367 research outputs found

    Survey On Fault Tolerance In Grid Computing

    Full text link

    Enhancing reliability with Latin Square redundancy on desktop grids.

    Get PDF
    Computational grids are some of the largest computer systems in existence today. Unfortunately they are also, in many cases, the least reliable. This research examines the use of redundancy with permutation as a method of improving reliability in computational grid applications. Three primary avenues are explored - development of a new redundancy model, the Replication and Permutation Paradigm (RPP) for computational grids, development of grid simulation software for testing RPP against other redundancy methods and, finally, running a program on a live grid using RPP. An important part of RPP involves distributing data and tasks across the grid in Latin Square fashion. Two theorems and subsequent proofs regarding Latin Squares are developed. The theorems describe the changing position of symbols between the rows of a standard Latin Square. When a symbol is missing because a column is removed the theorems provide a basis for determining the next row and column where the missing symbol can be found. Interesting in their own right, the theorems have implications for redundancy. In terms of the redundancy model, the theorems allow one to state the maximum makespan in the face of missing computational hosts when using Latin Square redundancy. The simulator software was developed and used to compare different data and task distribution schemes on a simulated grid. The software clearly showed the advantage of running RPP, which resulted in faster completion times in the face of computational host failures. The Latin Square method also fails gracefully in that jobs complete with massive node failure while increasing makespan. Finally an Inductive Logic Program (ILP) for pharmacophore search was executed, using a Latin Square redundancy methodology, on a Condor grid in the Dahlem Lab at the University of Louisville Speed School of Engineering. All jobs completed, even in the face of large numbers of randomly generated computational host failures

    Resiliency in numerical algorithm design for extreme scale simulations

    Get PDF
    This work is based on the seminar titled ‘Resiliency in Numerical Algorithm Design for Extreme Scale Simulations’ held March 1–6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.Peer Reviewed"Article signat per 36 autors/es: Emmanuel Agullo, Mirco Altenbernd, Hartwig Anzt, Leonardo Bautista-Gomez, Tommaso Benacchio, Luca Bonaventura, Hans-Joachim Bungartz, Sanjay Chatterjee, Florina M. Ciorba, Nathan DeBardeleben, Daniel Drzisga, Sebastian Eibl, Christian Engelmann, Wilfried N. Gansterer, Luc Giraud, Dominik G ̈oddeke, Marco Heisig, Fabienne Jezequel, Nils Kohl, Xiaoye Sherry Li, Romain Lion, Miriam Mehl, Paul Mycek, Michael Obersteiner, Enrique S. Quintana-Ortiz, Francesco Rizzi, Ulrich Rude, Martin Schulz, Fred Fung, Robert Speck, Linda Stals, Keita Teranishi, Samuel Thibault, Dominik Thonnes, Andreas Wagner and Barbara Wohlmuth"Postprint (author's final draft

    A Novel Technique for Task Re-Allocation in Distributed Computing System

    Get PDF
    A distributed computing is software system in which components are located on different attached computers can communicate and organize their actions by transferring messages. A task applied on the distributed system must be reliable and feasible. The distributed system for instance grid networks, robotics, air traffic control systems, etc. exceedingly depends on time. If not detected accurately and recovered at the proper time, a single error in real time distributed system can cause a whole system failure. Fault-tolerance is the key method which is mostly used to provide continuous reliability in these systems. There are some challenges in distributed computing system such as resource sharing, transparency, dependability, Complex mappings, concurrency, Fault tolerance etc. In this paper, we focus on fault tolerance which is responsible for the degradation of the system. A novel technique is proposed based upon reliability to overcome fault tolerance problem and re-allocate the task. DOI: 10.17762/ijritcc2321-8169.15080

    New Aspect of Investigating Fault Sensitivity of Scientific Workflows

    Get PDF

    09191 Abstracts Collection -- Fault Tolerance in High-Performance Computing and Grids

    Get PDF
    From June 4--8, 2009, the Dagstuhl Seminar 09191 ``Fault Tolerance in High-Performance Computing and Grids \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available. Slides of the talks and abstracts are available online at url{http://www.dagstuhl.de/Materials/index.en.phtml?09191}
    corecore