1,708 research outputs found

    Reconstruction of surfaces of revolution from single uncalibrated views

    Get PDF
    This paper addresses the problem of recovering the 3D shape of a surface of revolution from a single uncalibrated perspective view. The algorithm introduced here makes use of the invariant properties of a surface of revolution and its silhouette to locate the image of the revolution axis, and to calibrate the focal length of the camera. The image is then normalized and rectified such that the resulting silhouette exhibits bilateral symmetry. Such a rectification leads to a simpler differential analysis of the silhouette, and yields a simple equation for depth recovery. It is shown that under a general camera configuration, there will be a 2-parameter family of solutions for the reconstruction. The first parameter corresponds to an unknown scale, whereas the second one corresponds to an unknown attitude of the object. By identifying the image of a latitude circle, the ambiguity due to the unknown attitude can be resolved. Experimental results on real images are presented, which demonstrate the quality of the reconstruction. © 2004 Elsevier B.V. All rights reserved.postprin

    Extracting curve-skeletons from digital shapes using occluding contours

    Get PDF
    Curve-skeletons are compact and semantically relevant shape descriptors, able to summarize both topology and pose of a wide range of digital objects. Most of the state-of-the-art algorithms for their computation rely on the type of geometric primitives used and sampling frequency. In this paper we introduce a formally sound and intuitive definition of curve-skeleton, then we propose a novel method for skeleton extraction that rely on the visual appearance of the shapes. To achieve this result we inspect the properties of occluding contours, showing how information about the symmetry axes of a 3D shape can be inferred by a small set of its planar projections. The proposed method is fast, insensitive to noise, capable of working with different shape representations, resolution insensitive and easy to implement

    Effects of surface reflectance and 3D shape on perceived rotation axis

    Get PDF
    Cataloged from PDF version of article.Surface specularity distorts the optic flow generated by a moving object in a way that provides important cues for identifying surface material properties (Doerschner, Fleming et al., 2011). Here we show that specular flow can also affect the perceived rotation axis of objects. In three experiments, we investigate how threedimensional shape and surface material interact to affect the perceived rotation axis of unfamiliar irregularly shaped and isotropic objects. We analyze observers' patterns of errors in a rotation axis estimation task under four surface material conditions: shiny, matte textured, matte untextured, and silhouette. In addition to the expected large perceptual errors in the silhouette condition, we find that the patterns of errors for the other three material conditions differ from each other and across shape category, yielding the largest differences in error magnitude between shiny and matte, textured isotropic objects. Rotation axis estimation is a crucial implicit computational step to perceive structure from motion; therefore, we test whether a structure from a motion-based model can predict the perceived rotation axis for shiny and matte, textured objects. Our model's predictions closely follow observers' data, even yielding the same reflectance-specific perceptual errors. Unlike previous work (Caudek & Domini, 1998), our model does not rely on the assumption of affine image transformations; however, a limitation of our approach is its reliance on projected correspondence, thus having difficulty in accounting for the perceived rotation axis of smooth shaded objects and silhouettes. In general, our findings are in line with earlier research that demonstrated that shape from motion can be extracted based on several different types of optical deformation (Koenderink & Van Doorn, 1976; Norman & Todd, 1994; Norman, Todd, & Orban, 2004; Pollick, Nishida, Koike, & Kawato, 1994; Todd, 1985). © 2013 Arvo

    Robust recovery of shapes with unknown topology from the dual space

    Get PDF
    In this paper, we address the problem of reconstructing an object surface from silhouettes. Previous works by other authors have shown that, based on the principle of duality, surface points can be recovered, theoretically, as the dual to the tangent plane space of the object. In practice, however, the identification of tangent basis in the tangent plane space is not trivial given a set of discretely sampled data. This problem is further complicated by the existence of bi-tangents to the object surface. The key contribution of this paper is the introduction of epipolar parameterization in identifying a well-defined local tangent basis. This extends the applicability of existing dual space reconstruction methods to fairly complicated shapes, without making any explicit assumption on the object topology. We verify our approach with both synthetic and real-world data, and compare it both qualitatively and quantitatively with other popular reconstruction algorithms. Experimental results demonstrate that our proposed approach produces more accurate estimation, whilst maintaining reasonable robustness towards shapes with complex topologies. © 2007 IEEE.published_or_final_versio

    Head model acquisition from silhouettes

    Get PDF
    This paper describes a practical system developed for generating 3D models of human heads from silhouettes alone. The input to the system is an image sequence acquired from circular motion. Both the camera motion and the 3D structure of the head are estimated using silhouettes which are tracked throughout the sequence. Special properties of the camera motion and their relationships with the intrinsic parameters of the camera are exploited to provide a simple parameterization of the fundamental matrix relating any pair of views in the sequence. Such a parameterization greatly reduces the dimension of the search space for the optimization problem. In contrast to previous methods, this work can cope with incomplete circular motion and more widely spaced images. Experiments on real image sequences are carried out, showing accurate recovery of 3D shapes.postprintThe 4th International Workshop on Visual Form (IWVF-4), Capri, Italy, 28-30 May 2001. In Proceedings of the 4th International Workshop on Visual Form, 2001, p. 787-79

    Self-calibration of turntable sequences from silhouettes

    Get PDF
    This paper addresses the problem of recovering both the intrinsic and extrinsic parameters of a camera from the silhouettes of an object in a turntable sequence. Previous silhouette-based approaches have exploited correspondences induced by epipolar tangents to estimate the image invariants under turntable motion and achieved a weak calibration of the cameras. It is known that the fundamental matrix relating any two views in a turntable sequence can be expressed explicitly in terms of the image invariants, the rotation angle, and a fixed scalar. It will be shown that the imaged circular points for the turntable plane can also be formulated in terms of the same image invariants and fixed scalar. This allows the imaged circular points to be recovered directly from the estimated image invariants, and provide constraints for the estimation of the imaged absolute conic. The camera calibration matrix can thus be recovered. A robust method for estimating the fixed scalar from image triplets is introduced, and a method for recovering the rotation angles using the estimated imaged circular points and epipoles is presented. Using the estimated camera intrinsics and extrinsics, a Euclidean reconstruction can be obtained. Experimental results on real data sequences are presented, which demonstrate the high precision achieved by the proposed method. © 2009 IEEE.published_or_final_versio

    Reconstruction of Outdoor Sculptures from Silhouettes under Approximate Circular Motion of an Uncalibrated Hand-Held Camera

    Get PDF
    This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.postprin
    • 

    corecore