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Abstract

3D Models are essential to modern-day Computer Vision (CV) applications, as
3D data representations are now being widely used instead of the already popular
2D image representation, for tasks such as object detection, classification, retrieval,
and modeling, etc. However, many different problems have been associated with
the representation, description, indexing, matching, retrieval, and classification of
3D models found in rapidly emerging domain-specific and 3D benchmarks datasets.
One of such problems is developing a robust, compact, yet computationally efficient
3D shape descriptor. Although simple to complicated knowledge-based 3D shape
representation and matching methods have been proposed, the simple methods usu-
ally lack efficiency and needed robustness (i.e. discriminating power), while the
complicated methods, with remarkably high retrieval and classification accuracies,
are either computationally prohibitive or rely on remarkably large surface points
for optimum performance, which negatively impact processing speed and storage.
Recently, the Deep Learning (DL) methods have been used to develop highly robust
and compact 3D shape descriptors which also produce remarkably high retrieval
and classification accuracies. However, the DL approaches are highly data-driven,
which requires a lot of training data and high-powered GPUs to run successfully.
Another important research problem is developing a 3D shape descriptor that can
generalise across a wider range of datasets, each of which presents unique retrieval
and classification challenges to the shape descriptor.

This thesis focuses on the knowledge-based approach to propose three novel,
robust, and computationally efficient methods for 3D shape retrieval and classifica-
tion. Our first novel research contribution is a local 3D shape descriptor called the
Augmented Point Pair Features Descriptor (APPFD). Our second novel contribu-
tion is the Hybrid Augmented Point Pair Signature (HAPPS), developed to further
improve the overall robustness of the APPFD, while providing invariance to rigid
3D objects. Finally, we propose an improved method called the Agglomeration of lo-
cal APPFDs with Fisher Kernel and Gaussian Mixture Model (APPFD-FK-GMM),
which aggregates d-dimensional local descriptors into a single more compact vector
representation, with improved performances. The proposed methods are statisti-
cally based, and able to effectively describe the local - global geometry of 3D mesh
or point cloud surfaces, using as low as 3500 points samples from each surface,
and capable of generalising across a wider range of datasets containing rigid and
non-rigid 3D objects. The latter method produces robust, compact, and concise 3D
shape signature that support more-efficient indexing and matching, for retrieval and
classification tasks.

The accuracies and robustness of our methods have thoroughly been examined
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and compared to several other state-of-the-art (data-driven and knowledge-based)
methods, using nine different standard SHape REtrieval Contests (SHREC) 3D
benchmark datasets, including the most recent. This thesis provides exhaustive
(quantitative and qualitative) comparative analyses of performance evaluation re-
sults, for each dataset and retrieval challenge. The following Information Retrieval
(IR) evaluation metrics were adopted to assess the performances (accuracies and
robustness) of all shape descriptors: Nearest Neighbour (NN), Firs- Tier (FT),
Second-Tierm(ST), e-Measurem(E), Discounted Cumulative Gain (DCG), mean-
Average Precision (mAP), normalised-Discounted Cumulative Gain (nDCG), Area
Under Curve (AUC), and Precision-Recall Curve (PRC) plots. Results of experimen-
tal evaluations reveal outstanding retrieval performances by our proposed methods,
compared with several other state-of-the-art methods.

We demonstrate the superiority of the HAPPS method over several other state-
of-the-art methods on the SHREC’18 protein dataset. In several other experimental
evaluations, our method still outperforms many of the state-of-the-art methods, in-
cluding ranking top 2 or 3 position in most cases, competing very closely with the
overall best performing methods for each of those retrieval challenges and datasets.
Generally, the APPFD method is robust to objects with holes (i.e. with large
missing surface parts) and noise, and we demonstrate that both the APPFD and
HAPPS methods are highly discriminative, efficient, and capable of effectively rep-
resenting 3D point clouds and triangular meshes. In addition, we demonstrate the
high performance of the APPFD-FK-GMM method, which rivals both the APPFD
and HAPPS methods, even with about 98% reduction of the final fv from these
methods, thus providing both robustness and compact representation of 3D objects
for easier indexing and faster matching.
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4.5 Overview of our novel 3D APPFD framework (for “local” match-
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5.11 (a): the 20 base models on which the reliefs are applied. (b): the
11 transformed textures used as height-fields on the base models (the
brighter the color, the higher is the value of the field in that point).
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5.20 PRC plots of the HAPPS-1 experimental run-3a‘, showing the re-
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rameter settings as in Table 5.11, tested on the SHREC’10 dataset.
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Chapter 1

INTRODUCTION

1.1 Background

Presently, 3D data formats or representations are preferable to the already very pop-
ular 2D image representation, in several CV related projects/tasks, such as object
detection, retrieval, classification, detection, modeling, and robot navigation. Com-
putational techniques in 3D shape analyses and processing are highly relevant and
applicable in medicine, robotics, industrial applications, 3D games development, and
virtual reality, etc. Consequently, it has now become easier to practically acquire
3D models of any object due to freely available 3D modelling software, low-cost 3D
scanning/acquisition devices, and the ability to scan 3D shapes using mobile devices
equipped with photogrammetry [143] technology. As direct consequences of these:
(i) there is an exponential rise in the available number of 3D models on the internet
and domain-specific databases (e.g. the Protein Data Bank (PDB) [15] with biologi-
cal macromolecules [182, 118], the AIM@SHAPE shape repository [247], the national
design repository for Computer-aided Design (CAD) models [238], and CAESAR for
Anthropometry [5], etc.), (ii) several 3D benchmark datasets are rapidly-emerging,
such as the Princeton Shape Benchmark (PSB) [216] and the SHape REtrieval Con-
test (SHREC) benchmark datasets, and (iii) 3D models now have numerous appli-
cation areas (e.g. video games character and virtual reality 3D models). However,
an important aspect of research remains the development of concise, robust, and
efficient 3D shape representation and methods to facilitate matching and retrieval
of desired 3D objects from these repositories. The advantages of developing such
3D shape representations or retrieval methods are numerous. For example, if we
consider the scenario in Section 1.2 where an existing 3D model/design for an ad-
ditive manufacturing [264, 69] company needs to be obtained from a database of
millions of other 3D objects, a compact, concise, and robust 3D representation (3D
descriptor), including an efficient shape retrieval method is needed to obtain the
correct results in a time-effective manner. A key component of such retrieval meth-
ods is estimating a shape descriptor that can robustly represent shape information,
which should represent the underlying surface structure. Features, i.e. geometric
properties, or physical measurements, are extracted from the surface of a given 3D
object locally (for local shape descriptors), globally (for global shape descriptors),
or both for hybrid shape descriptors on which this study concentrates.

The process of developing appropriate shape descriptors for efficient matching,
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retrieval and classifiction basically constitute a ‘3D shape search’ problem. Also,
in CV, Computer Graphics (CG), Pattern Recognition (PR), and other related dis-
ciplines, measuring the (dis)similarity between 3D objects, including developing a
shape descriptor that is generalizable across a wider range of datasets, are some
common research issues regarding objects classification, recognition, detection, and
retrieval tasks, etc. However, searching for a particular 3D object from an enor-
mous collection of 3D objects (3D repository) can be an incredibly challenging and
painstaking process, especially when the collection is un-organized into classes or
categories. Even if classification or categorization of objects are enabled for 3D
repositories, it is still difficult to find a query object within a category, especially
where the number of 3D objects within that category is large. A number of open
problems associated with 3D shape retrieval have not been satisfactorily addressed.
One of such problems is finding a concise representation of 3D shapes [54], but
majority of the existing 3D retrieval algorithms and matching techniques are too
complex, computationally expensive, or not sophisticated enough to accurately de-
scribe 3D shapes. A widespread problem remains that of semantic gap [79, 116],
which is concerned about the difference between representation of extracted fea-
tures from 3D shapes and their actual visual perception. The semantic problem
involves a collection of smaller problems, and ongoing research effort has been to-
wards resolving these. To address the 3D shape search or shape retrieval problems,
the problem of creating a concise representation of 3D shapes must first be solved,
which involves developing a concise, robust (i.e. highly discriminating) and efficient
shape descriptor to accurately represent 3D objects. A shape descriptor, however,
is a compact mathematical description of a given 3D object, often represented by
a vector, a graph, or real numbers, in such a way that its complexity is much less
than its corresponding original 3D representation (see Section 2.3 for further details
regarding 3D shape descriptors).

The motivation for this research is summarised in Section 1.2, and our main
goal is to build upon exiting techniques to propose a new set of compact, concise,
robust, and computationally efficient descriptor for 3D meshes and point clouds
retrieval. We begin by examining two broad approaches to 3D shape retrieval (data-
driven and knowledge-based, described in Section 2.5), and adopt the knowledge-
based approach considering that it does not require large training dataset or high
computing power to succeed. Next, we reviewed a wide range of knowledge-based 3D
shape descriptors/retrieval methods, where the statically-based approach is found
to be the most popular and convenient to implement considering its ability to reduce
3D objects (dis)similarity into merely histograms comparison. Statistical descriptors
also produce highly impressive results in 2D /3D objects detection, classification, and
retrieval tasks.

In this thesis, we propose a number of statistically-based 3D shape descriptors
that support efficient indexing and matching of rigid and non-rigid 3D objects (for
rigid shapes, the distances between points in different coordinate systems will not
change, while non-rigid shapes are subject to affine transformations from one co-
ordinate system to another). First, as part of our research contributions, a novel
statistically-based local 3D shape descriptor called the Augmented Point Pair Fea-
ture Descriptor (APPFD) is proposed, which is robust and computationally efficient.
It describes the geometry of local surface patches around key points for 3D mesh and
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point cloud data using minimal number of sample points from their surfaces. Sec-
ondly, considering that the APPFD is a local descriptor, which is most suitable for
non-rigid 3D objects, assuming the local patterns extracted will not change signifi-
cantly from the query shape to the database shape (i.e the shape in the database),
we propose two variants of the Hybrid Augmented Point Pair Signature (HAPPS),
to further improve the overall performances and robustness of the APPFD, includ-
ing providing invariance to rigid objects. The first variant, HAPPS-1 involves the
combination of the APPFD and a global Histogram of Global Distances (HoGD)
descriptors, while the second variant, HAPPS-2 combines the APPFD with a global
Multi-view 2D Projection (M2DP) [80] descriptor. Through extensive experimen-
tal evaluations, we demonstrate that the APPFD and the HAPPS retrieval meth-
ods have excellent retrieval accuracies on several benchmark datasets. However,
although the APPFD and HAPPS methods produces shape signatures that are con-
cise to store, easy to index, and straightforward to match, the lengths of their final
feature-vectors (fv) are very high-dimensional, which takes longer time to match.
Consequently, further investigation is carried out, into a potential technique that
could further shorten the length of the APPFD and/or the HAPPS fv to produce
a more compact final descriptor without losing retrieval accuracies. Finally, we in-
troduce an improved method called the Agglomeration of local APPFD with Fisher
Kernel and Gaussian Mixture Model (APPFD-FK-GMM), with the goal of aggre-
gating d-dimensional local descriptors into a single vector representation.

Currently, to the best of our knowledge, there is hardly a knowledge-based 3D
shape descriptor that has been tested across a wide variety of 3D datasets (each of
which presents a unique retrieval challenge to the shape descriptor), while record-
ing excellent retrieval performances across board. Besides, many of the existing
knowledge-based 3D shape descriptors (defined in Section 2.5.2) require 3D meshes
and point cloud with remarkably high Level-of-Details (LoD) for optimum perfor-
mance, which negatively impacts processing speed and storage. The knowledge-
based, statistical 3D shape retrieval methods we propose in this thesis are robust
across several 3D benchmark datasets, including having the ability to distinguish
between similar and dissimilar 3D objects. Our methods use comparatively incredi-
bly low number of surface points sample (i.e. low LoD), unlike other methods which
require objects with high LoD.

Evaluating the performances of one or more 3D shape descriptors across different
datasets is a challenging task. Thankfully, the annual 3D SHREC provides a frame-
work to systematically evaluate the performances of 3D shape retrieval methods (i.e.
3D shape descriptors) on a variety of 3D benchmark datasets, each of which present
unique retrieval complexities, and some consisting a mixture of rigid, non-rigid,
watertight as well as non-watertight 3D models. The SHREC framework allows for
unbiased comparison of a given shape descriptor against several others (e.g. state-of-
the-art descriptors) for a particular retrieval challenge or task. Following extensive
retrieval experiments, we adopt several standard Information Retrieval (IR) per-
formance evaluation metrics, such as the Nearest Neighbour (NN), First Tier (FT),
Second Tier (ST), E-measure (E), Discounted Cumulative Gain (DCG), mean Aver-
age Precision (mAP), normalised Discounted Cumulative Gain (nDCG), Area Under
Curve (AUC) and Precision-Recall Curve (PRC) plots, to compare the performance
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results (i.e. retrieval accuracies) of each of our proposed methods against several
other state-of-the-art methods, using several different 3D benchmark datasets pro-
vided by SHREC retrieval challenges, up to the most recent ones. The APPFD
method was evaluated against two different datasets: SHREC’12 and SHREC’14
datasets, which contains 1200 and 8987 3D objects, respectively. Next, we evalu-
ate the HAPPS method against six different datasets: the SHREC’10, SHREC’11,
SHREC’17, SHREC’18, SHREC’19, and SHREC’20 protein datasets, containing
200, 600, 100, 2267, 5298, and 588 3D objects, respectively. Finally, we adopt four of
the most recent SHREC datasets, which are the SHREC’17, SHREC'18, SHREC’19
and SHREC20 relief (with 220 3D objects) datasets to evaluate our APPFD-FK-
GMM method. In each evaluation phase, we provide qualitative and quantitative
comparisons of our methods’ retrieval performances against several other state-of-
the-art methods for that particular retrieval challenge/dataset. Additionally, we
investigate effects of different (dis)similarity metrics on the overall performance of
shape descriptors by comparing the results of five distance metrics (Cosine, Eu-
clidean, Earth Mover’s Distance (EMD), Squared-Euclidean Distance (SED) and
Kullback-Liebner Divergence (KLD)) with each of our proposed 3D shape descrip-
tors and finally adopts the metric with the best overall performance accuracies for
that descriptor.

The results of all experimental evaluations are presented in this thesis, which re-
veals outstanding retrieval performances of all our proposed methods, compared with
several other state-of-the-art methods for each 3D shape retrieval challenges/task
that the performances of our methods are evaluated against. We demonstrate the su-
periority of the HAPPS-1 method over several other state-of-the-art methods on the
SHREC’18 protein dataset. In several other experimental evaluations, our method
still outperforms many of the state-of-the-art methods, including ranking top 2-3
in most cases, competing very closely with the overall best performing methods for
each of those retrieval challenges and datasets. Intuitively, 3D surface with holes
or other defects would result in the features or underlying geometry of that portion
of the local surface not to be accurately captured, represented,or described, thereby
adversely affecting the robustness/descriptiveness of a typical retrieval method (de-
scriptor) applied to such defective surface. Generally, however, the APPFD method
is robust to objects with holes (i.e. with large missing surface parts) and noise, and
we demonstrate that both the APPFD and HAPPS methods are highly discriminat-
ing, efficient, and capable of effectively representing 3D point clouds and triangular
meshes. In addition, we demonstrate the high performance of the APPFD-FK-GMM
method, which rivals both the APPFD and HAPPS methods, even with about 98%
reduction of the final fv from these methods, thus providing both robustness and
compact representation of 3D objects for easier indexing and faster matching. A
typical approach to 3D shape retrieval is to compute a compact representation (de-
scriptors) for all database 3D objects, which are then matched to determine the
(dis)similarity between any two objects. Our approach is capable of approximating
the performance of a standard metric for 3D objects matching, including provid-
ing the needed robustness and efficiency in a real-time 3D shape retrieval system.
Overall, the standard approach to the 3D shape search problem is the adoption of
a 3D-Content-based Retrieval System (3D-CBRS), fully described in Section 2.2.4.
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1.2 Motivation

Originally, this research is motivated by the following real-life scenario and prac-
tical need. When we consider the time and cost of designing a 3D model for any
given product by a parts manufacturing company who is into product design, for in-
stance, there is need to ascertain whether the product had previously been designed
by searching existing archive for the model or create a new one. To search, there
must be some sort of database that stores previous models for the company and a
search engine, which provides the functionality to find and re-use existing models
to accelerate new products design and overall production processes. By implication,
the company would be able to save a huge amount of time and cost. However,
assuming the 3D model designs of some products already exists and the company
has no effective means of checking or searching for previously designed /stored mod-
els but have to re-design or re-model such product(s), the result could be a huge
financial cost and time for the company if every product design must follow such
trend, considering the expenses for designing a single model. For example, if it costs
£10 each to develop a single model, a database including 1 million models which
10% of them are redesigned would amount to a total cost of £1m, which could be
saved through 3D shape retrieval and search engine implementation. Alternatively,
suppose there is a large database of 3D models containing the company’s product
design, and a 3D search engine already in place, what effective 3D search strat-
egy, methods, and techniques exists or could be implemented to retrieve desired 3D
models? The scenario described here became our primary motivation for embarking
on this research, and this thesis addresses these concerns by leveraging on existing
techniques to propose efficient 3D shape retrieval methods and techniques for feature
extraction, and robust signatures for 3D representation which rivals state-of-the-art
methods.

In addition, considering the wide application areas of 3D shape retrieval methods
and associated techniques (see Section 1.6), including the numerous attention at-
tracted by 3D content-based shape retrieval (3D-CBSR) [152, 169, 48], following the
successes of 2D Content-based Image Retrieval (CBIR) [246, 124, 189] over the past
two to three decades, we found that each sub-process of the overall 3D-CBRS, such
as data pre-processing, feature extraction, shape descriptor computation, indexing
and matching (see Section 3.1) has need or chances for improvements. Essentially,
the overall outcome of any Content-based Shape Retrieval (CBSR) system depends
on the computational accuracies and efficiency in each sub-stage of the system. For
example, while colour may be a particularly good feature for 2D images, extracting
such feature to represent a 3D surface would result to an incredibly low discrimi-
nating feature to represent the 3D object, which would adversely affect the overall
descriptiveness of the final shape signature for such object. Consequently, any CBSR
system adopting such retrieval algorithm would have poor overall performances. In
this thesis, we are further motivated to learn about the most effective methods and
techniques that could address these challenges we have identified, and to propose
improved alternatives to addressing them.
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1.3 Research Aim and Objectives

The primary goal of this research is to further investigate the 3D Shape search prob-
lem explained in Section 1.1 (which basically involves the process of developing an
appropriate 3D shape descriptor and matching method for efficient retrieval and
classification of 3D objects), with some of the open challenges associated with 3D
shape description, indexing, matching and retrieval, and be able to develop a new
set of compact/concise, accurate, robust and computationally efficient 3D shape re-
trieval methods, with the aim of providing improvements (or alternatives) to existing
methods, for efficient 3D CBSR framework, given a selection (i.e. ‘benchmark’) of
rigid or non-rigid 3D triangular meshes and point clouds.

The most important aspect of any CBSR framework is the development of an effi-
cient and accurate shape signature (descriptor), which is an abstraction of the shape
used to semantically represent it. Shape descriptors are sometimes also referred to
as feature-vectors (fv), and are needed for matching, retrieval, and classification of
similar objects, given a query object. However, computing a shape descriptor typi-
cally follows a number of steps. The most crucial step is the extraction of features
from the surface of the 3D shape beside the pre-processing steps, such as smoothing,
normalization, etc. Efficient and accurate 3D descriptors (i.e. signatures) are those
which are (i) robust against noise, clutter, occlusion, redundant parts, holes/defects,
(ii)concise/compact, (iii) accurate, and (iv) efficient/easy to compute - see also the
characteristics of appropriate shape descriptors in Section 2.3.1. Such signatures
are also invariant under rigid, non-rigid, and affine transformation (rotation, trans-
lation, scaling). Intuitively, the accuracy (i.e. matching and retrieval results) of a
3D-CBRS is directly proportional to the accuracy of and robustness of the shape
signature used, including the matching technique adopted. However, shape signa-
ture accuracy and robustness depend on the expressiveness of the extracted features
from 3D surfaces being described. In view of these, this thesis considers the following
research objectives:

e Development of concise/compact, accurate, robust, and efficient 3D shape rep-
resentation (descriptor) to address the 3D Shape search problem and facilitate
3D objects matching, retrieval and classification.

e Development of a 3D shape descriptor or retrieval method that is widely appli-
cable, and generalisable across diverse and wider range of datasets and retrieval
problems.

e Addressing (i.e. improving upon) some of the research gaps in existing research
work, which include computational complexity, ambiguity, and accuracy of
shape retrieval methods.

e Propose a retrieval method that is capable of effectively and mathematically
represent 3D mesh and point cloud with the lowest number of vertices and
points as possible, while still meeting the robustness and descriptiveness cri-
teria of an effective 3D shape descriptor.

e Investigate theoretical aspects of practical importance in 3D shape represen-
tation, pre-processing, feature extraction, indexing, matching, retrieval, and
classification.
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e Finally, provide a simple and focused review of the knowledge-based 3D shape
descriptors, its various categorisation and computational techniques, includ-
ing highlighting the major difference between these kinds of descriptors and
the data-driven shape descriptors, with the goal that the reader (i.e. future
researchers) would be adequately informed to make a decision regarding the
choice of algorithms for their available dataset and computer vision problems.

1.4 Research Questions

Considering our primary research goal and the need to tackle the 3D Shape search
problem defined in Section 1.3, other numerous concerns highlighted in Section 1.1
(Background), Section 1.2 (Motivation), and Section 1.3 (Research Aim and Objec-
tives) also need to be addressed. This research, therefore, considers the following
research questions:

i. Several existing 3D shape descriptors are known for their robustness (i.e. bet-
ter performance) on specific retrieval or classification problem. What are the
chances and computing cost of developing a robust, compact, and computationally-
efficient 3D shape descriptor, that can generalise well (i.e. with incredible per-
formance accuracy) across a diverse range of 3D datasets/retrieval challenges?

ii. Considering the overly popular deep learning (i.e. data-driven) approaches and
the highly robust 3D shape retrieval methods they propose, for solving 2D /3D
computer vision related problems, to what extent are the retrieval and classi-
fication performances of the traditionally hand-crafted (i.e. knowledge-based)
methods relevant, compared to those obtained by deep learning methods?

iii. Given that there are many useful approaches to 3D shape descriptors under the
knowledge-based category, which is the most applicable/appropriate approach
for developing a concise, accurate, robust, and computationally efficient signa-
ture that is widely applicable?

iv. Given a 3D surface with high LoD (having incredibly large number of surface
points), the intricate local surface, including the overall global structure and
topology of the object would be better represented than a surface with low LoD,
which, on the other hand, enhances storage and processing speed. However,
what is the possibility of robustly and effectively describing a 3D surface using
extremely low number of points, and still achieve high overall retrieval and
classification performances?

v. Does the overall performance of a given shape descriptor depend on the choice
of shape similarity metric used, and if true, how much bias does the metric have
on the robustness or performance of a 3D shape descriptor?

1.5 Thesis Originality and Contributions

Essentially, this section highlights the originality of this thesis and our research work
and presents a summarised overview of the contributions that we have made, con-
sidering our motivation (see Section 1.2) and primary goal (see Section 1.3) for this
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research. However, the reader is referred to Section 6.2 for additional information
regarding a review of our thesis contributions.

i
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We introduce a novel 6-dimensional local Augmented Point Pair Feature (APPF),
which consists of a new 2-dimensional local feature and a 4-dimensional local
point pair (Surflet-pair) feature [252] (see Section 4.2.1). The APPF encodes the
physical characteristics (i.e. geometrical properties) of a local surface region, or
Local Surface Patch (LSP), and is used to improve the overall performance of the
surflet-pair feature, for a more accurate and robust representation/description
of 3D meshes and point cloud surfaces. Unlike the latter, our 2-dimensional LSP
feature, does not require surface normals, making its computation extremely
fast, efficient, and straightforward. In addition, extra computational steps are
not required for our 2-dimensional feature extraction from that of the surfle-
pair feature extraction. Detailed description of this contribution (i.e. APPF) is
presented in Section 4.2.1 and Figure 4.4.

The feature extraction sub-process for our methods rely on key points, rather
than all the points from the 3D surface. We adopt the voxel-grid downsam-
pling approach, instead of the conventional methods. After the voxel-grid down-
sampling algorithm has been applied to each 3D point cloud object, we observe
that for some model, the down-sampled points are not located directly on the
surface of the point cloud (see Figure 3.19a). Using k-NN algorithm (where k=1)
we develop a simple and quick method that searches each original point cloud
surface for all the 1-closest points to the down-sampled points and return these
as the actual down-sampled points. The outcome is visualised in Figure 3.19b,
where all the down-sampled points are now properly located on the surface of
the point cloud. This process is computationally very efficient considering that
the k-NN algorithm is only searching for one point per iteration, and has con-
tributed to the overall high performance of our final retrieval and classification
method.

Following the APPF in (i), we propose and apply a novel statistically-based
3D shape representation called the APPFD (see Section 4.2.1), which involves
bucketing each feature dimension of the locally extracted APPF into a multi-
dimensional histogram, using up to 8 bins (i.e. bupprp) = 8) in each feature
dimension. The APPFD have been widely applied to 3D shape retrieval tasks
(see Section 5.4), where it records some great overall retrieval performances,
which in most cases, outperforms or performs just as well as several other state-
of-the-art methods for the retrieval challenges or tasks.

We also introduce another novel statistically-based global shape descriptor called
the HoGD, which is very intuitive, computationally very efficient, and easy to
compute, thus capturing the global structure of 3D objects into a 1-dimensional
histogram (see Section 4.2.2). The goal of proposing such descriptor is to combine
it with the APPFD in order to complement the later and produce a resultant
hybrid 3D retrieval method capable of describing both local and global properties
of 3D objects, for overall improved performances.

We propose and apply a novel hybrid 3D shape descriptor called the HAPPS
(see Section 4.2.3), which combines the descriptive powers of both the local
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APPFD and the global HoGD 3D descriptors to provide a more effective rep-
resentation of 3D surfaces. An immensely popular real-world 3D Shape search
problem is the protein shape retrieval and classification challenges [157, 122, 32,
33, 123, 65]. We then applied the HAPPS method for the SHREC’18 dataset
and SHREC’20 retrieval tasks. Experimental results demonstrated the superi-
ority of the HAPPS-1 method over every other state-of-the-art methods for the
SHREC’18 dataset [175]. In the SHREC’20 retrieval task, the HAPPS-1 and
HAPPS-2 methods also demonstrated exceptional overall retrieval performances,
outperforming several other state-of-the-art methods, as well as rival the overall
best performing state-of-the-art method for that retrieval challenge [122]. In ad-
dition, the HAPPS method also performs optimally on several other benchmark
datasets (see Section 5.3).

We develop a new highly efficient method for 3D shape representation, called
APPFD-FK-GMM, where we harnessed the benefits of the Fisher Kernel (FK)
and Gaussian Mixture Model (GMM) to agglomerate our locally computed
APPFD into a more compact/concise, robust, and accurate single global de-
scriptor. Experimental results with the APPFD-FK-GMM retrieval method is
first contributed towards shape retrieval of 3D surfaces with similar geometric
relief [231]. Although poor overall performance is recorded for this contribu-
tion, it did however outperform at least one other state-of-the-art method for
that retrieval challenge. Subsequent experimental results (Section 5.5) of the
APPFD-FK-GMM method on 3 other most recent benchmark datasets demon-
strates its exceptional retrieval performances, where it outperforms several other
state-of-the-art methods, including the HAPPS method.

To the best of our knowledge, our work is the first to consistently evaluate its
shape retrieval methods on several standardised 3D shape retrieval benchmark
datasets by SHREC (see Section 5.2.1), which is developed with the primary
goal of testing the robustness and performances of different 3D shape retrieval
algorithms. It is important to mention that each of the SHREC retrieval chal-
lenges pose distinct levels of retrieval challenges to shape retrieval algorithms.
The respective challenges for each SHREC dataset is summarised in their as-
sociated sub-sections described under Section 5.2. This means that a retrieval
method or algorithm which can maintain great evaluation performance across
different datasets is proven to be exceptionally reliable and robust against sev-
eral shape retrieval issues. We evaluated our retrieval method across several
SHREC dataset and it recorded very high-performance evaluation. We there-
fore conclude that, with very minimal tweaks/improvements, the methods we
propose in this thesis are suitable for several other computer vision tasks, such
as detection, classification, etc. In summary, the 3D shape descriptors (retrieval
methods) we have proposed in this thesis have been applied to address diverse
range of 3D shape retrieval problems and task, thus contributing the most to sev-
eral global SHREC retrieval challenges and tasks for 3D objects (see Chapter 4).
Through series of thorough experimental evaluation and analyses, the retrieval
performances of our methods have been compared against a substantial number
of other state-of-the-art 3D shape retrieval methods, for each of the datasets we
tested our methods against.
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viii In Section 2.3 through to Section 2.6, we provide some useful and updated review
of 3D shape descriptors, highlighting the major differences between data-driven
and knowledge-based 3D shape descriptors, their advantages and disadvantages
in computer vision applications, and the choice of the knowledge-based over the
data-driven approach as in this thesis. The aim of this review is to provide a
clear roadmap for new researchers in this field to make quick decision regarding
retrieval methods to adopt for their retrieval experiment.

1.6 Research Relevance and Application Areas

Presently, the ability to retrieve existing 3D objects from a 3D object database helps
to facilitate tasks for professionals in several application contexts, allowing them to
quickly obtain desired shapes without spending much time re-modeling existing ones.
In addition, several content-based 3D shape retrieval techniques and algorithms are
widely applicable to other computer vision tasks as well as in computer graphics,
digital geometry processing, and pattern recognition communities. For example,
extracted 3D features or shape descriptor computed for 3D shape retrieval task can
as well be employed for 3D shape classification, 3D object recognition (i.e. 3D-face
recognition), 3D object detection, or 3D registration and alignment tasks.

Generally, the application contexts for which the techniques and methods imple-
mented in this research are relevant include:

¢ Bioinformatics (Biology): Proteins can be described as non-rigid surfaces
representing their solvent-excluded surface [157]. Since 3D structures of pro-
teins are better preserved than their sequences, it is inadequate to compare
amino acid sequences of the proteins by sequence comparison alone, because
it would be impossible to detect the similarities between any two homolo-
gous proteins by only comparing their sequences, therefore detection of partial
dis(similarities) between related multi-domains protein surfaces is of main im-
portance in drug discovery pipelines, adverse drug event prediction and in the
characterization of molecular processes and diseases.

e Entertainment, Games and Augmented Reality: There has been rapid
development and interest in 3D games lately. The video game industry uses 3D
models as assets for computer and video games. The movie industry uses 3D
models as characters and objects for animated and real-life motion pictures.
Augmented Reality (AR) overlays digital content and information onto the
physical world — as if they exist in the physical world. In AR, 3D models are
integrated in real time, with actual or scaled size in a particular surrounding
using the camera. Similarity search for existing 3D models databases enable
reuse and adaptation of 3D models for game development, movie, and enter-
tainment industry in general, thus reducing production costs, while speeding
up its production delivery.

¢ 3D Digital Catalogue and Cultural Heritage: It is now possible to take
a virtual tour of several museums in the world and get a 3D view of thousands
of artefacts displayed at these museums. For example, the Isabella Stewart
Gardner Museum [165] has a virtual 3D tour called “Thirteen Works: Explore
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the Gardner’s Stolen Art”. The tour allows for virtual tour of the museum
while learning about the thirteen pieces that were stolen in the early 1990s.
MyMiniFactory [167] platform, for example, also has the largest collection of
3D scanned statues and artifacts from around the world. The digitized scans
of these 3D models are freely available and widely used by educators, artists,
and the 3D printing community. Many other digital catalogues exist also,
such as Command module Columbia (CM-107) [9], etc. However, effective 3D
searching and retrieval techniques, and methods are therefore required to be
able to sieve through these large collections of 3D models.

e 3D Medical Image Analysis: Detailed 3D models of glands and organs,
which may be created with multiple 2D image slices from Magnetic Reso-
nance Imaging (MRI) [248] or Computed Tomography (CT) [30] scan, are
now widely used in the medical industry for disease detection, prevention, and
control. Furthermore, 3D volume data are often generated in medical imaging
applications using MRI scans, and a possible application lies in automatic di-
agnosis support by analysis of organ deformations, by matching actual images
with medical database of known deformations [28].

e Engineering and Architecture: In architecture, it has now become more
convenient to demonstrate proposed buildings and landscapes using 3D mod-
els, instead of traditional, physical architectural models. In computer-aided
design (CAD), manufacturing (Computer-aided Manufacturing (CAM)), and
engineering (CAE), 3D models are used as designs of new components, such as
mechanical parts, automobile, and other structures from original vehicle parts.
Consequently, Architects, Technicians and Engineers in architecture industry
and manufacturing companies need to be able to exploit the large CAD, CAM
and CAE model databases during their design and manufacturing processes.
It is possible with human intervention to inspect contents of these databases
manually and physically, but the processes are awfully expensive and time con-
suming. Development of retrieval methods and search algorithms to automate
some of the process is therefore important, in order to improve productivity.

Other areas of application include: Agriculture, Security, Industrial inspec-
tion [183], Autonomous Driving and Robot Navigation (i.e. loop closure detec-
tion [80] among several others).

1.7 Research Outcome

In this thesis, we develop and apply new methods to address the 3D Shape search
problem by separately considering the challenges of descriptor robustness versus
compactness, and ease of computation. Our methods are capable of accurately rep-
resenting 3D surfaces in a concise (compact) and descriptive (robust) manner, by
using comparatively incredibly small number of points sample (between 3,500 to
4,500 points), including a non-complicated shape matching technique and distance
metrics. In addition, results of extensive experimental evaluation demonstrates that
our methods generalise very well across several different ‘benchmark’ datasets and
domains. Specifically, the contributions of this thesis to the area of 3D shape match-
ing, retrieval and classification are manifold as already outlined in Section 1.5.
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1.7.1 Overview of Methods and Results

To avoid unnecessary repetition, we refer the reader to Section 6.3, where we present
a detailed review of the retrieval results (i.e. performances accuracies) for each of
the 3D shape retrieval method we propose in this thesis.

1.8 Organization of Thesis

This thesis presents our entire research work, which is organised into six chapters.
This chapter already provides a general introduction regarding the work involved in
this research with adequate background and overview of our research, including aim,
objectives, as well as a summary of our research contributions. This chapter also
explain real life scenarios where our research outcome could be applied, which forms
part of our research motivation. The remaining parts of this thesis is organised as
follows:

Chapter 2: In this chapter, we begin by providing definition to some of the terms,
techniques and functionalities which are most relevant to this thesis and research
work. Next, we give an insight into a few of the available formats that 3D objects are
presented including types of 3D objects representation, followed by classifications
of 3D objects. This chapter also provides detailed review of 3D shape descriptors
(i.e. retrieval methods), including the types, classification, their advantages, and
disadvantages. Two broad approaches to 3D shape descriptor computation: the
data-driven approach and the knowledge-based approach are discussed also, and we
reveal how the knowledge-based approach plays a significant role to the success of the
now extremely popular data-driven approach, which largely depends on hand-crafted
low-level features and to some extent, experts’ knowledge. The characteristics of
appropriate shape descriptors are also highlighted here. Finally, we conclude this
chapter by providing a concise review of statistically-based 3D shape descriptors,
under the knowledge-based category, which is the basis for the methods we propose
in this thesis. However, we also discuss some of the challenges that different dataset
presents to 3D shape retrieval algorithms and insights into how defective data can
be handled.

Chapter 3: We dedicate this chapter to most of the implementation techniques
needed for our proposed 3D shape retrieval and classification methods. Here, we
provide in-depth description for our research strategy, where essential techniques and
issues, such as data pre-processing, point cloud sampling, feature extraction, 3D key
points detection/determination, as well as shape descriptor construction, indexing,
matching and the different types of (dis)similarity metrics implemented in our work,
are addressed. We adopt and implement about five different (dis)similarity metrics
for matching of our proposed 3D shape descriptors - overview of these metrics are
provided in this chapter.

Chapter 4: This chapter essentially focuses on our research methodology, which
involves the major contributions of the work propose in this thesis. Our proposed
methods for describing 3D objects (meshes and point clouds) are presented, which
include all the three broad classifications of shape descriptors (global, local, and
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hybrid) described in Section 2.4. We provide detailed background to each of the 3D
shape descriptors (i.e. retrieval methods) we propose in this thesis. Performance
evaluation is an essential part of any IR system or algorithm, which allows us (i.e.
researchers) to assess how well a particular algorithm or retrieval method performs
on a particular dataset and retrieval problem. In this chapter, we provide adequate
information regarding the evaluation techniques we have adopted in this thesis,
where we describe the tools, terminologies and processes involved, as well as the
different performance evaluation metrics used to measure the overall performance
of different methods.

Chapter 5: This is another especially important chapter of this thesis, where we
present experimental evaluation results and discussions, regarding all our proposed
methods described in the previous chapter. Datasets are needed to evaluate the per-
formances of these retrieval methods. This chapter first presents and describes up
to ten different benchmark datasets used in this thesis to evaluate the performances
of our methods, and highlight a few principal issues regarding these datasets, in-
cluding the retrieval challenges that each of these datasets present to shape retrieval
algorithms. The evaluation strategy we use is by applying each of the methods
we propose on at least two different datasets. For a given retrieval method and
a dataset, we run series of experiments using different parameters and/or distance
metrics, where the qualitative and quantitative results of these different parameter
settings are presented and analysed. We then compare the retrieval performances of
this method to the performances of several other state-of-the-art methods for that
dataset and further provide comparative analyses. These processes are repeated for
all other datasets and methods described in this thesis. We conclude the chapter
with a review /summary of all the experimental evaluations performed in the various
sub-sections of the chapter.

Chapter 6: This chapter provides a summary to the entire work presented in this
thesis. We begin the chapter by providing an overall review of the entire thesis,
followed by a concise review of the contributions we have made, which include con-
tributions from each of the 3D shape retrieval methods we propose in this work.
Next, we provide the key summary of the retrieval performances of each of our pro-
posed methods. We then conclude this chapter by providing some of the findings of
this research and points the reader to potential future research directions.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter begins by introducing the concepts, techniques, and processes which are
most relevant to this thesis and our research work, such as 3D object representations,
3D-CBRS, 3D shape search engine, 3D shape descriptors, distance/(dis)similarity
metrics, etc. 3D objects are available in many different representations and file for-
mats, each having different data structure which constitutes various challenges to
shape retrieval algorithms. This chapter provides overview of 3D object representa-
tions, including detailed review of the two most popular ones: 3D triangular meshes
and point cloud representations, including their respective suitability for certain CV
and PR tasks. Their advantages and disadvantages are also considered in the review,
including the reasons why we fully adopt these representations for our experimental
evaluations.

Two broad classifications of 3D objects are presented, which are: rigid and non-
rigid 3D models, including the two major deformations or defects which are present
in any of these classes of 3D objects (i.e. water-tight 3D objects and non-water-tight
3D objects). We discuss the effects of each of these classes and defects on shape
retrieval algorithms because they play a key role in feature extraction and shape
descriptor performances of 3D objects. For example, the algorithm developed to
process rigid, water-tight 3D object would certainly fail to produce the same results
when applied to non-rigid, non-water-tight 3D objects, etc. In addition, we provide
a concise and detailed review of 3D shape descriptors (retrieval methods) in the lit-
erature of the past two to three decades, including an overview of each of the three
broad classifications of these descriptors (global, local and hybrid), their advantages,
and disadvantages. Alternatively, two broad perspectives (approaches) regarding 3D
shape descriptors computation are thoroughly examined: (i) Data-driven approach
and (ii) Knowledge-based approach, to 3D shape descriptors or retrieval methods.
However, our research work completely adopts the knowledge-based approach, and
we provide a more detailed review of this approach, including justification for adopt-
ing this approach.

Further in-depth analyses of several other sub-categories of 3D shape descrip-
tors within the knowledge-based approach, including the statically-based 3D shape
descriptors (which is the basis for our thesis and research work) are provided in
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this section. We reveal how the knowledge-based approach plays a significant role
to the success of the now extremely popular data-driven approach, which largely
depends on hand-crafted low-level features and to some extent, experts’ knowledge.
Finally, we conclude this chapter with an overview of 3D retrieval challenges (i.e.
highlights of how various abnormalities in datasets, such as holes, degeneracies, and
duplicates in vertices, faces, and edges, etc.) affect shape retrieval algorithms due to
certain factors: dataset representations, object’s benchmarks design, data sources
or capturing devices used to acquire the 3D models.

2.2 Definition of Terms

There are core terminologies, techniques, naming conventions and processes, etc.,
which are most relevant to this thesis and our research work. In this section, we
would try our best to provide detailed introduction, definitions, and description of
these key aspects.

2.2.1 3D Object Representations

It is particularly important to consider objects representation when developing solu-
tions for 3D shape retrieval and other CV applications involving three dimensional
objects. This is because the design of shape analysis algorithms strictly depends on
the input data-type or representation, whereby the algorithm designed to process
3D triangular meshes, for example, would fail to work for another type of represen-
tation, such as voxel representation of the same 3D object. Besides, 3D objects can
be represented in several different ways, and finding an appropriate representation
for shape that is amenable to its surface matching is still an open research issue in
computer vision [95]. In this section, we provide an overview of two most common
types of surface representations for 3D objects.

Unlike 2D images which have a rather unique representation of (n x n = n?) 2D
grid of picture elements (i.e. pixels) containing grey scale or colour values, many
different representations exist for 3D shapes making them more difficult to process.
It is therefore important to discuss the various forms by which 3D shapes are com-
monly represented in CG; highlight the advantages and disadvantages of each form
of 3D representation for different CV/CG applications; and discuss the preferred
choice of 3D representation for this research study.

3D objects are basically represented as polygonal meshes (triangular meshes) or
point clouds. Variety of other possible representations exist, such as parametrized
surface patches (Non-uniform Rational B-spline (NURBS) surfaces [89, 194]), and
Constructive Solid Geometry (CSG) (voxel-grids [262]), etc. However, polygon sur-
faces [259, 222, 233, 12] are the most common surface representation. Figure 2.1
depicts the 3D model of the famous Stanford bunny in four possible representations:
mesh, point cloud, voxels and NURBS. Many other representations exist [247], but
we mention only these four, for brevity. Because certain CV applications require
specific kind of 3D format, it is possible to convert between these forms of object
representations with the help of freely available software tools, such as Trimesh [47],
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Meshio [207], Open3D [279], Visualization ToolKit (VTK) [108] libraries, etc. How-
ever, our thesis implementation relies only on the polygon mesh and point cloud
object representation. We provide further details regarding 3D mesh, point cloud
and voxel representations in the next sub-sections. Since NURBS surfaces are pa-
rameterised, outside the scope of our research implementations, and not commonly
used, we do not include this in further discussions. However, the reader is referred
to [89, 194], for more details regarding the NURBS surface representation.

(a) Mesh (b) Point Cloud (c) Voxel (d) NURBS

Figure 2.1: Four possible surface representations of the Stanford bunny 3D
model. (2.1a): 3D triangular mesh, consisting of wvertices and edges (connectiv-
ity). (2.1b): 3D point cloud, consisting of unstructured points in [z, y, z] Euclidean
space. (2.1c): 3D voxels grids, which is made up of volumetric pixels (cubes). (2.1d):
Non-uniform Rational B-spline (NURBS) 3D surface, which is exceptionally smooth.

3D Mesh Representation

Surface meshes are the general form of object representations because, given a suffi-
cient number of vertices, they can represent almost any object [97]. 3D meshes are
built up from simple primitives like points, lines and planes (i.e. faces). Represent-
ing 3D objects with a mesh is possible using either of the following functions:

e Implicit functions: f(x,y,z) =0,
e Parametric functions: (x(u,v),y(u,v), z(u,v)), or

e Simple mathematical functions: z = f(z,y)

For any given 3D mesh, a variety of file formats, such as .obj, .off, .std, .ply,
.stl, vtk and .wrl etc., exist for storing polygon mesh’s data structure, comprising
of vertices, faces, and edges (connectivity) information [259]. Other properties of
the mesh, like the unit normal normals, colours, and texture-coordinates for each
vertex can also be part of the data. The vertices property in a 3D mesh file in-
cludes coordinates of points in 3-dimensional space i.e. [v;, vy, v,] coordinates. The
faces property represents triplets of vertices that makes up each face of a triangular
mesh, and quadruplets of vertices for a quadrilateral mesh (quad mesh). However,
triangular mesh is the most suitable mesh representation for most computer vision
and graphics applications. The edge property is used to store connectivity that
exist between any two vertex coordinates that makes up the mesh’s surface. The
vertices, faces, and edges properties of a given 3D mesh can be dubbed as features,

16 Chapter 2 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

but the vertex coordinate is the most informative because it contains information
on topology and overall shape structure, and is the basis for which all other prop-
erties/features, like vertex normals, face normals, faces, edges, texture coordinates,
are derived.

Most 3D shape descriptors like Spin Images [96], Surflets-Pair relation Histogram
(SPRH) [252], etc. are designed to work with triangular meshes. Point cloud data,
on the other hand, mostly always contain only the [p,, p,, p.] coordinates of points
that forms the topology and structure of the 3D shape they represent. Besides
the points coordinates, a typical point cloud file, like the .ped [141], may contain
other properties like points normals [n,, n,, n,], RGB colours, light intensity details,
moment invariants (1,52, j3) and viewpoint information, etc.

3D Point Cloud Representation

Point clouds are the raw output of many 3D scanning devices and sensors, such
as Microsoft Kinect [258], LIDAR [257]. They could also be output from camera
and photogrammetry software [208, 209]. Beside these three main sources, point
clouds can also be generated from triangular meshes using a process called mesh
sampling, thus point clouds and polygonal (triangular) meshes are the two main
representations for 3D data, and they are closely interlinked. For example, 3D
objects are represented using polygonal meshes with vertices and faces, but the
vertices alone could be interpreted as a point cloud and represents the underlying
surface geometry. Similarly, the points in a point cloud are likened to the vertices
of a mesh, through triangulation and surface extraction [14], and represent the
underlying surface of the 3D object.

3D Voxel Representation

Vozel (i.e. volumetric pixels) is a term used to represent a volume in 3D space,
similar to the word, pizel, which represents a picture element in 2D space. The
following explanation clarifies the concept of voxels. Basically, 2D and 3D computer
graphics are represented as wvector or raster graphics. Considering 2D image, for
example, while mathematical equations are used to describe a 2D image represented
as vector graphics, array of color values are used to describe raster graphics, instead.
In 2D vector graphics, a vector with two components, p = [z, y] is used to described
each point of a line or a polygon, while three components vector, p = [z, y, z] is used
in the case of 3D vector graphics. Similar to 2D raster graphics, where 2D images
are divided into a number of evenly sized rows and columns, the volume in a 3D
raster graphics is divided into evenly spaced rows and columns in three different
directions (up-down, in-out, and left-right) which divides the 3D space into cubes
known as vozels (i.e. volume elements), each of which has a 3D coordinate within
the volume (see Figure 2.1c). Voxels are commonly used 3D representation for the
output data from an Ultrasound, CT Scan, and MRI, etc. However, one of the
disadvantages of this kind of 3D object representation is that they contain a great
deal more data and exponentially larger than 3D polygonal surfaces, which adds up
to a lot of memory. According to [260], a direct consequence of this difference is
that polygons can efficiently represent simple 3D structures with lots of empty or

Ekpo Otu Chapter 2 17



3D Shape Description, Indexing, Matching and Retrieval

homogeneously filled space, while voxels are good at representing regularly sampled
spaces that are non-homogeneously filled.

Why Mesh and Point Cloud Representations

3D modelling software, such as Blender, Autodesk, SketchUp, FreeCAD, QGIS,
etc., are typically used for generating triangular meshes. In addition, triangular
meshes can as well be generated from a point cloud via surface reconstruction pro-
cess described in details in [14]. Basically, it is quite difficult to visually distinguish
triangular mesh wvertices only from the point cloud, identification of neighboring
points is challenging and time consuming, visualization, extraction of surface and
estimation of its properties such as curvature is difficult, etc. However, while tri-
angular meshes are quite convenient for many computer graphic tasks, point clouds
are ideal for processing and extracting information from 3D objects. In line with
this, our implementations consider the extra steps of generating point clouds from
triangular meshes.

A few CV tasks, such as 3D shape registration [16] can succeed by utilising only
raw point cloud or mesh vertices as input to the Iterative Closest Point (ICP) al-
gorithm, various other tasks, such as shape retrieval relies upon a more compact
and descriptive form of input (signature or descriptors) to its matching algorithm,
rather than utilizing the 3D objects (raw meshes or point clouds) themselves. In
this thesis, we only depend upon two properties of a given 3D shape: (i) the [z, ¥, 2]
coordinate of mesh vertices, v, .) or point cloud points, pe, .y and (ii) their as-
sociated normal vectors or surface normals, n,, ). Although, for mesh input, we
rely upon the vertices and faces properties, from which a point cloud representation
of the mesh would be generated, including estimation of their corresponding asso-
ciated normals. Therefore, the input to our retrieval algorithm is primarily [z, y, z]
coordinates of points (point cloud) and their associated normals. Basically, if the
input 3D objects are raw point cloud data, their normals property are not usually
given by default. We however derive these using the techniques in Section 3.3.2 (see
Figures 3.9, 3.10 and 3.11), depending on the representation of the input shape.
For instance, the feature extraction technique for our proposed APPFD (see Sec-
tion 4.2.1) strictly relies on 3D coordinates of points on the surface, and their cor-
responding normal vectors. i.e. {P;, Ny}, where {Ps C p; : (Pu, Dy, P2)ir? = 1..N},
and {Ny; C n; : (ng, ny,n.);, ¢ = 1...N}. N is the total number of points in the point
cloud, or vertices in the triangular mesh. Details of technique(s) for generating
(sampling) point clouds from meshes are provided in Sections 3.2.3 and 3.2.3.

2.2.2 Classification of 3D Objects

In the previous section, we discussed four common data structures used to represent
3D objects - mesh, point cloud, voxel, and surface representations. Naturally, every
3D object appears in a rigid or a non-rigid form. Similarly, considering any of the
above-mentioned representations of 3D objects, two aspects are important, which
are: (i) rigidity and (ii) fluidity. This means that 3D objects can either be rigid
or non-rigid. It is important to consider this classification for 3D objects when de-
veloping shape retrieval methods that would describe them, because performances
of 3D shape descriptors (retrieval methods) are different for each of these classes of
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dataset. For example, the Global D2 and A3 shape distribution histogram descrip-
tors by [174] are reported to perform better on rigid 3D models, yielding excellent
retrieval results but not on non-rigid models.

non-Water-tight Water-tight
3D Object 3D Object

Rigid 3D Objects Non-Rigid 3D Objects

=

Generic 3D Objects

Figure 2.2: Two classes of 3D objects: Rigid and Non-Rigid, showing defective
(non-water-tight) and non-defective (water-tight) surface meshes. The Rigid and
Non-Rigid objects can be combined in a dataset to form the Generic 3D objects
dataset as shown.

Our preliminary studies and experimental findings reveal that shape descriptors
which perform well with rigid objects did not do so with non-rigid objects and vice
versa. The experimental evaluations of the shape distribution histogram descrip-
tors [174] also confirms this. 3D shape retrieval tasks are therefore considered in
two broad perspectives: (i) the rigid CAD model retrieval, and (ii) the non-rigid
shape retrieval, The publications in [138, 227, 23] and [241] survey most of the
work in non-rigid 3D shape matching and retrieval, while the publications in [166,
145, 217, 274] and [37] reveal research efforts on rigid 3D CAD/CAM shapes re-
trieval. In addition, the third broad categorisation also exists, which is the generic
3D models retrieval. This involves the concept of developing 3D shape descriptors
and matching methods that are suitable for both rigid and non-rigid 3D models
aims to solve 3D retrieval challenges for the generic class of 3D models for either or
both. The SHREC 2012 [131] and SHREC 2014 [130] tracks were developed with
this in mind, for instance. These broad categorisations of shape retrieval problems
allow researchers the ability to evaluate how best their retrieval method performs
on the different broad classes of 3D models (rigid, non-rigid, and generic datasets),
which is very important for practical implementations in real-life scenarios where
3D objects contain a wide combination of both rigid and non-rigid 3D objects.

As illustrated in Figure 2.2, rigid and non-rigid 3D objects represented particu-
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larly as triangular meshes can be water-tight or non-water-tight. Water-tight meshes
are known to have minimal or no issues during shape analysis, data processing, and
feature extraction, etc. On the other hand non-water-tight objects pose lots of chal-
lenges to shape analysis algorithm and adversely affects the future extraction and
shape descriptor computation process. Non-water-tight 3D object simply includes
an object with missing surface parts (i.e. with small or large holes as shown in Fig-
ure 2.2), which does not enclose a volume, making it difficult for retrieval methods to
determine the complete structure or topology of the object. The larger the missing
parts the more difficult it gets to accurately describe such an object. In most cases,
all database 3D objects would first need to be manually repaired to make them
water-tight before subsequent feature extraction and shape descriptor algorithms
are applied to them. If that happens, then real-time application is impossible to
achieve with these kind of defective objects and very few known methods exist which
are capable of dealing successfully with non-water-tight 3D objects, such as all the
methods discussed in [142] and one of our research contributions in [175], which is
also suitable for real-time application, because the HAPPS method does not need
to manually repair the objects prior to feature extraction and subsequent retrieval
functions.

We stress here that the techniques we have implemented in this thesis are not
restricted to water-tight 3D objects alone. Since our retrieval algorithm primarily
processes point clouds by default, and given a polygonal mesh as input, we first
convert it to point set representation. We also do not introduce a constraint that
the input mesh needs to be water-tight or orientable, in order to extract any of our
proposed descriptors. Secondly, among the two-broad classification of 3D objects or
datasets (i.e. rigid and non-rigid), and the third class (i.e. generic), discussed in this
section, we have been able to evaluate our retrieval algorithms mostly with the non-
rigid and generic datasets only, due to the wide availability and ease of access to these
datasets and their respective ground truths, unlike the rigid 3D objects datasets,
which is not common and not widely available in the public domain. However, we
could have scanned a sizable number of rigid 3D objects to develop our own 3D
CAD models dataset(s) and ground truth file(s) in order to enable us independently
test the performance of our retrieval algorithms strictly on the rigid 3D datasets and
analyse these methods for their suitability in non-rigid objects retrieval problems.
We chose not to go this route due to the scope of this thesis and for the following
reasons: (i) recent research directions in 3D shape retrieval are mainly focused on
the generic 3D objects and non-rigid 3D objects datasets, (ii) the generic dataset
already contains reasonable number of rigid 3D objects, and (iii) the ground truth
for the rigid 3D dataset or benchmark we create would need to be verified with a
number of other state-of-the-art retrieval methods in comparison with the results
returned by our retrieval methods before an unbiased conclusion can be drawn to
ascertain the performance of our method on the rigid-dataset we would have created.
This, we fear might take an exceedingly long time and further broaden the scope
of this thesis. We instead hope to take this route as part of our future research
direction on this topic.
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2.2.3 Distance or (Dis)similarity Metrics

Distance metrics are measures used to quantitatively define the (dis)similarity be-
tween any two shapes. They simply compare how much alike two different data ob-
jects are. Defining two objects’ similarity largely depends on the descriptor and/or
signature used to represent the objects (3D in our case). There are many different
distance or (dis)similarity metrics in literature and so far, there is no one metric that
suits all shape matching and retrieval cases. For example, the 1D Earth Mover’s
Distance metric is only expected to return good matching results for 1D histograms,
such as shape distributions (i.e. A3, D1, and D2 descriptors etc.) [173], whereas it
would perform poorly on other types of signatures like our proposed HAPPS de-
scriptor as demonstrated by our experimental results (see Table 5.12, Figure 5.20,
Section 5.3.3), for example. When two objects are matched using a similarity met-
ric, a floating-point value (within the range of 0.0 and 1.0, i.e. [0,1]) is returned.
This value is known as the “similarity score”, where 0 is the lowest and 1 the highest
score. Two objects are said to have a high degree of dissimilarity if the distance be-
tween their signatures (i.e. similarity score) is small, whereas a high similarity score
will translate to a low degree of similarity between the objects. Generally, where d
is a distance metric and two 3D objects are given by their respective feature-vector

(fv), as fv; and fvs, then:

o Similarity(fuy, fuvy) =1, if d(fvq, fve) =

o Similarity(fuvy, fuvg) =0, if d(fvy, fve) = o0

In summary, different metrics perform differently for comparing different shape
signatures. We demonstrate this in our results presented in Figure 5.20, Sec-
tion 5.3.3. Since a similarity measure must be selected to determine how close
one signature is to another, in our experimental evaluations therefore, we applied
five different metrics in order to test and finally select the metric which returns bet-
ter overall matching results for our respective final shape signatures - represented
as feature vectors (fvs). The problem of shape matching is therefore converted to
computing the distances between two d-dimensional fv,: hg, hp € R, where hg
and hp are feature vectors of the query and database shapes, respectively. Details
of these distance metrics are presented as follows.

Euclidean Distance

This is the most used distance metric, which can provide the best proximity measure
for dense or continuous data. Generally, the Euclidean distance between two points
a and b is the length of the path connecting them, and a generalized term for the
Euclidean norm is the Ly norm or Lo distance [255]. Mathematically, the Euclidean
distance between hg, hp € R? is computed according to Equation 2.1, where the
subscript, 7 is used to denote the i’th component of the shape descriptor.

d
01,(hg, hp) = llhg = holly = 4| D _(ho, = hp;)? (2.1)
=1
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Cosine Distance

Unlike other distance metric which measures the straight-line distance between data
objects, the Cosine similarity metric measures the angle between two objects, or their
Lo-normalized dot product. Determining cosine similarity between two objects is
the same as finding the cosine of the angle between the objects. Considering that
Cos(0°) = 1.0, Cos(90°) = 0.0, Cos(180°) = —1.0, and Cos(360°) = 1.0, then
the cosine similarity score between two objects would certainly be less than 1.0
for any other angle (between these objects) greater than 0°. The Cosine similarity
metric is therefore a measure of orientation rather than magnitude. For example,
two vectors with the same orientation would have a cosine similarity score of 1.0,
whereas two vectors at an angle of 90° to each other would have a cosine similarity
score of 0.0. Similarly, two vectors diametrically opposed to each other would have a
cosine similarity score of —1.0, irrespective of their magnitudes. Mathematically, the
Cosine distance between two feature vectors: hg, hp € R? is given by Equation 2.2.

hq-h ?  hqhp,
cos(hg,hp) = —2 D _ — 2i-1 Bo;lp (2.2)

el ol S5 g 2) 4 (L (o)

Earth Movers’ Distance (EMD)

The EMD is a metric used to evaluate (dis)similarity between two multi-dimensional
distributions in some feature space where a distance measure between single features
(ground distance) is given. Mathematically, EMD is also known as Wasserstein met-
ric [261]. Intuitively, given two distributions, one can be seen as a mass of earth
properly spread in space, the other as a collection of holes in that same space. Then,
the EMD measures the least amount of work needed to fill the holes with earth [43].
We decided to implement this distance metric in our work owing to its numerous
successes in 2D image processing [196]. More details regarding this metric can be
found in [196, 197].

The Wasserstein metric can be used to compute the distance between two 1D
distributions (i.e. shape descriptors in our case). Given two descriptors, say hg and
hp, the Wasserstein distance is considered as the minimum amount of work required
to transform hg into hp, where work is measured as the amount of distribution
weight that must be moved, multiplied by the distance it has to be moved. If we
consider our shape signatures as a Cumulative Distribution Function (CDF), then
for a single signature, hq with d-dimension, its CDF, hg is defines by Equation 2.3.

h§[d) = Z h$ il (2.3)

We therefore compute the EMD between our signatures, hg and hp with d-dimensions
according to Equation 2.4.

EMD(hg, hp) = Z h$li] — hpCli]| (2.4)
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Kullback-Leibler Divergence (KLD)

In mathematical statistics, the Kullback—Leibler divergence (also called relative en-
tropy) is a measure of how one probability distribution is different from a second,
reference probability distribution [114, 113, 184]. Generally, when we consider two
distributions of probability P and (). Usually, P represents the data, the observa-
tions, or a probability distribution precisely measured. Distribution () represents
instead a theory, a model, a description, or an approximation of P. The Kull-
back—Leibler divergence is then interpreted as the average difference of the number
of bits required for encoding samples of P using a code optimized for () rather than
one optimized for P [256]. We imagine our final 3D shape signatures: hg and hp
(for which we want to compare) to be two probability distributions, and assume that
the KLD similarity score between them would be a measure of how either hg or hp
diverges from the other. Intuitively, if the KLD divergence is low, then the two
objects represented by hg and hp are similar to the degree of the KLD similarity
score, else, they are not similar. Hence, for discrete probability distributions h¢q and
hp having the same dimension, d (i.e. defined on the same probability space, d),
the KLD from @) to P is defined by Equation 2.5.

Dir(hqllhp) =) hq(i)log (Ziég)

i€d

==Y hg(i)log (22—8)

i€d

(2.5)

Since log (%) = log(a)—log(b), Equation 2.5 can then be re-written (i.e. re-implemented)
as shown in Equation 2.6

Dir(hollhp) =) hq(i)log(hq(i)) = Y ho(i)log(hp(i)) (2.6)
ied ied
Practically, is asymmetric and we found that Dy (hgllhp) # Dxr(hpllhg). It is
therefore important to state that the results we obtained with the KLD similarity
metric (see Section 4) was with Dy, (hg||hp), and not Dk (hp|lhg).

Jensen-Shannon Divergence (JSD): Alternatively, another divergence metric,
called the Jensen-Shannon Divergence (JSD) [153, 63], exist that can also quantify
the statistical difference (distance or similarity) between two probability distribu-
tions. The JSD metric is an extension of the KLD, where it uses the later to
compute a normalised score, between 0 (identical) and 1 (maximally different), for
base-2 log. Such score is smooth and symmetrical (i.e. D;s(P||Q) == Dys(Q||P))
as opposed to that of the KLLD metric. Essentially, the JSD can be calculated based
on Equation 2.7.

Dys(P||Q) = 0.5% D (P|[M) + 0.5 % D (Q|[ M) (2.7)

Where M is given as: M = 0.5 (P + Q).
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Considering these desirable characteristics of the JSD the choice of the KLD
metric, instead, for our 3D shape matching tasks is mainly due to its popularity
and success. The KLD has been very widely used in machine learning, statistics,
signal processing, and content-based shape matching/retrieval. Secondly, the JSD is
significantly more computationally challenging to implement, not very suitable for
real data, and behaves well only when both distributions (i.e. P(z) and Q(z)) being
matched are small. The KLD metric, on the other hand, is easier to compute and
performs well on large distributions, such as the final feature-vectors of our APPFD
method which is very high-dimensional (i.e. up to 200k dimensions), whereas the
JSD failed to match such distributions.

Squared Euclidean Distance (SED)

The SED is simply the square of the standard Fuclidean distance, and the SED
between two 1-D arrays (i.e. shape descriptors), hg and hp are given by Equa-
tion (2.8), which can be simplified to be:

67, (hg, hp) = (hg, — hp1)* + (hgy — hpa)? + (hgs — hps)® + - -+ + (hgy — hpa)®

where hg and hp has dimension, d.

0%, (hq. ho) = |hq — holl; (2.8)

According to [255], the Squared Euclidean distance is not a metric, as it does not
satisfy the triangle inequality [105], nor does removing the ¢ parameter and its
associated terms (see Equation (2.9)) render the SED function into a norm or semi
norm for the same reason. However, it is a more general notion of distance, namely a
divergence (specifically a Bregman divergence [22]), and can be used as a statistical
distance. The Pythagorean theorem is simpler in terms of squared distance (since
there is no square root); if pg L gr; then:

&1, (p, 1) = 67, (p,q) + 07,(q,7) (2.9)

However, in computer science (and especially computer graphics, simulations, and
video game development), the usage of traditional Euclidean distance and norm
functions (in certain contexts) can be sometimes considered non-optimal due to its
dependence on the square root operation, which in many cases can be prohibitively
slow. Algorithms based on comparisons between multiple distances or magnitudes
can forgo the Euclidean metric and can instead utilize SED as an optimization, as
relations between arbitrary non-negative values (in our case, distances) in a tuple
should remain preserved after all values become squared (the SED values) [255].

In Section 3.6, we provide further details on how each of these distance met-
rics are used to compare the similarity between two 3D objects (i.e. query model
and database models) given 3D objects that are represented by different retrieval
methods (descriptors).
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2.2.4 3D Content-based Retrieval System (3D-CBRS) and
3D Search Engine

Definition 2.2.1 A 3D-CBRS (also known as 3D shape search engine) is an appli-
cation that accepts a 3D model as input query, then retrieves other 3D models from
a specified 3D models database, and ranks these retrieved models by their degree
of similarity to the query model. This system/application enhances the process of
searching a 3-dimensional collection (i.e. database of 3D objects) to retrieve similar
objects to a query 3D object.

The concept of 3D-CBRS involves the application of CV techniques to 3D shape
search problems (i.e. the problems of representation, pre-processing, description,
indexing and matching of 3D objects) in order to retrieve similar objects from a
database of 3D objects. Much of the recent work on 3D-CBRS can be found in [228]
and [268]. The content-based concept in 3D-CBRS refers to a search approach that
analyses the physical properties of surfaces (measurements), which is the mathe-
matical contents or measurements of 3D objects, such as shape descriptor or fea-
ture vectors, rather than their abstract contextual contents (meta-data), such as
keywords, tags, colours or appearances. In Figure 2.3, we present a clarified and
detailed overview of 3D-CBRS, where the entire process is broken down into three
stages, thus:

e DB 3D Input: Involves using a particular/target database of 3D objects (e.g.,
the SHREC’10 dataset described in Section 5.2.2) and performing the follow-
ing CV processes on the dataset: pre-processing, feature extraction, shape
descriptor construction, and indexing the descriptors for all 3D objects in the
database.

e Query 3D Input: Given a single 3D object for which we want to find other
similar 3D objects from the target database, exact CV processes performed
for the target database objects are performed on the query object, such as
pre-processing, feature extraction, and shape descriptor construction, except
indexing.

e 3D Output: Also known as matching and retrieval stage, involves loading up
the indexed database-object descriptors, matching each of these descriptors
with the query-object descriptor to find matches (similarities). i.e. those in-
dexed database-object descriptors which are similar/close to the query-object
descriptor. These matches (i.e. similar database 3D objects to the query 3D
object) may also be ranked based on pre-determined threshold and top ones
can be returned as output to the user of the search engine.

Essentially, the “DB 3D Input” stage is generally referred to as the off-line phase,
while the last two stages (“Query 3D Input” and “3D Output”) are generally re-
ferred to as the on-line phase by most content-based shape retrieval researchers, for
example [64]. Tt is possible to design the 3D-CBRS using several approaches. For
example, a user of the system can query the 3D database using a query 3D object,
a 2D sketch representation of the query 3D object or a text-based approach which
involves the meta-data of the query 3D object. If the sketch-based or text-based ap-
proaches are adopted during the on-line phase, then, the retrieval system would have
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Figure 2.3: General overview of 3D Content-based Retrieval System.

been designed to support database indexing of 3D objects using exact approaches,
respectively. The literature in [64] provides more details regarding these. However,
this thesis and our research implementations strictly adopts the 3D query object
approach due to its suitability and robustness over the other approaches.

The following six key aspects are considered in 3D-CBRS: (i) Object representa-
tion, (ii) data pre-processing, (iii) feature extraction and optional feature selection,
(iv) shape description, (v) indexing, (vi) matching and retrieval. In this section, we
only provide detailed description of the first aspect (i.e. 3D object representation),
which is an important aspect to consider for any shape analysis task, including
shape retrieval, while the other five aspects are thoroughly described as processes
(i.e. as part of our research strategies and techniques) in Section 3.1. However, the
3D-CBRS is incomplete without an effective performances evaluation mechanism for
shape descriptors (or retrieval algorithms) prior to deployment. In Section 4.3, we
provide details of the performance evaluation approach and metrics we have adopted
to validate our 3D shape retrieval methods or descriptors.

2.2.5 3D Search Searching

The final stage of Content-based Shape Retrieval (CBSR) pipeline is to search for
3D object(s), where the user is expected to submit a query object to the CBSR
system (3D search engine) and be able to retrieve similar ones already in the ob-
ject’s database. During user search, the query object is first described (i.e. we
apply exactly the same features extraction and shape descriptor functions that were
applied to all other shapes in the database from which we want to retrieve similar
objects) to obtain a query signature, which is then compared to the signatures of
database objects already indexed, using a similarity function. Finally, based upon
similarity scores and matching results, the most relevant results, sorted according
to our similarity function are returned. It is important to mention that the relevant
results that would be returned are different for different similarity metrics or func-
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tions, because they (results) strictly depend on the similarity function or similarity
metric (see Section 2.2.3) used.

Prior to searching, shape descriptors are first computed, and used to represent
the input query and the database objects. During shape matching, the degree of
similarity /(dis)similarity between two descriptors (query object descriptor and each
of the database objects’ descriptor) is compared using a suitable (dis)similarity or
distance metric d : Ml x Ml — R, where M represents space of descriptors. Let us
denote the query object’s descriptor as ) € M, and a collection of other descriptors
associated to the database objects as D; C M : ¢ =1...N, where D, are objects
of the same type as the query object. Then, the 3D objects in the collection are
represented by a set of indices 1, ..., N. The distance metric, d used, depends on the
type of descriptor computed, and we adopt about five choices of distance metrics,
d (described in Section 2.2.3) for performance evaluation purposes. Suppose d is
a measure of (dis)similarity between the query object and the database objects,
then the database object with descriptor D,, would be the descriptor of object with
the “best match” to the query object, having an identifier, s; (regarded as the i-th
match, where ¢ = 1 in this example) which is the “highest ranked” similarity “score”.
This is expressed in Equation (2.10)

d(@,Dy,) = min d(Q, Di), s1€{1,..., N} (2.10)
In information retrieval and pattern recognition, finding the “best match” to a
query object is usually a problem. However, we choose to retrieve only K < N
ranked objects for the user as the retrieval results of his/her query, where for our
retrieval performance evaluation purpose, K = 32, as described in Section 4.3.3.
However, depending on the retrieval application, a user can specify how many ob-
jects, K, should be retrieved. Then, the K matched results (retrieved objects),
which are the most similar to the query object, are ranked so that their descriptors
Dy, ... D, (s1,...,5k € {1,...., N}, i # j = s; # s;) satisfy Equation (2.11).

d(Q,Ds,) <d(Q,Ds,.,,), 1<i<K-—1 (2.11)

Several 3D query and retrieval systems (i.e. 3D search engines) have been de-
veloped, such as 3D retrieval engine at Utrecht University [243|, Princeton Shape
Benchmark [239], the University of Konstanz 3D model similarity search engine [29]
and the National Taiwan University 3D model retrieval system [36, 35], among oth-
ers. 3D retrieval system employs a number of methods and software tools [7] as
well as shape matching techniques such as the ones described in [91] (such as the
ones we describe in Section 2.2.6). The main idea behind content-based retrieval
systems is to develop a platform that uses these techniques to enable users to per-
form object query by similarity of contents. Compared to traditional 2D image
techniques or textual keyword searching, 3D objects retrieval task is not as easy.
However, 3D objects searching usually perform better when using 3D descriptors
than using there textual keywords or 2D image representations. This is because it
may be more difficult to adequately describe a 3D object or properly label (name)
all the 3D objects in a dataset in such a way as to provide uniqueness and search
efficiency when conducting a 3D search with textual keyword, for example. On the
other hand, 2D image-based technique involves the projection of 3D objects into 2D
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space [230], where some useful 3D information are lost in the process. Besides, some
useful properties of the 3D objects, such as size, height, volumes, etc, are difficult
to capture in the 2D space. However, the effectiveness of this approach somehow
depends on the application or problem we are trying to solve, and there are a lot
of exiting techniques which involves the projection of a single 3D object to multiple
2D images, and proves to be useful in some application.

3D retrieval system (search engines) uses either local or global shape descriptors
for its similarity measure. When a query is made to the system, the retrieval engine
calculates the query object’s descriptors and compares the result to all the stored
descriptors from the database, using a distance function. The distance function
then measures the similarity between the query object and those of all the objects
in retrieval system’s database. When this has been done, the search engine sorts
database objects in terms of increasing distance values. Shape descriptors are crucial
in 3D object retrieval, especially when dealing with a large repository of 3D objects.
In Section 2.3, we provide a detailed overview of 3D shape descriptors, including
their classifications (see Section 2.4), thus provide a reference for constructing or
adopting a shape descriptor for 3D object retrieval system project.

2.2.6 Shape Descriptors Matching Approaches

Searching through a database of 3D objects for an object of interest (query object)
can be achieved by either of two broad approaches to shape descriptors matching.
They are:

i local descriptor matching (see Section 2.2.6): which involves aligning points (or
vertices) from the query object to the points of each object in the database to
find correspondences (i.e. how well the points or vertices fit, or are close to,
each other). A technique similar to the popular ICP algorithm [52], such as the
signature of histograms of orientations [235] is typically adopted for this kind of
matching.

ii global descriptor matching (see Section 2.2.6): which involves reducing each
3D object in the database, including the query object into a feature-vector,
also known as shape signature (i.e. a concise mathematical description of its
shape characteristics), then compare the descriptor of the query object to the
descriptor of each of the database objects to find a match. For this approach to be
achievable, the database shape descriptors must first be indexed (see Section 3.5).

Unlike the global approach (see Section 3.6 and Figure 3.22 for clarity), the lo-
cal approach to 3D shape matching is very expensive because it involves matching
multiple points or key points descriptors of the query object with multiple points
or key points descriptors of each of the database object. The local approach is
computationally expensive and time consuming, assuming there are exceptionally
a substantial number of models in the database, as it would require all individ-
ual items in the database to be evaluated every time a query is made. The global
approach, however, generally involves dimensionality reduction of all database and
query models. Each database 3D object consists of a set of 3D points connected by
edges (in the case of triangular meshes) or raw points (in the case of point clouds),
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which are transformed to a feature-vector (i.e. a set of floating-point numbers) using
some mapping or function for each of the 3D objects, thus reducing the problem of
finding similar shapes to finding vectors of numbers that are similar to each other
between query and database objects.

There are various kinds of data structure for addressing this situation (Graphs,
K-d Tree, B-trees, Heaps, hash table, etc.), which turns the problem into a proximity
search in a vector space. Some of these data structures are fast and others slow. The
goal behind reducing 3D objects to a concise vector of features is to enable them to be
comparable and to use the fast data structures, which would result in faster query.
For this reason, the choice of the global approach becomes a preference over the
local approach when considering 3D querying and retrieval. In this thesis, we adopt
the global shape descriptor matching approach (see Section 3.6 and Figure 3.22
for more details), instead, due to its simplicity and ease of computation, and in
order to obey some of the needs expressed in Section 2.3.1 (i.e. characteristics of
an appropriate shape descriptor). In the sub-sections that follow, we provide an
overview of these two approaches to shape descriptor matching, and describe our
actual implementation of global descriptors matching in Section 3.6.

Local Descriptors Matching

Here, several key point descriptors, [K x D] (which describes the local geometrical
properties of the underlying 3D surface) would have been computed and indexed for
a single 3D object, where K is the number of detected key points per 3D object;
D is the dimension or size of each local descriptor, K;; and the value of K differs
for each 3D object. Then, local descriptors matching technique for this type of
shape signatures representation generally involves finding correspondence between
the local descriptors of X = [K, x D] and Y = [K, x D], where X and Y are the two
3D objects we want to match, for instance. Alternatively, k-NN (which involves
using any of the distance metrics, like Cosine to find the nearest Cosine neighbours
between X and Y local descriptors), brute-force, etc., are some of the most common
approaches in literature for local descriptor matching. The Bag-of-Words (BoW)
technique is also a common approach used to combine and match locally-extracted
descriptors. However, as already stated, we do not implement any of these matching
techniques for this thesis.

Global Descriptors Matching

With this approach to shape descriptor matching, we ensure that for a single 3D
object, only one final signature/descriptor is computed, which is a global shape
descriptor as described in Section 2.4.1. During global matching, we compare any
two 3D objects as follows. The distance (see Section 2.2.3) between their global
descriptors (which are d-dimensional feature-vectors) are computed. The normalised
distance value, which lies between [0, 1] determines how similar the two shapes are.
Our global and hybrid descriptors (described in Section 4.2) were first computed
and stored (indexed) for all the 3D models present in each dataset. Then, we
considered each descriptor in turn, as a query descriptor, for matching/comparison
with every other descriptor in the dataset to obtain their respective similarity score,
which is recorded during each match. We then sort a collection of these similarity
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scores for all pairs of matching, to create a ranked list, which is sorted based on the
similarity scores. With the ranked list, we finally compute a distance/(dis)similarity
matrix, DM. The DM contains retrieval scores for the shape retrieval algorithm
and distance metric used for that particular dataset.

2.3 3D Shape Descriptors

Definition 2.3.1 A 3D Shape Descriptor is simply a concise mathematical repre-
sentation (i.e. a d-dimensional feature-vector) of a given 3D object. It is commonly
also referred to as 3D shape signature. According to [149], “8D Shape Descriptor
can be viewed as a ‘mapping’ from 3D object space to some high-dimensional vector
space”, and the primary goal of research in this field is to produce such “mappings”
that can preserve as much information as possible about a 3D object while producing
a resulting feature-vector representation in a possibly low-dimensional space.

Basically, a shape descriptor is a compact mathematical description of a given 3D
object, often represented by a vector, a graph, or real numbers, in such a way that
its complexity is much less than its corresponding original 3D representation. The
primary purpose of this study is to propose such a compact, yet computationally
efficient and highly discriminating signature for 3D mesh and point cloud retrieval,
and the above definitions are important in order to improve the efficiency and ef-
fectiveness of 3D shape recognition and retrieval engines. 3D shape descriptors are
derived by first extracting (identify and compute) salient and discriminating fea-
tures from 3D surfaces, which are then combined to form a compact mathematical
representation (vector) for the 3D object. 3D shape descriptors are indispensable for
a variety of computer vision, graphics, and pattern recognition tasks, etc. They play
a key role in 3D object retrieval tasks, which involves the process of querying a 3D
object against a database of 3D objects in order to find similar objects that closely
matches the query object. Therefore, it would be almost impossible or inconvenient
to directly match a raw 3D query object (i.e. triangular mesh or point cloud data
structure) with several other 3D objects in the database, irrespective of whether, or
not, the 3D database is small, without first describing the object, that is: convert-
ing the objects to shape descriptors. Describing 3D objects makes it easier to index
or store a large number of them and to quickly retrieve closest matches during query.

Several methods have been proposed for computing appropriate shape descrip-
tors for 3D shapes. A good 3D shape descriptor must be able to represent the
original 3D shape or data such that the descriptor (new representation) is invariant
to rotation, translation, and scaling, while being robust to noise, tessellation, and
occlusion. We give further details regarding the characteristics of an appropriate
shape descriptor in Section 2.3.1. The literature by [64] however noted that, unfor-
tunately, no existing shape descriptor has all these properties, and provided reason-
able arguments to support this claim. In their work, they proposed the Spherical
Harmonics Transform (SHT) 3D shape descriptor (see Section 2.5.3), stating that
the statistically-based shape descriptors such as the shape distributions [173] (see
our reviews in Sections 2.6) and feature vectors [53] are usually not discriminating
enough to distinguish between similar classes of objects.
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Until now, an exceptionally large number of different categories and approaches
to 3D shape descriptors have been developed and evaluated against several different
3D benchmark datasets by computer vision/graphics researchers, educators, and ex-
perts. However, research contributions within the last two-to-three decades contain
the most relevant and up-to-date research findings on 3D shape analysis, retrieval,
and pattern recognition. Moreover, it is somehow impractical to address all the
existing 3D shape descriptors in literature within the scope of our thesis. There-
fore, in the following sections, we provide a detailed and well-informed review of 3D
shape descriptors focusing on two broad perspectives (i) broad classifications of 3D
shape descriptors (see Section 2.4), and (ii) broad approaches to 3D shape descrip-
tors (see Section 2.5) as illustrated in Figure 2.4, where we review the various types
of 3D shape descriptors available in literature within the above-mentioned period.
Approaches and techniques we adopt to describe (i.e. compute descriptors for) 3D
meshes and point clouds for efficient 3D shape retrieval tasks are presented in Sec-
tion 3.

3D Shape
Descriptors
Broad Approaches Broad Classifications
to 3D Shape of 3D Shape
Descriptors Descriptors
Data-driven Knowledge- Global . Hybrid Descript
Approach based Approach Descriptors Local Descriptors ybrid Descriptors

Figure 2.4: Broad overview of 3D shape descriptors in terms of classification and
computational approaches.

3D shape descriptors or retrieval methods deal with various forms of 3D ob-
jects representation (see Section 2.2.1). For example, some descriptors are designed
specifically for 3D triangular meshes [3, 249, 135], others are most suitable for raw
3D point cloud data [200, 263, 142], and many others are suitable for RGB-D, 2.5D
range scans, LIDAR data [73, 257], etc. However, the voxel data representations are
the most suitable kind of data for 3D shape descriptors utilizing the machine/deep
learning computational approach (for data-driven 3D shape descriptors, discussed in
Section 2.5.1). In our work and in this review, we focus primarily on those 3D shape
descriptors that are mostly suitable for 3D triangular meshes and raw 3D point
cloud data (for knowledge-based 3D shape descriptors, discussed in Section 2.5.2).

2.3.1 Characteristics of Appropriate Shape Descriptors

According to [54], six algorithmic criteria are needed to determine the invariance of
shape descriptors, thus: (i) Size of Vector: the size of the final shape descriptor or
feature-vector, fv, corresponding to a particular 3D object. (ii) Feature Extraction
Complexity: the complexity of the feature extraction and shape descriptor construc-
tion algorithms that produces the final 3D shape descriptor, (iii) Matching Complez-
ity: the complexity of the similarity measure between two shape descriptors being
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compared, (iv) Generality: specifies whether a specified 3D object descriptor can be
applied, for example, to topologically ill-defined 3D object as well as polygon soup,
(v) Geometric Invariance: specifies if the descriptor is invariant to affine/geometric
transformations, as illustrated in Figure 3.4, and (vi) Topological Invariance: which
specifies if the descriptor is independent of the polygonal representation. In ad-
dition, eight desirable properties that a good 2D/3D shape descriptor must have,
were mentioned by [64], as follows. A good shape descriptor must be: (i) quick to
compute, (ii) concise to store, (iii) easy to index, (iv) invariant under (dis)similarity
transformations (such as translation, rotation and scaling), (v) insensitive to noise,
i.e. robust or insensitive to sampling errors and some sorts of noises (such as topol-
ogy or geometric noises), (vi) independent of 3D object representation, tessellation,
or genus, (vii) robust to arbitrary topological degeneracies, and (viii) discriminating
of shape differences at many scales.

Developing a single shape descriptor that would satisfy all the above condi-
tions/criteria would be great, but remains an open research problem to the best of
our knowledge. For example, a given shape descriptor may only be robust to noise,
invariant under rigid (similarity) transformation (which is much more challenging
to describe and represent), and possibly discriminating of objects’ differences at
many scales, while another descriptor may be better in terms of being quick to
compute, concise to store, easy to index and probably robust to arbitrary topolog-
ical degeneracies, including being invariance under (dis)similarity transformations.
The choice of descriptor for a particular computer vision task would therefore de-
pend on the users’ preference and the task involved. In this thesis, we present
statistically-based 3D shape retrieval methods which have been able to satisfy most
of the above-mentioned criteria, including descriptor size/compactness with good
descriptive power. We summarise (list) our original methods in Table 4.1. More
details regarding these descriptors are provided in Section 4.2, while experimental
evaluations are detailed in Section 5.1.

2.4 Classification of 3D Shape Descriptors

Broadly, depending on the process of computation and usage, 3D shape descriptors
(retrieval methods) are classified into two main categories: local and global descrip-
tors. It has been possible to derive a third category, the hybrid descriptor, by a
combination of different variants of local descriptors, global descriptors or local and
global descriptors as illustrated in Figure 2.5. The process of computing each of the
three classes of descriptors is different. The hybrid descriptor or retrieval approach,
however, is intended to further improve upon the overall retrieval performances of
the resultant combined methods as opposed the individual performances of each of
the single descriptors. Detailed review of the types of 3D shape descriptors that
falls within each category are presented below.

2.4.1 Global 3D Shape Descriptors

Essentially, global 3D descriptors deal with the global nature of 3D objects. These
types of descriptors are more interested in the general aspect of a given object rather
than its details. Most 3D shape retrieval tasks make use of global shape descriptors,
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3D Shape Descriptors

(Data-driven and Knowledge-based)

l l

Local 3D Descriptors Global 3D Descriptors Hybrid 3D Descriptors
Local + Local Global + Global Local + Global
Descriptors Descriptors Descriptors

Figure 2.5: 3D shape descriptors, broadly classified into 3 groups: Local, Global
and Hybrid descriptors (i.e. local-local, global-global, or local-global descriptors).

such as the SHT [251], Shape distributions [174], Lightfield Descriptors (LFD) [214],
etc., which require the complete geometry of a 3D object. Over the years, several
global 3D descriptors have been studied and proposed in the literature, with the
most popular ones being the shape distributions which are based on statistical dis-
tributions of shape functions measuring geometrical properties of 3D objects. These
measurements are then binned into histograms. While there are wider range of pos-
sibilities to computing shape functions, the work by [174] proposed only five shape
functions listed below, which were chosen for their computational simplicity and
invariance.

e A3: represents the angle between three random points sample on the surface
of a 3D object.

e DI1: represents the distance between a fixed point and one random point sample
on the surface of a 3D object.

e D2: represents the distance between two random points sample on the surface
of a 3D object.

e D3: represents the square root of the area of the triangle formed by three
randomly chosen points sample on the surface of a 3D object.

e D4: represents the cube root of the volume of the tetrahedron formed by four
randomly chosen points sample on the surface of a 3D object.

Global Features: Global descriptors are computed from global features (i.e.
measurements that characterises the global shape of a 3D object), and the five shape
functions listed above (i.e. A3, D1, D2, D3 and D4) are typical examples of global
features. According to [174], the distribution measuring distances between pairs of
random points (D2) is most effective compared to other retrieval methods. Other
examples of these type of features are the area, volume, statistical moments, and
Fourier transform coefficients [272], statistical moments of the volume/boundary
of 3D objects [180], measure of reflective symmetry (specified by two parameters)
to every plane through the object’s mid-point [101], and the Fourier transform of
the volume or the boundary of 3D object (i.e. the ratio of volume to surface of the
object), such as: (i) ratio of the cubed surface area of the hull and the squared volume
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of the convex hull, tagged “hull compactness”, (ii) ratio of object’s surface area and
the surface area of its convex hull, tagged “hull crumpliness”, and (iii) percentage of
the convex hull volume not occupied by the object, tagged “hull packing”, proposed
by [42].

Multi-view 2D Projection (M2DP)

One other typical example of a global 3D shape descriptors is the M2DP [80], which
is developed for 3D point cloud and applied to the task of loop closure detection.
M2DP involves the projection of 3D cloud to multiple 2D planes from which den-
sity signature of points in each plane are computed and combined to produce 196-
dimensional feature-vector, fv. In Chapter 4, Section 4.2.3, we adopt the M2DP
descriptor to further improve the performance of our APPFD, due to its success
and computational efficiency. For more details regarding the M2DP global descrip-
tor, we refer the reader to [80].

Generally, global feature-based descriptors (global descriptors) analyse 3D ob-
jects as a whole unit, but fails to capture the specific details of a 3D shape. Since
only global features are used to characterize the overall shape of objects these meth-
ods have straightforward implementation, but are not very discriminating about the
object’s details. Therefore, they can be used in combination with other methods
to improve retrieval performances and/or results. Secondly, global shape descrip-
tors are computationally efficient [91] and have proven to be effective methods for
describing rigid 3D models. Some global shape descriptors such as the shape distri-
butions can be used to represent objects from different broad categories [275]. They
are robust to noise and can distinguish wide categories of 3D objects.

The Key limitations of the global feature-based methods (global descriptors) are
that they fail to capture the specific details of a shape and overall, are not very
robust They fail to discriminate among locally dissimilar shapes [91], nor efficient at
discriminating objects that are globally similar but with different minute details in
their shapes [54]. In other words, global shape descriptors are capable of comparing
entire surface of 3D objects but unable to locally compare surface points for the
purpose of point matching. For this reason, local descriptors are essential. For a
broader overview regarding global features and shape descriptors, we refer the reader
to [275, 91, 228, 29].

2.4.2 Local 3D Shape Descriptors

The characterisation of local surface property is an open research problem that is
gaining more popularity over the years [231], and 3D shape descriptors have been
proposed, which are based on local features of object’s surface. Interestingly, local
shape descriptors have several key advantages, and matching 3D surfaces with local
shape descriptors has become a popular research trend within this period, basically
because local descriptors are able to efficiently describe surfaces with missing data,
clutter, occlusion, and they are affine-invariant. It is important to note that local
shape descriptors are computed from locally extracted features (i.e. local features)
from the surface on a 3D object. Local feature-based method describes a 3D ob-
ject using selected number of surface points and provide different approaches that
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considers the surface’s shape within a local neighbourhood of points on the entire
object’s surface. Consequently, a descriptor for each surface point is used and sev-
eral local descriptors are derived for a single 3D object instead of a single descriptor
for the entire 3D object.

Recently, researchers have also proposed methods using the BoW paradigm which
provides a framework to compare two 2D /3D objects using local descriptors. The
BoW approach has been successful in both text and 2D image retrieval, and has
shown promising results in 3D shape retrieval. In the BoW approach, local descrip-
tors are first computed for selected local surface patches or region (see Section 4.2.1)
around estimated key points for a given 3D object, then each of these descriptors is
assigned a frequency/probability value from a pre-constructed dictionary (i.e. vo-
cabulary or visual word). The vocabulary becomes the final feature-vector for the
object, which has dimensionality equal to the size of the vocabulary. Finally, a his-
togram of visual words or vocabulary is computed for the object, and two objects
can be matched by comparing their BoW histograms, similar to matching global
descriptors. The work by [170] used uniformly distributed depth-buffer views of
normalized 3D objects as features to construct local Scale-Invariant Feature Trans-
form (SIFT) descriptors and the BoW model was used to produce final histogram
of visual words. Then, the Kullback-Leibler divergence metric (see Section 2.2.3)
was used to determine the (dis)similarity between two BoW histograms. However,
while the BoW paradigm has been a common approach for combining local shape
descriptors, it is not the only way out for the complexity in local shape descriptors
matching. Several other local shape descriptors have been proposed independent of
the bag-of-words model.

The most popular approach to local shape descriptors remains the statistical
approach (see detailed review in Section 2.6) which involves computing histograms
of local (also global) features, where in this instance, local feature measurements
on the surface representing a given 3D object are binned into histograms and the
normalised histograms are used as the final local shape descriptors. The spin images
have been used as local descriptors (2D histograms counting the number of surface
points at various locations) by [213] and [144]. The work by [110] used curvature
based local descriptors (i.e. the mean and Gaussian curvatures), including shape
index, and curvedness. Alternatively, the Heat Kernel Signature (HKS) is another
type of popular local shape descriptor, which was introduced by [226]. Also, random
set of vertices were chosen from 3D triangular meshes as seeds by [117], who then ap-
plied Lloyd relaxation iterations to propose a local shape descriptor for 3D matching.

In addition to the characteristics of appropriate shape descriptors mentioned
in Section 2.3.1, a good local descriptor is one that must be able to account for
the local shape of the surface surrounding a given point. Local descriptor usually
requires a previous key point detection step, which complicates its adaptation to
recognize non-rigid objects [148]. Secondly, because local descriptors are computed
from surface regions (i.e. LSP) around key points, the challenge with these types
of descriptors therefore remains that of detecting appropriate and repeatable key
points. Key points detection for 3D objects is more complicated than for 2D im-
ages due to images having richer set of distinct features. However, [220] extended
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the Harris 2D key point detection to 3D objects, i.e. 3D-Harris. The literature
in [234] also reviewed several other techniques which have been proposed to perform
detection of repeatable and distinctive key points in 3D surfaces. In our work, we
implemented a number of popular state-of-the-art key points detectors for 3D mod-
els, but recorded several other issues aside from repeatability (see Section 3.3.5).
Part of our research goal and efforts has been to develop robust and computation-
ally efficient local 3D shape descriptor that satisfy most of the conditions mentioned
for appropriate shape descriptors (see Section 2.3.1). We therefore adopted an al-
ternative voxel-grid downsampling technique to select a set of points (used as key
points) for every 3D objects in the dataset. We describe this process in Section 3.3.5
and 3.3.5.

2.4.3 Hybrid 3D Shape Descriptors

The primary goal of the hybrid descriptor approach is to further improve the overall
retrieval performances of the global and local descriptors by combining either of
these descriptors as illustrated in Figure 2.5. For example, the work by [66] com-
bined two local descriptors: (i) the eccentricity function, which produced spatial
information about a 3D object and (ii) the local-diameter function describing local
surface of 3D model, to produce a global 2D histogram as the final shape descriptor
for a given 3D object. The literature in [263] formed a hybrid 3D descriptor known
as the Ensemble of Shape Function (ESF). In order to combine the descriptive pow-
ers of both local and global descriptors, the work by [4] combined the Viewpoint
Feature Histogram (VFH) global descriptor [201], and the Fast Point Feature His-
togram (FPFH) local descriptor to form a hybrid (FPFH + VFH) descriptor. In the
same manner, [242]combined three distributions (a distance histogram, a curvature
histogram, and an elementary volume histogram) to construct a hybrid descriptor
for 3D object indexing and retrieval. Two separate studies were performed by [178]
on 3D shape matching, where hybrid global descriptor was constructed by combin-
ing 2D and 3D descriptors. In one of their studies, they modelled the property of
an object using Fourier Transform descriptor technique, then combined 2D image
view of 3D object (panoramic views for unsupervised 3D object) [179]. In another
study, they combined 2D descriptors which captures the distance to surface points
from 6 sides of a cube with global 3D spherical harmonics, computed over the entire
3D object.

Essentially, the hybrid technique can be used to combine different statistically-
based 3D descriptors aimed at enhancing the overall performance of 3D shape re-
trieval. This approach is known for its exceptional performances, and literature
reviews have revealed its popularity due to several work utilising this approach to
3D shape description. However, the practicability of some hybrid-based techniques
is limited due to the high computational cost. To improve the retrieval efficiency
of 3D shapes, we propose a number of highly discriminative, yet computationally
efficient hybrid 3D shape descriptors for 3D meshes and point cloud shapes. In
order to address the practicability concern and fulfil most of the criteria specified
in Section 2.3.1, we compute our 3D shape retrieval methods with incredibly small
number of point samples, say between N = 3, 500 points to N = 10, 000 points, while
still recording impressive retrieval performance scores (see Section 4) compared with
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state-of-the-art methods for a given benchmark dataset and retrieval challenge. De-
tailed description of our hybrid descriptor methods is provided in Section 4.2.

In our work however, we identified and considered the gaps presented by the lo-
cal, global, and hybrid approaches to shape descriptors computation while proposing
improved solutions to shape retrieval, in each of these approaches, that accounts for
existing research gaps. We have mainly contributed to the local (see Section 2.4.2)
and hybrid (see Section 2.4.3) shape descriptors and evaluated their retrieval perfor-
mances using several performance evaluation metrics. We implement these descrip-
tors in Section 4.2. Therefore, our local and hybrid descriptors, which combines
the descriptive powers of both global and local descriptors, produce retrieval re-
sults with better performances across a wider range of 3D benchmark datasets - see
experimental evaluation sections, Chapter 4.

2.5 Approaches to 3D Shape Descriptors

According to [195], and [20], all methods involving analysis, feature extraction and
shape descriptor computations for 2D /3D shapes retrieval, classification, detection,
and recognition adopts either one of two broad approaches depending on the com-
putational technique adopted or the size of dataset. The first is the Data-driven
approach (see Section 2.5.1), and the second, Knowledge-based approach (see Sec-
tion 2.5.2). In Section 2.4, we discuss three broad classifications involving 3D shape
descriptors (global, local and hybrid), depending on mode of feature extraction and
final descriptors combinations. However, irrespective of their classifications, the gen-
eral process of 3D shape descriptors computation involves either of the two broad
approaches mentioned above. In this section, we provide detailed overview of these
two broad approaches to 3D shape descriptors computation, including reviewing
several different state-of-the-art 3D shape descriptors/retrieval methods that are
within each of the sub-categories of shape descriptors under each approach broad
approach, particularly, the knowledge-based approach, which forms the basis for our
research work and thesis contributions.

2.5.1 Data-driven 3D Shape Descriptors

Definition 2.5.1 Data-driven Approach: The data-driven approach to 3D shape
descriptors involves the application of Machine Learning (ML) or Deep Learning
(DL) techniques to learn representations from given dataset, thus yielding precise
outcome on even larger datasets.

The data-driven approach, which involves machine learning algorithms and tech-
niques have since been used in developing 3D shape descriptor [85], but have recently
gained popularity and attracted more attention with the emergence of the deep learn-
ing algorithms [84, 83]. Briefly, the general pipeline for the data-driven approach
to shape descriptor constructions is as follows: (i) The entire database or dataset
would have to first be divided into two sets (training and validation/testing set),
and training dataset (75% - 85% of original dataset) is presented to the machine-
learning (ML) or deep-learning (DL) algorithm that learns the patterns in the input
data. Typically, the original data itself could be used as input or set(s) of extracted
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features from the data. (ii) The input data is trained (i.e. the algorithm learns
patterns from the input data) until the algorithm converges to a potentially mean-
ingful descriptive model. This happens when some criteria are met, depending on
the parameter settings. The learning stage can either be supervised or unsupervised
learning. (iii) Following the training phase, the system is able to generate shape
descriptors for unseen data samples. In the case of supervised learning, the model
(ML/DL) needs to first be validated for accuracy using training and testing labels
which serves as ground truth, while unsupervised learning involves a different ap-
proach.

Unlike the knowledge-based approach (see Section 2.5.2), a key advantage of
the data-driven approach to computing 3D shape descriptors is that 3D features
are automatically learned from training data with little (in the case of supervised
or semi-supervised learning) or no (unsupervised learning) expert’s knowledge [20].
Secondly, this approach has the advantage of analysing and extracting meaningful
knowledge from large volumes of data. Unfortunately, despite its many benefits,
the data-driven approach to 3D shape descriptor computation is not without its
complications.

First, ordinary ML algorithms has not been robust enough to produce desired
accuracy or descriptiveness. Instead, the DL technique has been shown to record
better retrieval performances. However, the limitations with either of these ap-
proaches or techniques are: (i) they are highly parametrised, and (ii) the deep
learning method depending on remarkably high computer resources (hardware and
software) to achieve optimal/desired performance, therefore its suitability for prac-
tical real-time computer vision/graphics application remain an issue. Secondly, the
data-driven techniques can be computationally prohibitive due to the large volumes
of data they analyse, whereby they perform poorly when the size of data is small, and
raises plenty of research concerns. For example, PartNet: A Large-scale Benchmark
for Fine-grained and Hierarchical Part-level 3D Object Understanding [160] and
ShapeNet: A Large-scale Dataset of 3D Shapes [34] contains over 26,000 and 63,000
3D shapes, respectively. A few other large repositories like these exist which only
the data-driven technique is suitable for constructing their 3D shape descriptors.
Besides the remarkably high computational costs to construct shape descriptors for
these kinds of datasets using the data-driven approach, large amount of storage
space is also required. In summary, one of the key disadvantages of the Machine
Learning (ML)/Deep Learning (DL) methods or the data-driven approach is the
requirement of large amount of training data which limits their applicability and ef-
fectiveness. Therefore, the knowledge-based approach (see Section 2.5.2) is essential
and expert’s knowledge becomes important. This is because the knowledge-based
approach does not require a large volume of data to function.

Finally, the number of small-sized and domain-specific 3D shape repositories
which are suitable for the knowledge-based techniques (see Section 2.5.2) to 3D
shape descriptors (retrieval methods) greatly outnumbers the large-sized reposito-
ries used by data-driven techniques. As an example, detailed descriptions of 3D
shape repositories suitable for the knowledge-based techniques are provided in Chap-
ter 5.2. Alternatively, as a further proof, over 200 uniquely-related literatures have
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been cited and/or referenced in this thesis, and the research work by each of these
literatures utilises small-sized domain-specific databases for their experimental eval-
uations. Therefore, in this thesis we exclusively focus on the knowledge-based ap-
proach to 3D shape retrieval methods, as described in the next sub-sections, instead
of the data-driven approach. In this thesis, our primary focus is on the knowledge-
based approach to 3D shape descriptor computation due to the reasons explained
above, but in this section, we first provide a brief overview of the data-driven ap-
proach for the sake of clarity and comparison. However, for an in-depth analysis and
review of the data-driven approach to 3D shape descriptor computation, we refer
the reader to [128, 195].

2.5.2 Knowledge-based 3D Shape Descriptors

Definition 2.5.2 Knowledge-based Approach: The knowledge-based approach
to 3D shape descriptors involves the manual extraction of hand-crafted features from
3D objects for shape descriptors computation, by experienced and knowledgeable com-
puter vision/graphics experts and researchers.

In knowledge-based approach, features are extracted from data using hand-
crafted techniques. This approach involves human supervision or hard-coded rules
whereby experienced experts are needed to extract hand-crafted features from 3D
shapes for the construction of 3D shape descriptors. Unlike the data-driven ap-
proach which builds more generalizable shape descriptors (through large training
dataset), the traditional approach using knowledge-based techniques is task-specific,
less generic and does not require a large dataset in order to succeed. In this section,
we provide a comprehensive literature survey of local, global as well as hybrid 3D
shape descriptors which falls within the knowledge-based approach.

Reasons we adopt the Knowledge-based approach: Basically, the justifica-
tion for adopting the knowledge-based approach is mainly due to the limited data
available, computational efficiency, limited resources available, such as the Graphics
Processing Unit (GPU) and memory for storage. Unlike the knowledge-based ap-
proach, the data-driven approach further complicates the process of 3D descriptor
computation by depending on already extracted hand-crafted features and in most
cases, already computed shape descriptors from expert’s knowledge. For example,
low-level features such as spin images, curvature (Gaussian curvatures, mean curva-
tures, principal curvatures etc.), and Average Geodesic Distance (AGD) have been
used in the literature by machine learning algorithms to build shape descriptors [75,
219, 280]. Also, other spectral descriptors such as the HKS [25], Wave Kernel Sig-
nature (WKS) [8] are local 3D descriptors which have become the building blocks
of many data-driven 3D shape descriptor approaches in the literature [155, 24, 18],
which inspired researchers to construct data-driven shape descriptors in the spectral
domain. All these features and descriptors are derived using the knowledge-based
hand-crafted feature technique in the first place. What is even more interesting is
that researchers who adopt purely the data-driven approach to 3D shape descrip-
tors uses the HKS and WKS as an evaluation standard for the performance of their
descriptors [265, 20]. Above reveals that the success of the data-driven approach, to
a great extent, depends on the knowledge-based approach in the first place. To this

Ekpo Otu Chapter 2 39



3D Shape Description, Indexing, Matching and Retrieval

end, the need and importance of the knowledge-based approach cannot be overem-
phasised.

2.5.3 Categories of Knowledge-based 3D Shape Descriptors

Essentially, depending on the different 3D models data type utilised, and the cor-
responding 3D shape retrieval method, existing knowledge-based approach to 3D
shape descriptors can further be sub-divided into four categories: (i) View-based,
(i) Transform-based, (iii) Graph-based (Structural), and (iv) Statistically-based ap-
proaches to 3D shape retrieval methods. The literature in [54] equally overviewed
these four categories (but referred to Graph-based as Structural-based), including
a fifth category, the normative aspect. In contrast, the literatures in [228, 229]
and [275] categorised 3D shape descriptor into three broad categories, as follows:
(i) Feature-based, (ii) Graph-based, and (iii) Geometry-based and/or Others, re-
spectively. In the Feature-based category, three other sub-categories of 3D shape
descriptors were reported by [228, 229], which are: Global-features (Global-feature
Distribution), Spatial-map, and Local-features; while [275] expanded descriptors
in this category to four other sub-categories, thus: Global-features, Spatial-map,
Local-features, and Distribution-based. In the second category (i.e. Graph-based),
both [228, 229] and [275] agreed on the following three sub-categories: Model-graph,
Skeletal, and Reeb-graph. However, there was a contradiction in their mention of
the third category. Here, four other sub-categories: View-based, Volumetric Error-
based, Weighted Point set-based, and Deformation-based were mentioned by [228,
229]. The literature in [275] did not however name their third category, but men-
tioned three individual 3D shape descriptors: The Extended Gaussian Images (EGI),
Complex Extended Gaussian Images (CEGI), and 3D Zernike moments in their
“others” categories, whereas in our classification (see Section 2.5.3), these three
descriptors are categorised under the Transform-based group. We provide a side-
by-side comparison of the classification of 3D shape descriptors by both [228, 229]
and [275] in Figure 2.7.

View-based

Transform-based

Knowledge-based
3D Shape Descriptors

Graph-based

Statistically-based

Figure 2.6: Classification of Knowledge-based 3D shape descriptors

Recently, the literature survey by [103] provided five categorisations for 2D and
3D shape descriptors, thus: (i) View-based, (ii) Histogram-based, (iii) Transform-
based, (iv) Graph-based, and (v) Hybrid 3D Descriptors. We do not consider their
fifth categorisation (i.e. Hybrid 3D Descriptors) to be suitable in this context of
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shape descriptors categorisation, primarily because the hybrid shape descriptors fall
within a broader classification of 3D shape descriptors, encompassing both the data-
driven and knowledge-based, as described in Section 2.4 - see Figure 2.5. Secondly,
based on the context of this thesis, the hybrid 3D shape descriptor does not exclu-
sively belong to the knowledge-based approach to 3D shape descriptors. In addition,
the hybrid descriptors mentioned by [103] are simply a combination of individual
descriptors that may already belong to either or all the other categories, which are
classified mainly based upon their method of feature extraction and shape descriptor
computation, rather than just final combination.

Global features
/ global features ——>global feature distribution /

Eoaline Biased Local features
feature based —> spatial map cature base \\
\ \ Distribution based

local features =
Spatial map

/ model graph

graphbased  ——> skeleton

_—
Py _
Reeb graph —_—
view based
4 volumetric error
geometry based

\ weighted point set
deformation based 3D Zernike moments

(a) 3D descriptors grouping by [228, 229] (b) 3D descriptors grouping by [275]

Model graph

Reeb graph

Figure 2.7: Comparison of 3D shape descriptors classification by two different literatures.

Considering all the reviews of 3D shape descriptors classification in the literatures
we have indicated in this section, such as those in [228, 229, 275] and [103], it becomes
obvious that classifying existing 3D shape descriptors to commonly agrees with
several different research hypothesis is a non-trivial task, due to the overwhelming
number of available descriptors over the past decades. However, in this thesis, we
have been able to clearly provide 3D shape descriptors classification which, to a great
extent, agrees with the categorisations of other literatures we have mentioned [228,
229, 275, 103], but different in context and scope. As previously stated, in this
thesis, we only briefly review knowledge-based 3D shape descriptors within the four
sub-categories in Figure 2.6, as outlined in the following sub-sections. Although [54]
provided detailed analysis of 3D shape descriptors within these sub-categories, their
review, however, was limited to just a few mention and additional 3D retrieval
methods have since been developed which are not mentioned in [54].

View-based Approach:

Generally, view-based descriptor technique deals with the similarity of two 3D ob-
jects which appears similar from all viewing angles. This technique uses a single
view or multiple views of a given 3D object for its representation. Digital or virtual
cameras may be used to obtain a collection of these views. For example, Figure 2.8
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illustrates a single view of several 3D objects, while Figure 2.9 show a single 3D
object represented by three 2D views around the 3D object. In order to obtain dif-
ferent views of the same object, the camera angle would have to change each time a
shot is taken or each object is rotated at different angles to a fixed camera for each
shot. Human beings have the ability to visually recognize any object from single
view. The work by [192] explored the issue of whether 3D model recognition should
rely on internal representations that are inherently 3D or on collections of 2D views.
They showed that in a human visual system, a 3D model is represented by a set of
2D views [54].

Figure 2.8: Example single view of different 3D objects. View-based 3D object
descriptor approach uses a single view or multiple views of 3D object representation
instead of the actual 3D model.

The view-based 3D shape descriptors have been widely used in CAD applica-
tions. According to [36, 6], the Fourier descriptor and the Zernike moments are
the most widely used features to represent 2D views of 3D objects. Popular de-
scriptors that fall within this category are the Lightfield Descriptor (LFD) [214],
the depth buffer-based descriptor (BBD) [181], aspect graph [127], and adaptive
view clustering (AVC) [134], etc. A 3D descriptor from [273] that is made up of
rotationally invariant 2D images Fourier descriptor, was introduced by [171], using
a set of depth-buffer images viewed from 42 viewpoints as the final feature-vectors
representing a given 3D object. A total of 422 possible combinations of two sets
of feature-vectors were derived from matching two 3D objects by minimizing the
distance between these combinations. Alternatively, a single view of a 3D object
was used as a query by [44], where, for each 3D model several 2D views/images were
derived as signature. Clustering algorithm was then applied to these 2D views to
select a single view as a representative of each cluster using a shock-graph, thereby
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keeping the total number of views for each 3D object small. 3D object recognition
was then performed by matching a view associated with the query 3D object with
those of other database 3D items using shock-graph matching. In this implemen-
tation, the shock-graph had indexing problem which resulted to linear search of all
database 2D views during retrieval phase.

The view-based descriptor technique was used in [64], by computing 13 thumb-
nail images representing the silhouette (outer shape boundary) of the 3D object as
seen from 13 orthographic view directions. They implemented a 2D sketch query
interface for retrieval, where a descriptor comprising a number of binary images is
acquired during the pre-processing phase, for every 3D object. Then, during the
query phase, a 2D image sketch or a 2D image representation of 3D objects in the
database can be used as a query to retrieve 3D database objects whose binary images
matches the query sketch/image. Similarly, the work by [146] applies view-based
technique to 3D shape retrieval employing a query user interface that is 2D. Es-
sentially, 3D shape retrieval is done by matching the descriptors of the query 2D
sketches with those of the 3D objects in the database by simply using 2D image
matching technique. Additionally, the view-based strategy by [250] described a 3D
shape descriptor using 3 silhouette images perpendicular to the [z,y, z]-axes of a
canonical coordinate system, and [214, 36] applied same, for 3D shape retrieval, us-
ing a light field descriptor (Zernike moments and Fourier descriptors) which matches
10 silhouettes (i.e. 2D images), derived from 10 evenly-distributed viewing angles on
the viewing sphere of a given 3D object. This concept is illustrated in Figure 2.10.
Matching two 3D objects is therefore reduced to the minimal dissimilarity gotten
by rotating the viewing sphere of one light field descriptor relative to the other.
Although the Lightfield descriptor has the advantage of being highly discriminating
among several other 3D shape descriptors, it utilises a higher storage and compu-
tational costs than most other descriptors. Various other view-based methods exist
in literature [115].

However, 3D shape retrieval using the view-based approach involved four main
stages: (i) view capture, where images of different views of a single 3D object is
being captured with the help of a fixed or moving camera; (ii) view selection, where
only the best representative 2D views of the 3D object are filtered out from the
many views that were previously captured in order to avoid redundancy and high
computational costs. (iii) feature extraction, where 2D features are extracted from
the respective multi 2D views of images representing a particular 3D shape, and (iv)
object matching, requires many-to-many matching of multiple 2D views of two 3D
objects, unlike the existing 2D image retrieval tasks that are based on one-to-one
matching of images between two images.

The downside of the view-based 3D shape descriptors approach is manifold:
First, considering the feature extraction stage of the view-based approach, men-
tioned above, the spatial correlation among different 2D views need to be strictly
considered, and this is still an open research problem which requires further inves-
tigation. Secondly, due to the special characteristics of 3D data, it is still difficult
to extract features for multiple 2D views of a single 3D object with concavity and
self-occlusion. Secondly, due to the many-to-many matching of the multiple 2D
views of 3D objects, it becomes incredibly challenging to determine how best to
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Figure 2.9: A single 3D object (middle) represented by three 2D views obtained from
three different camera positions around the object. Image Source, courtesy [54].

conduct many-to-many view matching and estimate the relevance among different
3D objects. However, for more information regarding the view-based approach to
3D shape retrieval, we refer the reader to [54, 67, 276].

e
P 41_ /
Figure 2.10: The Lightfield Descriptors extraction for a 3D chair model, cour-
tesy [214].
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Transform-based Approach:

Transform-based approach to 3D shape descriptors involves the transformation of
the 3D shape from 3D Euclidean space representation to another space representa-
tion [54]. Popular 3D shape descriptors that fall within this category are: Spherical
Harmonics Transform (SHT), Spherical Extent Function, Radial Spherical Extent
Function, Extended Gaussian Images (EGI) [88], Complex Extended Gaussian Im-
age (CEGI) [100], Spin Images [96], 3D Zernike Moments [168], etc. Another type
of 3D descriptor, the Reflective Symmetries [101] also falls within this category. Re-
flective Symmetry of 2D and 3D shapes is a problem of finding the main axes of
symmetry (i.e. reflective symmetry for an arbitrary 3D model for all planes through
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the model’s center of mass, even if they are not planes of symmetry), or determining
that none exist. We provide a brief review of only the popular descriptors within
this category below. The reader is referred to [64, 101, 168, 88, 96, 100], for more
in-depth reviews of these descriptors.

The SHT is a rotational invariant 3D shape descriptor whose main idea is to
decompose a 3D model into a collection of functions defined on concentric spheres
and to use spherical harmonics to discard orientation information (phase) for each
one, thus yielding a shape descriptor that is both orientation invariant and descrip-
tive [64]. The literature in [251] described a 3D surface by computing spherical
harmonics for spherical extent function, a method which needed pose normaliza-
tion in order to be rotational invariance. Comparison between two 3D objects was
achieved using the Euclidean distance between the Fourier transforms of the object’s
descriptors. A general Spherical Harmonics approach (only applies to function on
a voxel grid or spherical functions) was used to transform rotational-dependent
shape descriptors into rotational-independent ones by [270], where they computed
a rotational invariant spherical harmonics descriptor through spherical function de-
composition. Their method took care of the need for pose normalisation due to the
final descriptor being rotation invariant. However, because the SHT uses a Voxel
grid-based representation, many fine details are lost.

The EGI method characterises a 3D model in terms of its distribution of surface
normal vectors. It is designed mainly for pose normalization/determination and
used histogram to record the variation of surface area with surface orientation [88].
In their work, [64] aligned the EGI for each model based on its principal axes,
and compared two aligned EGIs by computing their Lo difference. Several other
works has been done using the EGI descriptor, including a variant of the EGI, the
CEGI mentioned above. The main advantages of the EGI descriptors include hav-
ing unique representation for convex objects without occlusions, avoiding the more
difficult problem of local feature matching, and because it does not contain any di-
rect distance information, it is considered translation invariant [275]. Also, they are
good at discriminating between fabricated and natural objects, but not that good
at making detailed class distinctions [229, 228]. However, it does not contain any
direct distance information and presents confusion in non-convex objects [275].

The 3D Zernike moments is a rotation invariant shape descriptor that captures
object coherence in the radial direction as well as in the direction along a sphere [228].
It is a wonderful descriptor for 3D shapes dissimilar in local parts, has the advan-
tages of capturing global information about a 3D object, and does not require closed
boundaries [168]. Zernike moments can be described as a projection of the function
defining an object onto a set of orthonormal functions within a unit sphere. They
can be considered as the magnitudes of a set of orthogonal complex moments of the
3D shape and the natural extensions of spherical harmonics-based descriptors [275].
In summary, the 3D Zernike moments has an advantage of superiority over others in
this category with regards to discrimination power, noise sensitivity, and data redun-
dancy. Also, allows for easy 3D shape reconstruction, but sadly, it always produces
high order moments due to the high instability of its geometrical moments [275].
Considering the above analysis, the Zernike moments fits within two categories: the
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view-based and transformed-based.

Another type of 3D shape descriptor within the transform-based category is
the Spin Images proposed by [96], which was developed to capture both local and
global features of 3D objects and supports a view-independent object recognition.
The Spin Images on the other hand, is essentially 2D histograms of the surface
locations around a point. They are invariant to rigid transformation [97], rotation,
scale, and pose invariant [50]. As a result, have been particularly successful in the
registration of range images, object recognition, and shape matching [26, 31, 39].
By adjustment of its support parameters, spin-images can be smoothly transformed
from global to local representations [97]. Describing 3D objects based on above
definition of spin images makes the spin images appear to be a part of either view-
based or statistically-based approaches. However, based on the above definition, we
can see that spin images shares similar characteristic with view-based approaches.
For detailed description and more in-depth analysis of the spin images 3D shape
descriptor, we refer the reader to the following literatures: [97, 26, 31, 39, 54, 50).
However, according to [101], The main characteristic of most transform-based 3D
shape descriptors is their ability to describe the global properties of a 3D object,
and they are defined over a canonical parametrisation (i.e. sphere). Unfortunately,
also, these classes of shape descriptors require a priori registration into a canonical
coordinate system, which is difficult to achieve robustly [64].

Graph-based (Structural) Approach:

The structural approach to 3D shape descriptors involves the use of high-level infor-
mation (e.g. a skeleton or a graph) to describe the structure of 3D objects. A typical
example of 3D shape descriptor that falls within this category is the graph-based
shape retrieval method, which describes the structural components of 3D objects,
that are attributed with geometric characteristics and their relational connections
with each other) [2]. In the graph-based approach, the structural description of 3D
object is created using the Attributed Relational Graph (ARG or Extended Reeb
Graph (ERG) [11] concept, where meaningful components of the object can be ex-
tracted using a segmentation algorithm, which are then represented as the nodes of
a graph, and the relationship of the components with each other are represented as
the edges of the graph [2]. Following this approach, the problem of shape matching
is therefore transformed into the problem of matching the ARG/ERG of a query 3D
object with that of the objects stored in the database [151, 107]. The graph-based
approach is illustrated in Figure 2.11, which is the 3D model of a dog (left) with its
corresponding skeletal graph (ERG) representation (right), based on 3D segmenta-
tion of its body parts (middle). The general idea is to derive 1D skeletal curves from
a 3D object such that each curve represents a significant part of the object. These
curves are then converted to an attributed graph representation (a skeletal graph),
which can be used for indexing, matching, segmentation, correspondence finding,
ete.

The structural approach to 3D descriptors is also termed the graph-based ap-
proach, and is further sub-divided into three categories: (i) Reeb Graphs (ii) Skele-
tal Graphs and (iii) Model graphs [229]. First, the Reeb Graph is a topological
structure that encodes the connectivity relations of the critical points of a Morse
function [112] defined on an input surface. It is also seen as a schematic way of
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Figure 2.11: 3D shape descriptors based on Extended Reeb Graph - Courtesy: S.
Biasotti [11].

presenting a Morse function [54]. For a detailed explanation regarding the RG ap-
proach refer the reader to [54]. The skeletal approach, on the other hand, uses
skeletal graph to encode geometric and topological information about a 3D object.
With each node of the skeletal graph a topological signature vector is associated by
encoding the topology of the sub-trees rooted at the node. Thereafter, indexing of
the skeletal graph is achieved by storing the topological signature vector for each
node. Overall, the model graph-based approaches are mainly suitable for describing
the rigid CAD/CAM 3D models, but are difficult to apply to non-rigid models such
as humans and animals, although [281] tried implementing a similar approach to
model graphs for the retrieval of non-rigid shapes.

In summary, the reeb graph and skeletal graph approaches are applicable to both
rigid and non-rigid 3D models represented as voxels, while the model graph-based
approaches are only applicable to rigid models. According to [86] model graphs are
extracted from solid model representations used by most CAD systems, with an
exception of the model graph-based approach by [281], which is also applicable to
non-rigid shapes. However, for structural/graph-based 3D descriptors, the complex-
ity of the exact computation of a metric obeying the triangle inequality prevents
practical application. Hence, the efficient implementation of approximate match-
ing methods is a current research issue. In addition, a pure graph-based method
is overly sensitive to noise and details, including having a limited discriminating
power, because only topology is considered and minor changes in topology may
result in significant differences in similarity. As a result, the graph-based method
is often combined with other methods in order to improve overall discriminative
abilities [229].

Knowledge-based Approach Summary and Statistically-based Approach

Shape retrieval methods in each of these categories are not completely disjoint, which
implies that there are commonalities between them. For example, it is possible to
convert the spin images shape descriptor from a view-based to a transform-based
descriptor and vice-versa in terms of computational approach, by adjusting its pa-
rameters. Alternatively, the Spin Images shape descriptor can be categorised either
as a global or a local descriptor (see Sections 2.4) based on its parameters settings.
Considering all the approaches to 3D shape descriptors, we found the statistical
approach to be the most dominating (i.e. popular) in literature and convenient in
terms of implementation. The statistical approach to shape descriptors computation
also accounts for several recorded successes in 2D and 3D content-based shape re-
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trieval tasks over the decades according to literature reviews (see Section 2.6), where
they have recorded highly impressive performance evaluation results for detection,
classification, and retrieval tasks, etc. Motivated by its successes and popularity,
this thesis focuses on the statistically-based approach to 3D shape descriptors (re-
trieval methods), which we extensively review in the next section.

Technically, the statistical approach to 3D shape descriptors is based on the
distribution of local and/or global measurements of surface properties (i.e. features)
of a 3D object, instead of directly using these measurements. This approach has the
advantage of reducing the 3D shape similarity measurements to simple histograms’
comparison. Several shape functions (i.e. surface properties measurement) can be
utilized to calculate histograms. However, most of these functions are typically
invariant to rotation and to translation. For example, considering the local and
global approaches, the local approach, such as the curvature histogram, are able to
identify various classes of objects, but are however not robust to noise, although the
global approaches are inefficient in discriminating globally similar objects having
minor fine details. In Section 2.6, we provide a detailed review of statistically-based
3D shape descriptors, which are directly related to our work in this thesis.

2.6 Statistically-based 3D Descriptors Review

As we already mentioned in Section 2.5.3, the statistically-based 3D shape descrip-
tors are descriptors based on the distribution of local, global, or both measurements
of surface properties (features) of a 3D object, instead of directly using these mea-
surements. They may use single or multi-dimensional indexing (i.e. histogram),
including tree-based approach, which is helpful for searching for similar objects from
a large database. Extracted features from 3D surfaces are mostly presented as a 1-
dimensional or multi-dimensional feature vectors. Observably, the statistically-based
approach to shape descriptors have become the most popular in literature for describ-
ing 2D/3D objects, perhaps, due to their relative ease of computation and efficient
indexing characteristics. For instance, five global signatures were computed directly
from 3D meshes in [173, 174]. These signatures were expressed as shape distribu-
tions sampled from shape functions that measures the global geometric properties
of 3D objects. The shape description approach by [173, 174] reduced the problem of
3D objects matching to the comparisons of their respective histogram distributions.
Matching histogram distributions is easier than traditional shape matching methods
which deal with issues such as pose registration, model estimation and finding fea-
ture correspondences [173]. Regarding what type of measurements can be derived
from 3D surfaces for distribution, features, such as moments, Fourier coefficients,
volume, etc., have been extracted from the surface of a mesh [272]. Another work
by [66] combined two local features, the eccentricity function, which gives spatial
shape information, and local-diameter function describing local patches around a
shape, into a 2D histogram.

A statistical representation of 3-dimensional shape is introduced in [252]. In
their work, they first defined 3D local reference frame (LRF) for each pair of ori-
ented points (surflet-pairs) on the surface of a 3D mesh, and derived a 4-dimensional
feature that parameterizes the intrinsic geometrical relation of these surflets. The
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4-dimensional feature is binned into a multi-dimensional histogram, using 5-bins
in each feature dimension to return a 625-dimensional feature vector as a final de-
scriptor (signature) for a given 3D object. Inspired by this, the literature in [136]
extended the 4-dimensional feature in [252] to 6-dimensions and obtained an even
higher dimension of 15625-dimensional signature. This approach to 3D shape de-
scriptor can be applied directly on 3D mesh representation according to [252] and
point cloud [136]. However, their computation utilises all the vertices (mesh) and
points (point cloud) models that they describe. This approach raises serious con-
cerns about efficiency as a total of k(k —1)/2 features are returned from a surface of
k surflets, resulting in remarkably high and redundant values for each iteration. In
addition, the surflet-pairs based techniques in [252] and [136] return features which
are invariant to rotation, scale, translation and robust to noisy data, but fail to deal
with local surface dissimilarities and large-scale problems, while the Adaptive Hy-
brid Descriptor in [136] produces signature with excessively large dimensions, and
employs all points on the surface of the shape it describes.

Two other local shape descriptors, the Point Feature Histogram (PFH) [201],
and FPFH, developed by [198], also employs similar feature extraction techniques
to that of [252]. Three common aspects between PFH and FPFH are: (i) Both
methods present local shape descriptors, (ii) Both descriptors are computed for the
entire surface points for point clouds only, (iii) Both PFH and FPFH descriptors
are only suitable for 2.5D scans (Pseudo single position range images) [202]. The
computational complexity of the PFH is O(nk?), where (nk?) is the number of key
points and neighbours. However, the FPFH extends PFH with some optimization
steps, such that only direct surflet-pairs (p;,n;) between the query point and its
neighbourhood are taken into consideration, negating the fully connected graph
approach, i.e. k(k — 1)/2 features used by other similar descriptors mentioned in
this section [198]. This took the complexity of the PFH down to O(nk), because
while the PFH uses a fully-connected graph of k(k — 1)/2 between all points, k in
the neighbourhood of the key point, the FPFH considers only the direct connections
between a given key point and its neighbouring points. In addition, the FPFH adopts
only three of the 4-dimensional features proposed by [252] and used also in PFH.
Generally, the feature extraction technique employed by [252, 136, 198], and [203]
strictly depends on both [z,y, z] coordinates of 3D surface and their corresponding
normal vectors. For surface with noisy data, it is difficult to accurately estimate
surface normals for its points. Although some robust methods have been proposed
for accurate surface normals estimation for meshes and point cloud, the results of
these methods vary with datasets. Intuitively, the smoother the surface of any given
shape, the more accurate its normal vector estimation is likely to be.

2.6.1 Point Pair-based Statistical 3D Shape Descriptors

As already indicated in Sections 2.5 and 2.4, several approaches have been proposed
in the literature for local and global 3D surface description. Although the literatures
in [13] and [78] already provides comprehensive and up to date reviews of 3D shape
descriptors, we would briefly review literatures regarding the 3D shape descriptors
summarized in Table 2.1, in line with this thesis and our research focus.
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S/N. Descriptors (Year) Size Category Use Case

1 SPRH (2003 [252]) 625 Global Mesh classification

2 PFH (2008 [200]) 6250r125 Local Point cloud alignment

3 FPFH (2009 [198]) 33 Local 2.5D Scans registration
4 PPF (2010 [51]) 4 Hybrid Point cloud recognition
5 ADH (2017 [136]) 15,625 Local Point cloud classification
6 PPFH (2018 [27]) 512 Local Point cloud matching

Table 2.1: Point Pair Features-Based 3D Shape Descriptors.

A global shape descriptor for 3D mesh classification is introduced by [252], where
they computed the histogram of oriented point-pair relations, called the Surflet-
Pairs Relation Histogram (SPRH), which describes the relative geometrical prop-
erties between two-points by a 4-dimensional feature. Similarly, another 3D local
shape descriptor called the Adaptive Hybrid Shape Descriptor (ADH) was proposed
by [136], which extends the 4-dimensional features of [252] to six dimensions. Similar
to the features in [252], given two oriented points (p;,n;) and (p;, n;), the Point Pair
Feature (PPF) [51] extracts four different simple relations from that of [252], thus:
F(pi7pj) = (@, 8,7,9), where o = l(nhnj)v B=4L(n;d),y= é(njﬁ d), 6 = Hpi_pj”
and d = p; — p;. These features are extracted globally for all points in the point
cloud and matched locally, thereafter for two shapes (object and scene) comparison,
hence we consider the PPF a hybrid descriptor. In a more recent work by [27] only
two features F(p;,p;) = (0,7) were adopted from PPF for their proposed Points
Pair Feature Histogram (PPFH). A hybrid 3D descriptor known as the Ensemble
of Shape Function (ESF) was formed by [263]. In order to combine the descriptive
powers of both local and global descriptors, the work in [4] combined the Viewpoint
Feature Histogram (VFH) global descriptor [201], and the FPFH local descriptor
to form a hybrid (FPFH + VFH) descriptor. The above reviews certifies to the
popularity and relevance of the point pair-based 3D retrieval method. Although,
most of the work reported here are tested on a different kind of 3D data, such as
the range scans or RGB-D data, the methods in this thesis completely dwells on the
standard 3D triangular mesh and point cloud data.

The statistically-based methods to 3D descriptor consider pure geometry of 3D
surface to represent extracted features of a given 3D object by a single descriptor,
which is a fixed-sized or fixed-length n-dimensional feature-vector of values for all
the 3D objects in the dataset. However, the size or length of the feature-vector
(descriptor) could be as low as 1,024-dimension as in D2 global 3D descriptor [174]
or very as high as 262,209-dimension as in HAPPS hybrid descriptor, described in
Section 4.2.3), depending on the method/algorithm used to compute the descrip-
tor. It is important to note however, that there is a trade-off between robustness
and compactness considering the length of the final descriptor. We explain this in
Chapter 4. In summary, we consider the 3D shape descriptor of any given object
as a point in a high dimensional (i.e. n-dimensional) feature space. Therefore, any
two objects are considered to be similar if they are close to each other in this space,
using distance metric (see Section 2.2.3) for their comparison.

50 Chapter 2 Ekpo Otu



3D Shape Description, Indexing, Matching and Retrieval

2.7 3D Shape Retrieval Challenges

In this section, we provide an overview of 3D shape retrieval challenges while in
Sections 3.2.1 and 3.2.2, we further discussed how defective data or various abnor-
malities in datasets (such as holes, degeneracies, and duplicates in vertices, faces,
and edges, etc.) affects shape retrieval algorithms due to certain factors: dataset
representations, object’s benchmarks design, data sources or capturing devices used
to acquire the 3D models.

Deriving a shape signature that can capture the geometry and physical properties
of a defective 3D object accurately and effectively is difficult. For example, how can
the volume of a hollow 3D object (i.e. a 3D object with large missing parts), such
as the objects found in PRoNTo dataset [142] be computed? considering that such
a signature must be invariant to affine transformations, robust to noise, missing
parts, and occlusion, etc. In addition, most 3D shapes in large databases, such
as SHREC’14 [132] with 8987 3D objects, or PSB [191] with 1814 3D objects, are
represented by un-organized sets of degenerate polygons, which are non-manifold.
Other datasets, such as the SHREC’17 PRoNTo dataset [142] contains 3D shapes
that are represented by point cloud with large part of missing surfaces and noise.
Several of the available 3D objects are represented in a complex or rather challenging
manner, often containing noise, holes and/or missing parts, disjointed, wrongly-
oriented, self-intersecting and overlapping polygons. Automatically, repairing the
degeneracies in these poorly represented 3D objects during shape analysis/processing
(in order to produce manifold surfaces) remains a difficult research problem and
sometime require manual human intervention to solve ambiguity [74, 10]. While
recent work [45] has proposed automatic solution to address the holes on 3D surfaces
from range scans (e.g., SHREC’17 Point cloud Retrieval of Non-rigid Toys (PRoNTo)
dataset), however, their method does not generalize well for all 3D objects, especially,
objects with different and overly complex topological representations, such as those
type of 3D objects in [132].
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Chapter 3

RESEARCH STRATEGY,
TECHNIQUES, AND TOOLS

3.1 Introduction

This chapter provides in-depth research strategy, tools, and essential techniques (ap-
plicable to our proposed methodology and major contributions in Chapter 4, listed

in Table 4.1, and described in Section 4.2). These techniques include: data pre-
processing, point cloud sampling, feature extraction, 3D key points detection/determination.
Strategies, such as shape descriptor construction, indexing, matching are also de-
scribed, including the different types of dissimilarity metrics implemented in our

work.

In line with the last paragraph of Section 2.2.4, although six aspects were men-
tioned, there are primarily four central (core) aspects to Content-Based Shape Re-
trieval (CBSR), which include: (i) Feature extraction, (ii) Shape description con-
struction, (iii) Database indexing, and (iv) Shape Matching and retrieval. Preceding
these aspects is another important (though optional) aspect, “Data Pre-processing”,
which is usually implemented to refine and present the input 3D shape(s) in a suit-
able format before the above-mentioned techniques are implemented. Each of these
research strategies and techniques are explained in the sections that follow.

3.2 Data Pre-processing

In order to bring all database objects into a concise form and deal with issues (i.e.
scales, translation, noise, varying surface details, degeneracies, etc.) that may occur
with different objects, it is often necessary to apply data pre-processing functions
to the objects. Determining which pre-processing function is applicable depends on
the type and/or format of the input data presented to the shape analysis algorithms
(such as those described in Section 2.2.1). For example, the input 3D objects may
either be a polygonal mesh or point cloud, and could also be represented in different
scale, translation, noisy, faulty, or with varying surface details. Therefore, we have
developed and implemented several pre-processing algorithms, including adopting
some from existing research for our shape retrieval methods, including: (i) point
cloud sampling, (ii) affine transformations (scaling, translation, rotation), and (iii)

52



3D Shape Description, Indexing, Matching and Retrieval

faulty 3D models handling (noise removal, surface smoothing, hole filling, degen-
erate, and duplicate vertices and/or faces removal, etc.) for mesh and point cloud
data, whenever the need arises.

3.2.1 Defective Data

Intuitively, defects in the data structure of 3D object representation would most
likely lead to inaccurate shape description of the object. In addition, key processes
such as surface points sampling (see Section 3.2.3), and surface normal estimation
(see Section 3.3.1) are likely to be affected by defective/faulty 3D objects, resulting in
undesirable outcomes. The fundamental computational principle of GIGO (garbage-
in, garbage-out) explains this hypothesis. Algorithms and methods designed to
operate on vertices, faces, edges, or other properties of a 3D mesh expects consistent
ordering in the structures of the input data they receive. When the orderings are
inconsistent, altered or have data with incomplete details, duplicates, etc., several
issues listed below erupts, thus:

i. The algorithm may fail and return error,
ii. The algorithm may run and return incorrect, undesirable output,

iii. Subsequent methods using the undesirable output eventually produces undesir-
able final output, etc.

3.2.2 Defective Data Handling

In view of the challenges posed by defective data, the need for data pre-processing
prior to features extraction, therefore, cannot be overemphasized, especially for 3D
surfaces which are more complicated to deal with compared to 2D images. Several
different data pre-processing functions can be applied on 3D surfaces, such as surface
triangulation, surface smoothing, hole filling, re-meshing, surface re-sampling (up-
sampling or down-sampling), artefacts removal (removal of degeneracies in vertices
or faces of mesh), etc. Depending on the application, some or all these pre-processing
functions may be needed. In Section 2.2.2, we described two categories of 3D sur-
faces: the water-tight and the non-water-tight 3D surfaces. Usually, the latter is
considered to be defective. Some 3D benchmark dataset, such as SHREC’12 (see
Section 5.2.4, Figure 5.3) and PSB [191] contains a combination of defective (non-
water-tight) and non-defective(watertight) 3D objects. Therefore, considering such
datasets, not all the above-mentioned pre-processing functions may be needed for
all the data it contains.

Developing an intelligent application that automatically detects which objects
in the dataset are defective or not is incredibly challenging. For example, consider
a heterogeneous dataset (i.e. benchmark dataset containing mixed variety of 3D
shapes, each having different levels of defects or no defect), some of the data may
require just one of the pre-processing steps to be performed on them while others
may require two or more pre-processing steps. In our implementation, we develop
function(s) that includes the implementation of some particularly useful operations,
such as smoothing, hole filing, etc. Unfortunately, the smoothing function would
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over-smooth an already smooth 3D object, for example. In addition, especially for
larger heterogeneous datasets like the SHREC’12 [131] and SHREC’14 [132] datasets,
which contain variety of mixed models with different pre-processing needs, the chal-
lenge remains that, it is exceedingly difficult, frustrating, and tedious task to loop
through each of these data in turn to correct their respective defects.

Considering the above, a one-solution-fits-all technique that solves this kind of
open research problem is yet to be developed. However, in this thesis, the approach
we adopt to address the pre-processing needs of large heterogeneous dataset, such
as the ones mentioned here above is outlined as follows:

i. first apply our features extraction method automatically on all the raw datasets.
Defective files were identified as they returned errors. They were either manually
corrected, repaired, or noted in the case of minor defects,

ii. following the above steps, all 3D objects with common pre-processing needs were
identified for the entire dataset, and preprocessing algorithms, like smoothing
and removal of degeneracies, applied automatically on the whole objects in the
dataset,

iii. those shapes whose defects needed some complicated pre-processing steps that
could not be resolved via the automatic process, were selectively dealt with,
in order to correct the defects. For instance, a particular 3D mesh file in the
SHREC’14 dataset contains two separate objects (a 3D object and disjointed
3D text) as a single object. As a result, point sampling feature extraction
completely failed to apply on this file because the algorithm expects every file
to include data structure for a single object, not multiple,

iv. in another investigation, we decided to completely spot and remove all de-
fective 3D meshes from the SHREC’12 dataset, re-configure its corresponding
ground-truth file accordingly and re-evaluated our retrieval method on the re-
maining supposedly better meshes. The results (not included in this thesis)
reveal tremendous performance improvements, evaluating our method on only
those 3D objects without defects i.e. from 1,200 models to about 1,068 models.
Unfortunately, we did not investigate further with this approach due to the need
to also implement other state-of-the-art methods (whose code was not given)
using the new Ground Truth (GT) of 1,068 models, and be able to compare our
method.

Unfortunately, there is still a problem with approaches (7) to (iii) to addressing
defects in a benchmark data, because the pre-processing needs for a particular set
of data in the dataset may adversely affect other set of data without such need, and
vice-versa. For example, if a dataset contains a 3D shape - A, with smooth surface,
and another shape - B, with very “rough surface”, automatically applying smooth-
ing filter on the entire database (in attempt to correct those shapes whose surfaces
are rough), would fix shape B, while completely altering the overall topology and
structure of shape A due to unnecessary smoothing of shape A, which eventually
results to over-smoothing of shape A.
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The only unambiguous way to resolve the above problem would be to selectively
apply smoothing to B instead of doing so automatically on all database models, but
the challenge, again, is that for large datasets of say 1000" models, this approach
would make the pre-processing task nearly impossible. Therefore, this remains one
key research challenge in 3D shape retrieval for large and heterogeneous datasets.

The overall goal of data pre-processing is to ensure that different 3D shapes are
fairly comparable, by bringing them into a concise form through the application of
similar transformations across all database objects. Considering that 3D shape re-
trieval involves two phases (i.e. online and offline [228]), during features extraction
and shape descriptor construction, our overall shape descriptor method is devel-
oped to automatically take care of above-mentioned pre-processing steps both for
the offline (database indexing phase, described in Section 3.5) and online (query
shape) feature extraction and descriptor construction phase. Secondly, we under-
stand that our retrieval method can be applied to various 3D datasets, and each of
these datasets may contain 3D models with different representations: polygon mesh
or point cloud representation, with polygon mesh being the most common (see Sec-
tion 2.2.1), we design our retrieval method to handle pre-processing for these two
data representations accordingly. Therefore, we would consider the process of point
cloud sampling from 3D triangular mesh next.

3.2.3 Point Cloud Sampling

The shape retrieval algorithms we implement in this research are applicable to both
3D triangular meshes and 3D point clouds, but not other formats of 3D object rep-
resentations (discussed in Section 2.2.1). However, it is possible to convert from one
representation to another depending on the need. Given a triangular 3D mesh as
input, vertices of the mesh could be used directly as point cloud without the con-
nectivity information (edges) that makes up the faces of the mesh. Alternatively,
points can be sampled from every triangular faces of the input 3D mesh to form
point cloud. The later approach is better illustrated in Figures 3.1 and 3.8. While
triangular meshes are quite convenient for many computer vision and/or graphic
tasks, there are a number of reasons why extracting features and constructing de-
scriptors from 3D point clouds is rather preferable to their mesh representation,
including that point clouds are ideal for processing and extracting information from
3D objects. Secondly, while the complicated objects may be less well represented
than the simple ones, we agree that the number of points sampled should be de-
termined by the complexity of the objects, the number of triangles for example.
However, for a given dataset, we are interested in the same number of points for all
its available objects. We assume that having fixed number of points sample (evenly
dispersed over shape’s surfaces) for every database shape has the advantage of a
stable probability distribution for all the shapes.

For the majority of our research implementations and experimental evaluations
in this thesis, given a triangular mesh as input, we first sample N points from
the mesh to form a point cloud P, using the points sampling technique described
by [173], and implemented in the Trimesh library [47]. We used N = 4200, for
example, in the SHREC’18 and SHREC’10 datasets, while the PRoNTo dataset is
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originally presented as an un-organised point cloud data with [z,y, z] coordinates
that contains approximately N3000,,;, to 4200,,.. points. Further details regarding
these datasets and several others used to evaluate our shape retrieval methods in
this thesis are adequately described in Section 5.2.

B0 P SAFTEied pentCheud, foe desk_ oRsird

Figure 3.1: 3D mesh (left) to 3D Points Cloud (right).

The research contribution by [173] described a Monte Carlo sampling method
that loops through all triangular faces for a given 3D mesh, and for each triangle
that makes up a face, random points, Sy are generated w.r.t. the area of the trian-
gle. Collectively, the points, Py for all triangles making up the mesh’s surface are
returned as point cloud, P generated for the input 3D shape. This technique can be
successfully implemented using the open-source utility in the Trimesh library [47].
The surface points sampling techniques by [173] has the advantage of generating un-
biased random points, sampled evenly according to the area of the individual faces
of the triangular mesh from which the points are sampled — therefore larger faces are
sampled more often and hold more point samples along their surface than smaller
faces. The pseudo-code for this random point sampling techniques as in [173] is
outlined below:

Step 1: Given a triangular face with vertices A, B and C, compute the area for
each face in a mesh and store into an array.

Step 2: Store the cumulative area of triangular faces visited, into an array.

Step 3: Select a face (at random), with probability proportional to its area. To do
this, a random number between 0 and the total area sum (cumulative area)
is generated, and a binary search is performed on the array of cumulative
areas, to select a number (value), which corresponds to one in the stored
(accumulated) area.

Step 4: For each selected triangle (face) in Step 3., with vertices A, B and C, two
random numbers r; and ro, between 0 and 1, are generated. Finally, point-
coordinates are constructed on the surface of this selected face by evaluating
equation 3.1. Overall, uniform random points are produced on the surface of
a mesh, w.r.t. the surface area of each faces, by taking the square-root of rq,
see Figure 3.2.

P =(1—i)A+ /(1 —12)B + /rirsC (3.1)
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Figure 3.2: Random Points sampling in triangle, [173].

Mesh to Point Cloud Sampling: Barycentric Interpolation Technique

Assuming that the complex surface of a 3D model is represented by a triangulated
approximation defined by three non-collinear vertices: A, B, and C (see Figure 3.3a),
any point, p € AA, B,C is on the line segment between one vertex and some
other point p’ on the opposite edge (see Figure 3.3b). The ability to represent the
position of any such point, p (located within the bounds of AA, B, C') with three
real numbers (i.e. scalars), a, (3, and 7 is particularly important in Computer
Graphics. Barycentric coordinates can be used to express this position according to
Equation (3.2), where «, 3, and ~ are the three scalars representing the barycentric
coordinates of p, such that « + g+~ = 1, for p € AA, B,C (i.e. normalized
barycentric coordinates). Alternatively, v =1—«a — § and a + 5 < 1 [211].

p=aA+ B+ ~C. (3.2)

e p is within the bounds of the triangular face, (A, B, C) if and only if:
0<ac<l,
0<p<1,
0<~y<L

e p is outside the bounds of (A4, B, C) if any of the coordinates is less than zero
or greater than one:
a<0ora>1,
B <0orfp>1,
v <0or~vy>1.

e pis on an edge (i.e. on one of the lines joining the vertices of the triangle) if
any of the coordinates is zero. Which line/edge it is depends on which one of
the coordinates is zero.

e p is on either of vertices, A, B, or C' if any two of the coordinates are zero.
Which vertex exactly depends on which two coordinates are zero.

The barycentric coordinates, [«, 3,7] of a point, say p, can be used as a weighting
factor for properties (i.e. normals, colours, and texture coordinates) of the vertices,
A, B, and C of the triangle bounding p [210]. Similarly, [«, 8,~] allows p to be
expressed as a weighted average of the vertices of AA, B, C. That is, they can be
expressed as the area of sub-triangles ABC'p (denoted by «), AC Ap (denoted by )
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B c B C

(a) Typical triangular face (AA, B,C) de- (b) Random point, p within AA, B, C is on
fined by three non-collinear vertices: A, B, a line segment between point B and point

and C. p’ on the edge, C A.
A

C

B c B

(c) Point, p expressed as a weighted average (d) Each sub-triangular face is represented
of 3 sub faces, ABCp (green), AC Ap (red), by barycentric coordinate (i.e. areal coor-
and AABp (blue) within AABC. dinate), « (green), 8 (red), and ~ (blue)

n,
A

n,
A

C

(e) Associating the same normal, n ob- (f) Linearly interpolated normal, n, at ran-
tained at point, p within a triangular face, dom point, p using normals, n,, n, and
ANABC to every other points on the same n. of the three vertices, A, B, and C of
surface/face. NA,B,C.

Figure 3.3: Barycentric coordinate system technique to points, P; and normals, N
sampling from a triangular face, AA, B, C.
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and AABp (denoted by «) divided by the overall area of AABC' (see Figure 3.3d).
For this reason, they are called areal coordinates. In computer graphics, barycentric
coordinates are used for Ray-Tracing (to test for intersection), as well as Rendering
(to interpolate triangular face information). However, in 3D models, triangular face
information (i.e. normals, color, and texture coordinates) is often associated with
vertices rather than the triangular face itself. In our work, we are particularly in-
terested in only the normals, n, to every point, p sampled from within AABC'

The same normal, n could be associated to every point on the face of AABC
using the formula in Equation (3.3) - see also Figure 3.3e, but that is a bad idea
and would give rise to what is known as flat shading [17] in computer graphics.
Theoretically, if the barycentric coordinates are used to compute the position of a
point located on the triangle using the triangle vertices, then any other data defined
at the triangle’s vertices (such as normals, colours etc.) can also be interpolated in
exactly the same way [211]. Therefore, the normal, n, at point, p within AABC
could be expressed as the linear interpolation of the normals at the vertices of
AABC. This interpolation is given by Equation (3.4) and visualised in Figure 3.3f.

(B — A) x (C — A)

"B A) % (C—A) (3:3)

alp X ng) +
la(p x na) +

Q@

(p X 1) +7(p X 1)
(

pxm) F x| (3:4)

SI(A—C) x (B~ O, (35)

_ Areaof ABCp
~ Areaof ANABC
_ Areaof ACAp
~ Areaof AABC

Areaof ANABp

Areaof NABC

’y:

The area of the triangular face, AABC can be computed as given by Equa-
tion (3.5), while the area of each of the sub-triangles (represented by «, [, and
v) within AABC' can be computed as given in Equation (3.6). Finally, for every
new point, p; that is randomly generated using the barycentric coordinate system
technique, the areas of three sub-triangles recomputed and a corresponding normal
vector, n; is instantly derived. In order to obtain the number of samples for each
triangular face (i.e. AABC), all the triangle areas are first summed up and con-
verted to a probability distribution. Multiplying the number of points sample, N
by the distribution gives the number of samples per face.

Defective 3D Objects Processing

Generating (sampling) points from 3D mesh to form point cloud produces a “cloud”
of points that depicts the input 3D mesh - see Figures (3.1) and (3.8). Intuitively,
the robustness of any final shape descriptor or feature computed directly depends
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on the surface quality of input objects. For example, when the mesh is deformed
(i.e. have holes (non-watertight), duplicate faces, edges, and vertices, etc.), the de-
fects would also be reflected in the sampled point cloud thereby affecting subsequent
features extracted from such mesh or point cloud. To deal with the deformations
in the input data, we first apply some pre-processing functions such as hole fill-
ing, smoothing, and cleaning to remove degeneracies and duplicates, etc., to clean
and/or repair the faulty triangular meshes, using existing software library, codes
or packages [223]. Essentially, the reader is referred to Section 3.2.2, for a more
detailed approach regarding how defective 3D mesh/data have been handled for all
the implementations in this thesis.

3.2.4 Affine Transformation (Scaling, Rotation, and Trans-
lation)

The shape of an object is the geometric information that remains after the effects
of affine transformations (i.e. rotation, scaling/rescaling, and translation) has been
removed (factored out) from the object [104, 275]. We illustrate this concept in
Figure 3.4. Therefore, for two shape descriptors to be comparable, affine transfor-
mations must be applied to each of their objects to ensure that the final descriptors
constructed from these objects are invariant to affine 3D transformations. Scaling
and translation are easy to deal with as described below, but rotation invariance is
difficult. However, we ensure that rotation invariance is wrapped into our respective
shape descriptor implementation for each 3D object (see Section 4.2).

Translation Scale Rotation

Figure 3.4: 3D model of a cow with different Euclidean similarity transformations
(locations, scales, and rotations) but the same shape. Image source: [102]

In order to ensure that all final descriptors computed from shapes are translation
invariant, each input shape (point cloud) is centred on its centroid. That is, for a
point cloud P = p;(i = 1: N), with N points and centroid,

1 N
pC_N;pZ

we apply a translation-invariant transform to P thus: P = P — p.. Likewise for
scale invariance, a uniform scale, S is applied to each point (of the point cloud)
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in all directions such that the Root Mean Square (RMS) distances of each of these
points to its centroid is 1. Mathematically, for a point cloud P = p;(i = 1 : N) with
N points, S is applied such that

For point cloud with normals, the estimated normals are not affected by the scaling
and translation transforms. We show practical implementations (visualizations)
of the above-mentioned affine transformations on 3D rigid point cloud shape in
Figure 3.5. In Figure 3.5a, we observe the coordinates of the object without affine
scaling ranged between [0, —400], [200, —500], and [200, —100] for the = — coordinate,
y — coordinate, and z — coordinate, respectively, while in Figure 3.5b, all the three
coordinates ranged between [—1, 1] after RMS-scaling transform has been applied
to it.

Randomly-Sampled PointCloud Plot for 37.0bj

Randomly-Sampled PointCloud Plot for 37.0bj)
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(a) Unscaled point cloud.

(b) Scaled point cloud.

Figure 3.5: Visualisation of the 3D point cloud representation of a rigid 3D pipe
object. Figure 3.5a shows the coordinates of this object with very large values,
while Figure 3.5b shows the same object after being scaled using the scaling factor
mentioned above.

3.3 Feature Extraction

Features must first be extracted from 2D/3D objects to compute shape signatures
or descriptors for such objects. The extracted features and computed descriptors
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have greater impact on the overall performance outcome of application (like re-
trieval, classification, recognition, detection etc.) involving them. For this reason,
the process of features extraction and shape descriptors computation are consider-
ably very important for any application involving 2D or 3D data. Following features
extraction processes is shape descriptor computation, where a compact mathemati-
cal representation (descriptor or signature) of extracted features is computed for a
given shape/object. Details about this are presented in Section 3.4.

Secondly, in computing descriptors for 3D shapes, algorithms do not use the
input 3D data as they are; instead, low, or middle-level features are first extracted
from the input data and used for constructing the shape descriptors. For example,
geometric features such as Gaussian curvature, mean curvature [137], and Shape
Index (SI) [110], etc., which constitute local feature extraction have been used in
the literature. Experiments have also shown that constructing shape descriptors
from extracted features leads to robust shape retrieval methods compared with us-
ing the original 3D data features as input. This is because, unlike 2D image data
which could directly be used by machine learning algorithms [24] in the case of
data-driven approach, for example, the raw 3D data are not rich in features. Fea-
ture extraction, therefore, is an important process and one of the key preliminary
aspects of content-based retrieval.

Finally, most 3D shape descriptors, including the ones we implement in this
research work requires that some sort of features (such as surface normals, local
surface characteristics (deformations), or surface geometry measurements) are ex-
tracted first. In this section, we provide details of useful features and their extraction
techniques - which are most relevant and are implemented in our research work.

Definition 3.3.1 k-Nearest Neighbours (k-NN) Algorithm : This is the
most-commonly used technique for several applications, including classification and
clustering. Basically, it is a technique used to get all k closest/nearest points or nodes
to a given point of interest, by finding the spatial distance between these points in
the most efficient way. The number of nearest neighbours (i.e. optimal value of
k) highly depends on the data used. The k-NN algorithm returns the “index” and
“distance” of each of the derived neighbouring points to the interest point, where (for
the implementations in this thesis) these “indices” are used to derive the actual k
points, for the next phase of our implementation (performing Covariance analysis or
fitting a plane to derived k points, for Principal Component Analysis (PCA)-based
surface normal estimation in point cloud).

Definition 3.3.2 r-Nearest Neighbours (r-NN) Algorithm : This algorithm
is used to find all neighbouring points or nodes within a sphere of radius, r to a
given point or point of interest, and returns the “index” and “distance” of each of
the derived neighbouring points to the interest point, where (for the implementations
in this thesis) these “indices” are used to derive the actual k points, for the next phase
of our implementation (performing Covariance analysis or fitting a plane to derived

k points, for PCA-based surface normal estimation in point cloud and selection of
LSP for our proposed APPFD method).

In line with the above definitions for the k/r-NN algorithms, Scikit-Learn [125],
a scientific Python library implements two different nearest neighbors classifiers:
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“KNeighborsClassifier”, which implements learning based on the k£ nearest neigh-
bours of each query point, where k is an integer value specified by the user, and
“RadiusNeighboursClassifier”, which implements learning based on the number of
neighbours within a fixed radius, r of each training point, where r is a floating-point
value specified by the user. We adopt these implementations for this thesis.

3.3.1 3D Surface Normals Estimation

One fundamental feature of any 3D surface is the unit normal vector (i.e. surface
normals), from which many other geometric features, physical surface measurements
and final shape descriptors are possibly computed. Surface normals can be estimated
for mesh, as well as point cloud representations of any given 3D object. Each surface
normal (normal vector), n corresponds to a respective surface point, n of a given
3D mesh or point cloud object. In addition, several other features or algorithms for
feature extraction, object recognition, segmentation, and registration, etc., strictly
rely on the surface normals. However, the sampling method in [173, 47] only gener-
ates point cloud from mesh, and requires additional steps to estimate the “normal”
to each point in the generated point cloud, which is computationally very expensive
and slow. In order to address this concern in our implementations, we modified the
code in [47] to compute the surface normal simultaneously also, n; for each sampled
point, p; during the sampling phase, using a computer graphic Barycentric Interpo-
lation (BI) technique fully described by [190] and NumPy broadcasting capability
for faster computation. Further details regarding our implementation can be found
in Section 3.3.4 - “Improved Surface Normal Estimation Technique”.
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(a) Outward-pointing Face Normal (b) Inward-pointing Face Normal

Figure 3.6: 3D triangular face with vertices i.e. points (p1, p2, p3) and normal n. In
(a), the normal vector is pointing in the right direction (outward), while in (b), the
normal vector is pointing in the opposite direction (inward), which is incorrect.

Surface Normals Estimation for 3D Mesh

Depending on the shape descriptor to be computed, surface normals can be esti-
mated for either vertices or faces of a triangular mesh. Given a 3D triangular mesh
with vertices and faces data, the “unit normal vectors” pointing outwards from each
of the vertices (i.e. vertex normals) or faces (i.e. face normals) of the shape can be
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derived in a number of ways. However, the techniques to normal vector estimation
for vertices and faces of a triangular mesh are different. For example, if we consider
three points (p1, pa, p3) that makes up a triangular face as illustrated in Figure 3.6,
taking the cross product of the edges (i.e. vectors), [p; — ps] and [p; — po] returns
a vector for that face, which can be normalized to form its unit normal vector (i.e.
face normal).

Alternatively, to derive a normal vector for any given vertex, say pi;, as illus-
trated in Figure 3.7, a common method would be to take the average of all normals
to the faces associated with p;. For example, Figure 3.7 shows a typical triangular
mesh patch with five faces (Nyacet, Nyace2s Nraces, Nfacea, and Nyaees). The normal
vector at vertex p; (Nyertez), can be derived as shown in Equation (3.7). For more
details on vertex normal estimation from triangular meshes, refer to [232], and [94].

N . Nfacel + NfaceQ + Nface3 + Nface4 + Nface5
verter — .
5.0

In summary, consider any triangular face, say in Figure 3.7, with vertices (p1, pa, p3)
as in Figure 3.6, computing its unit normal vector n is remarkably simple and
straightforward. n would be the vector cross product of vectors (p; — p3) and
(p1 — p2), where p;, po and ps are points in R? space . The result is then nor-
malized to unit vector. However, if the triangle has zero area, the result is invalid
due to an improperly defined normal. This formulation is illustrated in Figure 3.6,
and in order to achieve the result in Figure 3.6a, with outward-pointing normal
vector, the vertices (p1, pe, p3) of the triangle must be ordered anti-clockwise, else,
the result in Figure 3.6b is attained.

(3.7)

quce'l N, erex Nfuces

Nfacez l - | Nfuce4
N

Figure 3.7: Normal Vector for Vertex and Faces of a triangular mesh.

Surface Normals Estimation for 3D Point Cloud

Point cloud has become the most preferred type of data for algorithms involving
surface normals, as opposed to just using mesh vertices and their associated nor-
mal vectors [27, 82, 147, 200, 225, 106]. Most datasets are presented as raw point
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cloud data without their corresponding surface normals information. In most in-
stances where the datasets are given as triangular meshes, point clouds could also
be estimated using surface points sampling technique described in Section 3.2, as
illustrated in Figure 3.8. In any of these cases, there is the need to estimate surface
normals for these point clouds, using existing techniques, since the majority of the
feature extraction techniques in our research implementations completely rely on
the unit normal vectors (surface normals) of the given shapes.

Similar to 3D mesh vertices, unit normal vectors can also be estimated for all
points of a 3D point cloud using any of various existing techniques/methods for point
cloud normals estimation, such as the commonly used methods described in [133,
159, 87]. However, it is largely unclear which of these methods are preferable for
which application as there is the trade-off between quality and speed [109].

The most common approach to normal vector estimation for point cloud is us-
ing principal component analysis (PCA) on the covariance matrix obtained from
k — neighbourhood or r — neighbourhood of points to the interest point p;. The
same approach is presented in [199, 212]. Generally, the PCA-based normal vectors
estimation is faced with ambiguous orientation of the estimated normals as shown
in see Figure 3.11b, and this remains an open problem till date. According to [212],
“a key issue is determining the size of the region over which a normal vector is com-
puted. A common technique involves taking all the points lying within a sphere of
radius r, centred on the query point p;. Unfortunately, such heuristic would require
CPU expensive queries on a KD-Tree to determine the points inside the sphere”.

Mesh Point Cloud Point Cloud, Normal

Figure 3.8: Mesh to point cloud and normals.

In most cases, the estimated surface normals using PCA-based approach pro-
duces results with inaccuracies. For example, in Figure 3.11b, i-iii, we visualize the
point cloud models of a Pipe with inconsistent and incorrectly oriented normal vec-
tors. Figure 3.11b, ii shows a point cloud model of a Human-head with almost all of
its normal vectors pointing inwards. However, one solution to the orientation prob-
lem, as suggested by [204] is to redirect each surface normal to be consistent with
majority of normals’ orientation within the specified k — neighbourhood. Another
suggestion by [201], is using viewpoint information, if it is known. Unfortunately,
nearly all point cloud dataset are without viewpoint information and the point cloud
sampled from 3D meshes lacks same as well, although, if pn < 0, n is pointing out-
ward, and If pn > 0, n should be flipped, i.e. n = —n. On a manifold 3D surface,
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which encloses a complete volume, there seems to be little or no issue with this ori-
entation check, but on a non-manifold surface, this final checking for the orientation
or direction of the normal vector seems ambiguous, resulting to inconsistent normal
orientation across the whole 3D surface.

3.3.2 Improved Surface Normals Estimation for 3D Point
Cloud

Unfortunately, correct and computationally efficient way to estimate surface normals
from raw point cloud data is still an open research challenge. For retrieval algorithms
that depend on point cloud data and their corresponding surface normals but are
provided with 3D meshes, we described the possibility, ease, and accuracy of sam-
pling points and their corresponding normals from 3D mesh for such algorithm.
However, some datasets, such as the SHREC’17 PRoNTo dataset (see Section 5.2)
present only raw point cloud data as input and the retrieval algorithm would have
to estimate corresponding surface normals for such point cloud objects. The con-
ventional approach to achieving this is the use of a PCA-based technique mentioned
previously (also, see Algorithm 1), which is computationally expensive, among other
issues. An alternative approach would be to first convert the input point cloud data
to triangular mesh and then apply the Barycentric approach to point sampling on
the 3D mesh (see Section 3.2.3), but converting point cloud to mesh and back to
point cloud and normals is not without cost.

We note here, that Algorithm 1 is adapted from [201]. However, considering
that the dataset source in [201], which provides their algorithm with view point
coordinate, is different from ours, which does not provide view point coordinate, we
implement a slightly different technique which checks if the direction of the “eigen-
vector” with the least “eigen-value” is less/greater than zero to negate the result,
as seen in line 10 of our Algorithm 1, for outward pointing normal.

Fortunately, in this research, the majority of our datasets (see Section 5.2) were
presented as triangular mesh and not point cloud, except for SHREC’17 PRoNTo
dataset. Therefore, we did not have to deal much with surface normals estimation
directly from point cloud. However, since the number of points for each 3D object
in the SHREC’17 dataset were below 5,000 (i.e. between 3,000 to 4,500), we sim-
ply implemented the PCA-based technique to estimate their surface normals for our
algorithm. In order to ensure an efficient computation and accurate point cloud nor-
mal estimation (as shown in Figure 3.11a), we selected a reasonable parameter for
the size of r or k neighbours around each point for which normal we are estimating.
The process to accomplish this are outlined in Algorithm 1 and summarised below.

Let p; be a point in point cloud, P for which we want to compute a unit normal
vector. Let pp be the local neighbourhood of K points selected around p; using
k/r-NN (nearest neighbour) algorithm. We then fit a plane to p; using Covariance
analysis (i.e. PCA-based technique), and return the eigen-vector with the least
eigen-value as the “normal vector” to the point of interest, p;. Also see [176, 205].
These steps are repeated for all p; € P, according to Algorithm 1. Finally, a check
is performed to ensure that the vectors are pointing outward (mostly needed for
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Algorithm 1: Normal Estimation for 3D Point Cloud (adapted from [201])

1:

10:

11:
12:

13:

INPUT: Point Cloud, P; C {p;, i = 1...N}; Parameters, r = 0.04 or k = 11
which determines the size of p;’s neighbourhood, P; for Covariance analysis on
pi. Where p; € Py is the interest point for which normal vector is to be
computed, and N = 4,500, the total number of points in P;.

OUTPUT: Normal vector, Ny C {n;, i = 1..N} for point cloud, P

# Estimate normals.
[Ps, Ns| = normalEstrimation(Ps,r = 0.15, k = 15)
# Initialise empty array for [P, N
[Psa Ns] = [ ]
# Loop through all p; € P;.
for all p; in P, do
extract patch, P;, using k/r-NN
# Compute Covariance Matrix (M) for P,.
Mp, =[P, - P]
# Compute the ergVals and eigVecs of Mp,.
leigVals, eigVecs| = linalg.eigh(Mp,)
# Sort all eigVecs in decreasing ORDER of eigVals.
eigVecyg) = ArgSort(eigVecs, eigVals)
Direction check: if p;eigVecs > 0, then eigVecs = -eigVecs
# Return least eigVecs = eigVecsp as n; of p;.
[Ps, N,|.append(p;, eigVecsg))
end for
# Repeat loop V p; € P,.
return [P;, N
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points from 3D scanners). This technique has one main parameter, k or r in k-NN
or r-NN algorithm, that influences the result of the estimated “normal vector” for
each points cloud, and depends on how dense or sparse the input point cloud is (i.e.
number of points sampled from mesh). In our implementations, we however, inves-
tigated both k-NN and r-NN on rigid, non-rigid, water-tight, and non-water-tight
models and it was found that the implementation with k-NN search gave better and
more desirable “normal vector” estimation results.

(a) Open3D tool [278§] (b) Algorithm 1 (c) PCL tool [199, 4]

Figure 3.9: Visualization of Airplane 3D point cloud with associated surface nor-
mals estimated with three different algorithms/tools. Accurately estimated normals
points outward in all direction to the surface as seen in Figure 3.9b, while inaccu-
rately estimated normals are shown in Figure 3.9a and Figure 3.9c.

Established research by Open3D [278] and Point Cloud Library (PCL) [199, 4],
for example have applied similar PCA-based technique to point cloud normals esti-
mation and recorded remarkable success. We visually compared the results obtained
with our PCA-based point cloud surface normals estimation algorithm with those
returned by Open3D and PCL as shown in Figure 3.9. The basis for this compari-
son is to check that our algorithm was retuning acceptable results (estimated surface
normals) and if not, we adopt the best tool/technique from existing tools, since in-
accurately estimated normals would adversely affect our final shape descriptor. As
we see in Figure 3.9b, our implementation (Algorithm 1) appears to estimate more
desirable surface normals for the airplane model than methods with Open3D (see
Figure 3.9a) and PCL (see Figure 3.9¢). The results of our method were also good
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across different range of datasets (rigid, non-rigid, water-tight, and non-water-tight
models).

(c) Open3D tool (d) PCL tool [199, 4]

Figure 3.10: Visualisation of rigid open pipe 3D point cloud with associated surface
normals estimated with three different algorithms/tools. Figure 3.10a with k-NN
search, where £ = 11 and Figure 3.10b with r-NN search, where r = 0.04 shows
implementation of Algorithm 1 with accurately estimated normals points outward
in all direction to the surface, while Open3D and PCL tools/libraries produced poor
normals as shown in Figure 3.10c and Figure 3.10d.
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(b) Inaccurate Normals

Figure 3.11: 3D point cloud models with their estimated normal vectors. Fig-
ures 3.11a, iv-vi represent Cat, Standford Bunny, and Human-arm 3D models with
their repective accurately-estimated surface normals in Figures 3.11a, i-iii. Alterna-
tively, Figures 3.11b, i-iii represents the 3D models of a Pipe model (with inconsis-
tent normal orientation), Pipe model (with one-directional normal orientation), and
Human-head model (with inward pointing normal orientation).
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3.3.3 3D Surface Normals Accuracy/Descriptor Robustness

Accurately estimated surface normals must have consistent orientations, pointing
inward or preferably outward, as illustrated in Figure 3.11a, i-iii. To a considerable
extent, however, the descriptiveness and robustness of a normal vectors-dependent
shape descriptors (such as our proposed APPFD (see Section 4.2.1) and other points
pair feature-based shape descriptors) depend on the accuracy of the estimated sur-
face normals of the underlying 3D shape. Therefore, inconsistencies in normal vector
orientations would adversely affect the descriptiveness and robustness of any shape
descriptor or signature that depends on such surface normals (normal vectors) fea-
ture.

(a) Normals, BI sampling  (b) Rigid point cloud  (¢) PCA-based normals

Figure 3.12: Rigid point clouds and their corresponding normal vectors, estimated
with two different approaches, (a) normal vectors are estimated simultaneously us-
ing the Barycentric Interpolation (BI) approach described in Section 3.2.3, and (c)
normal vectors are estimated using the PCA or Covariance technique in Algorithm 1,
after point sampling technique explained in Section 3.2.3. Left: Point clouds of me-
chanical parts, and their corresponding normals estimated during sampling phase.
Middle: Rigid point clouds of mechanical parts. Right: Point clouds of mechanical
parts, and their corresponding estimated normals using PCA.

In our research implementations which requires the surface normals feature, we
instead adopt BI technique (described in Section 3.2.3) for surface points sampling
and normal vectors estimation that is computationally very efficient and reliable,
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with remarkable results similar to that in [190]. The BI approach involves simulta-
neously estimating corresponding surface normals for all randomly generated points
during mesh to point cloud conversion (described in Section 3.2.3), as opposed to
only sampling the points and subsequently implementing the PCA-based approach
to normal estimation. In addition, this approach is capable of producing consis-
tently oriented, outward pointing, and accurately estimated normal vectors for the
sampled (generated) point cloud, as shown in Figure 3.11b, i-iii, where the point
cloud models of a Cat, Bunny, and Human-hand, respectively have their estimated
surface normals positioned accurately and pointing outwards from their respective
surfaces.

Unfortunately, there is no known computational technique specially developed
to judge the accuracy (i.e. how “good” or “”bad) of estimated surface normals other
than mere inspection (visualisation). Empirically, the expectation is that a normal
vector at any point on a flat surface (i.e. triangular face, as in Figure 3.6) must be
perpendicular to the surface plane containing the point, to be adjudged as accurate.
Alternatively, an accurately-estimated surface normal at any point on a curved sur-
face is expected to be perpendicular to the tangent touching the surface and that
point. Open source software and codes, such as MeshLab, Blender, VTK, Open3D,
PCL, Matplotlib, etc., provide functions/tools to visualize 3D surfaces (mesh and
point cloud) and inspect their normal vectors. Such visualizations are shown in
Figures 3.8 and 3.9.

Further examples show several point clouds of rigid (see Figure 3.12) and non-
rigid (see Figure 3.13) 3D shapes respectively (middle), and their corresponding
surface normals estimated using two different approaches - one to the left and the
other right of Figures 3.12 and 3.13. The surface normals visualised to the left are
those from the improved BI approach (see the section that follows), while those
visualised on the right-hand side are from the PCA-based approach. The visualisa-
tions on the left hand side of Figures 3.12 and 3.13, i.e. Figures 3.12a and 3.13a,
depicts the simultaneously estimated surface normals during points sampling stage,
for both rigid and non-rigid 3D point cloud models, respectively, while on the right,
i.e. Figures 3.12c and 3.13c, the estimated surface normals are derived from further
computation using PCA-based approach. Besides having computational speed and
memory efficiency advantage, it is also very obvious in Figures 3.12a and 3.13a, that
improved BI approach to point cloud normals estimation is much better (accurate)
than the PCA-based approach.

3.3.4 Improved Surface Normals Estimation Technique for
Triangular Mesh

As previously described, given a 3D triangular mesh, points can be sampled from
every triangular face that make up the mesh to form point cloud as illustrated in
Figures 3.1 and 3.8. The points sampling method described in Section 3.2.3 for ran-
domly generating N points from the surface of a mesh is limited because additional
implementation is needed to estimate surface normals for the sampled point cloud
which adds to the complexity of the overall retrieval system. The ideal solution
would be to estimate corresponding unit normal vector, n; = {n,,n,,n.}, € Ny, for
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(a) Normals, BI sampling (b) Non-rigid point cloud (c) PCA-based normals

Figure 3.13: Non-Rigid point clouds and their corresponding normals, estimated
with two different approaches, (a) normal vectors are estimated simultaneously us-
ing the Barycentric Interpolation (BI) approach described in Section 3.2.3, and (c)
normal vectors are estimated using the PCA or Covariance technique in Algorithm 1,
after point sampling technique explained in Section 3.2.3. Left: Point clouds of
Bird and Teddy with their corresponding normals estimated during sampling phase.
Middle: Non-rigid point clouds of Bird and Teddy. Right: Point clouds of Bird and
Teddy with their corresponding estimated normals using the Covariance analysis

(PCA).
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every sampled point, p; = {ps,py,p-}, € Ps and simultaneously return point cloud
and normal vectors, i.e. (Ps, Ny) in one run, during the sampling stage.

Using the traditional PCA-based approach described in [212] and [199] to esti-
mate the surface normals (as in Figure 3.12c¢) for an already sampled point cloud
would require looping over all points in the cloud. For 3D shapes with arbitrarily
large number of points (point cloud), this process of looping over all points (in-
cluding selecting surface regions for each point) for PCA would be very expensive,
thus may adversely impact the overall performance and complexity of the retrieval
system. To ameliorate this, the code in [47] can be modified to simultaneously also
compute normals n; for each sampled point p; during points sampling phase using a
computer graphic BI technique and NumPy broadcasting capability for faster com-
putation.

In this section, we describe a point cloud sampling technique similar to the one
described in Section 3.2.3 [173], for sampling (generating) point cloud Ps, with N
points from a mesh, using the concept of barycentric coordinate system [21]. How-
ever, this approach is an improvement over the point cloud sampling technique
proposed by [173], because corresponding unit normal vector, n; € N; is simultane-
ously estimated for each sampled point, p; € P, where P, C p; and ¢ = 1...N, during
random points sampling phase. The barycentric approach presents an overall faster
and efficient solution to point cloud surface normals estimation, which also produces
accurate and outward-pointing (this is because the points in the original points have
been put in a certain anti-clockwise order, leading the normal vectors computed to
always pointing outward), unlike the previous techniques in [173] (Section 3.2.3) or
PCA-based approach that only returns point cloud, P and expects further com-
putational steps for surface normals estimation, which are prone to issues such as
ambiguity and inconsistent normals orientation. However, in future work (see Sec-
tion 6.5), it may be useful to do an ablation study about which method is better for
shape retrieval between using the BI based approach or the one estimated from the
sampled points vis PCA approach, rather than just criticising the latter.

3.3.5 3D Key Points

When we consider a typical 3D surface of, say, a rectangular-shaped table, for exam-
ple, which is represented as points (or point cloud), the most noticeable or important
points on this surface would be the four points at each corner of the table top, in-
cluding each of the four points at the base of each of the legs of the table. Similarly,
when we consider the point cloud of a human head, the points each of the eyes,
ears, nose, mouth, cheeks, chin, and forehead would be considered as noticeable and
important points. These type of points are known as salient points and must be
capable of uniquely representing the topology of the surface it represents. For exam-
ple, each of the red points for Chair, Tea Cup, Fish, and Round Table in Figure 3.14
can be considered as salient points.

When describing a 3D surface, it is possible to extract features from or within ev-
ery point which makes up the geometry of that surface. However, while this approach
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(c) Fish (d) Round Table

Figure 3.14: Four different 3D point cloud surfaces (black points), taken from the
SHREC’12 dataset, showing sub-sampled points (bold, red points) which we consider
as key points. Figures 3.14(a), 3.14(b) and 3.14(d) represent rigid-shapes, while
Figure 3.14(c) 