545 research outputs found

    Radiometrically-Accurate Hyperspectral Data Sharpening

    Get PDF
    Improving the spatial resolution of hyperpsectral image (HSI) has traditionally been an important topic in the field of remote sensing. Many approaches have been proposed based on various theories including component substitution, multiresolution analysis, spectral unmixing, Bayesian probability, and tensor representation. However, these methods have some common disadvantages, such as that they are not robust to different up-scale ratios and they have little concern for the per-pixel radiometric accuracy of the sharpened image. Moreover, many learning-based methods have been proposed through decades of innovations, but most of them require a large set of training pairs, which is unpractical for many real problems. To solve these problems, we firstly proposed an unsupervised Laplacian Pyramid Fusion Network (LPFNet) to generate a radiometrically-accurate high-resolution HSI. First, with the low-resolution hyperspectral image (LR-HSI) and the high-resolution multispectral image (HR-MSI), the preliminary high-resolution hyperspectral image (HR-HSI) is calculated via linear regression. Next, the high-frequency details of the preliminary HR-HSI are estimated via the subtraction between it and the CNN-generated-blurry version. By injecting the details to the output of the generative CNN with the low-resolution hyperspectral image (LR-HSI) as input, the final HR-HSI is obtained. LPFNet is designed for fusing the LR-HSI and HR-MSI covers the same Visible-Near-Infrared (VNIR) bands, while the short-wave infrared (SWIR) bands of HSI are ignored. SWIR bands are equally important to VNIR bands, but their spatial details are more challenging to be enhanced because the HR-MSI, used to provide the spatial details in the fusion process, usually has no SWIR coverage or lower-spatial-resolution SWIR. To this end, we designed an unsupervised cascade fusion network (UCFNet) to sharpen the Vis-NIR-SWIR LR-HSI. First, the preliminary high-resolution VNIR hyperspectral image (HR-VNIR-HSI) is obtained with a conventional hyperspectral algorithm. Then, the HR-MSI, the preliminary HR-VNIR-HSI, and the LR-SWIR-HSI are passed to the generative convolutional neural network to produce an HR-HSI. In the training process, the cascade sharpening method is employed to improve stability. Furthermore, the self-supervising loss is introduced based on the cascade strategy to further improve the spectral accuracy. Experiments are conducted on both LPFNet and UCFNet with different datasets and up-scale ratios. Also, state-of-the-art baseline methods are implemented and compared with the proposed methods with different quantitative metrics. Results demonstrate that proposed methods outperform the competitors in all cases in terms of spectral and spatial accuracy

    A Multi-scale colour and Keypoint Density-based Approach for Visual Saliency Detection.

    Get PDF
    In the first seconds of observation of an image, several visual attention processes are involved in the identification of the visual targets that pop-out from the scene to our eyes. Saliency is the quality that makes certain regions of an image stand out from the visual field and grab our attention. Saliency detection models, inspired by visual cortex mechanisms, employ both colour and luminance features. Furthermore, both locations of pixels and presence of objects influence the Visual Attention processes. In this paper, we propose a new saliency method based on the combination of the distribution of interest points in the image with multiscale analysis, a centre bias module and a machine learning approach. We use perceptually uniform colour spaces to study how colour impacts on the extraction of saliency. To investigate eye-movements and assess the performances of saliency methods over object-based images, we conduct experimental sessions on our dataset ETTO (Eye Tracking Through Objects). Experiments show our approach to be accurate in the detection of saliency concerning state-of-the-art methods and accessible eye-movement datasets. The performances over object-based images are excellent and consistent on generic pictures. Besides, our work reveals interesting findings on some relationships between saliency and perceptually uniform colour spaces

    Illumination-Based Data Augmentation for Robust Background Subtraction

    Get PDF
    A core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. In this paper, we tackle the problem from a data point-of-view using data augmentation. Our method performs data augmentation that not only creates endless data on the fly, but also features semantic transformations of illumination which enhance the generalisation of the model. It successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask generated randomly. Such data allows us to effectively train an illumination-invariant deep learning model for BGS. Experimental results demonstrate the contribution of the synthetics in the ability of the models to perform BGS even when significant illumination changes take place

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE
    • …
    corecore