49,868 research outputs found

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Get PDF
    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far

    IGUANA Architecture, Framework and Toolkit for Interactive Graphics

    Full text link
    IGUANA is a generic interactive visualisation framework based on a C++ component model. It provides powerful user interface and visualisation primitives in a way that is not tied to any particular physics experiment or detector design. The article describes interactive visualisation tools built using IGUANA for the CMS and D0 experiments, as well as generic GEANT4 and GEANT3 applications. It covers features of the graphical user interfaces, 3D and 2D graphics, high-quality vector graphics output for print media, various textual, tabular and hierarchical data views, and integration with the application through control panels, a command line and different multi-threading models.Comment: Presented at the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages LaTeX, 4 eps figures. PSN MOLT008 More and higher res figs at http://iguana.web.cern.ch/iguana/snapshot/main/gallery.htm

    Iris: an Extensible Application for Building and Analyzing Spectral Energy Distributions

    Get PDF
    Iris is an extensible application that provides astronomers with a user-friendly interface capable of ingesting broad-band data from many different sources in order to build, explore, and model spectral energy distributions (SEDs). Iris takes advantage of the standards defined by the International Virtual Observatory Alliance, but hides the technicalities of such standards by implementing different layers of abstraction on top of them. Such intermediate layers provide hooks that users and developers can exploit in order to extend the capabilities provided by Iris. For instance, custom Python models can be combined in arbitrary ways with the Iris built-in models or with other custom functions. As such, Iris offers a platform for the development and integration of SED data, services, and applications, either from the user's system or from the web. In this paper we describe the built-in features provided by Iris for building and analyzing SEDs. We also explore in some detail the Iris framework and software development kit, showing how astronomers and software developers can plug their code into an integrated SED analysis environment.Comment: 18 pages, 8 figures, accepted for publication in Astronomy & Computin

    A grammatical specification of human-computer dialogue

    Get PDF
    The Seeheim Model of human-computer interaction partitions an interactive application into a user-interface, a dialogue controller and the application itself. One of the formal techniques of implementing the dialogue controller is based on context-free grammars and automata. In this work, we modify an off-the-shelf compiler generator (YACC) to generate the dialogue controller. The dialogue controller is then integrated into the popular X-window system, to create an interactive-application generator. The actions of the user drive the automaton, which in turn controls the application
    corecore