15,126 research outputs found

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Application of an all-solid-state, frequency-doubled Nd:YAP laser to the generation of twin beams at 1080 nm

    Full text link
    A laser-diode-pumped intracavity frequency-doubled Nd:YAP/KTP laser is presented. Over 110 mw of TEM00 single-frequency output power at 540-nm wavelength was obtained. The output green laser was employed to pump a semimonolithic nondegenerate optical parametric oscillator to produce intensity quantum correlated twin beams at 1080 nm, and the maximum quantum noise squeezing of 74 %(5.9 dB) on the intensity difference fluctuation between the twin beams is observed. The threshold was reduced and the stability was increased significantly when compared with similar lamp-pumped systems.Comment: Published on April 200

    Towards Einstein-Podolsky-Rosen quantum channel multiplexing

    Full text link
    A single broadband squeezed field constitutes a quantum communication resource that is sufficient for the realization of a large number N of quantum channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each channel can serve as a resource for, e.g. independent quantum key distribution or teleportation protocols. N-fold channel multiplexing can be realized by accessing 2N squeezed modes at different Fourier frequencies. We report on the experimental implementation of the N=1 case through the interference of two squeezed states, extracted from a single broadband squeezed field, and demonstrate all techniques required for multiplexing (N>1). Quantum channel frequency multiplexing can be used to optimize the exploitation of a broadband squeezed field in a quantum information task. For instance, it is useful if the bandwidth of the squeezed field is larger than the bandwidth of the homodyne detectors. This is currently a typical situation in many experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of our work and its possible applicatio

    Quantum Communication Systems: Vision, Protocols, Applications, and Challenges

    Full text link
    The growth of modern technological sectors have risen to such a spectacular level that the blessings of technology have spread to every corner of the world, even to remote corners. At present, technological development finds its basis in the theoretical foundation of classical physics in every field of scientific research, such as wireless communication, visible light communication, machine learning, and computing. The performance of the conventional communication systems is becoming almost saturated due to the usage of bits. The usage of quantum bits in communication technology has already surpassed the limits of existing technologies and revealed to us a new path in developing technological sectors. Implementation of quantum technology over existing system infrastructure not only provides better performance but also keeps the system secure and reliable. This technology is very promising for future communication systems. This review article describes the fundamentals of quantum communication, vision, design goals, information processing, and protocols. Besides, quantum communication architecture is also proposed here. This research included and explained the prospective applications of quantum technology over existing technological systems, along with the potential challenges of obtaining the goal.Comment: 23 pages, 11 Figure

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; β€’ Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)β€’ Millimeter Waves and Spectrum Managementβ€’ Cyber Securityβ€’ Device to Device Communicatio

    An Analysis of Factors That Have Influenced the Evolution of Information Assurance from World War I through Vietnam to the Present

    Get PDF
    This study is an exploratory historical analysis of the factors that have influenced the evolution of military Information Assurance (IA) programs from World War I to the present. Although the term IA has recently been widely used throughout the Information Resource Management field (IRM), evidence indicates that information and information systems protection mechanisms were used during every U.S. Military conflict. This research proposes to increase the body of knowledge within the information systems management field by exploring the areas related to Information Assurance (IA) and the ultimate goal of U. S. Defensive Information Warfare. I found that significant events related to the protection of information and information systems security led to certain levels of IA being explored throughout each U.S. Military conflict. The evaluation of these events provides key information that reveals a common approach to IA throughout history and supports the identification of key concepts that have influenced this evolutionary process and shaped the role of IA in current military operations, with indicators of how it may be used in the future

    Morphological plasticity of astroglia: Understanding synaptic microenvironment

    Get PDF
    Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area. GLIA 2015
    • …
    corecore