RoPS-DMF-5 1.0000 0.9733 0.9978 0.4390 0.9979

BoW-RoPS-DMF-6 1.0000 0.9733 0.9978 0.4390 0.9979

Velasco AlphaVol1 0.7900 0.5878 0.7578 0.3980 0.8145

AlphaVol2 0.7800 0.5122 0.6844 0.3751 0.7673

AlphaVol3 0.7700 0.4567 0.6467 0.3629 0.7364

AlphaVol4 0.7000 0.4356 0.6111 0.3454 0.7148

Table 5.7: Quantitative evaluation results of five standard retrieval performance
measures of thirty-five methods computed for the SHREC’17 PRoNTo dataset.
Thirty-one different runs from eight authors, and four experimental runs of our
proposed HAPPS-1 method.
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within a specified radius, r = 0.40− 0.50 for each pki .

Dataset: SHREC’17 [269] Parameter Settings

Experiment 2 Algorithm(s) vs r b(APPFD) b(HoGD) Dist.Metric

run-2a HAPPS-1 0.30 0.50 8 50 KLD
run-2b HAPPS-1 0.30 0.50 7 45 Cosine
run-2c HAPPS-1 0.30 0.50 7 50 Cosine
run-2d HAPPS-1 0.30 0.50 7 65 Cosine

Table 5.8: Parameter settings for four different experimental runs with the HAPPS-
1 retrieval method on the SHREC’17 PRoNTo dataset. Number of points for each
point cloud, N ≈ 3, 000→ 4, 200.

Experiment 2: Results and Discussion

We carried out several experiments with the HAPPS-1 retrieval method using dif-
ferent parameter settings in each experimental run on the SHREC’17 PRoNTo
dataset, and compared four different experimental runs of our retrieval results:
run-2a HAPPS-1, run-2b HAPPS-1, run-2c HAPPS-1, and run-2d HAPPS-1 (see
Table 5.8), side-by-side with those in [142]. To be able to see how the results of
the HAPPS-1 retrieval method compares with all the different results in [142] we
present all the results of this comparison in Table 5.7, which shows a total of 35
quantitative evaluation results: 31 different runs from eight authors (participants),
and four runs from our proposed method. Note that the best of the results for each
participants are highlighted in light-gray colour and the overall best results of all
the methods and participants are additionally presented in bold fonts.

Author [142] Method NN FT ST E DCG

Boulch SnapNet 0.8800 0.6633 0.8011 0.3985 0.8663

Giachetti BPHAPT 0.9800 0.9111 0.9544 0.4273 0.9743

Li m3DSH-3 0.4400 0.1767 0.2878 0.1917 0.5039

This Thesis HAPPS-1run-2a-kld 0.9900 0.7867 0.8744 0.4132 0.9367

Limberger MFLO-FV-IWKS 0.8900 0.7911 0.8589 0.4024 0.9038

Sipiran SQFD(WKS) 0.5400 0.3111 0.4467 0.2507 0.6032

Tatsuma CDSPF 0.9200 0.6744 0.8156 0.4005 0.8851

Tran BoW-RoPS-DMF-3 1.0000 0.9778 0.9978 0.4390 0.9979

Velasco AlphaVol1 0.7900 0.5878 0.7578 0.3980 0.8145

Table 5.9: Quantitative evaluation measures of best eight of thirty-one state-of-
the-art retrieval methods, including our proposed HAPPS-1 retrieval method (run-
2a), using five standard performance measures on the whole of SHREC’17 PRoNTo
dataset.

A summary of only the best performing retrieval methods (i.e. best experi-
mental runs) from all the submission to the SHREC’17 PRoNTo tasks, including
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the best result of the HAPPS-1 experimental run are presented in Table 5.9 for
clarity. Note, the PRC plot in Figure 5.16 confirms the summarised results in Ta-
ble 5.9. Here, the retrieval performances of the HAPPS-1 retrieval method are
compared with eight (out of thirty-one) best-performing state-of-the-art methods
for the PRoNTo dataset. For this experimental evaluation, we observe that the best
performance evaluation result of our proposed HAPPS-1 method outperforms the
results of six existing state-of-the-art methods in all five quantitative performance
evaluation measure (NN, FT, ST, E, and DCG), and ranks third in overall per-
formances, next to the results presented by the BPHAPT and BoW-RoPS-DMF-3
retrieval methods [142] (see Table 5.9 and the PR plot in Fig. 5.16). We see that the
BoW (BoW-RoPS-DMF-3) method outperforms every other method, followed by
BPHAPT, then our HAPPS-1 method for all the quantitative evaluation statistics.
However, for the NN statistic the HAPPS-1 method ranked second overall, higher
than the BPHAPT, while the MFLO-FV-IWKS method recorded higher result than
ours in the FT statistic.

Figure 5.16: PRC plot of HAPPS-1 retrieval method vs PRC plots of only the best
retrieval methods (out of 31 submitted methods) from each of the eight authors
(participants), for the SHREC’17 PRoNTo dataset [142], according to Table 5.9).
We super-imposed the PRC plot of the HAPPS-1 method (run-2a) on the original
PRC plots presented in [142].

In the SHREC’17 shape retrieval track, four methods: (i) MFLO-FV-IWKS, (ii)
SQFD(WKS), (iii) CDSPF and (iv) BoW-RoPS-DMF-3 computed local features,
while the other half: (v) BPHAPT, (vi) SnapNet, (vii) m3DSH-3 and (viii) Al-
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phaVol1 computed global features according to [142]. We instead adopted a hybrid
(local and global) approach: the HAPPS method. From Table 5.7 and Table 5.9, we
see that Tran’s method ranked first place with “local features”, Giachetti’s method
with “global features”, second place and our HAPPS-1 method with “hybrid fea-
tures”, third overall. According to [140], the DCG is an incredibly good and stable
quantitative statistic for evaluating shape retrieval methods, and we can see that
only four (out of 8) methods (HAPPS-1, BoW-RoPSDMF-3, BPHAPT and MFLO-
FV-IWKS) has DCG above 90%, with Tran’s methods surprisingly having DCG
values greater than 99%. The first deduction from this observation is that all three
features extraction approach (local, global and hybrid) are capable of accurately
representing non-rigid shapes. However, further qualitative analysis of the compu-
tational approaches of each of these three retrieval methods (i.e. HAPPS-1, BoW-
RoPS-DMF-3 and BPHAPT) reveals that our HAPPS-1 retrieval method could as
well rank in the first position instead of third if we implement some preprocessing
functions, such as increasing the density of the point cloud data in the PRoNTo
dataset (as is the case with the BoW-RoPS-DMF-3 method) or meshing the point
cloud to provide a better surface representation devoid of holes and noise present
in the original PRoNTo dataset (as is the case with the BHAPT method), before
feature extraction step is considered. According to [142], the BoW-RoPS-DMF-3
method densified each point cloud to reduce significant difference in the density
between different parts before feature extraction, which enabled each point cloud
to have better surface representation as a result of high LoD, and hence more ac-
curate feature extraction for the final descriptor. Similarly, the BHAPT retrieval
method utilised an approach where all 3D point cloud in the PRoNTo dataset are
first meshed in the preprocessing step to produce closed mesh surfaces, making the
BHAPT descriptor robust against inaccuracies due to holes that existed in the orig-
inal point cloud. Meshing these objects also provides better surface representation
for effective feature extraction.

On the other hand, our HAPPS-1 method was applied directly on the PRoNTo
dataset without up-sampling (to densify or increase its LoD) or meshing to pro-
vide a better surface representation devoid of holes and noise. Although we applied
only the smoothing filter in our preprocessing step, we do not see this step making
much difference that could affect the accuracy of our feature extraction process.
In addition, the BoW paradigm has proven to be one of the most effective tech-
nique for combining local features. Our APPFD algorithm, which is the basis of
the HAPPS-1 retrieval method, however, did not do a good job in combining its
local feature compared to the BoW approach. We also notice from Table 5.8 that
experimenting with different number of b(HoGD) bins (45 - 65) for the HoGD algo-
rithm made no difference on the performance of the HAPPS-1 method as shown
by our experimental runs (HAPPS-1run-2b-cos, HAPPS-1run-2c-cos, HAPPS-1run-
2d-cos) in Table 5.7, but changing the b(APPFD) bin from seven to eight witnessed
slight performance gain with the NN, FT, and DCG as seen in HAPPS-1run-2a-kld.
Considering all the above analysis, we therefore conclude that our HAPPS-1 method
performed the best in terms of computational efficiency, with the understanding that
it takes extra computational resources and time for other methods to pre-process
(up-sample/densify and meshing of the point cloud data) each point cloud object.
Finally, given that we include the meshing or up-sampling preprocessing steps for
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(a) r:50, vs:30, APPFD-bin:8, HoGD-bin:50 (b) r:50, vs:30, APPFD-bin:7, HoGD-bin:45

(c) r:50, vs:30, APPFD-bin:7, HoGD-bin:50 (d) r:50, vs:30, APPFD-bin:7, HoGD-bin:65

Figure 5.17: Distance matrix (100 x 100), plots of four different experimental runs
(run-2a to run-2d) of our HAPPS-1 method on SHREC’17 PRoNTo dataset. Fig-
ure 5.17a shows distance matrix results for KLD (dis)similarity metric, while Fig-
ures 5.17b - 5.17d shows the DM plots using Cosine (dis)similarity metric. Cooler
colours (Blue) signifies more similarity, while hotter colours (Red) signifies less sim-
ilarity, between pairs of 3D shapes in the database. The parameters are explained
in Section 5.3.1.
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our APPFD computation and adopt a more effective local feature combination ap-
proach to combining our locally extracted APPF, the HAPPS-1 retrieval method
has a very great chance of outperforming all other state-of-the-art retrieval methods
for the SHREC’17 PRoNTo dataset. However, this is a consideration for further
work on this kind of retrieval challenge with the HAPPS-1 method.

In Figure 5.17 we show the DM plot of the four experimental runs (HAPPS-1run-
2a-kld, HAPPS-1run-2b-cos, HAPPS-1run-2c-cos, and HAPPS-1run-2d-cos) of our
HAPPS-1 method on the SHREC’17 PRoNTo dataset, as reported in Table 5.7. In
this experiment evaluation, we performed matching with different distance metrics
to see how the different metric described in Section 2.2.3 affects performs with our
descriptor. We report results for the Cosine metric (see Section 2.2.3) and Kullback-
Leibler Divergence (see Section 2.2.3). We see how the plot for HAPPS-1run-2a-kld
in Figure 5.17a is different from the rest (Figures 5.17b - 5.17d), which produces
comparable results according to Table 5.7. In this section, we have been able to
present the results of our experimental runs for the SHREC’17 PRoNTo dataset
and compare them with several other state-of-the-art retrieval methods. However,
we focus our evaluation analysis on the four best performing methods, which includes
our method. For performance evaluation analysis of the other methods whose results
we present in Table 5.7, we refer the reader to [142].

5.3.3 Experiment 3: Evaluating The Retrieval Performances
of The HAPPS-1 Method On SHREC’10 Dataset

In this section, we present the results of our HAPPS-1 retrieval method alongside the
results of three other state-of-the-art methods, from three participants, who com-
peted for the SHREC’10 retrieval of Non-rigid 3D shape challenge, which involves
200 3D objects. A total of six different experimental runs (MRBF-DSIFT-E, BF-
DSIFT-E, DMEVD run1, DMEVD run2, DMEVD run3, and CF, respectively) were
submitted for the SHREC’10 retrieval track, where two experimental runs (MRBF-
DSIFT-E, BF-DSIFT-E), three experimental runs (DMEVD run2, DMEVD run3),
and one experimental run, were submitted by Ohbuchi, Smeets, Wuhrer, respec-
tively, according to Table 1 in [140]. Five quantitative performance evaluation statis-
tics (measures) were adopted for this dataset, which are: NN, FT, ST, E, and DCG,
and the PRC plot described in Section 4.3.3. Essentially, the HAPPS-1 method is
evaluated against the above-mentioned six methods for the SHREC’10 benchmark
dataset and retrieval challenge [140]. First, we are comparing the retrieval perfor-
mances of our HAPPS-1 method with the best experimental run (HAPPS-1,run-3a)
with the retrieval performance of the best experimental run for each of the methods
from the participants of the SHREC’10 retrieval challenge.

As a generalised concept, the performance results presented for all our experi-
mental evaluations (including those from other authors who submitted their methods
for evaluation in the respective shape retrieval challenges) are obtained by applying
each retrieval method, such as the HAPPS method for example, to calculate the
(dis)similarity between every two objects in a given dataset and then generating
corresponding (dis)similarity matrices. We have provided detailed explanations re-
garding this concept in Section 4.3.2. For the SHREC’10 dataset which contains
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200 3D objects, the matrix is composed of 200× 200 floating point numbers, where
the number at position (i, j) represents the (dis)similarity between models i and j.
In Figure 5.18, we visualize the distance/(dis)similarity matrix for the results of our
experimental run (run-3a) with the HAPPS-1 method (presented in Table 5.10). In
Section 4.3.2, we already provide adequate explanation about what the colours in
the DM plot represents. Given the (dis)similarity matrix for each retrieval method
and experimental run, the retrieval performance of the method can be quantita-
tively evaluated based on the IR performance evaluation statistics mentioned in
Section 4.3.3.

Figure 5.18: Distance Matrix for experimental run-3a with the Cosine Distance
metric, whose results are presented in Table 5.10, using the HAPPS-1 retrieval
method on the SHREC’10 dataset, according to the parameters in Table 5.11.

Experiment 3: Results and Discussion

The quantitative retrieval results reported in Table 5.10 recorded high overall per-
formances with both the HAPPS-1 and DMEVD Run1 methods for the NN statis-
tic, while the MR-BF-DSIFT-E method by Ohbuchi outperforms all other methods
for the FT, ST and E statistics. Considering the DCG statistic, the HAPPS-1,
DMEVD Run1, and MR-BF-DSIFT-E measured higher than 90% while Ohbuchi
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Author Method NN FT ST E DCG

Ohbuchi [140] MR-BF-DSIFT-E 0.9850 0.9092 0.9632 0.7055 0.9763

Smeets [140] DMEVD Run1 1.0000 0.86117 0.9571 0.7012 0.9773

Wuhrer [140] SQFD(WKS) 0.9200 0.6347 0.7800 0.5527 0.8781

This Thesis HAPPS-1 run-3a 1.0000 0.8063 0.8837 0.6463 0.9454

Table 5.10: Retrieval results of five quantitative performances statistics revealing
the retrieval performances of four methods: result of our HAPPS-1 method (exper-
imental run-3a) and best result from each of the three participants who’s methods
were evaluated for the SHREC’10 dataset.

and Smeets methods are remarkably close, with Smeets’ method taking the lead.
Overall, the MR-BF-DSIFT-E method by Ohbuchi recorded the highest perfor-
mance, followed by DMEVD Run1 method by Smeets, then our HAPPS method.
However, it is interesting to see that our HAPPS-1 method and DMEVD Run1
method by Smeets recorded the highest performances of 100% with the NN statis-
tic, outperforming the MR-BF-DSIFT-E method by Ohbuchi and all others. Similar
observation can be seen from Figure 5.19 where the PR curves by the first two meth-
ods by Ohbuchi and Smeets are remarkably close, followed by ours. It is however
difficult to say from this plot which of the two methods obtained the best overall
performance, as they seem robust to most of the non-rigid deformations present in
this dataset, including the HAPPS-1 method with nearly the same performances
as these two. Interestingly, also, we find that Ohbuchi used the BoW approach to
represent its features, which again confirms the suitability of the BoW model for
non-rigid shape retrieval, including being one of the best approaches for combining
local features and/or local shape descriptors.

Considering the two methods (MRBF-DSIFT-E and DMEVD Run1) whose per-
formances slightly outranked our HAPPS-1, we note from [140] that unlike the MR-
BF-DSIFT-E method which uses global isometric-invariant features, the MRBF-
DSIFT-E and our HAPPS-1 method uses local features. However, the MR-BF-
DSIFT-E method apply an unsupervised machine learning algorithm (i.e. manifold
ranking) which can be applied to enhance the results of any other approaches, includ-
ing features extracted for the APPFD method. In addition, this method employs the
BoW technique for its local features’ combination, which like the Bow-RoPSDMF-3
method analysed in Section 5.3.2, contributed to it being the best overall retrieval
method for the PRoNTo dataset. Note that the manifold ranking used by the MR-
BF-DSIFT-E method is time consuming [140] unlike our techniques which are not.
On the other hand, the DMEVD Run1 method adopted geodesic distance measure
between pair of points on the 3D mesh surfaces, which involves solving the com-
plex Eikonal equation and fast marching algorithm, including their use of the heat
equation to calculate the diffusion distance matrix. While this approach is most
effective for describing non-rigid surfaces (unlike spatial Euclidean distance as with
our HoGD algorithm), it is computationally expensive. In order to have an idea
of how expensive, we provide further analyses regarding the computational times
of for our proposed method in Sections 5.4.1 and 5.4.2. Whereas, given very low
number of points sample for each 3D objects in the SHREC’10 dataset, which we
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Figure 5.19: PRC plot showing the retrieval results of our HAPPS-1 retrieval method
(run-3a), including only the best methods from all three authors (participants) for
the SHREC’10 retrieval challenge, according to Table 5.10. The PRC plot for the
HAPPS-1 method is shown in Red colour, and super-imposed on the original PRC
plot in [140].

also used to compute the HoGD algorithm (whose robustness is proportional to the
number of points) and minimal computational efforts, our HAPPS-1 method is able
to compete favourably with these other methods such as MR-BF-DSIFT-E which
employs well-established techniques (SIFT, BoW, manifold ranking, and multi-view
2D projections). We therefore assume that our HAPPS-1 method would experience
performance boost if, for instance: (i) higher number of points sample is used for
the HoGD algorithm, (ii) a better local features combination approach, such as the
BoW approach is adopted instead, for finalising the local APPFD features, and (iii)
the APPFD as it is were to be combined with a more robust global descriptor to
form the final hybrid HAPPS method.

Experiment 3: Parameter Settings and Configurations

The experimental results presented in Table 5.10 for our HAPPS-1 retrieval method
are derived from the parameters provided in Table 5.11. Here, we only provide results
of experimental runs whose parameter combination/settings gave the best overall
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Dataset: SHREC’10 [140] Parameter Settings

Experiment 3 Algorithms N r vs b(APPFD) b(HoGD) Dist.Metric

run-3a HAPPS-1 4500 0.50 0.20 8 120 Cosine

Table 5.11: Parameter settings for a single experimental run (run-3a) with the
HAPPS-1 retrieval method on the SHREC’10 dataset for retrieval of non-rigid 3D
objects challenge. The parameters: N, r, vs, b(APPFD), b(HoGD) are explained in
Section 5.3.

evaluation performance. Our experimental outcomes followed a series of preliminary
testing, where we found that sampling 4,500 points for the SHREC’10 dataset was
enough to give good evaluation results. We selected different values for each of the
other four parameters (r, vs, b(APPFD),) and b(HoGD) through separate experimental
runs as discussed in Section 5.3.3, but the parameter values reported in Table 5.11
gave the best overall performance scores as already discussed in Section 5.3.3 above.
We present the other results of our different experimental runs (showing different
parameter settings) in Table 5.13, and plot their differences in the PRC plot shown
in Figure 5.21 - see Section 5.3.3.

Experiment 3: Performance Analysis of HAPPS-1 Method With Dif-
ferent Distance Metrics (Fixed Parameter Settings) On The SHREC’10
Dataset

Considering that each of the distance/(dis)similarity metrics, described in Sec-
tion 2.2.3 performs differently on a given 3D shape descriptor, as already explained,
in all our experimental runs and evaluations (including this one), we adopt and
implement at least five different (dis)similarity metrics (Cosine Distance, Euclidean
Distance, SED, KLD and the EMD) for the final shape matching of 3D object de-
scriptors. The goal, ultimately, is to be able to understand how the performance
results of each of our retrieval methods (shape descriptors) are being affected by cer-
tain sub-processes of the entire shape retrieval pipeline (in this case, the matching
sub-process), and to be able to analyse and finally select the results of the matching
method with the best overall performance outcome. For this testing/analysis, we
found that, for the HAPPS-1 retrieval method and the parameter settings in Ta-
ble 5.11, both the Cosine Distance and KLD metrics performed better than other
metrics for the SHREC’10 dataset and retrieval task. In Table 5.12 and the PRC
plot in Figure 5.20, we present these quantitative results with different (dis)similarity
metrics. Note that these are for experimenatl run-3a.

Overall, we can see in Table 5.12 that the Cosine Distance metric returns the best
performance than all the other four metrics, using the HAPPS-1 retrieval method
and the same parameter settings reported in Table 5.11. Following the Cosine met-
ric in terms of performance rating is the KLD metric, then the Euclidean Distance
metric. However, these three metrics essentially competes favourably for perfor-
mance ranking from a global perspective, as there is no much differences between
the area under their respective curves. Notice how poor the results with EMD
are, which is a strong indication that this metric is not suitable for the HAPPS-1
method, as earlier mentioned in Section 2.2.3, regarding the suitability of certain
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Experiment5 Dist.Metric Algorithms NN FT ST E DCG

run-3a Cosine HAPPS-1 1.0000 0.8063 0.8837 0.6463 0.9454

EMD HAPPS-1 0.1950 0.2682 0.5155 0.3367 0.5744

Euclidean HAPPS-1 0.9850 0.7726 0.8474 0.6214 0.9289

KLD HAPPS-1 0.9850 0.7766 0.8729 0.6365 0.9349

SED HAPPS-1 0.9850 0.7703 0.8468 0.6206 0.9283

Table 5.12: Quantitative results of five evaluation statistics revealing the retrieval
performances of our HAPPS-1 retrieval method with single experimental run (run-
3a), using five different distance metrics and the parameter settings in Table 5.11,
evaluated for the SHREC’10 dataset, with the Cosine Distance metric having the
best overall performance.

distance/(dis)similarity metrics with certain shape descriptors. It is however, in-
teresting to see that the performances of the Euclidean Distance, KLD, and SED
metrics are exactly the same with the NN statistics. Tweaking the r and vs pa-
rameters is likely to have much influence on these statistics as we would show in
results in Table 5.14. Note that the parameter settings which yield these results are
respectively presented in Table 5.13 The PRC plot in Figure 5.20 also confirms the
results presented in Table 5.12.

Experiment 3: Performance Analysis of Additional Results With Differ-
ent Parameter Settings/Different Experimental Runs of The HAPPS-1
Method for SHREC’10 Dataset

Considering that the overall outcome of every algorithm/method, including the
methods we implemented for our 3D shape retrieval tasks, are affected by their
parameter settings (i.e. by choice of parameters value), and recognising in our work
that certain parameters (mentioned in Section 5.3.1 and Section 5.3.2, for example)
have the potential to influence the outcome of the APPFD and HAPPS retrieval
algorithms, we carried out several experiments with different parameter settings for
each experimental run, for every shape retrieval challenge and/or dataset. The goal
here is to find appropriate parameter settings that would return the best overall
performance results for a given dataset and retrieval method. In Table 5.13, we
present several other experimental runs (different from the one discussed in Sec-
tion 5.3.3), each with different parameter settings for the SHREC’10 dataset, using
our HAPPS-1 retrieval method. For each experimental run with its unique param-
eter settings, five different distance/(dis)similarity metrics (see Section 2.2.3) were
used for matching the shape descriptors of two 3D objects in the SHREC’10 dataset.
However, only the metric that gave best overall results for that experimental run is
indicated in the “Dist.Metric”7// column. In addition, Table 5.14 shows the quan-
titative retrieval results of five evaluation metrics/statistics (NN, FT, ST, E, and
DCG) for the respective experimental runs outlined in Table 5.13, according to the
respective distance metrics indicated, which is a similar approach to that explained
in Section 5.3.3. Following these results, the PRC plots in Figure 5.21 is used to
further examine how they compare with one another.

Ekpo Otu Chapter 5 153



3D Shape Description, Indexing, Matching and Retrieval

Figure 5.20: PRC plots of the HAPPS-1 experimental run-3a‘, showing the retrieval
results of five different distance metrics with the same parameter settings as in
Table 5.11, tested on the SHREC’10 dataset. Cosine Distance metric (red) shows
the best performance while EMD metric (orange) shows the worst performance.

Essentially, for this performance/experimental analysis, our intention is to ex-
plore how the size of the LSP (controlled by the r parameter) during local APPFD
computation or the size of key points, (controlled by the voxel-grid down-sampling
parameter, vs), including the number of bins (for both the multi-dimensional APPF
histogram and the 1-dimensional HoGD histogram) would affect the overall per-
formance of our final HAPPS retrieval method. Among the five different dis-
tance/(dis)similarity metrics used to match our HAPPS descriptors, including the
HAPPS-1 method, we see from this analysis that the Cosine and KLD distance
metrics are the most suitable metrics for this retrieval method. In Table 5.13 and
its corresponding PRC plots in Figure 5.21, we show that these two metrics closely
compete with each other as the best metric for the different experimental runs that
we have presented. As explained in Section 4.2.3, increasing the r and vs parame-
ters increases the LSP size and reduces the number/size of key points, respectively,
for the local APPFD computation, and vice-versa. We first examined the effects of
tweaking/tuning the r parameter while leaving the other parameters (vs, b(AFFD),
b(HoGD) and Dist.Metric) unchanged as shown in Table 5.13, Experiment 3: run-3b,
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Dataset: SHREC’10 [140] Parameter Settings

Experiment 3 Algorithms N r vs b(APPFD) b(HoGD) Dist.Metric

run-3a HAPPS-1 4500 0.50 0.20 8 120 Cosine
run-3b HAPPS-1 4500 0.40 0.20 8 120 Cosine
run-3c HAPPS-1 4500 0.40 0.20 7 120 Cosine
run-3d HAPPS-1 4500 0.30 0.30 8 120 KLD
run-3e HAPPS-1 4500 0.30 0.20 8 120 KLD
run-3f HAPPS-1 4500 0.20 0.10 8 187 KLD
run-3f HAPPS-1 4500 0.20 0.10 8 187 Cosine
run-3g HAPPS-1 4500 0.20 0.10 8 65 Cosine

Table 5.13: Parameter settings for several different experimental runs with the
HAPPS-1 retrieval method on the SHREC’10 dataset for retrieval of non-rigid 3D
objects challenge. The parameters: N, r, vs, b(APPFD), b(HoGD) are explained in
Section 5.3. For each experimental run with the parameter settings shown, five dif-
ferent distance/(dis)similarity metrics are used for descriptors matching, but here,
only the metric that gave best overall result for that experimental run is indicated
in the “Dist.Metric” column.

where we reduce r by 0.10 (i.e. from r = 0.50 to r = 0.40). Table 5.13 and its
corresponding PRC plots in Figure 5.21 show a performance drop.

Secondly, we understand that the higher the b(APPFD) parameter, the larger the
size of the local APPFD signature/feature-vector as explained in Section 4.2.1, there-
fore, in experimental run-3b, we decided to reduce this parameter from 8 to 7 as in
experimental run-3c (which drastically reduced the final HAPPS-1 fv from 262,264-
dimension to 117,769-dimension), and got interesting results where the performance
(run-3c) was close to that of run-3b as shown in Table 5.14 and its correspond-
ing PRC plots in Figure 5.21. In terms of overall performance rating, we would
up-vote the parameter settings for experimental run-3c instead of that for run-3b
regarding the characteristics for an appropriate (i.e. a good) shape descriptor (see
Section 2.3.1).

Thirdly, in experimental run-3d and run-3e, we decided to exclusively investigate
the effect of only the vs parameter on the overall HAPPS-1 retrieval method, by
changing it from vs = 0.30 to vs = 0.20, which increases the number/side of key
points for each 3D object (as previously explained) and leaving all other parameters
(r, b(AFFD), b(HoGD) and Dist.Metric) unchanged. Note that by this experiment:
run-3e, the LSP size is already kept reduced (i.e. having poorer performance), by
reducing the r parameter from r = 0.50 to r = 0.30. Again, it is interesting to
witness a slight performance gain for experimental run-3e from run-3d.

We observe here (Table 5.14 and Figure 5.21) that experimental run-3b and
run-3c have close performance rating, while experimental run-3d and run-3e also
have close rating, irrespective of the different parameter tuning. However, looking
carefully at the analyses for all these four experimental runs: run-3b to run-3f, we
can agree that increasing LSP size and number of key points would positively im-
pact the final performance of the HAPPS method, including that better retrieval
performances can still be achieved by reducing the b(APPFD) parameter from 8 to
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Experiment4 Dist.Metric Algorithms NN FT ST E DCG

run-3a Cosine HAPPS-1 1.0000 0.8063 0.8837 0.6463 0.9454

run-3b Cosine HAPPS-1 0.9950 0.7808 0.8734 0.6388 0.9381

run-3c Cosine HAPPS-1 0.9750 0.7750 0.8716 0.6339 0.9359

run-3d KLD HAPPS-1 0.9700 0.7221 0.8405 0.6104 0.9128

run-3e KLD HAPPS-1 0.9700 0.7358 0.8466 0.6155 0.9182

run-3f KLD HAPPS-1 0.9600 0.6745 0.8213 0.5865 0.8995

run-3f Cosine HAPPS-1 0.9400 0.6303 0.7808 0.5531 0.8755

run-3g Cosine HAPPS-1 0.9400 0.6303 0.7808 0.5531 0.8755

Table 5.14: Quantitative results of five evaluation statistics revealing the retrieval
performances of our HAPPS-1 retrieval method with several (8) different experimen-
tal runs (run-3a to run-3g), each with different parameter settings. We indicate only
results of the distance metric with overall best results for each parameter settings
as in Table 5.13. These experiments are for the SHREC’10 dataset. Note that for
run-3f, we show two results, each with different distance metric.

7 resulting in a more compact shape descriptor. Nevertheless, computational effi-
ciency is a critical issue that must be considered when selecting these parameters,
and setting the b(APPFD) parameter lower than 7 bins would produce poor results
as we would see in Experiment 7, Section 5.4.1. Table 5.27 and Table 5.28 confirms.

Finally, the results of experimental run-3f and run-3g reveal something remark-
ably interesting about the influence of the b(HoGD) bin parameter and choice of
distance metric used to match the final HAPPS-1 descriptor. Here, keeping other
parameters (r, vs, b(AFFD), and Dist.Metric) the same, we decided to increase and
decrease the b(HoGD) parameter from 120 to 187 and 65 bins, respectively, to exam-
ine its influence/contribution to our final HAPPS-1 retrieval method. We see from
Table 5.14 and Figure 5.21 that the results of both experimental run-3f and run-3g
remain exactly unaffected by the b(HoGD) parameter tuning using the Cosine distance
metric for matching. But with the KLD distance metric, a noticeable improvement
is recorded for the higher number of b(HoGD) bin of 187 (see Yellow PRC curve for
experimental run-3f/KLD). This further confirms that, depending on the parameter
settings, both the Cosine and KLD distance metrics would most definitely be suit-
able for the HAPPS-1 retrieval method. Overall, experimental run-3f and run-3g
produced poorer retrieval performances, which is expected, due to the smaller LSP
size caused by reducing the r parameter from r = 0.50 to r = 0.20 and increasing
the number of key points via vs parameter decrease from vs = 0.20 to vs = 0.10.

5.3.4 Experiment 4: Evaluating The Retrieval Performances
of The HAPPS-1 Method On SHREC’11 Dataset

In this section, we present the retrieval performances of our HAPPS-1 retrieval
method on the SHREC’11 dataset. This dataset contains 600 water-tight 3D tri-
angular meshes grouped into 30 classes/categories, with each category containing
20 3D models (see Section 5.2.3). In order to evaluate how best our method per-
forms on this dataset, we also compare our results side-by-side with the results of
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Figure 5.21: PRC plots of the HAPPS-1 on the SHREC’10 dataset, showing the
retrieval results of eight different experimental runs, each with a different parameter
settings as in Table 5.13. For each plot, the distance metric and parameter values
involved are shown. Note that for run-3f, we show two plots, each with different
distance metric.

25 other state-of-the-art retrieval methods, from nine participants, who competed
for the SHREC’11 - Shape Retrieval Contest of Non-rigid 3D Watertight Meshes
challenge. The other nine retrieval methods and their respective experimental runs,
making a total of 25 runs are listed as follows: (i) Features on Geodesics (FoG,
FOG+MR, and FOG+MRR), (ii) Bag of Words with Local Spectral Descriptors (T-
NoNorm-40Coef, T-r01-40Coef, T-r01-50Coef, T-r015-40Coef and T-r015-50Coef),
(iii) Visual Similarity based Non-rigid 3D Shape Retrieval Using MDS (MDS-CM-
BOF), (iv) Bag of Geodesic Histograms (BOGH), (v) Localized Statistical Features
(LSF and MLSF), (vi) ShapeDNA: Laplace Spectra for Non-Rigid Shape Analysis
(ShapeDNA: OrigM-n10-norm1, OrigM-n12-norm1, OrigM-n12-normA, OrigM-n15-
norm1 and ReM-n12-norm1), (vii) Harris 3D Geodesic Map and HKS based Point-
to-point Matching (Harris3DGeoMap16, Harris3DGeoMap32 and HKS), (viii) Fu-
sion of SD-GDM and meshSIFT (MeshSIFT, SD-GDM and SD-GDM-meshSIFT),
(ix) Bag-of Densely-Sampled Local Visual Features (PatchBOF 100 and Patch-
BOF 150). More details regarding these methods are found in [139]. First, using
our shape retrieval method, HAPPS-1, we evaluate the (dis)similarity between every
two objects in this dataset and output the (dis)similarity matrix as described in the
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last paragraph of Section 5.1. Then for evaluation method, we employ the following
six standard evaluation measures: NN, FT, ST, E, DCG, and PRC plots (described
in Section 4.3.3), in line with the evaluation in [139].

(a) PRC Plot: HAPPS-1, Run-4a, Cosine (b) PRC Plots: SHREC’11 Paper [139]

Figure 5.22: PRC plots of the retrieval results presented in Table 5.15 for the
SHREC’11 retrieval challenge/dataset. Figure 5.22a: (Left) is the PRC plot of
our HAPPS-1, run-4a, Cosine method, Figure 5.22b: (Right) is the PRC plots of
nine of the best experimental runs of each retrieval of the retrieval methods in [139],
evaluated for the whole database, while Figure 5.23 presents the PRC plots of all 10
different methods/experimental runs, which is a combination of HAPPS-1 method
and those from [139]. Note, we superimpose Figure 5.22a on Figure 5.22b to have
Figure 5.23.

The literature for the SHREC’11 retrieval challenge [139] compares the results
of 25 experimental runs submitted by a total of nine groups/authors, where each
group submitted at least one retrieval method, with some having different parameter
settings, thus, different experimental runs. Given 25 (dis)similarity matrices, one
for each experimental run, the work in [139] carried out evaluations for the submit-
ted retrieval methods not only on the average performance of the whole database,
but also on the result corresponding to each specific class. However, a total of nine
unique state-of-the-art retrieval methods (3D shape descriptors) were involved for
the SHREC’11 retrieval challenge. Each retrieval method had more than 1 experi-
mental run, and for each method, the experimental run having the highest perfor-
mance results (i.e. retrieval accuracies) in all five quantitative statistics (NN, FT,
ST, E, and DCG) are provided, including their respective PRC plots. Similarly, we
are interested in comparing and analysing the retrieval accuracies of our HAPPS-1
method with only the best performing experimental run for each of the nine retrieval
methods submitted for the SHREC’11 retrieval challenge, and not on the entire 25
experimental runs. In addition, our evaluations are carried out only on the average
performance of the whole SHREC’11 dataset, and not on the results corresponding
to each specific class/category, unlike the evaluation steps followed by [139]. For
further analysis of all the 25 runs and specific class evaluation, we refer the reader
to [139].
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Figure 5.23: PRC Plots: of all 10 different methods/experimental runs, which is a
combination of HAPPS-1, run-4a method and those from [139], which is a combi-
nation of Figure 5.22a with Figure 5.22b.

Authors [139] Method NN FT ST E DCG

Kawamura FOG+MRR 0.960 0.881 0.946 0.696 0.959

Lavoue T-NoNorm-40Coef 0.955 0.672 0.803 0.579 0.897

Lian MDS-CM-BOF 0.995 0.913 0.969 0.717 0.982

Nguyen BOGH 0.993 0.811 0.884 0.647 0.949

Ohkita MLSF 0.987 0.809 0.879 0.643 0.948

Reuter OrigM-n12-normA 0.992 0.915 0.957 0.705 0.978

Sipiran HKS 0.837 0.406 0.497 0.353 0.730

Smeets SD-GDM-meshSIFT 1.000 0.972 0.990 0.736 0.996

Tabia PatchBOF 150 0.748 0.642 0.833 0.588 0.837

This Thesis HAPPS-1 run-4a 0.993 0.720 0.801 0.582 0.920

Table 5.15: Quantitative evaluation measures of best nine of twenty-five state-of-
the-art retrieval methods, including our proposed HAPPS-1 retrieval method using
five standard performance measures on the whole of SHREC’11 benchmark dataset.
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Experiment 4: Parameter Settings and Configurations

Table 5.16 presents the parameter settings of the best overall experimental run (run-
4a) using the HAPPS-1 retrieval method, regarding the experimental evaluation of
the SHREC’11 dataset. These parameter settings are responsive for the HAPPS-
1,run-4a quantitative results in Table 5.15. Our experimental approach here is very
similar to the approach and parameter settings used with the SHREC’10 dataset
(see Section 5.3.3). For all the experimental runs in this performance evaluation,
a total of 4500 random points are sampled from each 3D surface to compute our
HAPPS-1 descriptor.

Dataset: SHREC’11 [139] Parameter Settings

Experiment 4 Algorithms N r vs b(APPFD) b(HoGD) Dist.Metric

run-4a HAPPS-1 4500 0.20 0.10 8 65 Cosine

Table 5.16: Parameter settings for an experimental run with the HAPPS-1 retrieval
method on the SHREC’11 dataset. The parameters: N , r, vs, b(APPFD), and b(HoGD)

are explained in Section 5.3.

Experiment 4: Results and Discussion

Table 5.15 lists the retrieval accuracies of 10 shape retrieval methods for 3D ob-
jects: our HAPPS-1 method and nine other methods (i.e. overall best performing
method/experimental run from each of the nine groups submitted for the SHREC’11
retrieval challenge) evaluated on the whole SHREC’11 dataset. We also present a
corresponding PRC plots in Figure 5.23 for the results presented in Table 5.15. The
quantitative results show the SD-GDM-meshSIFT method by Smeets to have the
highest overall retrieval accuracy in all five quantitative performance measures. The
second-best performing method is the MDS-CM-BOF method by Lian, although the
OrigM-n12-normA method by Reuter performed slightly better than MDS-CM-BOF
in terms of the FT measure. Interesting to see that closely following the best overall
performing method (SD-GDM-meshSIFT) of 100%, only four other methods: our
HAPPS-1, OrigM-n12-normA, BOGH and MDS-CM-BOF methods recorded over
99% score for the NN quantitative measure. In addition, seven (out of ten) meth-
ods, including our HAPPS-1 method shows performance score of over 90% for the
E-measure, which is another important metric for performance evaluation.

Generally, for this 3D shape retrieval task and the retrieval methods presented
in Table 5.15, we can clearly see from the PRC plots in Figure 5.23 that (i) these
three methods (SD-GDM-meshSIFT, MDS-CM-BOF, and OrigM-n12-normA) per-
formed exceptionally well, considering their respective AUC, (ii) these four methods
(HAPPS-1, BOGH, LSF, and FOG+MRR) compete in the middle-class performance
ranking, while (iii) these three methods (T-NoNorm-40Coef, PatchBOF 150, and
HKS) struggles in the lower-class ranking, with the HKS method by Sipiran hav-
ing the worst overall performance or retrieval accuracies. Although, the HAPPS-1
methods completely outperforms the PatchBOF 150 method by Tabia, HKS method
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by Sipiran, and T-NoNorm-40Coef method by Lovoue, in most quantitative perfor-
mance measures such as the NN, FT, and DCG, we are interested to know why
this is the case with the PatchBOF 150 for example, which uses the BoW technique
found to be very efficient for local feature combinations. According to [139], the
PatchBOF 150 uses local geodesic distance as its feature, which might either not be
robust enough to capture the properties of non-rigid 3D objects or not suitable for
the BoW algorithm. Another factor might be the choice of vocabulary size for train-
ing the BoW vocabulary, while not disregarding the L2 distance metric they used
for their matching, which might not be suitable for this descriptor. Secondly, the
HKS approach by Sipiran performed poorly and we find that this method was used
for key points detection, which might not be as effective compared to the approach
we adopted instead (see Section 3.3.5). In addition, they returned descriptors hav-
ing 100-dimension, which might not be able to adequately capture local features for
each 3D object.

Interestingly, the SD-GDM-meshSIFT extracted salient local features and match
them directly to compare 3D objects and is insensitive against various isometric
transformations mainly due to the use of 3D Canonical Forms. From these results,
it is obvious that the combination of several different kinds of retrieval methods,
such as the SD-GDM-meshSIFT and our HAPPS-1, can result in better retrieval
accuracies. We are also interested in knowing why the fusion of SD-GDM and mesh-
SIFT performed so well, therefore we observe that this approach combines a global
feature method (SD-GDM) with a local features method (meshSIFT) for non-rigid
3D shape retrieval. The SD-GDM approach presents shape descriptors that are rep-
resented by a geodesic distance matrix (GDM), which is isometric deformation in-
variant matrix, having the normalised geodesic distance between each pair of about
2500 sampled points on the surface of each 3D object in the dataset. The extra
computational step: spectral decomposition (SD) of the GDM provides a sampling
order invariant global feature (shape descriptor, SD-GDM), which makes the GDM
more robust. On a final note, the SIFT descriptor is generally known to be very
robust for 2D/3D shapes and the combination of SD-GDM with meshSIFT provide
an even more robust hybrid 3D shape descriptor: SD-GDM-meshSIFT, which is
likened to averaging the retrieval results over two separate descriptors, since their
respective DM were fused together in this approach. However, 15 (out of 25) of
the methods/experimental runs mentioned in Section 5.3.4 for the SHREC’11 re-
trieval challenge adopts the BoW approach to quantize a 3D object’s local features
into a word histogram. This is because of the efficacy of this approach for local
feature aggregation and confirmed from analysis of previous retrieval methods (see
Section 5.3.3).

Experiment 4: Performance Analysis of Additional Results With Differ-
ent Parameter Settings/Different Experimental Runs of The HAPPS-1
Method for SHREC’11 Dataset

In addition to experimental run-4a (overall best HAPPS-1 experimental run for the
SHREC’11 dataset) with its given parameter settings, where we compare its quan-
titative results with the results of several other state-of-the-art methods for this re-
trieval challenge (see Section 5.3.4), we also perform several other experiments with
the HAPPS-1 method, with each experimental run having different parameter set-
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tings, as outlined in Table 5.17. Similar to every other retrieval experiment presented
in this thesis, we first compute the (dis)similarity of pairs of 3D descriptors repre-
senting objects in the SHREC’11 dataset using five different distance/(dis)similarity
metrics, as previously mentioned. Unlike the performance analysis of the retrieval
results for Experiment 3 (see Section 5.3.3), where we presented the results of the
distance metric with the best quantitative scores for each experimental run, in this
section, and for the SHREC’11 retrieval task, we instead analyse how the different
parameter settings affects the retrieval accuracies/performance of the HAPPS-1 re-
trieval method on the SHREC’11 dataset, using a single distance metric: the Cosine
metric. This is because we are interested to see how different parameter settings
affect the final HAPPS-1 retrieval method under a fixed circumstance. Interest-
ingly, we found that for each of these different experimental runs with the HAPPS-1
method, the retrieval results obtained using the Cosine distance metric for descrip-
tors matching outperforms all the other results obtained with other distance metrics.

Dataset: SHREC’11 [139] Parameter Settings

Experiment 4 Algorithms N r vs b(APPFD) b(HoGD) Dist.Metric

run-4a HAPPS-1 4500 0.20 0.10 8 65 Cosine
run-4b HAPPS-1 4500 0.20 0.10 7 65 Cosine
run-4c HAPPS-1 4500 0.25 0.10 7 65 Cosine
run-4d HAPPS-1 4500 0.25 0.15 7 65 Cosine
run-4e HAPPS-1 4500 0.16 0.10 7 65 Cosine
run-4f HAPPS-1 4500 0.18 0.10 7 65 Cosine
run-4g HAPPS-1 4500 0.27 0.17 7 65 Cosine

Table 5.17: Parameter settings for several different experimental runs with
the HAPPS-1 retrieval method on the SHREC’11 dataset. The parameters:
N, r, vs, b(APPFD), b(HoGD) are explained in Section 5.3. For all experimental
runs with the different parameter settings shown, only results with the Cosine dis-
tance/(dis)similarity metric are provided, instead.

For each of the experimental run/parameter settings listed in Table 5.17, we
present its respective quantitative retrieval performances/results in Table 5.18, and
plot these outcome in the PRC shown in Figure 5.24. From these results, es-
pecially, looking at the PRC plots, we can see that experimental run-4a takes
the lead, followed very closely by run-4e, where 76(+65) = 117, 714 instead of
86(+65) = 262, 209-dimensional final fv was used. Although it is difficult to analyse
individual differences of retrieval accuracies resulting from the different parameter
settings, using the PRC plots, the general observation/conclusion in this is that the
range of parameter values chosen for N = 4, 500 point samples from the surface
of every 3D object in the SHREC-11 dataset were in order. Interestingly, through
these experimental runs, we discover that it is possible to capture local properties of
the 3D surface and obtain higher retrieval accuracies with considerably low dimen-
sional fv, by using b(APPFD) = 7 instead of b(APPFD) = 8 (compare run-4f to run4a,
in Figure 5.24). Finally, we see in this analysis that slightly altering the r and vs
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parameters did not have much impacts on the overall performance accuracies of our
HAPPS-1 retrieval method on the SHREC’11 dataset. Unfortunately, due to time
and in trying to avoid repetition, we did not analyse the effect of b(HoGD) parame-
ter for these experiments. However, we refer the reader to Section 5.3.3 for analysis
on the effects of the b(HoGD) and HoGD algorithm on the HAPPS-1 retrieval method.

Experiment4 Dist.Metric Algorithms NN FT ST E DCG

run-4a Cosine HAPPS-1 0.9933 0.7204 0.8005 0.5820 0.9201

run-4b Cosine HAPPS-1 0.9917 0.7145 0.7978 0.5822 0.9183

run-4c Cosine HAPPS-1 0.9917 0.7004 0.7791 0.5687 0.9114

run-4d Cosine HAPPS-1 0.9933 0.7010 0.7797 0.5686 0.9113

run-4e Cosine HAPPS-1 0.9950 0.6984 0.7942 0.5772 0.9158

run-4f Cosine HAPPS-1 0.9917 0.7098 0.7981 0.5818 0.9186

run-4g Cosine HAPPS-1 0.9850 0.6953 0.7749 0.5649 0.9080

Table 5.18: Quantitative results of five evaluation statistics revealing the retrieval
performances of our HAPPS-1 retrieval method on the SHREC’11 dataset, with
several (7) different experimental runs (run-4a to run-4g), where each has a different
parameter setting. For each of these parameter settings/experimental runs, we find
that results of matching descriptors with the Cosine distance metric returned the
highest accuracies.

5.3.5 Experiment 5: Evaluating The Retrieval Performances
of The HAPPS-1 Method On SHREC’19 Protein Dataset

Motivated by the success of the HAPPS-1 retrieval method on the SHREC’18 Pro-
tein shape retrieval dataset, which produced the best overall retrieval accuracies,
outperforming several other state-of-the-art methods for the SHREC’18 Protein
shape retrieval challenge [175], we decided to also evaluate the retrieval performances
of the HAPPS-1 retrieval method on a similar dataset with different configuration
and classification arrangements: the SHREC’19 Protein dataset. As indicated in
Section 5.2.8, two levels of classification: Protein and Species are adopted for the
SHREC’19 Protein dataset (see Table 5.2). The 3D shapes from ortholog proteins,
i.e. Protein level, are expected to have a high level of similarity in their overall shape
because they share similar activities and functions in organisms that co-evolved from
the same ancestor. The implication is that the discrimination between shapes at
the Species level is expected to be more difficult compared to those at the Protein
level. In this section, the results of different experimental runs for our HAPPS-1
retrieval method (for both Proteins and Species classification levels) are presented
and compared, side-by-side, with the results of several other state of the art retrieval
methods which competed for the SHREC’19 Protein shape retrieval challenge.

Experiment 5: Parameter Settings and Configurations

Similar to the results presented in previous sections, Table 5.19 indicates the pa-
rameter settings containing different values for different experimental runs of the
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Figure 5.24: PRC plots of the HAPPS-1 on the SHREC’11 dataset, showing the
retrieval results in Table 5.18, of seven different experimental runs, each with a
different parameter settings listed in Table 5.17. For each plot, the distance metric
and parameter values involved are shown.

HAPPS-1 retrieval method on the SHREC’19 protein dataset. However, unlike
with the other benchmark datasets, including the SHREC’18 protein dataset where
we sampled 4,500 points for our shape retrieval algorithm, for each 3D object in the
SHREC’19 protein dataset (with approximately 54,000 to 270,000 points/vertices),
we only sampled 3,500 points instead, in order to effectively deal with storage com-
plexity and we still record high performance accuracies. Essentially, the larger the
number of points sample, multiplied by the total number of 3D objects (5,298 in
this case), the larger the storage requirement and the more computational resources
used up, and vice-versa. Therefore, one of the objectives for us in this task was to
test the accuracy of our retrieval method while maintaining high level of efficiency,
in consideration of the characteristics discussed in Section 2.3.1.

In line with the dual classifications of the SHREC’19 dataset, for experimental
runs (i.e. run-5a and run-5b) with the parameter settings shown in Table 5.19, two
sets of evaluation results are shown: (i) results of evaluation using the Protein clas-
sification level, and (ii) results of evaluation using the Species classification level.
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Dataset: SHREC’19 [123] Parameter Settings

Experiment 5 Algorithms N r vs b(APPFD) b(HoGD) Dist.Metric

run-5a HAPPS-1 3500 0.50 0.20 7 65 –
run-5b HAPPS-1 3500 0.50 0.30 6x15 65 –

Table 5.19: Parameter settings for the first experimental run with the HAPPS-1
retrieval method on the SHREC’19 dataset. The parameters: N , r, vs, b(APPFD),
and b(HoGD) are explained in Section 5.3.

First, we present the retrieval accuracies (results) of our HAPPS-1 method on this
dataset, showing the effect of four different distance metrics (Cosine, Euclidean,
EMD, and SED), using the parameter settings in experimental run-5a and only for
the Protein level classification. These quantitative performance results are presented
in Table 5.20 and their corresponding PRC plots are shown in Figure 5.25. This
test was done to enable us ascertain which distance metric is most suitable for the
different parameter settings we adopted for this experiment.

Experiment5 Dist.Metric Algorithms NN FT ST E DCG

run-5a Cosine HAPPS-1 0.9853 0.5545 0.6976 0.1287 0.9075

run-5a Euclidean HAPPS-1 0.9851 0.5453 0.6906 0.1272 0.9045

run-5a EMD HAPPS-1 0.6321 0.3968 0.5808 0.0703 0.8259

run-5a SED HAPPS-1 0.7282 0.5209 0.6602 0.1054 0.8780

Table 5.20: Quantitative results of five standard evaluation metrics revealing the
retrieval performances of our HAPPS-1 retrieval method on the SHREC’19 protein
dataset, with experimental run-5a. Here, performance accuracies are presented for
four different distance metrics, using the same parameter settings. Note, these
results are obtained using the Protein classification level.

Secondly, for the two parameter settings in Table 5.19, we used the Species
classification level to compare their results using the two experimental runs (run-5a
to run-5b), in order to further investigate how the different parameter settings affects
the overall retrieval accuracies of the HAPPS-1 retrieval method. We show these
results in Table 5.21 and their corresponding PRC plots in Figure 5.27. Finally, we
adopt the best overall results for each of the two classification levels and compare
with the results of several other state-of-the-art retrieval methods who competed for
the SHREC’19 protein shape retrieval challenge. This is to enable us ascertain the
global impact of our retrieval method in an unbiased way. In Table 5.22, the best
overall retrieval results of our HAPPS-1 method is compared with those in [123],
considering the Protein classification level. Similarly, in Table 5.23, the best overall
retrieval results of our HAPPS-1 method is compared with those in [123], considering
the Species classification level.

Experiment 5: Results and Discussion

First, looking at the performance accuracies of the HAPPS-1 method using four
different distance metrics (Cosine, Euclidean, EMD, and SED) on the SHREC’19
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dataset, as presented in Table 5.20 and their corresponding PRC plots in Figure 5.25,
we can tell that both the Cosine and Euclidean metrics returned very close results
with the Cosine metric quantitatively taking the lead, and followed by the SED,
while the EMD, again performed poorly. Secondly, comparing the quantitative
performance results of two different experimental runs: run-5a and run-5b, each
employing different parameter settings, as presented in Table 5.21 using the Species
classification level, we can still see that the Cosine metric produces the best overall
results for this particular evaluation. Notice how we used a 1-dimensional histogram
for the APPFD method with 15 bins in each feature-dimension, resulting to a con-
catenation of 6x15 = 90 and finally joining this with the 65 bins of the HoGD
descriptor to have a final hybrid HAPPS-1 signature of 155-dimensional fv. With
this variant of the HAPPS-1 method, with extremely low-dimensional fv, we could
still record impressive retrieval accuracies. This reveals some more interesting as-
pect of the APPFD algorithm. Further work is required to further investigate more
efficient ways of representing the APPFD.

Figure 5.25: PRC plots of the HAPPS-1 on the SHREC’19 protein dataset, depicting
the retrieval results of Table 5.20 for a single experimental run: run-5a, with four
different distance metrics. Note, the results obtained for these plots were obtained
using the Protein classification level.

166 Chapter 5 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

Figure 5.26: Screen-shot showing memory error during serialization of all computed
shape descriptor (HAPPS-1) for SHREC’19 protein dataset with a very large number
of 3D objects: 5,298.

Experiment5 Dist.Metric Algorithms NN FT ST E DCG

run-5a Cosine HAPPS-1 0.9405 0.5071 0.6454 0.2241 0.8561

run-5b Cosine HAPPS-1 0.9268 0.4783 0.6482 0.1073 0.8761

Table 5.21: Quantitative results of five standard evaluation metrics revealing the
retrieval performances of our HAPPS-1 retrieval method on the SHREC’19 protein
dataset, with two experimental runs: run-5a and run-5b. Both results are from
the Cosine distance metric, being the highest performing metric for the respective
parameter settings. Note, these results are obtained using the Species classification
level.

Experiment 5: Comparing Best Results of The HAPPS-1 Method With
Other State-Of-The-Art Methods for SHREC’19 Protein Dataset Using
Protein and Species Levels

In Table 5.22, we present the best overall result of our experimental evaluation (run-
5a in Table 5.20) with the results of only the best experimental runs from each of
the state-of-the-art retrieval methods in [123], using the Protein classification level.
This comparison shows the 3DZD3 method having the best overall performances in
all five quantitative performance metrics, followed closely by the HAPT2 and the
HAPPS-1 methods, outperforming two other state-of-the-art methods: GASD and
ConvLDSNet2. Alternatively, in Table 5.23 we provide similar results comparisons
of the HAPPS-1 retrieval method with four other state-of-the-art methods, using the
Species classification level, instead. Basically, in this thesis, we are only concerned
about how our method compares with other well-established retrieval method on
this dataset/retrieval challenge. For further in-depth analysis of the results of the
other state-of-the-art methods for the SHREC’19 retrieval challenge, we refer the
reader to [123]. In these comparisons, we can see that for both the Protein and
Species classification levels, the HAPPS-1 retrieval method continues to rank very
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Figure 5.27: The PRC plots of the HAPPS-1 method for the quantitative results
in Table 5.21 and experimental run-5a and run-5b, using the SHREC’19 protein
dataset. Here, we see that the parameter settings for experimental run-5a returns
better retrieval accuracies than the other: run-5b.

high and very close to the highest performing methods, while also outperforming
some other state-of-the-art methods.

In conclusion, an important observation in this experimental evaluation is that
the value of the b(APPFD) = 7 bin parameter chosen in order to efficiently compute
the HAPPS-1 fv for the SHREC’19 dataset, which is exceptionally large: 5,298 3D
objects. For a non-GPU computation, using b(APPFD) = 8 + b(HoGD) = 65 would
produce a 86 = 262, 144 + 65 = 262, 209-dimensional fv. During implementation,
memory issues were experienced while trying to serialise this extremely high dimen-
sional descriptor for a total of 5,298 3D objects (see Figure 5.26). As previously
explained, 7 bins yielded a final HAPPS-1 descriptor of 117,649-dimensional fv,
which was possible to serialize and evaluate. In addition, considering the exception-
ally large number of 3D objects in this dataset and in order to avoid memory issues,
we rather sampled only 3,500 points from each 3D surface, instead of 4,500 which
(from earlier experimental evaluations) has been found to yield optimal results.

Although the final retrieval accuracies with these configurations (see Table 5.19)
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Author Method NN FT ST E DCG

Xusi Han [123] 3DZD2 0.995 0.662 0.794 0.131 0.935

Stelios M. [123] ConvLDSNet2 0.806 0.267 0.354 0.248 0.710

Halim B. [123] GASD 0.982 0.365 0.500 0.113 0.845

Andrea
Gichetti [123]

HAPT2 0.993 0.631 0.741 0.126 0.920

This Thesis HAPPS-1 run-5a 0.985 0.555 0.698 0.129 0.908

Table 5.22: Performance comparison of our HAPPS-1 method results with the results
of four other state-of-the-art retrieval methods [123] submitted for the SHREC’19
protein shape retrieval challenge. All results are macro-average values computed
over each Proteins classification level.

Author Method NN FT ST E DCG

Xusi Han [123] 3DZD2 0.965 0.581 0.694 0.250 0.884

Stelios M. [123] ConvLDSNet2 0.604 0.308 0.427 0.335 0.646

Halim B. [123] GASD 0.945 0.377 0.461 0.213 0.800

Andrea
Gichetti [123]

HAPT2 0.954 0.556 0.695 0.241 0.877

This Thesis HAPPS-1 run-5a 0.940 0.507 0.645 0.224 0.856

Table 5.23: Performance comparison of our HAPPS-1 method results with the results
of four other state-of-the-art retrieval methods [123] submitted for the SHREC’19
protein shape retrieval challenge. All results are macro-average values computed
over each Species classification level.

competes very closely with several other state-of-the-art retrieval methods for this
dataset and retrieval challenge (see Table 5.22 for Protein level classification and
Table 5.23 for Species level classification), we conclude that given a larger number
of points sample and increasing the value of the b(APPFD) bin parameter from 7 to 8,
in addition to fine-tuning other related parameters, our HAPPS-1 retrieval method
is capable returning best overall retrieval accuracies that outperforms even all other
state-of-the-art methods for this particular retrieval challenge. While this is subject
to further investigation, our assumptions can be confirmed in the recent work with
the HAPPS-1 method on the SHREC’20 protein dataset, published in [122] and
discussed in Section 5.3.6.

5.3.6 Experiment 6: Evaluating The Retrieval Performances
of The HAPPS-1 And HAPPS-2 Methods On SHREC
2020 Protein Dataset

In this section, we would examine the retrieval accuracies of both the HAPPS-1
and HAPPS-2 retrieval methods and compare them side-by-side with several other
retrieval methods on the SHREC’20 protein dataset and retrieval challenge. For
this retrieval challenge [122], a total of six groups (including us) from five different
countries participated for the track and submitted, for performance evaluation, a
total of fifteen sets of (dis)similarity matrices (including three from the HAPPS
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Figure 5.28: The PRC plots for the quantitative results in Table 5.24, regarding
the Protein classification label, independently showing the plots of all six different
retrieval methods with a total of 15 experimental runs, including three runs from
HAPPS. Plots source: [122].

retrieval method), each of which represents the pairwise matching results between
each shape taken as a query shape, in turn, and matched with other shapes in the
dataset. We submitted results of two experimental runs using the HAPPS-1 (see
Section 4.2.3) with different parameter settings in each run, and one run using the
HAPPS-2 (see Section 4.2.3) methods. In this section, the quantitative performance
of our HAPPS methods (described in Section 4.2.3) including each of the other five
methods described in [122] are presented and assessed. The performance at the
Protein (Figure 5.28 and Table 5.24) and the Species (Figure 5.29 and Table 5.26)
classification levels as described in Section 5.2.9 and Table 5.3 are analysed.

Experiment 6: Parameter Settings and Configurations

The parameter settings for the three experimental runs we submitted for the SHREC’20
protein retrieval challenge are listed in Table 5.25. As we can see, the distance met-
ric (Cosine) and the b(APPFD) parameter are kept constant for all three experimental
runs. We decided to test the outcome of varying the number of points sample, N ,
including the r and vs parameters in experimental run-6b and run-6c. In the third
experimental run, we further tried to probe the effect of using an alternative global
descriptor (the M2DP), which is robust and successful in earlier computer vision ap-
plication (i.e. loop closure detection), other than the one we proposed (the HoGD).
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Method [122] NN FT ST mAP

CODSEQ1 0.697 0.350 0.266 0.358
CODSEQ2 0.666 0.345 0.264 0.356

3DZD 0.978 0.753 0.428 0.797
3DZM 0.975 0.719 0.422 0.766

3DZD/3DZM average 0.980 0.789 0.436 0.823

WKS/SGWS 0.985 0.818 0.438 0.840

HAPT1 0.898 0.617 0.407 0.658
HAPT2 0.875 0.602 0.402 0.646
HAPT3 0.892 0.620 0.406 0.659

GraphCNN1 0.773 0.278 0.218 0.301
GraphCNN2 0.734 0.295 0.235 0.317
GraphCNN3 0.770 0.310 0.243 0.339

HAPPS-1 0.982 0.738 0.416 0.774
HAPPS-2 0.983 0.746 0.420 0.779
HAPPS-3 0.983 0.746 0.420 0.779

Table 5.24: Quantitative performance evaluation of the six different retrieval meth-
ods for the SHREC’20 protein retrieval, using four statistical metrics at the Protein
classification level. Each method submitted at least one experimental run: For each
metric, the highest value is in bold. Results source: [122].

Dataset: SHREC’20 [122] Parameter Settings

Experiment 6 Algorithms N r vs b(APPFD) b(HoGD) Dist.Metric

run-6a HAPPS-1 4200 0.40 0.20 7 65 Cosine
run-6b HAPPS-1 3500 0.50 0.20 7 65 Cosine
run-6c HAPPS-2 3500 0.50 0.20 7 – Cosine

Table 5.25: Parameter settings for the HAPPS method on the SHREC’20
protein retrieval dataset, where we presented three experimental runs: run-
6a (HAPPS-1), run-6b (HAPPS-1), and run-6c (HAPPS-2). The parameters:
N, r, vs, b(APPFD), b(HoGD) are explained in Section 5.3.

The goal was twofold: (i) to further investigate how much impact/contribution the
HoGD global descriptor has on the overall HAPPS retrieval method, and (ii) to
maximize the possibility of further improving the overall retrieval accuracies of the
HAPPS method with a possibly more robust global descriptor, beyond the capabil-
ities of the HAPPS-1 method with HoGD. Therefore, we adopted exactly the same
parameter settings for experimental run-6b (with HoGD global descriptor) and run-
6c (with M2DP global descriptor), for fair comparison.

For the experimental evaluations in this retrieval challenge, only four quantita-
tive performance evaluation metrics, including the PRC plots, were used, thus: NN,
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Figure 5.29: The PRC plots for the quantitative results in Table 5.26, regarding
the Species classification label, independently showing the plots of all six different
retrieval methods with a total of 15 experimental runs, including three runs from
HAPPS. Plots source: [122].

FT, ST, mAP, to evaluate the retrieval performances of all the competing retrieval
methods mentioned above. We refer the reader to Section 4.3.3 for more details re-
garding these performance metrics. Please note that both HAPPS-1 and HAPPS-2
in [122] are the same as the HAPPS-1 described in this thesis (see Section 4.2.3),
while the HAPPS-3 in [122] is the same as the HAPPS-2 described in this thesis (see
Section 4.2.3). In this thesis, the experimental runs: run-6a, run-6b, and run-6c,
respectively refers to HAPPS-1, HAPPS-2, and HAPPS-3 mentioned in Table 5.24,
Table 5.26, Figure 5.28 and Figure 5.29, where experimental runs: run-6a and run6-
b are from the same method (the HAPPS-1, described in this thesis) with different
parameter settings described in Table 5.25, while run-6c is from a different method
(the HAPPS-2 described in this thesis).

Experiment 6: Results and Discussion

The quantitative results of all the three experimental runs of our HAPPS method,
including results of five other state-of-the-art methods for the SHREC’20 protein
dataset have been presented for both the Protein and Species classification levels.
As mentioned in Section 5.2.9 and Table 5.3, two classification levels are used to
evaluate the accuracies of 3D shape retrieval methods for the SHREC’20 protein
retrieval challenge. Therefore, the quantitative retrieval performances of all six
retrieval methods (see Section 5.3.6 and [122]) at the Protein classification level,
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Method [122] NN FT ST mAP

CODSEQ1 0.438 0.173 0.125 0.180
CODSEQ2 0.447 0.172 0.124 0.179

3DZD 0.783 0.391 0.262 0.435
3DZM 0.722 0.369 0.256 0.402

3DZD/3DZM average 0.825 0.419 0.277 0.470

WKS/SGWS 0.844 0.460 0.298 0.508

HAPT1 0.595 0.286 0.209 0.313
HAPT2 0.572 0.264 0.200 0.289
HAPT3 0.608 0.286 0.209 0.313

GraphCNN1 0.513 0.177 0.117 0.178
GraphCNN2 0.533 0.175 0.120 0.186
GraphCNN3 0.499 0.181 0.122 0.186

HAPPS-1 0.757 0.407 0.272 0.432
HAPPS-2 0.772 0.400 0.269 0.430
HAPPS-3 0.768 0.400 0.269 0.430

Table 5.26: Quantitative retrieval performances measures of the six different retrieval
methods for the SHREC’20 protein retrieval, using four statistical metrics at the
Species classification level. Each method submitted at least one experimental run:
For each metric, the highest value is in bold. Results source: [122].

and their corresponding PRC plots are presented in Table 5.24 and Figure 5.28,
respectively. Similarly, the quantitative retrieval performances of these methods at
the Species classification level, and their corresponding PRC plots are presented in
Table 5.26 and Figure 5.29, respectively. From these results, on both classification
levels, we see that three methods (3DZM/D, WKS/SGWS, and HAPPS) achieved
successful NN retrieval with more than 97.5%, and more than 75.5% for the Protein
and Species classification level, respectively. Overall, out of the six methods for this
retrieval challenge our method (HAPPS) ranked top three and very closely struggles
second position with the 3DZD/3DZM method. We refer the reader to [122] for
further analyses regarding the results of this retrieval challenge.

5.4 Experimental Evaluations of The Retrieval Ac-

curacies of The APPFD Method

In this section, we provide the results of all experimental evaluations using our
APPFD retrieval method on some of the 3D datasets described in Section 5.2 and
compare its retrieval accuracies to those of other state-of-the-art retrieval methods
evaluated with the respective datasets. Most of the SHREC retrieval tracks adopt
up to seven standard IR performance metrics described in Section 4.3.3, which
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are: NN, FT, ST, E, DCG, mAP, and PRC (see Section 4.3.3). Similarly, we
compare the retrieval accuracies of the APPFD method with the accuracies of other
method for the respective datasets and retrieval challenges, using the exact metric
from the track(s). The methodology for this retrieval method has been thoroughly
described in Section 4.2. A thorough description of its core influential parameters
and their effects on the final descriptors (APPFD and HAPPS) have already been
presented in Section 5.3. Therefore, in this section, we would only present the
quantitative results of this method, including (where possible) their respective PRC
plots on two standardised SHREC benchmark datasets (SHREC’12 and SHREC’14),
and analyse its retrieval accuracies side-by-side with several other state-of-the-art
retrieval methods for the respective retrieval challenge on these datasets. Unlike
in Section 5.3 where up to six different datasets are evaluated with the HAPPS
method, only two datasets are reported for the APPFD method in order to keep the
thesis compact, considering the amount of details involved in each investigation.

5.4.1 Experiment 7: Evaluating The Retrieval Accuracies
of The APPFD Method On SHREC’12 Dataset

In this section, we present and evaluate the retrieval performances of our APPFD
retrieval method using the SHREC’12 dataset (see Section 5.2.4). This dataset
contains 1,200 triangular meshes in the generic categories, having both rigid and
non-rigid 3D objects, most of which are non-watertight. First, we compare the
quantitative retrieval performance of two experimental runs (run-7a and run-7b) of
the APPFD method with different parameter settings for each run, and the complete
6-dimensional features (APPF). This is to allow us adopt results of the experimental
settings with the highest performance for later comparison with other state-of-the-
art methods. Secondly, we provide further analysis regarding the effects of the APPF
and demonstrate how the number of extracted features affects the final results (i.e.
retrieval accuracies) of the APPFD retrieval method, by showing the retrieval re-
sults of adopting only 5 of 6 APPF described in Section 4.2.1: f1 = (ϕ, α, β, γ, δ)
and compare its results with those obtained with the complete 6-dimensional APPF:
f2 = (ϕ, θ, α, β, γ, δ). Several different experimental runs were conducted, but we
analyse only four runs: run-7c to run-7f. We show these comparative results analy-
ses in Table 5.29. Finally, we compare our best overall quantitative results (run-7b)
with the best results of each of the five other state-of-the-art retrieval methods,
which competed for the SHREC 2012 generic shape retrieval challenge. For all the
performances evaluation in this section, the following six standard metrics described
in Section 4.3.3 are used, in line with [131]: NN, FT, ST, E, DCG, including the
PR plots.

Experiment 7: Parameter Settings, Results and Discussion

The experimental evaluation approach we have adopted regarding the SHREC’12
dataset/retrieval challenge is as mentioned in Section 5.4.1 above, with the parame-
ter setting outlined in Table 5.27. In Section 5.3, we demonstrated through experi-
mental evaluations, how the b(APPFD) parameter affects both the retrieval accuracies
and compactness (size) of the final APPFD/HAPPS signature. For this experimen-
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tal evaluation, we consider the importance of indicating the computational time of
the APPFD on a single 3D object and showing how the different parameter settings
affects the computational time. First, we want to show the effects of increased LSP
size and decreased number of bins (i.e. b(APPFD)) on the APPFD retrieval method.
Surprisingly, the quantitative results for experimental run-7b (see Table 5.28) shows
better retrieval performances with b(APPFD) = 7 and r = 0.50, unlike the former
run: run-7a, with b(APPFD) = 8 and r = 0.40. It therefore becomes a trade-off
between fv dimensionality and computational time, as it takes approximately 2
minutes to compute APPFD experimental run-7b parameter settings, opposed to
only about 28 seconds. Essentially, the outcome (i.e. descriptors) of experimental
run-7b with 117,649-dimensional fv, will impose lesser computational time during
matching than run-7a with 262,144-dimensions. Therefore, in this regard, irrespec-
tive of high-dimensional fv or LSP size, the experimental runs whose parameter
settings return the highest retrieval accuracies would be preferable for a given re-
trieval task.

Dataset: SHREC’12 [131] Parameter Settings

Experiment 7 Algorithms N r vs b(APPFD) Metric Run Time/3D

run-7a APPFD-6d 4200 0.40 0.30 8 Cosine 26 secs
run-7b APPFD-6d 4200 0.50 0.30 7 Cosine 98 secs

run-7c APPFD-5d 4200 0.40 0.30 8 Cosine 26 secs
run-7d APPFD-5d 4200 0.40 0.30 5 Cosine 26 secs
run-7e APPFD-5d 4200 0.30 0.30 5 Cosine 12 secs
run-7f APPFD-5d 4200 0.27 0.30 5 Cosine 3 secs

Table 5.27: Parameter settings for the APPFD method on the SHREC’12 generic
shapes dataset, where we first present two experimental runs: run-7a, and run-6b
with different r and b(APPFD) parameters using complete 6-dimensional features.
Next: run-7c to run-7f, we present parameter settings for other experimental runs
with 5-dimensional features. Here, we show how the r, /vs, parameters affects the
average computational time of the APPFD per 3D object. All parameters are ex-
plained in Section 5.3.

Secondly, using this experimental evaluation, we want to be able to specifically
show the contribution of our novel 2-dimensional local geometric features: θ, ϕ (see
Section 4.2.1, Figure 4.4), which we use to augment the 4-dimensional PPF in [252].
Therefore, in experimental runs: run-7c to run-7f (Table 5.27), we decide to drop
one of our 2-dimensional feature, ϕ, leaving us with a 5-dimensional APPF, f1 =
(ϕ, α, β, γ, δ). The corresponding results (Table 5.28) of these experimental runs in
Table 5.27 reveals significant decrease in performance using 5-dimensional features,
opposed to 6-dimension, while keeping the parameters the same (see parameter
settings and their corresponding results for experimental run-7a and run-7c).

Finally, in Table 5.29, we compare the best results of the APPFD experimen-
tal runs (run-7b) with the best of each of the five methods in [131]. While six
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Experiment7 Dist.Metric Algorithms NN FT ST E DCG

run-7a Cosine APPFD-6d 0.551 0.280 0.368 0.256 0.585

run-7b Cosine APPFD-6d 0.580 0.298 0.395 0.272 0.607

run-7c Cosine APPFD-5d 0.527 0.256 0.339 0.238 0.566

run-7d Cosine APPFD-5d 0.514 0.256 0.345 0.239 0.572

run-7e Cosine APPFD-5d 0.496 0.244 0.328 0.228 0.555

run-7f Cosine APPFD-5d 0.448 0.218 0.302 0.209 0.529

Table 5.28: Quantitative results of five standard evaluation metrics revealing the
retrieval performances of our APPFD retrieval method on the SHREC’12 dataset,
for the respective parameters in experimental runs: run-7a to run-7f. All results are
from the Cosine distance metric.

quantitative performance evaluation metrics (NN, FT, ST, E, DCG and Average
Precision (AP)) were used in [131], including the PRC plots, we compare our results
for this dataset using only five metrics (NN, FT, ST, E, and DCG), for simplic-
ity. Unfortunately, our method recorded relatively low retrieval accuracies for the
SHREC’12 dataset. This is due to the reasons discussed in Section 3.2.1, regard-
ing defective data, and majorly some of the reasons summarised in Section 6.3.2.
The SHREC’12 is characterised with lots of defective data (3D triangular meshes).
Out of the 1200 3D shapes in this dataset, we identified 131 faulty models, having
degenerate faces and vertices, inconsistent face windings, unreferenced vertices and
faces, missing surface parts, other kinds of defects, artefacts, etc. Besides the steps
mentioned in Section 3.2, our retrieval methods did less in the pre-processing stage
to automatically handle defective data. Alternatively, manual pre-processing of data
before feeding the data into our retrieval algorithm could further improve the results
we obtain with our method for this kind of dataset.

Author Method NN FT ST E DCG

Yanagimachi [131] DG1SIFT 0.879 0.661 0.799 0.576 0.871

Tatsuma [131] DVD+DB+GMR 0.828 0.613 0.739 0.527 0.833

Li [131] ZFDR 0.818 0.491 0.621 0.442 0.776

Redondo [131] 3DSP-L2-1000-hik 0.685 0.376 0.502 0.351 0.685

This Thesis APPFD run-7b 0.580 0.298 0.395 0.272 0.607

Bai [131] LSD-sum 0.517 0.232 0.327 0.224 0.565

Table 5.29: Quantitative evaluation measures of only the best results of each meth-
ods presented in [131], including our APPFD method for SHREC’12 benchmark
dataset.

As we can see from Table 5.29, although the DG1SIFT method had the overall
best performance in the SHREC’12 retrieval challenge, followed by DVD+DB+GMR
and the rest, none of these state-of-the-art methods recorded up to 90% retrieval
accuracy in any of the performance statistics, unlike with several other datasets
and retrieval challenges we have evaluated in this thesis so far (see Section 5.3).
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This further confirms the difficulties, in terms of retrieval challenge, posed by the
SHREC’12 dataset. Nevertheless, our retrieval method did not perform too poorly
on for this evaluation, considering that its results were not too far from the best
overall and that they outperform at least one state-of-the-art method, the LSD-sum.
We refer the reader to [131] for a detailed description of each of the retrieval methods
that competed for this retrieval challenge, and further analysis regarding the results
and evaluation aspects not mentioned in this thesis.

5.4.2 Experiment 8: Evaluating The Retrieval Accuracies
of The APPFD Method On SHREC’14 Dataset

The SHREC 2014 track on Large Scale Comprehensive 3D Shape Retrieval featured
five groups of participants who submitted a total of 14 experimental runs. The
objective of this track is to evaluate the performance of 3D shape retrieval approaches
on a large-sale comprehensive 3D shape database which contains different types of
models, such as generic, articulated, CAD and architecture models [132], making a
total of 8,987 3D objects, categorized into 171 classes. In this section, we show how
the results of our APPFD method compares with other state-of-the-art methods for
this retrieval challenge. Seven commonly adopted performance metrics in 3D model
retrieval technique such as the NN, FT, ST, E, DCG, PRC plot, and AP were
employed by [132] to have a comprehensive evaluation of the retrieval algorithms
submitted to the track. In addition to the common definitions, they also developed
weighted variation for each benchmark by incorporating the popularity of each class
in real work and life, based on the number of available 3D objects, where they assume
there is a linear correlation between the number of available models in one class and
the degree of popularity of the class. Therefore, they adopt a weight of reciprocal
of the number of models to define each weighted performance metric. In line with
this, they defined two metrics: the proportionally and reciprocally weighted metrics,
mr(m = NN/FT/ST/E/DCG) as follows:

mp =
N∑
i=1

ni

N
·mi

,

mr =
N∑
i=1

1
ni∑N
j=1

1
nj

·mi

where N is the total number of models, ni is the size of class to which the ith

model belongs, mi is the non-weighted NN/FT/ST/E/DCG metric value for the
ith model. mp assigns bigger weights to the classes with more variations. On
the contrary, mr highlights the performance in retrieving classes with few mod-
els/variations. For these experimental evaluations, we also employ all performance
metrics mentioned above, except the AP, including computing evaluation scores for
the two weighted performance metrics: the proportionally weighted (mp) and the
reciprocally weighted (mr) metrics, using the evaluation codes provided by [132].

Experiment 8: Parameter Settings and Configurations

Several experimental testing were done on the SHREC’14 dataset using the APPFD
algorithm and for each experimental run, we selected different parameter settings
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like in the previous instances. However, unlike the experimental evaluations we
have presented with the other benchmark datasets, where our 6-dimensional features
(APPF) were adopted for both the APPFD and HAPPS algorithm, we decided to
adopt only 5-dimensional APPF: f3 = [ϕ, θ, α, β, γ], where we excluded the fourth
feature dimension (δ) of the 4-dimensional features in [252], and embraced the fol-
lowing 3-dimensional features: (α, β, γ), which is also used in PFH [200], because,
according to [200], this feature does not present an extreme significance for some
datasets, such as 2.5D datasets - see Section 2.6.1. Nevertheless, for 3D dataset, δ
represents the distance between the source point, pi and the target point, pj in the
point pair combination (see Figure 4.4), and takes care of scaling transformation,
but in this experimental evaluation, we want to see how our results would be affected
with a minimal combination of the extracted PPF. For all the parameter settings
in Table 5.30, we also present the quantitative performance results considering both
the comprehensive proportionally-weighted (see Table 5.32) and the comprehensive
reciprocally-weighted (see Table 5.33) evaluation criteria.

Dataset: SHREC’14 [132] Parameter Settings

Experiment 8 Algorithms N r vs b(APPFD) Metric Run Time/3D

run-8a APPFD-6d 4200 0.40 0.30 7 Cosine ≈ 26 Sec.

run-8b APPFD-5d 4200 0.40 0.30 5 Cosine ≈ 26 Sec.
run-8c APPFD-5d 4200 0.30 0.30 5 Cosine ≈ 22 Sec.
run-8d APPFD-5d 4200 0.27 0.30 5 Cosine ≈ 4 Sec.
run-8e APPFD-5d 4200 0.17 0.30 5 Cosine ≈ 1.6 Sec.

Table 5.30: Parameter settings for the APPFD method on the SHREC’14 large-
scale, generic dataset. The following 5-dimensional APPFD features were used,
instead: f3 = [ϕ, θ, α, β, γ]. However, in run-8a, we first present parameter setting
with 6-dimensional APPF in order to further compare the results with the other
runs: run-8b to run-8e, which used f3. Again, we show how the r, /vs, parameters
affects the average computational time of the APPFD per 3D object. All parameters
are explained in Section 5.3.

Experiment 8: Results and Discussion

In Table 5.30, different parameter settings for five experimental runs (run-8a to run-
8e) are presented and results of these runs are examined in Table 5.31. In the first
experimental run (run-8a), we used all 6-dimensional APPF with b(APPFD) = 7 and
the Cosine distance metric. In subsequent runs (run-8b to run-8e), we decided to
investigate the outcome of adopting a minimal set of APPF, f3 = [ϕ, θ, α, β, γ], with
only five of six dimensions by dropping the δ feature in [252], while including our
novel 2-dimensional feature, [θ, ϕ], to have f3. Next, instead of 7 bins, we set the
parameter b(APPFD) = 5 for the other experimental runs. Having a minimal set of
feature-dimensions and a lower number of bins has several advantages of computa-
tional speed, final descriptor compactness, but low descriptive power. This analysis
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Experiment8 Dist.Metric Algorithms NN FT ST E DCG

run-8a Cosine APPFD-6d 0.650 0.158 0.216 0.102 0.589

run-8b Cosine APPFD-5d 0.647 0.172 0.239 0.104 0.602

run-8c Cosine APPFD-5d 0.666 0.185 0.257 0.110 0.614

run-8d Cosine APPFD-5d 0.615 0.157 0.223 0.095 0.589

run-8e Cosine APPFD-5d 0.570 0.138 0.198 0.084 0.571

Table 5.31: Quantitative results of five standard evaluation metrics revealing the
retrieval performances of our APPFD retrieval method on the SHREC’14 dataset,
for the respective parameters in experimental runs: run-8a to run-8e, considering
only the comprehensive evaluation criteria. All results are from the Cosine distance
metric.

enables us to see to what extent the APPFD retrieval method is affected by these
parameter settings.

Experiment8 Dist.Metric Algorithms NN FT ST E DCG

run-8a Cosine APPFD-6d 134.788 30.059 44.090 14.787 130.358

run-8b Cosine APPFD-5d 136.496 35.441 53.245 15.565 134.815

run-8c Cosine APPFD-5d 140.226 38.391 57.816 16.322 137.125

run-8d Cosine APPFD-5d 130.511 32.592 49.742 14.375 132.688

run-8e Cosine APPFD-5d 121.111 29.045 44.774 12.822 129.595

Table 5.32: Quantitative results of five standard evaluation metrics revealing the
retrieval performances of our APPFD retrieval method on the SHREC’14 dataset,
for the respective parameters in experimental runs: run-8a to run-8e, considering
only the comprehensive proportionally-weighted evaluation criteria given in [132].

The PRC plots of the quantitative evaluation in Table 5.31 are shown in Fig-
ure 5.30, which allows us to see clearly how the different parameter settings af-
fects the retrieval accuracies of the APPFD method. Surprisingly from these plots,
we see that the PRC plot of experimental run-8c, with lower parameter values
(r = 0.30, vs = 0.30, b(APPFD) = 5) and a final fv size of 55 = 3, 125-dimension pro-
duces performance accuracies which is better than experimental run-8a, which has
r = 0.40, vs = 0.30, b(APPFD) = 4 parameter values, and final fv of 76 = 117, 649-
dimension - anticipated to have better performance results. Furthermore, there is
a slight difference with regards to the performance of experimental run-8a and run-
8b. Basically, the observation is that the parameter values usually reduce with the
performance accuracies and vice versa, while overly increasing the parameter values
would also not return satisfactory results for the APPFD retrieval method.

Next, we show the proportionally and the reciprocally weighted metrics evalu-
ation results in Table 5.32 and Table 5.33, respectively for the parameter settings
in Table 5.31. Note that all of these evaluations are carried out using the Cosine
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Figure 5.30: The PRC plots of the APPFD retrieval method for the quantitative
results in Table 5.31, having experimental run-8a to run-8e, and considering the
comprehensive evaluation criteria only. The plot for run-8c performs slightly better
than the rest.

distance metric. From these results, we can also see a similar performance trend to
those reported for the comprehensive quantitative evaluation in Table 5.31, where
the results of experimental run-8c remains the highest.

Finally, we compare the quantitative results of run-8c (overall best results of the
APPFD method) to only the best of each of the five state-of-the-art retrieval meth-
ods in [132], considering all three evaluation criteria, which are: (i) comprehensive
evaluation, (ii) comprehensive proportionally-weighted evaluation, and (iii) com-
prehensive reciprocally-weighted evaluation. We show each of these comparative
results in Table 5.34, Table 5.35, and Table 5.36, for comprehensive, comprehen-
sive proportionally-weighted, and comprehensive reciprocally-weighted evaluations,
respectively. According to these results, our APPFD retrieval method ranks the
lowest, while the LCDR-DBSVC method [132] ranked the highest in all three dif-
ferent evaluation criteria. This low performance is expected due to the choice of
parameter values, such as the b(APPFD) and the minimal number of the APPF we
adopted. Secondly, extremely complicated models, with varied quality, high degree
of rigidity, and small number of sampling points, etc., could also be responsible.
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Experiment8 Dist.Metric Algorithms NN FT ST E DCG

run-8a Cosine APPFD-6d 3.423 1.072 1.297 0.635 2.924

run-8b Cosine APPFD-5d 3.397 1.118 1.353 0.643 2.978

run-8c Cosine APPFD-5d 3.498 1.179 1.414 0.685 3.036

run-8d Cosine APPFD-5d 3.199 1.046 1.269 0.598 2.889

run-8e Cosine APPFD-5d 2.932 0.935 1.159 0.522 2.769

Table 5.33: Quantitative results of five standard evaluation metrics revealing the
retrieval performances of our APPFD retrieval method on the SHREC’14 dataset,
for the respective parameters in experimental runs: run-8a to run-8e, considering
only the comprehensive reciprocally-weighted evaluation criteria given in [132].

Author Method NN FT ST E DCG

Aono [132] KVLAD 0.605 0.413 0.546 0.214 0.746

Chen [132] DBNAA DERE 0.817 0.355 0.464 0.188 0.731

Furuya [132] MR-D1SIFT 0.856 0.465 0.578 0.234 0.792

Li [132] ZFDR 0.838 0.386 0.501 0.209 0.757

Tatsuma [132] LCDR-DBSVC 0.864 0.528 0.661 0.255 0.823

This Thesis APPFD run-8c 0.666 0.185 0.257 0.110 0.614

Table 5.34: Quantitative evaluation measures of only the best results of each meth-
ods presented in [132], including our APPFD method for SHREC’14 benchmark
dataset, considering only the comprehensive evaluation criteria.

Especially, more points could be used for the extraction of features at the cost of
computational efficiency. However, the performance of the APPFD is not too far
from that of the other methods, especially for the NN and DCG statistics.

Author Method NN FT ST E DCG

Aono [132] KVLAD 123.059 83.382 114.400 28.756 160.724

Chen [132] DBNAA DERE 171.149 79.380 108.438 27.193 159.316

Furuya [132] MR-D1SIFT 178.497 94.309 121.762 31.804 167.318

Li [132] ZFDR 175.142 79.407 106.578 29.422 161.351

Tatsuma [132] LCDR-DBSVC 177.863 107.851 144.179 33.691 173.773

This Thesis APPFD run-8c 140.226 38.391 57.816 16.322 137.125

Table 5.35: Quantitative evaluation measures of only the best results of each meth-
ods presented in [132], including our APPFD method for SHREC’14 benchmark
dataset, considering only the comprehensive proportionally-weighted evaluation cri-
teria.

As previously indicated, the idea behind the choice of parameter values for the
different experimental runs, using the APPFD retrieval method, in this (SHREC’14)
evaluation are: (i) to mitigate the use of computational resources, such as memory
and time, as a result of the exceptionally large size of the SHREC’14 dataset, and (ii)
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to further investigate the impact of our 2-dimensional feature (θ, ϕ), to the APPF
augmentation, after dropping the δ feature. As we can see, the quantitative results
of experimental run-8a (where 6-dimensional APPF and b(APPFD) = 7 were used)
is lower than the results of run-8b and run-8c (where 5-dimensional APPF and
b(APPFD) = 5 were used), although all these results are with slight differences. This
confirms the robustness of the θ and ϕ local features we proposed (see Section 4.2.1).
In future implementation, we are interested in only applying these 2-dimensional lo-
cal features, in a suitable manner to further investigate its discriminating abilities,
besides other features.

Author Method NN FT ST E DCG

Aono [132] KVLAD 3.261 2.196 2.945 1.445 3.830

Chen [132] DBNAA DERE 4.252 1.911 2.306 1.146 3.747

Furuya [132] MR-D1SIFT 4.678 2.604 3.090 1.542 4.263

Li [132] ZFDR 4.476 2.216 2.661 1.321 3.994

Tatsuma [132] LCDR-DBSVC 4.881 2.905 3.435 1.731 4.470

This Thesis APPFD run-8c 3.498 1.179 1.414 0.685 3.036

Table 5.36: Quantitative evaluation measures of only the best results of each meth-
ods presented in [132], including our APPFD method for SHREC’14 benchmark
dataset, considering only the comprehensive reciprocally-weighted evaluation crite-
ria.

In conclusion, it is very interesting to find, from this experimental evaluation,
how the computational time of the APPFD retrieval method drastically improved
from approximately 26 seconds to about 2 seconds as the LSP size further reduced
from r = 0.40 to r = 0.17, while maintaining constant values for the vs and b(APPFD)

parameters (at vs = 0.30 and b(APPFD) = 5, respectively). With all of these, we
have demonstrated that our APPFD retrieval method is capable of yielding far better
retrieval accuracies in all evaluation criteria and metric for the SHREC’14 large scale
comprehensive benchmark dataset, given higher parameter values for this method.
By indication, also, our HAPPS retrieval method is believed to perform very well
for this dataset and rank among top state-of-the-art methods. We refer the reader
to [132] for more details regarding the methods mentioned in Table 5.34, Table 5.35,
and Table 5.36, including further analyses of the results presented in [132].

5.5 Experimental Evaluations of The APPFD-FK-

GMM Retrieval Method

The implementation goal and detailed description of our proposed APPFD-FK-
GMM retrieval method is presented in Section 4.2.4. We applied this method to
several benchmark datasets and found, through extensive experimental evaluations,
that it returns near retrieval performance accuracies to the HAPPS retrieval meth-
ods, while producing a more compact final shape descriptor. In this thesis we
present the results of the APPFD-FK-GMM retrieval method on four of the most
resent SHREC datasets, which are: SHREC’17, SHREC’18, SHREC’19 and a differ-
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ent type of the SHREC’20 datasets (see Section 5.2). Next, we compare the retrieval
performances of this method to that of the HAPPS-1 retrieval method, respectively
for each of these four datasets. Finally, for each dataset, a comparative analysis of
the retrieval performance of our APPFD-FK-GMM method is compared to those of
several recent state-of-the-art methods on the respective datasets.

5.5.1 Parameter Settings and Configurations for The APPFD-
FK-GMM Retrieval Method

During experimental testing and evaluation for the APPFD-FK-GMM method, only
the Cosine and Euclidean distance metrics (see Section 2.2.3) were found to provide
the best overall retrieval accuracies, therefore all the quantitative performance re-
ports presented in this section are based upon these two metrics. Considering the
APPF, which relies on surface point sampling, and is the base feature extraction al-
gorithm technique for the APPFD-FK-GMM retrieval method, the number of point
sample for all the experimental evaluation using this method are between 3,500 to
4,500 samples as we would see in the following sections. We have already described
the b(APPFD) binning technique for this retrieval approach with the FK in Sec-
tion 4.2.4, where b(APPFD) = 35×6, using a 1-dimensional histogram to collect each
of the 6-dimensional APPF and finally concatenate them to yield final descriptor.
Considering the training of GMM with local APPF, we conducted several different
experiments with different values of the G parameter, to investigate which of the
values would converge for different datasets and the APPFD, and found that G = 10
returned high performance accuracies.

5.5.2 Experiment 9: Evaluating The Retrieval Performances
of The APPFD-FK-GMMMethod On The SHREC’17
Dataset

Table 5.37 presents the retrieval accuracies of four experimental runs for this dataset
evaluation with the APPFD-FK-GMM retrieval method, which are: (i) run-9a-
Cosine (APPFD-FK-GMM): this involves using the final global descriptor produced
by the APPFD-FK-GMM algorithm, as it is, which has a dimension of 4,210 and
the Cosine distance metric for descriptor matching, (ii) run-9a-Cosine (APPFD-FK-
GMM(PCA)): prior to shape matching, this involves the application of traditional
linear dimensionality reduction technique, the PCA in this case, to further reduce the
dimension of the final global descriptor returned by experimental “run-9a-Cosine”,
which results in a final 92-dimensional fv that is more compact and most nearly as
descriptive, (iii) run-9c-Euclidean (APPFD-FK-GMM): this involves using the final
4,210-dimensional global descriptor produced by the APPFD-FK-GMM algorithm,
as it is, while descriptor matching is done with the Euclidean distance metric, in-
stead, and finally (iv) run-9d-Euclidean (APPFD-FK-GMM(PCA)): again, prior to
shape matching, we applied the PCA technique to further reduce the dimension
of the final global descriptor returned by experimental “run-9c-Euclidean” to 92-
dimensional fv that is more compact and most nearly as descriptive.

According to the results in Table 5.37 and the corresponding PRC plots in Fig-
ure 5.31, it is interesting to see that: (i) both the Cosine and Euclidean metrics
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Experiment 9 Algorithms NN FT ST E DCG

run-9a-Cosine APPFD-FK-GMM 0.9900 0.8356 0.9433 0.4283 0.9620

run-9b-Cosine APPFD-FK-GMM(PCA) 0.9900 0.8300 0.9422 0.4278 0.9603

run-9c-
Euclidean

APPFD-FK-GMM 0.9900 0.8356 0.9433 0.4283 0.9620

run-9d-Euclidean APPFD-FK-GMM(PCA) 0.9900 0.8278 0.9422 0.4278 0.9601

Table 5.37: Quantitative retrieval performance results using standard evaluation
metrics to evaluate APPFD-FK-GMM retrieval method on the SHREC’17 PRoNTo
dataset, for experimental runs: run-9a to run-9d. Here, both the Cosine and Eu-
clidean metric returns the same results.

returned exactly the same performance scores in all five quantitative statistics (NN,
FT, ST, E, and DCG) as indicated by experimental run-9a and run-9c, and (ii)
both of the PCA-reduced final global descriptors, with 92-dimensional fv each (run-
9b and run-9d), produce exactly the same NN accuracies and negligible differences
in the other four statistics. Overall, there is no visible differences in the retrieval
performances obtained in all experimental runs (run-9a to run-9d) as revealed by the
PRC plots. For this experimental evaluation, we tested several different parameter
settings, but for simplicity, we report the following configurations for the APPFD
and FK-GMM technique: r = 0.40, vs = 0.20 and the number of Gaussian, G = 10.
Table 5.38 presents these details more clearly.

Dataset: SHREC’17 [142] Parameter Settings

Experiment 9 Algorithm(s) N r vs b(APPFD) G Metric

run-9a APPFD-FK-GMM 3,000-4,500 0.40 0.20 35× 6 10 Cosine

Table 5.38: Parameter settings for experimental run-9a with the APPFD-FK-GMM
retrieval method on the SHREC’17 PRoNTo dataset.

Experiment 9: Results and Discussion, Comparing The APPFD-FK-
GMM Method With The HAPPS-1 Method and Other State of The
Art Methods On The SHREC’17 Dataset

In this section, we compare the outcome of experimental runs/methods having the
best retrieval performance accuracies for the SHREC’17 PRoNTo dataset. For this
comparison, we consider the APPFD-FK-GMM and HAPPS algorithms, including
comparing these with two of the overall best state-of-the-art retrieval methods for
the SHREC’17 PRoNTo retrieval track. The goal is to evaluate how best each of our
methods has performed for this particular dataset. We show the quantitative results
of such comparison in Table 5.39. Considering the HAPPS-1 retrieval method on the
PRoNTo dataset, experimental run-2a with the KLD distance metric yielded the best
overall results, while the BoW-RoPS-DMF-3 method in [142] ranked overall high-
est for that retrieval competition, followed closely by the BPHAPT method. This
comparison, however, reveals that our APPFD-FK-GMM approach outperforms the
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Figure 5.31: The PRC plots showing the quantitative retrieval performances of ex-
perimental run-9a to run-9d (see Table 5.37), using the APPFD-FK-GMM retrieval
method on the SHREC’17 PRoNTo dataset. The plots show that there is no visible
differences in the results of these four experimental runs, although quantitatively,
the results of experimental run-9a and run-9c are a bit higher in values than those
of run-9b and run-9d.

HAPPS-1 based method and BPHAPTmethod in some performance statistics, while
also ranking closely next to the BoW-RoPS-DMF-3 method. In both the NN and
E metrics, the APPFD-FK-GMM scores higher than the BPHAPT method which
happened to be the second highest ranking method after BoW-RoPS-DMF-3 for the
SHREC’17 retrieval challenge. In conclusion, all four methods in this comparison
(see Table 5.39) has performed exceptionally well, and it is difficult to tell which of
the BPHAPT or APPFD-FK-GMM methods ranks second place for this retrieval
challenge, following the BoW-RoPS-DMF-3 method.

In terms of computational cost and robustness combined, our new APPFD-FK-
GMM method has advantages over the HAPPS-1 method and the others, regarding
the SHREC’17 retrieval tasks. For example, considering the HAPPS-1 method,
experimental run-2a-kld adopts higher values for its r = 0.50, vs = 0.30, and
b(APPFD) = 8 parameters (see Table 5.8), unlike experimental run-9a/run-9c, with
r = 0.40, vs = 0.20, b(APPFD) = 35. The b(APPFD) = 8 parameter in experimental
run-2a would produce a final descriptor of 86 = 262, 144-dimensional fv, while the
b(APPFD) = 35 parameter in experimental run-9a would produce a final descriptor
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Experiments Algorithms NN FT ST E DCG

run-9a-Cosine APPFD-FK-GMM 0.9900 0.8356 0.9433 0.4283 0.9620

run-2a-kld HAPPS-1 0.9900 0.7867 0.8744 0.4132 0.9367

SHREC’17 [142] BPHAPT [142] 0.9800 0.9111 0.9544 0.4273 0.9743

SHREC’17 [142] BoW-RoPS-DMF-3 [142] 1.0000 0.9778 0.9978 0.4390 0.9979

Table 5.39: Comparing the retrieval accuracies of two state-of-the-art retrieval meth-
ods (BoW-RoPS-DMF-3 and BPHAPT) on the SHREC’17 PRoNTo dataset, with
the results accuracies of two of our proposed methods (APPFD-FK-GMM and
HAPPS-1), using five standard quantitative evaluation metrics.

of 35 × 1 = 210-dimensional fv. In addition, run-2a combines the global HoGD,
while the technique in run-9a relies only on the base APPFD algorithm. The com-
putational cost associated with the method in run-2a is far greater compared to the
method in run-9a, which makes the APPFD-FK-GMM method most preferable for
a typical 3D-CBRS, than HAPPS-1 or any others mentioned. With the APPFD-
FK-GMM implementation, we have been able to provide further improvement to
our already robust local APPFD and hybrid HAPPS retrieval methods, including
introducing a new robust and efficient global descriptor, the APPFD-FK-GMM.
The comparative results of this method (see Table 5.39) provides a strong indi-
cation that adjusting the APPFD parameters of the APPFD-FK-GMM method to
suitable settings would further improve its retrieval accuracies. For example, assum-
ing the same parameter values in experimental run-2a are applied in run-9a/run-9c,
the final APPFD-FK-GMM results from run-9a/run-9c would definitely outperform
the results of experimental run-2a, with additional advantage of reduced overall
computational cost.

5.5.3 Experiment 10: Evaluating The Retrieval Performances
of The APPFD-FK-GMMMethod On The SHREC’18
Protein Dataset

It became necessary to apply the APPFD-FK-GMM retrieval method on a different
dataset having a larger number of 3D objects (in this case 2,267 protein surfaces),
which also present a unique retrieval challenge to shape retrieval algorithm. In
addition, we consider the need to compare the performance of the APPFD-FK-
GMM method with the performance of other state-of-the-art methods, including
the results of our earlier evaluation with the HAPPS-1 retrieval method on this
dataset/retrieval task. Therefore, in this section, we follow exactly the same eval-
uation pattern for Experiment 9 and present, first the quantitative retrieval per-
formances of the APPFD-FK-GMM retrieval method on the SHREC’18 protein
dataset, using five evaluation metrics (NN, FT, ST, E, and DCG) and two distance
metrics (the Cosine and Euclidean distances). We populate these quantitative re-
sults of four experimental runs: run-10a to run-10d in Table 5.41 and plot their
corresponding PRC as shown in Figure 5.32. Finally, the bests of these results are
compared side-by-side with results of the HAPPS-1 method and those of the best
overall state-of-the-art retrieval method in the SHREC’18 retrieval challenge [121].

186 Chapter 5 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

It is important to note that the parameter settings used for all the experimental
runs in Experiment 10 are exactly the same as those used in Experiment 9 (see Sec-
tion 5.5.2). The parameter settings of these experimental runs (run-10 to run-10d)
for this evaluation are presented in Table 5.40.

Dataset: SHREC’18 [121] Parameter Settings

Experiment 10 Algorithm(s) N r vs b(APPFD) G Metric

run-10a APPFD-FK-GMM 4,500 0.40 0.20 35× 6 10 Cosine

Table 5.40: Parameter settings for experimental run-10a with the APPFD-FK-GMM
retrieval method on the SHREC’18 protein dataset. Note that similar settings also
apply to run-10b to run-10d.

Experiment 10 Algorithms NN FT ST E DCG

run-10a-Cosine APPFD-FK-GMM 0.8334 0.6410 0.7785 0.5546 0.8655

run-10b-Cosine APPFD-FK-GMM(PCA) 0.8254 0.6368 0.7755 0.5519 0.8632

run-10c-Euclidean APPFD-FK-GMM 0.8334 0.6410 0.7785 0.5546 0.8655

run-10d-Euclidean APPFD-FK-GMM(PCA) 0.8330 0.6404 0.7779 0.5541 0.8651

Table 5.41: Quantitative retrieval performance results using standard evaluation
metrics to evaluate APPFD-FK-GMM retrieval method on the SHREC’18 protein
dataset, for experimental runs: run-10a to run-10d. Again, both the Cosine and
Euclidean metric returns the same results.

From the above results and plots, we can see how the Cosine and Euclidean
distance metric has remained the most preferred metrics for the APPFD-FK-GMM
retrieval method. In addition, where results returned by these metrics are exactly
the same in all five evaluation metrics. In addition, we also see that although
applying the PCA technique for dimensionality reduction on the final descriptor
(FV) returned by FK, as in experimental run-10b and run-10d, the results are still
remarkably close quantitatively and qualitatively, which is obvious in Figure 5.32.

Experiment 10: Results and Discussion, Comparing The APPFD-FK-
GMM Method With The HAPPS-1 Method and Other State of The Art
Methods On The SHREC’18 Protein Dataset

In this section, we compare and analyse the quantitative and qualitative results of
the APPFD-FK-GMM: experimental run-10a (it could as well be run-10c, see Ta-
ble 5.41) with the best overall results of the HAPPS-1 retrieval method (experimental
run-1c, see Table 5.5), and HAPT4 [121] (which was the best overall state-of-the-art
retrieval method for the SHREC’18 protein retrieval challenge). These comparative
results are presented in Table 5.42. We remind the reader that all evaluation results
presented in this thesis for the SHREC’18 protein dataset are done using the GT
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Figure 5.32: The PRC plots showing the quantitative retrieval performances of
experimental run-10a to run-10d (see Table 5.41), using the APPFD-FK-GMM re-
trieval method on the SHREC’18 protein dataset. The plots show that there is no
visible differences in the results of these four experimental runs, although quanti-
tatively, the results of experimental run-10a and run-10c are a bit higher in values
than those of run-10b and run-10d.

Experiments Algorithms NN FT ST E DCG

run-10a-Cosine APPFD-FK-GMM 0.8334 0.6410 0.7785 0.5546 0.8655

run-1c-Cosine HAPPS-1 0.8525 0.6669 0.7815 0.5783 0.8818

SHREC’18 [121] HAPT4 [121] 0.7700 0.4930 0.5840 0.4620 0.7550

Table 5.42: Comparing the retrieval accuracies of the APPFD-FK-GMM method
(experimental run-10a), HAPPS-1 (experimental run-1c), and HAPT4 [121] (the
best state-of-the-art retrieval method for the SHREC’18 protein retrieval chal-
lenge/dataset). In this comparison, five standard quantitative evaluation metrics
are used.

file provided by [121], for “All” classification level. Additional information is pro-
vided in [121], regarding all the methods who competed for the SHREC’18 protein
retrieval task and their retrieval performances.

188 Chapter 5 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

From the results in Table 5.42, although the HAPPS-1 retrieval method (ex-
perimental run-1c-Cosine) still takes the lead in terms of retrieval accuracies for all
the five evaluation measures, the APPFD-FK-GMM method (experimental run10a-
Cosine) still performs better in the second place and outperforms the overall best
method (HAPT4) in [121]. Both experimental run-1c and run-10a uses the Co-
sine distance metric. Considering the parameter settings for these two experimental
runs, we see that the parameter settings for experimental run-1c are r = 0.50,
vs = 0.20, and b(APPFD) = 8 (see Table 5.4), while those for experimental run-10a
are r = 0.40, vs = 0.20, and b(APPFD) = 35, including G = 10 (see Table 5.32). This
reveals why the HAPPS-1 method outperforms the APPFD-FK-GMM method for
the same dataset and retrieval challenge. By indication, given the same parame-
ter settings for both experimental run-1c and run-10a, we are confident that the
APPFD-FK-GMM method would certainly improve in overall retrieval accuracies,
and outperform the HAPPS-1 method for the same retrieval task. We further inves-
tigate these assumptions in Section 5.5.4, using an even larger sized protein dataset
from the SHREC’19 protein retrieval challenge.

5.5.4 Experiment 11: Evaluating The Retrieval Performances
of The APPFD-FK-GMMMethod On The SHREC’19
Protein Dataset

The SHREC’19 protein database, with 5,298 protein models is recent, and contains
greater number of 3D protein models than those from previous protein shape re-
trieval challenges, including being twice as big as the number of 3D protein models
in the SHREC’18 dataset. It therefore became necessary for us to also investigate
the performances of our APPFD-FK-GMM retrieval method on such large dataset,
given its retrieval performances on previous datasets. Similar to the approaches
adopted for previous dataset evaluation with this method, several experimental runs
are carried out, each with different parameter settings in order to determine which
parameter combination of the APPFD-FK-GMM method is most suitable for this
dataset. However, in this evaluation, we provide further analysis regarding two dif-
ferent experimental runs, instead of one. Considering the performance outcomes
of previous experimental evaluations using this retrieval method, where we found
that results of applying the PCA technique for dimensionality reduction of the final
fv are negligibly lower, with overall similar retrieval performances to the results of
instances where the PCA technique is not applied (see the results in Table 5.37
and Table 5.41, for example), we chose not to present all the results comparing the
PCA-reduced fv with the other non-PCA approach in this analysis. However, in
this experimental evaluation, both the Cosine and Euclidean metric returns nearly
similar results in all five evaluation measures, but interestingly, the Euclidean metric
returns overall best retrieval accuracies when the PCA is applied to reducing the
final fv dimension. This evaluation is performed for both the Protein and Species
classification levels (see Table 5.44).
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Dataset: SHREC’19 [123] Parameter Settings

Experiment 11 Algorithms N r vs b(APPFD) G Metric

run-11a APPFD-FK-GMM(PCA) 3500 0.50 0.20 35× 6 10 Euclidean

run-11b APPFD-FK-GMM(PCA) 3500 0.50 0.30 35× 6 10 Euclidean

Table 5.43: Parameter settings for two different experimental runs with the APPFD-
FK-GMM retrieval method on the SHREC’19 protein dataset.

In the first run (run-11a), we set the parameters to: r = 0.50, vs = 0.20, and
b(APPFD) = 35, including G = 10, while in the second run (run-11b) we set the
parameters to r = 0.50, vs = 0.30, and b(APPFD) = 35, including G = 10. These
parameters settings are clearly presented in Table 5.43. Unlike experimental evalua-
tions for the APPFD-FK-GMM retrieval method in Experiment 9 (see Section 5.5.2)
and Experiment 10 (see Section 5.5.3), the motivation for increasing the r param-
eter from r = 0.40 to r = 0.50 in run-11a, and subsequently both the r and vs
parameters in run-11b in this experimental evaluation is based on the observation
from the comparative analysis recorded in Table 5.42, where the HAPPS-1 method
(run-1c) with the parameter settings: r = 0.50 and vs = 0.20 outperformed the new
APPFD-FK-GMM method with the parameter settings: r = 0.40 and vs = 0.20.
The results of these experimental runs (Experiment 11) considering both the Protein
and Species classification levels are provided in Table 5.44.

Experiment 11 Algorithm(s) NN FT ST E DCG

PROTEINS LEVEL
run-11a(Protein) APPFD-FK-GMM 0.9549 0.5346 0.6980 0.1242 0.8980

run-11b(Protein) APPFD-FK-GMM 0.8766 0.4451 0.6260 0.1002 0.8622

SPECIES LEVEL
run-11a(Species) APPFD-FK-GMM 0.9013 0.4832 0.6222 0.2110 0.8422

run-11b(Species) APPFD-FK-GMM 0.7335 0.3721 0.5234 0.1493 0.7771

Table 5.44: Quantitative retrieval performance results using five standard evaluation
metrics to evaluate APPFD-FK-GMM retrieval method on the SHREC’19 protein
dataset, for experimental runs: run-11a and run-11b, for the Protein and Species
classification levels. The results presented here are only from the Euclidean distance
metric for both levels.

From the results in Table 5.44, there are some improved retrieval performances/accuracies
for the APPFD-FK-GMM method, considering the large size of this dataset than
in previous evaluations. The parameter settings for experimental run-11a produces
the best overall results for both Proteins and Species classification levels. We notice
that increasing the r and vs parameters (as in run-11b) causes performance drop of
about 8% to 10% in all evaluation metrics, except the E measure. The PRC plots in
Figure 5.33 and 5.34, also confirm these results. Notice that unlike the evaluations
in experimental run-10a, where 4,500 samples were used for the APPFD-FK-GMM
retrieval method, 3,500 samples are used for this evaluation with the SHREC’19
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Figure 5.33: PRC plots of the retrieval results presented in Table 5.44 (run-11a
and run-11b, Proteins) for the SHREC’19 protein shape retrieval challenge/dataset,
using the APPFD-FK-GMM method.

dataset instead. This is as a result of the large size of this benchmark dataset,
whereby sampling more points from the surface is capable of impacting computa-
tional cost (memory and time). However, it would be useful to keep the parameters
consistent for a more direct comparison, since accuracy is more important and in-
teresting to determine. In the next section, we would further compare the best
overall retrieval results of the APPFD-FK-GMM retrieval method (run-11a) with
that of the HAPPS-1 method and state-of-the-art method for the SHREC’19 protein
dataset.

Experiment 11: Results and Discussion, Comparing The APPFD-FK-
GMM Method With The HAPPS-1 Method and Other State of The Art
Methods On The SHREC’19 Protein Dataset

Table 5.45 compares the retrieval results of three different retrieval methods (the
APPFD-FK-GMM, HAPPS-1, and the 3DZD2 [120]) for the SHREC’19 protein
dataset. We have already analysed the comparison between the HAPPS-1 and the
3DZD2 [120] retrieval methods in Section 5.3.5. Here, we are interested in seeing
how the performances of the APPFD-FK-GMM compares with both the HAPPS-1
and state-of-the-art retrieval methods. Although that 3DZD2 method still maintains
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Figure 5.34: PRC plots of the retrieval results presented in Table 5.44 ( run-11a
and run-11b, Species) for the SHREC’19 protein shape retrieval challenge/dataset,
using the APPFD-FK-GMM method.

the highest retrieval accuracies for this experimental evaluation, followed again, by
the HAPPS-1 method, the performances of the current method is not far from
that of the HAPPS-1 and the overall best state-of-the-art method (3DZD2) for
this dataset (SHREC’19). This slight difference between the two of our methods
is expected, given that a lower number of point samples (3,500) were used for the
current method (APPFD-FK-GMM) as opposed to 4,500 which is the case with the
HAPPS-1 method, and we think that these performances can further be improved
at the expense of computational resources (memory and time), by sampling more
points for feature extraction.

5.5.5 Experiment 12: Evaluating The Retrieval Performances
of The APPFD-FK-GMMMethod On The SHREC’20
Relief Dataset

Following the many success of our proposed retrieval methods (APPFD, HAPPS,
and APPFD-FK-GMM) on raw 3D objects retrieval from several different bench-
mark datasets as presented in the previous sections of this thesis, we became inter-
ested in investigating the robustness of one of these methods on entirely different set
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Experiments Algorithm(s) NN FT ST E DCG

PROTEINS LEVEL
run-11a(Protein) APPFD-FK-GMM 0.9549 0.5346 0.6980 0.1242 0.8980

run-5a(Protein) HAPPS-1 0.9853 0.5545 0.6976 0.1287 0.9075

SHREC’19 [120] 3DZD2 [120] 0.9950 0.6620 0.7940 0.1310 0.9350

SPECIES LEVEL
run-11a(Species) APPFD-FK-GMM 0.9013 0.4832 0.6222 0.2110 0.8422

run-5a(Species) HAPPS-1 0.9405 0.5071 0.6454 0.2241 0.8561

SHREC’19 [120] 3DZD2 [120] 0.9650 0.5810 0.6940 0.2500 0.8840

Table 5.45: Comparing the retrieval performances of three methods: the APPFD-
FK-GMM, HAPPS-1 and best overall state-of-the-art method (3DZD2 in [120]), for
the SHREC’19 protein dataset, using five quantitative evaluation metrics. These
comparisons are done with the Protein and Species classification levels.

of retrieval challenges. As part of our research contributions to 3D Object Retrieval
2020 (3DOR’20), we submitted three experimental runs (the APPFD-FK(run1),
APPFD-FK (run2) and APPFD-FK (run3), see [163]) of the APPFD-FK-GMM
method for the retrieval of digital surfaces with similar geometric relief [163], where
the retrieval performances of this method were evaluated and compared with sev-
eral other state-of-the-art methods for this retrieval challenge. The dataset for this
evaluation is very well described in Section 5.2.10 and in [163]. The goal of the
contest is to verify the possibility of retrieving 3D models only based on the relief
that are present on their surface and to compare methods that are suitable for this
task [163]. Seven groups competed for this retrieval challenge where at least one
retrieval method was submitted by each group. In general, a total of eight different
methods and twenty experimental runs were submitted for evaluation.

Experiment 12: Results and Discussion, Comparing The APPFD-FK-
GMM Method With Seven Other State of The Art Methods On The
SHREC’20 Relief Dataset

A summary of the quantitative retrieval results comparing each of the best exper-
imental runs of all the retrieval methods which competed for the SHREC’20 track
on retrieval of digital surfaces with similar geometric relief [163] are shown in Ta-
ble 5.46. The performance evaluation for this dataset uses seven evaluation metrics
NN, FT, ST, mAP, nDCG, E, and AUC. Although the retrieval performance of our
method (the APPFD-FK-GMM) for this retrieval challenge outperforms one of the
state-of-the-art method (PointNet+SQFD [163]), it is disappointing to see, for the
first time, that it recorded overall very low performances compared to other state-of-
the-art methods. However, this outcome, in addition to several other performance
results obtained for other 3D datasets, confirms part of our investigation regarding
the suitability of our underlying method (APPFD) for certain shape retrieval tasks.
This task, regarding experimentally evaluating our method in comparison with other
state-of-the-art methods using the relief patterns dataset confirms the suitability of
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the APPFD mainly for 3D objects with topological deformations as opposed to
flat surfaces or surface patterns, due to the extremely poor performance accuracies
recorded by the APPFD-FK-GMM approach. We refer the reader to [163], for an
in-depth analyses of all methods and experimental runs for this retrieval challenge,
including computational approach for each of the methods involved.

Methods NN FT ST mAP nDCG E AUC

AFFFD-FK(run1) [163] 0.186 0.204 0.332 0.235 0.523 0.211 0.672

OH(run3) [163] 0.714 0.405 0.575 0.469 0.732 0.382 0.818

DFE(run1) [163] 0.982 0.920 1.000 0.930 0.974 0.715 0.987

DPML(run2) [163] 0.982 0.887 0.992 0.912 0.968 0.690 0.978

PointNet+SQFD(run3) [163] 0.173 0.119 0.225 0.190 0.470 0.137 0.605

SRNA(run2) [163] 0.923 0.494 0.683 0.563 0.811 0.453 0.882

MeshLBP [163] 0.905 0.671 0.832 0.726 0.884 0.570 0.909

kd-tree FLANN [163] 0.686 0.312 0.424 0.359 0.656 0.283 0.690

Table 5.46: Quantitative evaluation measures of only the best results of each meth-
ods presented in [163] (Experiment 12), including our APPFD-FK-GMM method
for SHREC’20 geometric relief dataset. Seven evaluation metrics are used, and the
two results highlighted in Gray performed poorly for this track.

From the results in Table 5.46 and the PRC plots in Figure 5.35, we see that the
DFE, followed by the DPML methods produced the best overall performances for
this retrieval task. These methods are based on a machine learning (i.e. data-driven)
approach to pre-train a neural network and are characterised by sampling one rep-
resentative surface patch during the pre-processing stage. Alternatively, methods,
such as the MeshLBP and SRNA, including OH, which adopts the knowledge-based
approach ranked better for this challenge. The MeshLBP and SRNA sampled mul-
tiple patches but seem to outperform other methods, such as the APPFD-FK and
PointNet+SQDF which also applied the same sampling approach during processing.
However, from these results, it seems that methods, such as the APPFD-FK which
converts the 3D object into point clouds or that are based on convolutional neural
networks trained on point clouds (PointNet) seem to be sub-optimal for this task.
Probably these methods lose information on local details (for instance, the sampling
process in the APPFD-FK focuses on the representation of the global geometry) and
do not capture the subtle geometry and structure variations of local patterns and
reliefs [163]. Essentially, these methods did not distinguish the model from the relief
on it but treat them altogether. This means that the relief and models should be
separated first and then the relief should be used for feature extraction and retrieval.

5.6 Experimental Evaluations of The HoGD Re-

trieval Method

Considering that the HoGD has contributed to improving the overall performances
of the APPFD method resulting in the HAPPS method (see Sections 4.2.3 and 5.3),
it is therefore important to also provide a separate experimental evaluation of the re-
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Figure 5.35: The PRC plots showing the quantitative retrieval performances of the
best methods for the SHREC’20 surface relief dataset, as in Table 5.46) [163].

trieval performances of the HoGD method in conjunction with the HAPPS-1 method
to assess HoGD’s level of contributions via the performance differences between these
two methods. In Section 4.2.2, we provided a succinct description of the HoGD
“global” 3D retrieval method and its computation steps, including its parameteri-
sation, such as the number of bins, bHoGD and points sample, N used. Again, the
implementation goal of the HoGD method is to further contribute to the overall re-
trieval performances of the APPFD “local” method, making the resultant “hybrid”
descriptor more robust and suitable for a variety of 3D surface structure.

In this section, we provide some useful experimental evaluation results for the
retrieval performances of our proposed “global” HoGDmethod and compare these re-
sults to those of the “hybrid” HAPPS-1 method. For these experiments, we consider
the most recent SHREC 2021 benchmark dataset of 3D protein surfaces. However,
the results in this section are not regarded as part of our major thesis contribu-
tions, but are presented to reveal the contributions of our proposed HoGD retrieval
method to the APPFD method. These results comparison also helps to adjudge the
HoGD’s performance levels (or that of any other global 3D descriptor, such as the
M2DP).

5.6.1 Experiment 13: Evaluating The Retrieval Performances
of The HoGD Method On The SHREC’21 Protein
Dataset

The SHREC’21 retrieval challenge for the retrieval and classification of protein sur-
faces equipped with physical and chemical properties [188] provide two variants of
datasets (“geometry” and “physichochemical” data) for its retrieval track. Each of
these data variants are further divided into the “training” and “testing” sets. The
training data consists of 3,585 3D protein surfaces while the testing set consists of
1,543 3D protein surfaces.

While our research contributions to the retrieval and classification challenges in
the SHREC’21 track [188] adopted the HAPPS-1 method for the “geometry” variant
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of the datasets involving only the “testing” set, the HoGD and HAPPS-1 experimen-
tal evaluations in this section involve the “training” set of the “geometry” variant
instead.

In line with our evaluation approach for this thesis, where several (dis)similarity
metrics are applied during final descriptors matching, we present the experimen-
tal results of our HoGD retrieval method (evaluated against the SHREC’21 protein
dataset) in Table 5.47. The number of points sample, N = 4, 500 and the number
of bins, bHoGD = 65 for the quantitative results in Table 5.47, using the Cosine,
Euclidean, and KLD metrics.

Experiment 13 Algorithms NN FT ST E DCG

run-13a-Euclid HoGD 0.6483 0.2939 0.3845 0.2585 0.6176

run-13b-Cosine HoGD 0.6469 0.2916 0.3823 0.2573 0.6165

run-13c-KLD HoGD 0.6731 0.3100 0.3959 0.2700 0.6293

Table 5.47: Quantitative retrieval performance results using five standard evaluation
metrics to evaluate the HoGD retrieval method on the SHREC’21 protein dataset
(“Training” set).

Table 5.47 present the quantitative retrieval performances of the HoGD method
on the SHREC’21 protein dataset. The results in this table reveals near perfor-
mances for both the Cosine and Euclidean metrics in all five quantitative statistics
(NN, FT, ST, E, and DCG) as indicated by experimental run-10a and run-10b, while
KLD metric returned the best overall performances for this experimental evaluation.
Overall, poor retrieval performances (below 40%) have been recorded for the FT,
ST, and E statistics with all three (dis)similarity metrics. Also, although the NN
and DCG statistics record performance improvements over 60% in all three metrics,
the overall performance of the HoGD method with the SHREC’21 protein dataset
still leaves much to be desired. This is because this method only deals with the
global surface structure of each protein surface and unable to characterise the local
surface properties. In the next section, we would also perform similar experiment,
this time, using the HAPPS-1 retrieval method which combines the HoGD with our
local APPFD to investigate performance improvement.

5.6.2 Experiment 14: Evaluating The Retrieval Performances
of The HAPP-1 Method On The SHREC’21 Protein
Dataset

In this section, we present the quantitative performance results of the HAPPS-1
method on the SHREC’21 protein dataset (“Training” set) in order to examine the
impact of combining the “local” APPFD with the “global” HoGD methods. The
parameter settings adopted by the APPFD in HAPPS-1 method for Experiments
13 are as follows: bAPPFD = 8, bHoGD = 65, r = 0.40, vs = 0.20. The quantitative
performance evaluations for this experiment is summarised in Table 5.48.
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Experiment 14 Algorithms NN FT ST E DCG

run-14a-Euclid HAPPS-1 0.8611 0.6073 0.7520 0.5235 0.8510

run-14b-Cosine HAPPS-1 0.8636 0.6133 0.7579 0.5282 0.8530

run-14c-KLD HAPPS-1 0.8683 0.5729 0.6818 0.4874 0.8163

Table 5.48: Quantitative retrieval performance results using standard evaluation
metrics to evaluate the HAPPS-1 retrieval method on the SHREC’21 protein dataset
(“Training” set).

Table 5.48 presents the quantitative performance evaluation of the HAPPS-1
method on the SHREC’21 protein dataset. For this experiment, it is obvious the
the Cosine (dis)similarity metric returns the best overall retrieval scores on all eval-
uation statistics (FT, ST, E, and DCG), except with the NN statistic, where the
KLD metric takes the lead. The Euclidean metric, which ranks second place, also
performs better than the KLD in other evaluation statistics, but the NN. As usual,
the evaluation performances of the NN and DCG statistics are better than the other
three (i.e. FT, ST, and E). Interestingly, both the NN and DCG evaluation mea-
sure reveals of 85% performances for all metrics, except the KLD, and over 68%
with the ST, over 60% with the FT, except with the KLD metric, and finally, over
50% performances with the E measure, except with the KLD metric. Considering
the complexity and size of the SHREC’21 protein “Training” set, these results are
impressive, but could further be improved by parameter adjustments. In the next
section, we would provide succinct discussion which compares the retrieval perfor-
mance evaluation of the HAPPS-1 method according to Table 5.48 with those of the
HoGD method according to Table 5.47.

Experiment 14: Results & Discussion, Comparing Retrieval Performances
Of The HoGD and HAPPS-1 Methods On SHREC’21 Protein Dataset

In this section, we provide succinct comparisons between the quantitative retrieval
performances of Experiment 13 (using the HoGD method) to those of Experiment
14 (using the HAPPS-1 method). Both methods have separately been evaluated
using the most recent SHREC’21 3D protein benchmark “Training” set.

As shown in Table 5.48 for each of the three different (dis)similarity metrics
evaluated and the five evaluation statistics (NN, FT, ST, E, and DCG), the retrieval
performances of the HAPPS-1 method are far greater than their counterparts from
the HoGD method in Table 5.47. Since the HAPPS-1 method combines the APPFD
and HoGD methods, comparing the results in Table 5.47 and Table 5.48 clearly
reveals and demonstrate performance improvements to the HoGD method, when
combined with the APPFD on a given dataset (in this case, the SHREC’21 protein
dataset). These outcomes (performance evaluation comparisons) further support our
position in this thesis (also see Section 4.2.3) that the overall retrieval performances
of the local APPFD can further be improved by combining the global HoGD. In
summary, the purpose of evaluating the HAPPS-1 retrieval method again in this
section is only to provide fair comparisons of retrieval performances for the HoGD
method.
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5.7 Summary

In this chapter, we have presented the results of several experimental evaluations
from all of our proposed methods (APPFD, HAPPS-1, HAPPS-2, APPFD-FK-
GMM, and HoGD) on 3D shape retrieval, using at least ten different 3D benchmark
datasets. We describe each of these retrieval methods in Section 4.2. The various
retrieval challenged and/or datasets evaluated in this thesis are: (i) SHREC 2021:
Retrieval and classification of protein surfaces equipped with physical and chemical
properties [188, 187], (ii) SHREC 2020: Retrieval of digital surfaces with similar
geometric reliefs [163, 231], (iii) SHREC 2020: Multi-domain protein shape retrieval
challenge [122], (iv) SHREC 2019 Protein Shape Retrieval Contest [123, 61], (v)
SHREC 2018 protein models [60], (vi) SHREC 2017: Point-cloud Shape Retrieval
of Non-rigid Toys [142, 269], (vii) SHREC 2014 Track: Large Scale Comprehen-
sive 3D Shape Retrieval (comprising of rigid and non-rigid 3D objects) [132], (viii)
SHREC 2012 Track: Generic 3D Shape Retrieval (comprising of rigid and non-rigid
3D objects) [131], (ix) SHREC 2011 Track: Shape Retrieval on Non-rigid 3D Wa-
tertight Meshes [139], and finally, (x) the SHREC 2010 Track: Non-rigid 3D shape
retrieval [140]. Each of these 3D benchmark dataset presents different levels of chal-
lenges to shape retrieval algorithms and further details regarding them are provided
in Section 5.2.

The performance evaluation strategy used in this thesis involves testing the
robustness of each of our proposed retrieval methods on at least two benchmark
datasets, including comparing their retrieval accuracies (i.e. their overall perfor-
mance results) with several other state-of-the-art methods applicable to the respec-
tive dataset and retrieval challenge. We achieve these by mainly using the following
standard IR quantitative evaluation metrics: NN, FT, ST, E, DCG, and PRC, in-
cluding the mAP, nDCG, and AUC, for example, to evaluate the performance of
our methods in comparison with others (see Table 5.46).

First, in Section 5.3, we evaluate the retrieval performances of two variants of the
HAPPS retrieval method tagged: the HAPPS-1 and HAPPS-2 (see Section 4.2.3)
on six different 3D retrieval problems, each associated with a unique collection of 3D
benchmark data. In Experiment 1 (section 5.3.1), the performance accuracies and
robustness of the HAPPS-1 method were evaluated using the SHREC’18 protein
shape database which contains 2,267 models. In Experiment 2 (section 5.3.2), we
evaluate this method on the SHREC’17 dataset, consisting 100 raw point cloud of
non-rigid toys, followed by Experiment 3 (section 5.3.3), where 200 non-rigid and
watertight 3D triangular meshes from the SHREC’10 benchmark were used to eval-
uate the performances of the HAPPS-1 method. The SHREC’11 benchmark dataset
contains three times the number of 3D models in the previous year (i.e. 600 wa-
tertight and non-rigid triangular meshes), and we evaluated our HAPPS-1 method
on this dataset in Experiment 4 (section 5.3.4). In Experiment 5 (section 5.3.5), we
adopted the SHREC’19 protein dataset, with 5,298 protein models (which is much
more than those in the previous protein shape retrieval tracks) for our experimental
evaluation of the HAPPS-1 method, following its success in the SHREC’18 dataset.
Finally, Experiment 6 (section 5.3.6) further investigates the performance abilities
of the HAPPS retrieval methods by using the HAPPS-1 method, including intro-
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ducing another variant, the (HAPPS-2), evaluated on the SHREC’20 protein shape
dataset. This dataset has 588 models. A review of the overall retrieval performance
summary of the HAPPS method is presented in Section 6.3.1.

Secondly, in separate experimental investigations discussed in Section 5.4, we ex-
amined the robustness and retrieval performances of our baseline retrieval method,
the APPFD using the SHREC’12 generic 3D shape dataset, which consists of 1,200
mixed (rigid and non-rigid) 3D triangular meshes characterised by lots of defects.
The evaluation results are reported in Experiment 7 (Section 5.4.1). In addition,
Experiment 8 (Section 5.4.2) presents and analyses the evaluation results of the
APPFD method with the SHREC’14 large scale comprehensive shape benchmark
dataset, which contains a total of 8,987 triangular meshes. A review of the overall
retrieval performance summary of the APPFD method is presented in Section 6.3.2.

Finally, we consider the importance of validating the retrieval performances of
some of our proposed methods against the most recent datasets including a compar-
ative analysis of their performances with the most recent state-of-the-art methods
for 3D shape retrieval. Therefore, in Section 5.5 we adopted four of the most recent
3D shape benchmark datasets from SHREC, for such performance evaluation, us-
ing our most recent retrieval method, the APPFD-FK-GMM, where we examined
performances, robustness and compactness of the final shape descriptor returned,
in line with the objectives of this research (see Section 1.3 and Section 2.3.1). The
outcomes of the APPFD-FK-GMM method are then compared side-by-side with the
earlier method (HAPPS-1), including several other state-of-the-art methods which
were also evaluated on these four datasets. In Experiment 9 (Section 5.5.2) the
SHREC’17 PRoNTo dataset was considered for this evaluation. In Experiment 10
(Section 5.5.3), we adopted the SHREC’18 protein dataset, and the SHREC’19
protein dataset for Experiment 11 (Section 5.5.4). We decided to try a completely
unique 3D retrieval challenge in Experiment 12 (Section 5.5.5), where the SHREC’20
3D surface relief dataset was used instead. A review of the overall retrieval perfor-
mance summary of the APPFD-FK-GMM method is presented in Section 6.3.3. In
addition to the above, we have also actively contributed to the latest 3D protein
surface retrieval challenges (the SHREC’21 Track: Retrieval and classification of pro-
tein surfaces equipped with physical and chemical properties) where the comparative
performance of its “Testing” dataset is published in [188], while the performances
with its “Training” dataset has been experimentally evaluated in Section 5.6.
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Chapter 6

CONCLUSION AND FUTURE
WORK

The development of a concise, robust and computationally efficient 3D representa-
tion, including a reliable technique for determining the (dis)similarity between 3D
objects remain common problems in 3D objects recognition, classification, detection
and retrieval tasks, especially when we consider the fast rate at which 3D models
and domain-specific 3D databases are emerging. Although several methods have
been developed for 3D shape representation and matching, a number of open prob-
lems associated with 3D shape matching and retrieval are yet to be satisfactorily
addressed, such as finding concise 3D shape representation. In addition, majority
of the existing 3D shape retrieval algorithms and matching techniques are either
too complicated, computationally prohibitive, or not robust enough to accurately
describe 3D objects, and most of these methods also are not widely applicable nor
able to generalise across diverse range of retrieval challenges. These constitutes a
“3D shape search” problem.

This thesis explored different issues associated with the challenges of developing
a highly effective (i.e. concise, robust, and computationally efficient) 3D objects
representation to facilitate 3D shape description, indexing, matching and retrieval.
In this chapter, overall summaries of all the research work in this thesis are provided,
the most important results are emphasised, followed by a summary of our research
contributions, overview of findings, as well as limitations and strength of this thesis.
In addition, a concise summary of retrieval performances of each of our contributions
is presented. Finally, we conclude the thesis by highlighting what has been learned
from this thesis and provide recommendations for further research direction.

6.1 Overall Thesis Review

The “3D Shape search” problem for additive manufacturing (3D repository and the
rapidly emerging domain-specific 3D benchmark datasets) involves computing highly
effective mathematical representations of 3D objects to facilitate the searching and
retrieval of these objects from their respective database or repository. Motivated
by the need to address the “3D Shape search” problem, in addition to the wide
application areas of 3D shape retrieval methods and associated techniques, our main
goal in this research was to learn from existing techniques and develop a new set
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of improved 3D shape retrieval methods (descriptors) for rigid and non-rigid 3D
meshes and point clouds retrieval. To achieve these, we first examined two broad
approaches to 3D shape retrieval: the data-driven and knowledge-based approaches
(see Section 2.5) and adopted the knowledge-based approach considering that it
does not require large training dataset or high computing resources to succeed, then
we focused on the statistically-based technique to 3D shape description due to its
popularity, success, and ease of implementation (see Section 2.6). In particular, we
have focused on 3D shape retrieval methods to address the challenges of 3D objects
retrieval, and the contribution of this thesis is four-fold as summarised in the next
section.

6.2 Review of Thesis Contributions

Storage is a huge concern for big and unstructured data. Majority of 3D models, in-
cluding the ones evaluated in this thesis are represented with hundreds of thousands
of points (other surfaces, upto millions of points) which presents serious challenges
for computing resources (memory and time). One of our major thesis contribu-
tions is the development of 3D shape retrieval methods (HoGD, APPFD, HAPPS,
and APPFD-FK-GMM) that are capable of robustly and accurately describing 3D
objects with very minimal points sample (i.e. 3, 500 to 4, 500) representing their
surface. Essentially, all our proposed methods reduce the representation of 3D tri-
angular meshes from 200, 000+ vertices, 95, 000+ faces to only about 4, 500 points
sample and further provide a compact representation for these surfaces in a way
that supports very efficient indexing and matching, for 3D shape retrieval and clas-
sification tasks.

We also highlight as major contributions of this thesis, the development and
application of above-mentioned four novel and efficient 3D point cloud or trian-
gular mesh surface representations, which are: (i) the global HoGD, (ii) the local
APPFD, (iii) the hybrid HAPPS, and (iv) the global APPFD-FK-GMM, each of
which addresses different aspects of the 3D Shape search problem.

6.2.1 Contributions by The Local APPFD Method

An overview of the APPFD computation approach is presented in Figure 4.6. Al-
though the core features extraction technique presented in this implementation is
inspired by [252, 136] and [198], our method addresses the limitations with these
approaches, thus: (i) The PPF technique by previous work [252, 136, 198] com-
pletely depends upon the estimated surface normals, whereby any imprecise normal
estimation may produce low-quality descriptors. In order to compensate for this, we
propose a novel 2-dimensional local angular feature, ϕ and θ, which is independent
of the normal vector, and used to augment the PPF technique to improve its overall
robustness and accuracy. (ii) The APPFD descriptor is computed only on selected
surface region (i.e. the LSP) around key points of a given 3D surface, rather than
the entire surface, and describes local surfaces with very little number of points (as
low as 3,500 points), which is an improvement over all other methods. (iii) We
adopt the voxel-grid down-sampling technique instead (which is more intuitive and
accurate) as a better alternative to other 3D key point detection technique such
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as Harris [220, 58] (which, on the other hand, is unreliable for most 3D objects as
revealed in Figure 3.17, where wrong, inconsistent, and non-repeatable key points
are returned). We show in Figures 3.14 and 3.15 that the down-sampled points are
capable of correctly representing the entire geometry of the sampled surface (see
Section 3.3.5).

6.2.2 Contribution by The Global HoGD Method

We introduce a new global descriptor, the HoGD described in Section 4.2.2, which is
one of the simplest, most intuitive, compact, and computationally efficient descrip-
tion of the global structure of 3D object. It does not depend on surface normals
or feature extraction, hence, computes extremely fast and eliminates the extra pro-
cessing time which is demanded by surface normals estimation. The key advantage
of this descriptor is that it can directly be computed from raw mesh vertices or
points in point cloud, without initial feature extraction steps (see Figure 4.7). How-
ever, although its robustness is directly proportional to the number, N of vertices
or points, where higher values of N would improve its capability, it is still able to
provide meaningful contribution to the APPFD with as low as N = 3500, 4500.
Retrieval performances evaluation of the HoGD method are provided in Section 5.6.

Considering that the local APPFD is most suitable for non-rigid objects, the
HoGD provides a compact and efficient global shape representation to extend the
capabilities of the APPFD in dealing with full rigid 3D objects, especially in het-
erogeneous dataset which contains both rigid and non-rigid 3D objects, such as the
SHREC’14 dataset and datasets with complex surface structure, such as the protein
retrieval datasets (see Section 5.2). The combination of these two local and global
descriptor yields the HAPPS which is generalisable across different 3D benchmark
datasets.

6.2.3 Contributions by The Hybrid HAPPS Method

The HAPPS (see Section 4.2.3) is a hybrid 3D shape descriptor which rely on the
descriptive power of the local APPFD and the HoGD to provide reliable signature
for both rigid and non-rigid 3D objects, and generalises well across several bench-
mark datasets. The HAPPS retrieval method provides an improvement over the
retrieval abilities of the individual APPFD or HoGD that are combined to form it.
We demonstrate this through the experimental evaluations in Section 5.6. Here, the
HAPPS-1 method only compare its retrieval performances with those of the HoGD
method, using the “training” set of the SHREC’21 3D protein benchmark dataset.
However, we refer the reader to [188] for a comprehensive retrieval and classification
performances of the HAPPS-1 method, where its performances are compared to the
performances of several other state-of-the-art methods, but using the “testing” set,
instead. More importantly, we propose the HAPPS as a framework which allows a
combination of the descriptive power of the APPFD with any other global shape
descriptor in order to address certain 3D retrieval challenges and improve overall
retrieval performance (see Figure 4.8). In addition, Table 6.1 and Table 6.2 provide
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SHREC’18 PROBLEM: TABLE 5.5 (Experiment 1)

State-Of-The-Art
(SOTA)
Methods [121]

SOTA
Performance
Rankings

HAPPS-1
Performance
Ranking

Remark

· HAPT4
· WKS
· 3D FusionNet
· GSGW

2nd

3rd

4th

5th

1st HAPPS-1 method out-performs every other state-of-
the-art methods for the SHREC’18 retrieval prob-
lem. This ranking is based on the individual perfor-
mances (considering the evaluation statistics: NN,
FT, ST, E, DCG) of each retrieval method.

SHREC’17 PROBLEM: TABLE 5.9 (Experiment 2)

State-Of-The-Art
(SOTA)
Methods [142]

SOTA
Performance
Rankings

HAPPS-1
Performance
Ranking

Remark

· BoW-RoPS-DMF-3
· BPHAPT
· CDSPF
· SnapNet

1st

2nd

4th

5th

2nd and 3rd HAPPS-1 method ranks 2nd overall position with
the NN statistic and 3rd in other statistics, against
thirty-five other state-of-the-art methods from eight
authors, for the SHREC’17 retrieval problem. This
ranking is based on the individual performances
(considering the evaluation statistics: NN, FT, ST,
E, DCG) of each retrieval method.

SHREC’10 PROBLEM: TABLE 5.10 (Experiment 3)

State-Of-The-Art
(SOTA)
Methods [140]

SOTA
Performance
Rankings

HAPPS-1
Performance
Ranking

Remark

· MR-BF-DSIFT-E
· DMEVD Run1
· SQFD(WKS)

1st

2nd

4th

1st and 3rd HAPPS-1 method ranks 1st overall position with
the NN statistic and 3rd place in other statis-
tics, against three other state-of-the-art methods for
the SHREC’10 retrieval problem. This ranking is
based on the individual performances (considering
the evaluation statistics: NN, FT, ST, E, DCG) of
each retrieval method.

SHREC’11 PROBLEM: TABLE 5.15 (Experiment 4)

State-Of-The-Art
(SOTA)
Methods [139]

SOTA
Performance
Rankings

HAPPS-1
Performance
Ranking

Remark

· SD-GDM-meshSIFT
· MDS-CM-BOF Run1
· OrigM-n12-normA
· MLSF
· BOGH
· FOG+MRR

1st

2nd

3rd

4th

5th

6th

3rd and 7th HAPPS-1 method ranks 3rd in NN statistic and
7th overall position among nine other state-of-the-
art methods for the SHREC’11 retrieval problem.
This ranking is based on the individual performances
(considering the evaluation statistics: NN, FT, ST,
E, DCG) of each retrieval method.

SHREC’19 PROBLEM: TABLES 5.22

& 5.23

(Experiment 5)

State-Of-The-Art
(SOTA)
Methods [123]

SOTA
Performance
Rankings

HAPPS-1
Performance
Ranking

Remark

· 3DZD2
· HAPT2
· GASD
· ConvLDSNet2

1st

2nd

4th

5th

3rd HAPPS-1 method ranks third overall against four
other state-of-the-art methods for the SHREC’19
protein retrieval problem. This ranking is based on
the individual performances (considering the evalu-
ation statistics: NN, FT, ST, E, DCG) of each re-
trieval method.

Table 6.1: Summaries of the retrieval performance rankings of the HAPPS-1 method
compared to other top-most performing state-of-the-art methods on various 3D
benchmark datasets (retrieval challenges). These summaries reveal how the per-
formances of our proposed method compares to other state-of-the-art methods for
each dataset or retrieval challenge.
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SHREC’20 PROBLEM: TABLE 5.24

& 5.26

(Experiment 6)

State-Of-The-Art
(SOTA)
Methods [122]

SOTA
Performance
Rankings

HAPPS
Performance
Ranking

Remark

· WKS/SGWS
· 3DZD/3DZM
· HAPT
· GraphCNN

1st

2nd

4th

5th

2nd and 3rd HAPPS ranks 2nd with the NN statistic (Protein
level classification) and 3rd overall positions (Pro-
tein/Species level classifications) against five other
state-of-the-art methods for the SHREC’20 protein
retrieval problem. This ranking is based on the in-
dividual performances (considering the evaluation
statistics: NN, FT, ST, mAP) of each retrieval
method.

SHREC’21 PROBLEM: SOURCE [188]

State-Of-The-Art
(SOTA)
Methods [188]

SOTA
Performance
Rankings

HAPPS-1
Performance
Ranking

Remark

· JHCA HAPT
· 3DZD
· GLoFe
· MPGCNNs

1st

2nd

4th

5th

2nd and 3rd HAPPS-1 method competes very closely with the
highest-ranking method, ranks 2nd and 3rd over-
all positions in several other evaluation statistics,
against four other state-of-the-art methods, for the
SHREC’21 protein retrieval problem. This ranking
is based on the individual performances (consider-
ing the evaluation statistics: NN, FT, ST, E, DCG,
mAP, and many others) of each retrieval method.

Table 6.2: Summaries of the retrieval performance rankings of the HAPPS-1 method
compared to other top-most performing state-of-the-art methods on the SHREC’20
and SHREC’21 3D proteins benchmark datasets (retrieval challenges). These sum-
maries reveal how the performances of our proposed method compares to other
state-of-the-art methods for each dataset or retrieval challenge.
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concise summaries of the overall retrieval performance rankings of our proposed
HAPPS method in comparison to several other state-of-the-art (SOTA) methods
for each of the dataset (shape retrieval challenge) that these methods have sepa-
rately been evaluated against. Finally, in Section 6.3.1, we also provide summarised
discussions of the retrieval performances of the HAPPS method.

SHREC’12 PROBLEM: TABLE 5.29 (Experiment 7)

State-Of-The-Art
(SOTA)
Methods [131]

SOTA
Performance
Rankings

APPFD
Performance
Ranking

Remark

· DG1SIFT
· DVD+DB+GMR
· ZFDR
· 3DSP-L2-1000-hik
· LSD-sum

1st

2nd

3rd

4th

6th

5th APPFD ranks 5th overall position with five other
state-of-the-art methods for the SHREC’12 3D
shape retrieval problem. This ranking is based on
the individual performances (considering the evalu-
ation statistics: NN, FT, ST, E, DCG) of each re-
trieval method.

SHREC’14 PROBLEM: TABLE 5.34 (Experiment 8)

State-Of-The-Art
(SOTA)
Methods [132]

SOTA
Performance
Rankings

APPFD
Performance
Ranking

Remark

· LCDR-DBSVC
· MR-D1SIFT
· ZFDR
· DBNAA DERE
· KVLAD

1st

2nd

3rd

4th

6th

5th APPFD ranks 5th overall position again, com-
pared to five other state-of-the-art methods for
the SHREC’14 retrieval problem. This ranking is
based on the individual performances (considering
the evaluation statistics: NN, FT, ST, E, DCG) of
each retrieval method.

Table 6.3: Summaries of the retrieval performance rankings of the APPFD method
compared to other top-most performing state-of-the-art methods on the SHREC’12
and SHREC’14 3D benchmark datasets (retrieval challenges). These summaries
reveal how the performances of our proposed method compares to other state-of-
the-art methods for each dataset or retrieval challenge.

6.2.4 Contributions by The Global APPFD-FK Method

It is important to mention again that the APPFD is applicable to both the par-
tial and complete shapes, while the HoGD is applicable to the complete shapes
only. Although a combination of these descriptors demonstrated excellent retrieval
accuracies through experimental evaluations, there are concerns regarding the ex-
tremely high-dimensional final fv by the APPFD, where for our 6-dimensional local
APPF and the parameter b(APPFD) = 8, we get 86 = 262, 144-dimensional fv. While
such fv is capable of robustly representing a partial or full 3D object, it is very
high-dimensional. The following contributions are made to tackle this problem: (i)
We propose the APPFD-FK-GMM framework (see Section 4.2.4 and Figure 4.9)
to produce a more compact (i.e. very low-dimensional) global representation of 3D
objects, using either the APPFD or HAPPS, and still obtain excellent retrieval ac-
curacies. (ii) This representation utilises the FK [218], which is a robust technique
that encodes (agglomerates) independent sets of variable-sized local descriptors into
a fixed-sized vector representation for each input 3D object. The outcome, there-
fore, is a global shape descriptor (more compact and stable), which is a significant
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improvement over either of the local APPFD or hybrid HAPPS method. (iii) With
linear dimensionality reduction technique (PCA) of derived FV from FK which uses
GMM-trained local APPFD, we are able to effectively describe a 3D surface with
as low as 162-dimensional fv (see Section 4.2.4). Experimental results demonstrate
how the retrieval accuracies of this method outperforms and rivals most state-of-
the-art methods, including the HAPPS method (see results in Section 5.5.2, for
example), (iv) Through experimental evaluations, we demonstrate the suitability of
the L2 norm for matching the APPFD-FK-GMM signature, (v) The final outcome of
implementing the APPFD-FK-GMM framework is an improvement to the already
robust local APPFD and hybrid HAPPS retrieval methods.

Generally, through experimental evaluations, we independently tested each of
our proposed 3D shape retrieval methods in this thesis (APPFD, HAPPS-1&2, and
APPFD-FK-GMM) across diverse range of 3D retrieval domains and benchmark
datasets, each of which contains considerably very large number of 3D objects and
present unique levels of retrieval challenges/difficulties to shape retrieval algorithms.
Experimental results demonstrate the robustness and generality of our proposed
methods across the different datasets which involve rigid, non-rigid, watertight, and
non-watertight 3D meshes and point clouds, where they perform generally well, indi-
cating their tendencies for excellent performances in other 3D computer vision tasks.
This is in line with the characteristics of shape descriptors outlined in Section 2.3.1.
The APPFD method is the basis for all other retrieval methods we propose in this
thesis. This method is characterised by four key parameters, which are: N , r, vs,
and b(APPFD) (see Section 5.3.1). We can see from the different experimental evalua-
tions in Chapter 4 (e.g. the experimental evaluations in Section 5.3) that the values
of each of these parameter settings are within close range for the different datasets
or retrieval challenges. Considering that we adopt the knowledge-based approach,
which uses hand-crafted feature-extraction techniques, the end results of our meth-
ods (see Chapter 4) rivals with most state-of-the-art methods which adopted the
data-driven approach, instead.

6.2.5 Summary

Experimental results have revealed that for each of the retrieval methods we propose
in this thesis, sampling very little number of points (between 3,500 to 4,500) from
the surface of 3D objects is adequate to effectively describe these surfaces to produce
robust signatures which can be used to match the objects with impressive retrieval
accuracies, for all the benchmark datasets we have evaluated. However, considering
the experimental evaluations of the HAPPS method with the SHREC’20 protein
dataset (see Section 5.3.5), where only 3,500 points were sampled due to the large
size of the dataset. Although the results returned were impressive, other experimen-
tal runs/evaluations, such as with the SHREC’18 protein dataset where the points
samples are increased to 4,500 points produced even better and higher retrieval accu-
racies (see Section 5.3.1. Therefore, we expect that a further increase in the number
of points samples, N (while adopting the suitable parameter settings) would further
improve the overall accuracies of our shape retrieval methods. Note that there would
be a trade-off between retrieval accuracies and computational cost. Accordingly, the
retrieval accuracies recorded for the SHREC’19 dataset in Section 5.3.5 could fur-
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ther be improved by increasing the parameter, N from 3,500 to 4,500 or more.

The proposed 3D shape descriptors in this thesis can easily be integrated into
building a robust search engine (3D-CBRS). For an overall 3D shape retrieval
pipeline (see Figure 2.3 in Section 2.2.4), it is important to identify and adopt both
shape description and matching techniques whose combination produces results that
supports efficiency and accuracy at the same time. For example, if the final retrieval
accuracies score for an efficient technique combination is slightly lower than that of
an inefficient technique, then it might be worth adopting the former technique to
mitigate computational costs. Matching our final shape descriptors using different
distance metrics (see Section 2.2.3) enable us to determine the best viable alternative
matching technique which is suitable for the descriptor. This is important for a 3D
shape retrieval system. Through experimental evaluations, we have investigated the
suitability of several (dis)similarity metrics and matching methods for our proposed
shape retrieval methods.

In our research implementations, all the methods we propose in this thesis rely
on point clouds generated from meshes or raw point clouds input. Therefore, if the
inputs to our retrieval algorithm are given as triangular meshes, the technique in
Section 3.3 are first applied to convert an input 3D mesh to point cloud and its
corresponding surface normals. This process is illustrated in Figure 3.8. However,
if the input to our algorithm is given as raw point cloud data, as in SHREC’17
PRoNTo dataset [142], we instead adopt the technique described in Section 3.3.1 to
estimate their corresponding normal vectors. Since most 3D datasets are presented
as a triangular mesh, we first sample N points from the sur(face) of mesh to return
the equal number of points for all 3D shapes in the database. The points sampling
techniques we use are described in Section 3.2 and 3.3. In conclusion, we adopt
point cloud representation of meshes or raw point clouds of shapes for all datasets
used in this study.

6.3 Summary of The Retrieval Performances of

Our Proposed Methods

In Chapter 5, we presented and discussed the qualitative and quantitative retrieval
performances of each of our proposed methods, involving up to ten SHREC bench-
mark datasets. We summarised the outcome of those experimental evaluations in
Section 5.7. The performance evaluation strategy we used involves testing the ro-
bustness of each of our proposed methods on at least two datasets, including com-
paring their overall performance results with several other state-of-the-art methods
which are applicable to the same dataset and retrieval challenge. We considered the
following standard IR quantitative evaluation metrics: NN, FT, ST, E, DCG, PRC,
including the mAP, nDCG, and AUC metrics. This section provides a summary
of the retrieval performances (results) obtained in Chapter 4, regarding each of the
methods proposed in this thesis.
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6.3.1 Summary of The Retrieval Performances of The HAPPS
Method

There are 2,267 protein models in the SHREC’18 protein benchmark dataset (see
Section 5.2.7). Interestingly, the HAPPS-1 method demonstrates superiority over
all the other six state-of-the-art methods that competed for that retrieval challenge
which are - 3D-FusionNet, HAPT4, SIWKS, DEM, WKS, and GSGW [121] (see
Section 5.3). Our evaluation was done using the “All” classification and evaluation
category which is the only publicly available GT provided by the track organisers,
and we show the quantitative results of this evaluation in Table 5.5. In Section 5.3.2,
we tested the HAPPS-1 method on the SHREC’17 PRoNTo dataset, which contains
100 raw point cloud 3D models. We show the quantitative performance results of the
HAPPS-1 compared to only the best results of several other state-of-the-art methods
in Table 5.9. These results reveal that the HAPPS-1 method ranks 3rd place, out of
9 methods and demonstrates its superiority over six other state-of-the-art methods
applicable to this dataset and retrieval challenge, which are - SnapNet, m3DSH-3,
MFLO-F-IWKS, SQDF(wks), CDSPF and AlphaVol1 methods in [142]. However,
the overall qualitative performance of the HAPPS-1 is not too far from those of the
BoW-RoPS-DMF-3 and BPHAPT methods (see Figure 5.16) which performed the
highest for this retrieval challenge and dataset.

The overall retrieval performance of the HAPPS method is excellent on all the
datasets evaluated against this method. Table 6.1 and Table 6.2 provide overall re-
trieval performance rankings of the HAPPS method, in comparison to several other
state-of-the-art methods for various 3D shape retrieval challenges (datasets). In ad-
dition, among all the proposed methods in this thesis, the HAPPS method records
the highest overall performances, followed by our latest and improved method, the
APPFD-FK-GMM. Essentially, the retrieval performances of the HAPPS method
has been tested/evaluated on six different benchmark datasets, which are the SHREC’10,
11, 17, 18, 19 and SHREC’20 protein datasets (see Section 5.2 for more details re-
garding these datasets). For the SHREC’10 dataset evaluation (see Section 5.3.3),
the best experimental run (run-3a) of the HAPPS-1 method rivals with the best
overall state-of-the-art method (DMEVD Run1 in [140]) and outperforms the other
two methods (MR-BF-DSIFT-E and SQDF(wks) in [140]) which are applicable to
the retrieval challenge/dataset - see Table 5.10. Secondly, regarding the performance
evaluation of the HAPPS-1 method on the SHREC’11 retrieval challenge and dataset
(see Section 5.3.4), results of the best experimental run of the HAPPS-1 method
(run-4a) rivals with the results of three other state-of-the-art methods, which are
the FOG+MRR, BOGH, and MLSF methods in [139]. In addition, our results out-
performs the T-NoNorm-40Coef, HKS and PatchBOF 150 methods in [139], while
the SD-GDM-meshSIFT and OrigM-n12-normA in [139] had the highest overall per-
formance scores above the HAPPS-1, as presented in Table 5.15.

Evaluating the HAPPS-1 method on the SHREC’19 protein retrieval challenge,
which involves 5,298 protein models, two classification or GT files were considered,
which are the Proteins and the Species classification levels (see Section 5.3.5). Ex-
perimental results demonstrate the superiority of our method with the best exper-
imental run (run-5a) over the results of two other state-of-the-art methods (Con-
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vLDSNet2 and GASD in [123]), which also performs very close to the results of
two other methods (3DZD2 and HAPT2 in [123]) in terms of quantitative perfor-
mances as revealed in Table 5.22 and Table 5.23 for the Proteins and Species level
classifications, respectively. Finally, the retrieval performances of the HAPPS-1 and
HAPPS-2 methods were examined on the SHREC’20 protein dataset, which contains
588 protein models, using two different GT or classification levels, the Protein and
Species levels (see Section 5.2.9). Experimental results (see Section 5.3.6) demon-
strate the superiority of the HAPPS-1 and HAPPS-2 methods over four other state-
of-the-art methods, which are: CODSEQ1&CODSEQ2, 3DZD&3DZM, HAPT1-4,
and GraphCNN1-4 in [122]. Overall, in terms of qualitative and quantitative perfor-
mances, our methods ranked very closely to two of the highest performing state-of-
the-art methods in both the Proteins (see Table 5.24) and Species (see Table 5.26)
classification levels, which are the WKS/SGWS and 3DZD/3DZM. These results
are visualised in PRC plots presented in Figure 5.28.

6.3.2 Summary of The Retrieval Performances of The APPFD
Method

The APPFD method was evaluated against two of the most interesting datasets,
which are the SHREC’12 generic dataset (see Section 5.2.4) and SHREC’14 large
scale comprehensive 3D benchmark dataset (see Section 5.2.5), having 1,200 and
8,987 3D objects, respectively. Each of these datasets consists of rigid and non-
rigid 3D models, most of which are non-watertight (i.e. defective). First, on the
SHREC’12 dataset and retrieval challenge, experimental results reveals that the
APPFD method performed generally low, where it ranked 5th out of 6 state-of-
the-art methods used in this dataset/retrieval challenge. Although, the APPFD
method outperformed one of the state-of-the-art method (i.e. LSD-sum in [131]), it
was outperformed by the DG1SIFT, DVD+DB+GMR, ZFDR and 3DSP-L2-1000-
hik methods in [131] (see Table 5.29). The reasons for the low overall performances
of the APPFD method were explained in Section 5.4.1, where we observed some
of the reasons discussed in Section 3.2.1, regarding lots of defective data in the
SHREC’12 dataset (3D triangular meshes), whereas our pre-processing steps (see
Section 3.2) was not designed to automatically handle defective data.

We see from experimental evaluations that our proposed method (APPFD) is
not very suitable for datasets which are characterised by overly complicated and
non-rigid models, etc., because it did not consider how to deal with complicated
models with few points (i.e. 3, 500 or 4, , 500 points), articulated models, highly
non-rigid models such as humans and snakes in Fig 3.31, etc. It is important to
note the applicability of the APPFD method for rigid partial and full shapes, and
partial and full shapes subject to affine transformations, since the 6 extracted APPF
are invariants only under such transformations.

Regarding the SHREC’14 dataset evaluation with the APPFD method, involving
8,987 rigid and non-rigid triangular meshes, experimental results of three evaluation
criteria were examined, which are: (i) comprehensive, (ii) proportionally-weighted
and (iii) reciprocally-weighted evaluations (see Section 5.4.2). In all these criteria,
the results of the best experimental run (run-8c) for the APPFD method outper-
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formed one of five state-of-the-art methods (i.e. KVLAD [132]) for that retrieval
challenge/dataset, but got outperformed by the remaining four methods, which are:
DBNAA DERE, MR-D1SIFT, ZFDR, and LCDR-DBSVC methods in [132] (see
Table 5.34). However, the performance of the APPFD method is not very far from
the best overall performing method - the LCDR-DBSVC, the reasons for its poor
performance are clearly obvious from the choice of parameters as explained in Sec-
tions 5.4.2 and 5.4.2, including that the proposed method (APPFD) was not designed
to deal with overly complicated and non-rigid articulated shapes.

Table 6.3 provides concise summaries of the overall retrieval performance rank-
ings of the APPFD method considering the SHREC’12 and SHREC’14 3D shape
retrieval challenges. The performance rankings provided are in comparison to those
of several other state-of-the-art methods for those retrieval challenges. It is very
obvious from experimental evaluation results (see Section 5.4) that our proposed
method (APPFD) and other methods did not perform so well in the SHREC’12 and
SHREC’14 retrieval challenge. Similar to the APPFD, the LSD-sum [121] evalu-
ated on the SHREC’12 dataset also depends on local features from the surface of
3D meshes, using up to 3, 000 points samples. Their descriptors were matched lo-
cally using the Hungarian algorithm, following k-means clustering. We believe that
the low number of points sample (less than 5000 points) is majorly responsible for
the poor performance of this method. On the other hand, we observe that methods,
such as the DSIFT and DVD [121] performed the highest for this dataset because:
(i) the DSIFT primarily uses multi-view (42 views) rendering from which dense lo-
cal descriptors are captured and further combined using the BoW model, typically
known to effectively combine 2D/3D local descriptors/features. (ii) although the
DSIFT outperformed the DVD method, this method captures both robust local and
global features from the 3D surface using Manifold ranking. In conclusion, we sub-
mit that the advantage of the DSIFT method is the dense feature extraction using
42 views all around the surface. Such number of views is enough to capture all the
deformations, features, and overall topology/structure of the underlying 3D surface.
In addition, the BoW method presents additional advantage to this approach. Al-
ternatively, the additional global features and manifold ranking used by the DVD
method adds to its robustness, unlike our proposed APPFD and LSD-sum methods,
which only depend on locally extracted features on an incredibly small number of
points samples.

Considering the SHREC’14 retrieval challenge, a summary of results from partic-
ipating methods also support our views regarding the performance of the proposed
APPFD method and others. With this dataset, the methods which ranked highest,
i.e. the LCDR-DBSVC, followed by the DSIFT [142] used view-based approach of
locally extracted features which were combined with advanced feature coding and
adaptive ranking. An apparent performance improvement was also recorded by the
DBSVC method after the application of Manifold ranking to its local features. Fi-
nally, similar to some of our views regarding the SHREC’12 dataset, we can confirm
that methods which applied the BoW framework and k-means clustering on local
features recorded higher improvements, unlike others and our proposed APPFD
method. In Table 6.3, we provide concise summaries of the retrieval performance
rankings of the APPFD method on two very interesting 3D benchmark datasets

210 Chapter 6 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

(SHREC’12 and SHREC’14). These summaries reveal how our method compares to
several other state-of-the-art methods for these retrieval challenge/datasets.

6.3.3 Summary of The Retrieval Performances of The APPFD-
FK-GMM Method

The APPFD-FK-GMM method has demonstrated impressive retrieval performances
across several different benchmark datasets, such as the SHREC’17, SHREC’18,
SHREC’19, and the SHREC’20 relief dataset, including SHREC’10 and SHREC’11
datasets, where it has been evaluated upon. However, in this thesis, we only pre-
sented and analysed the results using four of the most recent datasets from SHREC
2017 to SHREC 2020. It is important to state that the overall retrieval accuracy of
the APPFD-FK-GMM method is remarkably close to that of the HAPPS method
in all of the datasets and retrieval tasks these two methods have been applied.
However, on the SHREC’20 relief dataset, and for the first time, the APPFD-FK-
GMM method performed poorly compared to some state-of-the-art methods for this
dataset, mainly because the evaluation criteria for this retrieval task did not rely on
the geometry of the 3D surfaces, but strictly on their surface relief patterns. Unfor-
tunately, our methods, including the APPFD-FK-GMM method was not designed
for robustness against such surface properties (relief patterns). This also shows the
complexity of shape retrieval challenges about how to develop the general-purpose
techniques. The prior knowledge is usually required on how to perform 3D-Content-
based Shape Retrieval (3D-CBSR) tasks from pre-processing to the shape matching.
However, such knowledge is usually not available. A summary of the four different
experimental evaluations using the datasets indicated above are presented in the
paragraph below.

First, the experimental results using the APPFD-FK-GMM method on the
SHREC’17 dataset (see Section 5.5.2) reveals the superiority of the APPFD-FK-
GMM method over 13 other state-of-the-art methods, which are SnapNet, PO-
HAPT, m3DSH-1 to 6, HAPPS-1, GL-FV-IWKS, GL-SV-IWKS, MFLO-FV-IWKS,
MFLO-SV-IWKS, PCDL-FV-IWKS, PCDL-SV-IWKS, all SQDF-based, CDSPF,
and AlphaVol1-4 methods in [142], judging from the results in Table 5.7. Note that
for this experimental evaluation, the APPFD-FK-GMM method also outperforms
the HAPPS-1 method (see Table 5.39).

Secondly, the APPFD-FK-GMM method performs exceptionally well on the
SHREC’18 protein dataset, with overall retrieval accuracies being remarkably close
to that of the HAPPS-1 method. Similar to the evaluations with the HAPPS-1
method for this dataset (see Sections 5.3.1 and 6.3.1), the APPFD-FK-GMMmethod
also outperforms all other state-of-the-art methods (3D-FusionNet, HAPT1-4, SI-
WKS, DEM, WKS, and GSGW) [121], applicable to this retrieval challenge, in the
“All” classification level (also see the results in Table 5.42).

Thirdly, for both the Protein and the Species classification levels/GT evalua-
tions in the SHREC’19 protein dataset (see Section 5.5.4), the APPFD-FK-GMM
method demonstrates superiority over 2 out of 4 state-of-the-art methods, which
are: ConvLDSNet and Ft-PSSC methods, and rivals with the 3DZD and HAPT
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SHREC’17 PROBLEM: TABLE 5.39 (Experiment 9)

State-Of-The-Art
(SOTA)
Methods [142]

SOTA
Performance
Rankings

APPFD-FK-GMM
Performance
Ranking

Remark

· BoW-RoPS-DMF-3
· BPHAPT
· HAPPS-1

1st

3rd

3rd/4th

2nd APPFD-FK-GMM ranks 2nd overall best, better
than the HAPPS-1 method and several other state-
of-the-art methods for the SHREC’17 3D retrieval
problem. This ranking is based on the individual
performances (considering the evaluation statistics:
NN, FT, ST, E, DCG) of each retrieval method.

SHREC’18 PROBLEM: TABLE 5.42 (Experiment 10)

State-Of-The-Art
(SOTA)
Methods [121]

SOTA
Performance
Rankings

APPFD-FK-GMM
Performance
Ranking

Remark

· APPFD-FK-GMM
· HAPPS-1
· HAPT4

1st

2nd

3rd

1st APPFD-FK-GMM ranks 1st overall outperform-
ing every other state-of-the-art methods, including
HAPPS-1, for the SHREC’18 protein retrieval prob-
lem. This ranking is based on the individual perfor-
mances (considering the evaluation statistics: NN,
FT, ST, E, DCG) of each retrieval method.

SHREC’19 PROBLEM: TABLE 5.45 (Experiment 11)

State-Of-The-Art
(SOTA)
Methods [120]

SOTA
Performance
Rankings

APPFD-FK-GMM
Performance
Ranking

Remark

· 3DZD2
· HAPPS-1
· APPFD-FK-GMM

1st

2nd

3rd

3rd APPFD-FK-GMM ranks 3rd overall. Here, we com-
pare this improved method to only the top-two per-
forming methods for the SHREC’19 protein retrieval
problem. This ranking is based on the individual
performances (considering the evaluation statistics:
NN, FT, ST, E, DCG) of each retrieval method.

Table 6.4: Summaries of the retrieval performance rankings of the APPFD-FK-
GMM method compared to up to three other top-most performing state-of-the-art
methods including HAPPS, on the SHREC’17, SHREC’18 and SHREC’19 3D bench-
mark retrieval challenges or datasets. These summaries reveal how the performances
of our improved method compares to other top-performing methods for each retrieval
challenge.
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methods in [123], including the HAPPS-1 method. The results in Table 5.44 and
Table 5.45 highlight the comparative quantitative analyses of this method with the
HAPPS-1 and 3DZD2 methods, respectively. As already mentioned, the lower num-
ber of points sample (less that 5000 points) from each of the 3D surface used in this
evaluation due to the overall large size of the dataset, and the choice of parameter
values, are some of the major reasons why methods such as the 3DZD2 and HAPT
methods perform slightly better than our methods in this retrieval challenge, consid-
ering that in previous retrieval tasks our methods perform better. Another reason
is the inability to completely describe the extremely complicated and non-rigid ar-
ticulated shapes.The proposed methods can only deal with the full and partial rigid
shapes and the full and partial shapes subject to affine transformations, since the
6 extracted features are invariants only under such transformations. However, it is
almost impossible to develop a single method applicable to different datasets and
applications.

Finally, considering the SHREC’20 relief dataset, this method recorded an overall
low performance as earlier mentioned. The following state-of-the-art methods: OH,
DFE, DPML, SRNA, meshLBP-so and kd-tree FLANN [231] performed better than
the APPFD-FK-GMM method, except the PointNet+SQFD method. However, the
inferior performance recorded by the APPFD-FK-GMM method for this retrieval
challenge/dataset has already been justified in the first paragraph of this section.
In Table 6.4, we provide concise summaries of the retrieval performance rankings
for our improved retrieval method (the APPFD-FK-GMM), where we compare its
compares to only the top-3 performing methods for the SHREC’17, SHREC’18, and
SHREC’19 3D protein retrieval challenges.

6.3.4 Summary

Generally, we have presented concise summaries of the overall retrieval performance
rankings of each of our proposed methods, comparing these rankings with those of
several other state-of-the-art methods for each dataset (retrieval challenge). How-
ever, these tabular summaries are not complete representation of all the research
contributions of the proposed methods recorded in this thesis.

Several other criteria were also considered to examine the individual perfor-
mances of each of these methods, during each experimental evaluation, such as the
effects of different parameter settings, distance metrics adopted to match different
descriptors, number of points, N sampled from the surface of 3D objects, number
of bins, especially, the b(APPFD) used, as well as the number of locally extracted
features, etc. For example, we have been able to show in each of the experimental
evaluations in Chapter 4 how different parameter settings influence the compact-
ness of the final feature-vector (fv), including the overall robustness and retrieval
accuracies of our proposed methods (shape descriptors). Generally, in all the ex-
perimental evaluations analysed in this thesis for our proposed methods, the results
of experimental runs with the highest overall performances are compared to the
best results of several other state-of-the-art methods for that particular retrieval
challenge and/or dataset. We refer the reader to Sections 5.3, 5.4, and 5.5 for an
in-depth quantitative, as well as qualitative evaluation of our proposed HAPPS-1&2,
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APPFD, and improved APPFD-FK-GMM methods, respectively.

6.4 Research Findings

In this research study, we find that the overall performance of a shape retrieval sys-
tem or method does not only depend on the robustness of the shape descriptor used,
but on a number of different factors, such as the choice of distance metric(s) adopted
to match the descriptors, since a given distance metric is only suitable for certain
types of descriptors, and different metrics perform differently on a given shape de-
scriptor, as demonstrated in our experimental results in Table 5.14, Section 5.3.3,
where we first evaluate the overall performances of our descriptors using several
different distance metrics to examine and adopt the most suitable metric with best
overall results for the descriptor. In addition, the matching approach plays a vital
role in the overall performance of a shape retrieval method. For example, the results
of adopting local matching (i.e. matching local descriptors) and global matching
(i.e. matching global descriptors) for a given shape retrieval method, such as the
APPFD would definitely not be the same. We explain this in detain in Section 3.6.1.

Secondly, we find that the descriptive power or robustness of a shape retrieval
algorithm or method does not only or strictly depend on the dataset to which the
algorithm has been applied, but also on the GT and evaluation criteria. We see
this in the experimental results for the SHREC’19 (see Tables 5.44 and 5.45) and
SHREC’20 (see Tables 5.24 and 5.26) protein shape retrieval challenge, where two
different GT/classification levels (Proteins and Species) were adopted for perfor-
mance evaluation in each case, using exactly the same IR evaluation metrics. In the
above case, the overall performance results of the Proteins classification level are
higher than those of the Species level. Therefore, if the only GT available was that
of the Species classification level without the other, those results would be accepted
as the final judgement to the retrieval accuracies of the shape retrieval method that
produced them, which is not true, considering that a different GT (in this case, the
Proteins classification level) produces far higher results.

It is interestingly to also note that the size of dataset (i.e. the total number of
3D objects available in a dataset) has some influence on the overall performance
rating of a shape retrieval algorithm or method, whereby the larger the size of the
dataset, the lower the overall retrieval accuracies, and vice versa. We confirm this,
first, by comparing the overall retrieval performances (i.e. experimental results) of
the SHREC’10 (see Table 5.12, run-3a) and the SHREC’11 (see Table 5.18, run-4a)
retrieval of non-rigid 3D objects, which involves 200 and 600 watertight models,
respectively. We can see from these results that the overall performances of the
HAPPS-1 method on the SHREC’10 dataset with smaller dataset are higher than
those with the SHREC’11 dataset, which is larger, considering exactly the same
evaluation metrics. However, the slight differences in the choice of parameter set-
tings for these two datasets (see Tables 5.11 and 5.16) evaluation could also account
for the overall results obtained.

Currently, as already stated in Section 1.1, to the best of our knowledge, there is
hardly a knowledge-based 3D shape descriptor that has been tested across a wide va-
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riety of 3D benchmark datasets (each of which presents a unique retrieval challenge
to the shape descriptor or retrieval algorithm) while also recording excellent retrieval
performances across board, except for the 3D shape descriptors we have proposed
in this thesis. We demonstrate and confirm how generic our retrieval methods are,
through numerous experimental evaluations and analyses, where the retrieval per-
formances of each of our proposed retrieval methods (see Section 4.2) have been
validated on at least two different benchmark datasets as in Chapter 4. Basically,
the APPFD is the main or baseline algorithm for both the HAPPS and APPFD-
FK-GMM methods, and considering that these algorithms have been evaluated on
a minimum of ten different SHREC benchmark datasets (Table 5.1), where for each
retrieval challenge/dataset, most of the other state-of-the-art methods whose re-
trieval performances were evaluated are data-driven, and no other knowledge-based
approach has been evaluated with all the datasets presented in Table 5.1, except
our APPFD-based methods. Experimental results (see Chapter 4) validates that
our knowledge-based 3D shape descriptors or retrieval methods performs so well, on
average across all the ten different 3D benchmark datasets.

Recently, 3D shape retrieval methods known for high performance rankings are
the ones which adopts the data-driven approach, which deals with large training
and testing datasets and some complicated feature extraction and shape descrip-
tion techniques (see Section 2.5.1). Alternatively, all our proposed methods adopt a
rather simpler knowledge-based approach (see Section 2.5.2) to produce retrieval and
classification results that outperforms the the data-driven methods in most retrieval
challenges (datasets) and competes very closely with some data-driven methods in
other cases, in terms of retrieval performances (these are seen in the experimental
evaluation results in Chapter 5.

In this thesis, we present and evaluate a set of 3D shape descriptors (retrieval
methods) that has been tested against all the issues summarised in these research
findings, and they have demonstrated exceptional performances across different
benchmark datasets, including outperforming most state-of-the-art methods appli-
cable to those datasets and retrieval challenges.

6.5 Future Research Direction

In this section, we explain what should be done following the research work presented
in this thesis and how other researchers who follow this research, its methodology, or
concepts are expected to get involved in order to contribute and/or improve on the
current work. Several research techniques have been adopted and discuss in different
sections of this thesis. In Chapter 5, retrieval results of several experimental eval-
uations have also been reported for all the 3D shape retrieval methods we propose
in this thesis. In these experiments, we have considered several different evaluation
approaches, evaluation metrics, retrieval challenges (datasets), as well as data repre-
sentations or format, etc. Many factors could be responsible for the overall retrieval
performances of a 3D shape retrieval method, such as choice of matching method,
number of points sample (i.e. LoD), side of database, data source, pre-processing,
and feature-extraction technique applied.
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Experimental results in Chapter 5 and those clearly summarising the overall
retrieval performances ranking of our proposed methods compared to other state-of-
the-art methods (Table 6.1 through to Table 6.4) reveals a lot of interesting issues,
few of which are:

� Some retrieval methods worked better on certain datasets, opposed to others.
What could be learned from this, for future research direction (as stated earlier
in the thesis) is that different datasets presents completely unique retrieval
challenge to retrieval algorithms (method) due to some variations (i.e. rigid,
non-rigid, water-tight, non-water-tight, and/or defective surface) characterised
by these different datasets. Hence, in developing a new method or improving
on existing one, it is important to consider these data variations.

� Our proposed retrieval methods, such as the HAPPS and APPFD-FK-GMM
methods performs exceptionally well in terms of rankings on several different
datasets (retrieval challenges). However, some experimental results with the
HAPPS method reveals its staggering performances (i.e. 2nd or 3rd ranking)
closely below the best overall ranking, even with different parameter settings.
Since this method relies on the baseline APPFD method, the very high final
feature-vector dimension of this descriptor could influence these results. Future
research direction into this aspect would be to further investigate the effects of
the very high-dimension of the APPFD method and possibly implement with
lower feature-vector dimension and improved performances.

� The very high length of the APPFD is characterised with very many zero
columns (i.e. bins). This is practically irrelevant to the (dis)similarity when
any two of these descriptors are being matched and impacts the overall per-
formances of the APPFD. Empirically, shortening the final feature-vector of
the APPFD would greatly improve its performances. Therefore, we expect
future research work on this to devise a technique that effectively remove all
zero bins/columns from the APPFD method.

� For such minimal number of surface points sample (3, 500 to 4, 500) used by
our proposed methods to describe a given 3D model, we would highly appraise
their retrieval performances. Considering this, we can say that our proposed
methods have met the characteristics of a good 3D shape descriptor (explained
in Section 2.3.1). Future research direction may be interested to investigate
the possibilities of further performance improvements by increasing the 3D
surface’s LoD (i.e. the value of N) with appropriate parameter settings. How-
ever, doing so would present a trade-off between performance and computing
resources.

Experimental results show how parameter settings of our proposed methods af-
fects the overall retrieval performances. This could also account for the reason some
other methods do/not perform well on certain datasets. Basically, several other
factors such as incorrectly estimated surface normal (which other features depend
upon) can affect performance of some methods work well on certain datasets, for
methods relying on surface normals. Other future research directions are explained
below.
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First, our proposed APPFD method in this thesis (see Section 4.2.1) involves a
binning approach where all the locally extracted APPF are stacked together before
multi-dimensional binning technique is applied to all 6-feature dimension - see Sec-
tion 4.2.1. The final fv derived becomes the normalised, flattened multi-dimensional
histogram. This is because, we adopted the global matching approach for all our
descriptors, instead of local matching (see Section 2.2.6). Sadly, a lot of shape in-
formation or details would have been lost during the process of stacking together
the locally-extracted APPF. Although this is the case for our most-recent improve-
ment (i.e. the APPFD-FK-GMM method, as described in Section 4.2.4), in future
research, we hope to be able to compute the APPFD separately for each LSP and
subsequently adopt the local matching approach, as opposed to global matching of
full shapes/surfaces. We hope that this concept would further improve the over-
all performances (accuracy and robustness) of, strictly, the APPFD method for 3D
shape retrieval and/or classification tasks.

Secondly, the overall performance of our proposed APPFD method relies on
its parameter settings and the features extracted: five “angular” features and one
“length” feature. Finding appropriate parameter combination (settings) that would
yield consistent optimum performance (i.e. retrieval results) remains a big challenge
for the features extraction and shape descriptor approach we have adopted. Future
work might need to consider ways to improve upon this.

Thirdly, regarding the HoGD method, we would love to independently evaluate
this method on different datasets and investigate the effects of different number of
points sample or vertices, including the b(HoGD) parameter value, on its retrieval
performances. This is essential in order to further assess the overall performances
our the HAPPS method, with the contribution of the HoGD.

Fourthly, the primary goal of combining two or more shape descriptors (i.e.
local+local, local+global, or global+global) is to improve the overall retrieval perfor-
mance of the resultant hybrid approach, which is expected to be better than the
individual descriptors themselves. Unfortunately, this is not always the case, as
we have witnessed cases, where combining different descriptors result to poor over-
all performance, instead. An example is the PointNet+SQFD(run3) descriptor in
Table 5.46. Several other similar cases also exist. Essentially, the combination of
local+local, local+global, and global+global descriptors are applicable to different
categories of shapes: local+local are applicable to partial and full shapes, while the
latter two are applicable to the full shapes only. However, we believe that the best
approach to combining different shape descriptors is yet to be directly determined,
including that further investigation is needed to adopt the best possible combination
of the APPFD and HoGD or any other descriptor to produce a more robust HAPPS
method. This is subject to future work. In Section 4.2.3, we mentioned the need
to further investigate the impact of combining two or more descriptors with vari-
able lengths (i.e. 117, 649 and 196), using different similarity metrics and selected
datasets.

Fifthly, although we have investigated the overall performances of our meth-
ods on datasets containing a combination of rigid and non-rigid 3D objects, we
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have mainly evaluated the performance of our retrieval methods on datasets that
exclusively contain non-rigid 3D objects, and demonstrated the ability of our pro-
posed methods to generalise across a diverse domain of 3D shape retrieval challenge.
Our inability to test our methods on dataset(s) that exclusively contain rigid CAD
objects is due to unavailability of such benchmark datasets in the public domain.
However, in future work, we are interested in creating a rigid benchmark dataset
with GT, and evaluating our retrieval methods on dataset(s) which exclusively con-
tains rigid 3D CAD models, in order to further investigate the generality of our
methods and possibly improve on them if necessary.

Another important issue to stress is regarding the accuracy of estimated sur-
face normal, considering that our proposed methods somehow rely on this. We
mentioned in Section 3.3.2 how “inaccurately estimated normals would adversely af-
fect our final shape descriptor”, including subsequent feature extraction steps. In
Section 3.3.4, we empirically show how the normals simultaneously computed dur-
ing the BI phase produce more accurate outward-pointing normals, unlike with the
PCA-based technique that applies after pre-sampling of 3D surface points - see Fig-
ures 3.12 and 3.13. However, in future work, it may be useful to do an ablation
study about which method is better for shape retrieval between using the BI based
approach or the one estimated from the sampled points vis PCA approach, rather
than just criticizing the latter.

Finally, we have considered possibilities to build/develop a 3D-CBRS desktop
or web-based user-interface application which would provide non-technical users
(students or new researchers) the ability to apply our proposed methods to solve
real-world problem, by being able to perform actual 3D objects retrieval, test out
the different methods and parameter setting, apply different methods with different
parameters with ease, etc. However, the goal of such application is for academic and
research purpose, and to support teaching and learning of the subject (especially
to undergraduate students and early career researchers in 3D computer vision and
pattern recognition), in addition to being further developed into a functional product
or brand for personal or commercial use.
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Thesis-related Publications

In the course of this research, the following list of publications have resulted from
this thesis, which forms part of our research contributions. These submissions have
been peer-reviewed and published as conference and journal articles.

A.1 Nonrigid 3D Shape Retrieval with HAPPS:

A Novel Hybrid Augmented Point Pair Sig-

nature [175]

Author: Ekpo Otu, Reyer Zwiggelaar, David Hunter, Yonguai Liu, Article Type:
Conference Paper, Journal: 2019 International Conference on Computational Sci-
ence and Computational Intelligence (CSCI), Publisher: IEEEXplore, Pages: 662
- 668, Year: 2019, DOI: https://doi.org/10.1109/CSCI49370.2019.00124.

Abstract: “A robust, yet computationally efficient signature for describing 3D
shape remains a challenge for 3D computer vision and related applications. Hav-
ing a signature that is generalizable across a wider range of datasets becomes an-
other important research issue. This paper proposes a novel Hybrid signature,
the Augmented Point Pair Signature (HAPPS), that is robust, highly discriminat-
ing, efficient, and capable of effectively representing 3D point cloud and polygon
mesh surfaces. We tested the overall performances of HAPPS on three standard-
ized benchmark datasets for 3D shape retrieval: The Shape Retrieval Contest 2018
(SHREC’18) protein shapes benchmark, with 2,267 protein conformers, SHREC’17
Point cloud Retrieval of Nonrigid Toys (PRoNTo), with 100 3D point clouds, and
SHREC’10 Nonrigid shape retrieval having 200 triangular meshes. Using 6 standard
retrieval performance metrics to evaluate our results, we demonstrated the superi-
ority of our HAPPS retrieval method over several other state-of-the-art methods for
the SHREC’18 protein dataset, while also competing side-by-side with the best 2
performing methods for the other benchmark datasets.”
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A.2 SHREC 2020: Multi-domain protein shape

retrieval challenge [122]

Author: Florent Langenfeld, Matthieu Montes, Ekpo Otu, Reyer Zwiggelaar, David
Hunter, Yonguai Liu, Yu-Kun Lai, Paul L. Rosin, Tunde Aderinwale, Genki Terashi,
Charles Christoffer, Daisuke Kihara, Halim Benhabiles, Karim Hammoudi, Adnane
Cabani, Feryal Windal, Mahmoud Melkemi, Andrea Giachetti, Stelios Mylonas,
Apostolos Axenopoulos, Petros Daras, Yuxu Peng, Article Type: Journal Paper,
Journal: Computers & Graphics, Publisher: Elsevier, Volume: 91, Pages: 189–
198, Year: 2020, DOI: https://doi.org/10.1016/j.cag.2020.07.013.

Abstract: “Proteins are natural modular objects usually composed of several do-
mains, each domain bearing a specific function that is mediated through its surface,
which is accessible to vicinal molecules. This draws attention to an understudied
characteristic of protein structures: surface, that is mostly unexploited by protein
structure comparison methods. In the present work, we evaluated the performance
of six shape comparison methods, among which three are based on machine learning,
to distinguish between 588 multi-domain proteins and to recreate the evolutionary
relationships at the protein and species levels of the SCOPe database.

The six groups that participated in the challenge submitted a total of 15 sets of
results. We observed that the performance of all the methods significantly decreases
at the species level, suggesting that shape-only protein comparison is challenging for
closely related proteins. Even if the dataset is limited in size (only 588 proteins are
considered whereas more than 160,000 protein structures are experimentally solved),
we think that this work provides useful insights into the current shape comparison
methods performance and highlights possible limitations to large-scale applications
due to the computational cost.”

A.3 SHREC 2020: Retrieval of digital surfaces

with similar geometric reliefs [163]

Author: Elia Moscoso Thompson, Silvia Biasotti, Ekpo Otu, Reyer Zwiggelaar,
David Hunter, Yonghuai Liu, Andrea Giachetti, Claudio Tortorici, Naoufel Werghi,
Ahmad Shaker Obeid, Stefano Berretti, Hoang-Phuc Nguyen-Dinh, Minh-Quan Le,
Hai-Dang Nguyen, Minh-Triet Tran, Leonardo Gigli, Santiago Velasco-Forero, Beat-
riz Marcotegui, Ivan Sipiran, Benjamin Bustos, Ioannis Romanelis, Vlassis Fotis,
Gerasimos Arvanitis, Konstantinos Moustakas, Yoko Arteaga, and Ramamoorthy
Luxman, DOI: https://doi.org/10.1016/j.cag.2020.07.011, Article Type: Jour-
nal Paper, Journal: Computers & Graphics, Publisher: Elsevier, Volume: 91,
Pages: 199-218, Year: 2020.

Abstract: “This paper presents the methods that have participated in the SHREC
2020 contest on retrieval of surface patches with similar geometric reliefs and the
analysis of their performance over the benchmark created for this challenge. The
goal of the context is to verify the possibility of retrieving 3D models only based
on the reliefs that are present on their surface and to compare methods that are
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suitable for this task. This problem is related to many real world applications, such
as the classification of cultural heritage goods or the analysis of different materials.
To address this challenge, it is necessary to characterize the local ’geometric pattern’
information, possibly forgetting model size and bending. Seven groups participated
in this contest and twenty runs were submitted for evaluation. The performances of
the methods reveal that good results are achieved with a number of techniques that
use different approaches.”

A.4 SHREC 2021: Retrieval and classification of

protein surfaces equipped with physical &

chemical properties (Recent submission, March

2021)

Author: Andrea Raffo, Ulderico Fugacci, Ekpo Otu, Reyer Zwiggelaar, David
Hunter, Yonghuai Liu, and others, Article Type: Journal Paper, Journal: Com-
puters & Graphics, Publisher: Elsevier, Year: 2021.

Challenge: “The aim of this SHREC’21 track is to evaluate the performance of
retrieval and classification algorithms for protein surfaces characterized by physic-
ochemical properties. Starting from a set of protein structures in different confor-
mational states observed via NMR experiments and deposited in the PDB reposi-
tory, we build their Solvent Excluded Surface (SES) by the freely available software
NanoShaper. The track is jointly organized by IMATI-CNR and the CONCEPT
lab at IIT. The final report of this SHREC’21 track will be submitted as a joint
contribution to the international journal Computers & Graphics and will follow a
two-stage review process. The paper will be authored by the track coordinators and
all participants who submitted their results.”

Comment Five different groups from five different countries (including ours in
the UK) participated in this (i.e. the SHREC 2021 protein retrieval and classifica-
tion challenge). We adopted two different methods based on the variations in the
dataset. The first method is our HAPPS method presented in this thesis and the
second method is a novel exploratory data analysis based method called HP4-EDA.
These implementations can be found on this link . The outcome of performance
evaluation for all submitted methods from all participating groups reveal that both
our methods ranked second place, overall. This work has recently been submitted
to Computers & Graphics journal for publication.

A.5 SHREC 2021: Surface-based protein domains

retrieval (Recent submission, March 2021)

Author: Matthieu Montes, Florent Langenfeld, Ekpo Otu, Reyer Zwiggelaar, David
Hunter, Yonghuai Liu, and others, Article Type: Journal Paper, Journal: Com-
puters & Graphics, Publisher: Elsevier, Year: 2021.
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Challenge: “The aim of this track is to assess the performance of shape retrieval
methods on a dataset of related multi-domain protein surfaces. Domains are struc-
tural as well as functional sub-units of proteins, that can exist independently of the
rest of the protein. Usually, proteins are made of two or more of such domains, and
are the level at which protein interactions and functions are studied. To compare
proteins at the domain level for similarities is a common task in structural biol-
ogy, biochemistry or drug discovery. Proteins can be described as non-rigid surfaces
representing their solvent-excluded surface (SES) as defined by Connoly (Connoly
et al., J Appl Cryst. 1983). Additional, biologically-relevant information can be
provided, such as electrostatics, to further describe these molecular shapes. This
track proposes a set of representing the conformational space of 10 query domains
extracted from the PFAM database (El-Geabli et al., NAR, 2019) as well as 554 sur-
faces of multi-domain proteins. Compared to the previous Protein Shape Retrieval
contests, we focus on the evaluation of the performance to retrieve 10 individual
domains among a set of 554 multi-domains protein surfaces.”

Comment Five different groups from five different countries (including ours in
the UK) participated in this (i.e. the SHREC 2021 Surface-based protein domains
retrieval challenge). We applied our latest 3D retrieval and classification method, the
APPFD-FK-GMM to this problem which presented two varieties of datasets, each
posing a unique difficulty to retrieval algorithms. Experimental evaluation results
for all submitted methods from all participating groups reveal that our method
ranked also ranked second-overall in performance for both datasets. This work has
recently been submitted to Computers & Graphics journal for publication.
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Appendix B

Code and Data For Experimental
Evaluations

We decide to publish the codes and datasets reported in this thesis in order for
the reader or interested person to be able to reproduce exactly the results we have
obtained. We expect that making the codes and functions used to produce the
results reported in this thesis widely available (online), would have the following
benefits:

� Allow potentially interested researchers to further improve on our work or
create their new work based on our code.

� We understand that there may be salient aspects in the code that is bughouse
to explain in writing, and that the code would contain everything we have
tried to explain in the thesis.

� We also think that making our implementation details widely (publicly) avail-
able would provide higher possibilities of finding and fixing potential issues
relating to our implementation, which leads to more potential improvements.

B.1 Code To Allow Reproducibility of Our Ex-

perimental Results

The respective code to reproduce the experimental results we have presented in this
thesis could be found on the following URLs:

B.1.1 Code for the APPFD Algorithm

Please visit this link for access to the code implementation of the APPFD method
(see Section 4.2.1), which can be used to reproduce all the resuts presented in Sec-
tion 5.4. Also included are clear instructions on how to use these codes.

B.1.2 Code for the HoGD Algorithm

Please visit this link for access to the code implementation of the HoGD method
(see Section 4.2.2), which we combined with the APPFD to produce all the HAPPS-
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1 method, described in Section 4.2.3. Also included are clear instructions on how to
use these codes.

B.1.3 Code for the HAPPS Algorithm

Please visit this link for access to the code implementation of the HAPPS method
(see Section 4.2.3), which can be used to reproduce all the resuts presented in Sec-
tion 5.3. Also included are clear instructions on how to use these codes.

B.1.4 Code for the APPFD-FK-GMM Algorithm

Please visit this link and this link , for access to the code implementation of the
APPFD-FK-GMM method (see Section 4.2.4), which can be used to reproduce all
the resuts presented in Section 5.5. Also included are clear instructions on how to
use these codes.

B.1.5 Other Related Utility Code and Software

By “Utility Codes and Software”, we refer to some of the most-relevant functions,
modules, code snipets, and software that have been helpful for the entire 3D shape
retrieval research. All of the software used for this research are Open Source. For
example, see MeshLab visualisation and processing software for 3D mesh and point
cloud data. Others are: Matplotlib, for plotting and visualisation of data/results;
SciPy , for scientific computation functions; NumPy , for numerical computing
and effective handling of arrays and unstructured data, etc. The PSB also provides
series of utility codes and sample datasets for 3D shape retrieval, which can be
obtained by visiting this link , for the codes and visiting this link , to obtain
the datasets. We refer the reader to also visit this link , for any other functions or
code implementations we developed for this research work.

B.1.6 Performance Evaluation Codes

Besides the utility codes and software presented in this section, we specifically pro-
vide all the performance evaluation codes used to produce all the qualitative and
quantitative results presented in Chapter 4. We therefore refer the reader to this
link , for access to these codes and GT or CI files.

B.2 Data To Allow Reproducibility of Our Exper-

imental Results

The respective dataset and Ground Truth file(s), including Classification Index
file(s) to reproduce the expeprimental resuls we have presented in this thesis could
be found on the following URLs:

B.2.1 Datasets, Ground Truths and Evaluation Code

We refer the reader to Section 5.2, for a detailed description of all the datasets eval-
uated in this thesis. Considering that it would be relatively expensive to upload all
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of these datasets onto cloud storage for sharing purposes, we instead refer the reader
to the respective SHREC track where these datasets can be directly downloaded. In
Table 5.1, a summarised list of all the datasets are presented, including references to
their respective sources. The reader is encouraged to download any required dataset
by following the appropriate reference. However, in the event that any of the URLs
fails to load, the reader should please email to Ekpo Otu .
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