2,914 research outputs found

    A novel equalization scheme for the selective enhancement of optical disc and cup regions and background suppression in fundus imagery

    Get PDF
    The ratio of the diameters of Optic Cup (OC) and Optic Disc (OD), termed as ‘Cup to Disc Ratio’ (CDR), derived from the fundus imagery is a popular biomarker used for the diagnosis of glaucoma. Demarcation of OC and OD either manually or through automated image processing algorithms is error prone because of poor grey level contrast and their vague boundaries. A dedicated equalization which simultaneously compresses the dynamic range of the background and stretches the range of ODis proposed in this paper. Unlike the conventional GHE, in the proposed equalization, the original histogram is inverted and weighted nonlinearly before computing the Cumulative Probability Density (CPD). The equalization scheme is compared with Adaptive Histogram Equalization (AHE), Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) in terms of the difference between the mean grey levels of OD and the background, using a quantitative metric known as Contrast Improvement Index (CII). The CII exhibited by CLAHE, GHE and the proposed scheme are 1.1977 ± 0.0326, 1.0862 ± 0.0304 and 1.3312 ± 0.0486, respectively.The proposed method is observed to be superior to CLAHE, GHE and AHE and it can be employed in Computerized Clinical Decision Support Systems (CCDSS) to improve the accuracy of localizing the OD and the computation of CDR

    A Retinex-based Image Enhancement Scheme with Noise Aware Shadow-up Function

    Full text link
    This paper proposes a novel image contrast enhancement method based on both a noise aware shadow-up function and Retinex (retina and cortex) decomposition. Under low light conditions, images taken by digital cameras have low contrast in dark or bright regions. This is due to a limited dynamic range that imaging sensors have. For this reason, various contrast enhancement methods have been proposed. Our proposed method can enhance the contrast of images without not only over-enhancement but also noise amplification. In the proposed method, an image is decomposed into illumination layer and reflectance layer based on the retinex theory, and lightness information of the illumination layer is adjusted. A shadow-up function is used for preventing over-enhancement. The proposed mapping function, designed by using a noise aware histogram, allows not only to enhance contrast of dark region, but also to avoid amplifying noise, even under strong noise environments.Comment: To appear in IWAIT-IFMIA 201

    Acceleration of Histogram-Based Contrast Enhancement via Selective Downsampling

    Full text link
    In this paper, we propose a general framework to accelerate the universal histogram-based image contrast enhancement (CE) algorithms. Both spatial and gray-level selective down- sampling of digital images are adopted to decrease computational cost, while the visual quality of enhanced images is still preserved and without apparent degradation. Mapping function calibration is novelly proposed to reconstruct the pixel mapping on the gray levels missed by downsampling. As two case studies, accelerations of histogram equalization (HE) and the state-of-the-art global CE algorithm, i.e., spatial mutual information and PageRank (SMIRANK), are presented detailedly. Both quantitative and qualitative assessment results have verified the effectiveness of our proposed CE acceleration framework. In typical tests, computational efficiencies of HE and SMIRANK have been speeded up by about 3.9 and 13.5 times, respectively.Comment: accepted by IET Image Processin
    • …
    corecore