1,413 research outputs found

    Using target-language information to train part-of-speech taggers for machine translation

    Get PDF
    Although corpus-based approaches to machine translation (MT) are growing in interest, they are not applicable when the translation involves less-resourced language pairs for which there are no parallel corpora available; in those cases, the rule-based approach is the only applicable solution. Most rule-based MT systems make use of part-of-speech (PoS) taggers to solve the PoS ambiguities in the source-language texts to translate; those MT systems require accurate PoS taggers to produce reliable translations in the target language (TL). The standard statistical approach to PoS ambiguity resolution (or tagging) uses hidden Markov models (HMM) trained in a supervised way from hand-tagged corpora, an expensive resource not always available, or in an unsupervised way through the Baum-Welch expectation-maximization algorithm; both methods use information only from the language being tagged. However, when tagging is considered as an intermediate task for the translation procedure, that is, when the PoS tagger is to be embedded as a module within an MT system, information from the TL can be (unsupervisedly) used in the training phase to increase the translation quality of the whole MT system. This paper presents a method to train HMM-based PoS taggers to be used in MT; the new method uses not only information from the source language (SL), as general-purpose methods do, but also information from the TL and from the remaining modules of the MT system in which the PoS tagger is to be embedded. We find that the translation quality of the MT system embedding a PoS tagger trained in an unsupervised manner through this new method is clearly better than that of the same MT system embedding a PoS tagger trained through the Baum-Welch algorithm, and comparable to that obtained by embedding a PoS tagger trained in a supervised way from hand-tagged corpora.Work funded by the Spanish Ministry of Science and Technology through project TIC2003-08601-C02-01 and by the Spanish Ministry of Education and Science and the European Social Fund through research grant BES-2004-4711 and project TIN2006-15071-C03-01

    What do Neural Machine Translation Models Learn about Morphology?

    Full text link
    Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture. However, little is known about what these models learn about source and target languages during the training process. In this work, we analyze the representations learned by neural MT models at various levels of granularity and empirically evaluate the quality of the representations for learning morphology through extrinsic part-of-speech and morphological tagging tasks. We conduct a thorough investigation along several parameters: word-based vs. character-based representations, depth of the encoding layer, the identity of the target language, and encoder vs. decoder representations. Our data-driven, quantitative evaluation sheds light on important aspects in the neural MT system and its ability to capture word structure.Comment: Updated decoder experiment

    Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging

    Get PDF
    We consider the construction of part-of-speech taggers for resource-poor languages. Recently, manually constructed tag dictionaries from Wiktionary and dictionaries projected via bitext have been used as type constraints to overcome the scarcity of annotated data in this setting. In this paper, we show that additional token constraints can be projected from a resource-rich source language to a resource-poor target language via word-aligned bitext. We present several models to this end; in particular a partially observed conditional random ïŹeld model, where coupled token and type constraints provide a partial signal for training. Averaged across eight previously studied Indo-European languages, our model achieves a 25% relative error reduction over the prior state of the art. We further present successful results on seven additional languages from different families, empirically demonstrating the applicability of coupled token and type constraints across a diverse set of languages

    A General-Purpose Tagger with Convolutional Neural Networks

    Full text link
    We present a general-purpose tagger based on convolutional neural networks (CNN), used for both composing word vectors and encoding context information. The CNN tagger is robust across different tagging tasks: without task-specific tuning of hyper-parameters, it achieves state-of-the-art results in part-of-speech tagging, morphological tagging and supertagging. The CNN tagger is also robust against the out-of-vocabulary problem, it performs well on artificially unnormalized texts

    Robust Multilingual Part-of-Speech Tagging via Adversarial Training

    Full text link
    Adversarial training (AT) is a powerful regularization method for neural networks, aiming to achieve robustness to input perturbations. Yet, the specific effects of the robustness obtained from AT are still unclear in the context of natural language processing. In this paper, we propose and analyze a neural POS tagging model that exploits AT. In our experiments on the Penn Treebank WSJ corpus and the Universal Dependencies (UD) dataset (27 languages), we find that AT not only improves the overall tagging accuracy, but also 1) prevents over-fitting well in low resource languages and 2) boosts tagging accuracy for rare / unseen words. We also demonstrate that 3) the improved tagging performance by AT contributes to the downstream task of dependency parsing, and that 4) AT helps the model to learn cleaner word representations. 5) The proposed AT model is generally effective in different sequence labeling tasks. These positive results motivate further use of AT for natural language tasks.Comment: NAACL 201
    • 

    corecore