2,650 research outputs found

    Decompositions of Nakano norms by ODE techniques

    Full text link
    We study decompositions of Nakano type varying exponent Lebesgue norms and spaces. These function spaces are represented here in a natural way as tractable varying p\ell^p sums of projection bands. The main results involve embedding the varying Lebesgue spaces to such sums, as well as the corresponding isomorphism constants. The main tool applied here is an equivalent variable Lebesgue norm which is defined by a suitable ordinary differential equation introduced recently by the author. We also analyze the effect of transformations changing the ordering of the unit interval on the values of the ODE-determined norm

    Using qualitative reasoning in modelling consensus in group decision-making

    Get PDF
    Ordinal scales are commonly used in rating and evaluation processes. These processes usually involve group decision making by means of an experts’ committee. In this paper a mathematical framework based on the qualitative model of the absolute orders of magnitude is considered. The entropy of a qualitatively described system is defined in this framework. On the one hand, this enables us to measure the amount of information provided by each evaluator and, on the other hand, the coherence of the evaluation committee. The new approach is capable of managing situations where the assessment given by experts involves different levels of precision. The use of the proposed measures within an automatic system for group decision making will contribute towards avoiding the potential subjectivity caused by conflicts of interests of the evaluators in the group.Postprint (published version

    Potts Model Partition Functions for Self-Dual Families of Strip Graphs

    Full text link
    We consider the qq-state Potts model on families of self-dual strip graphs GDG_D of the square lattice of width LyL_y and arbitrarily great length LxL_x, with periodic longitudinal boundary conditions. The general partition function ZZ and the T=0 antiferromagnetic special case PP (chromatic polynomial) have the respective forms j=1NF,Ly,λcF,Ly,j(λF,Ly,j)Lx\sum_{j=1}^{N_{F,L_y,\lambda}} c_{F,L_y,j} (\lambda_{F,L_y,j})^{L_x}, with F=Z,PF=Z,P. For arbitrary LyL_y, we determine (i) the general coefficient cF,Ly,jc_{F,L_y,j} in terms of Chebyshev polynomials, (ii) the number nF(Ly,d)n_F(L_y,d) of terms with each type of coefficient, and (iii) the total number of terms NF,Ly,λN_{F,L_y,\lambda}. We point out interesting connections between the nZ(Ly,d)n_Z(L_y,d) and Temperley-Lieb algebras, and between the NF,Ly,λN_{F,L_y,\lambda} and enumerations of directed lattice animals. Exact calculations of PP are presented for 2Ly42 \le L_y \le 4. In the limit of infinite length, we calculate the ground state degeneracy per site (exponent of the ground state entropy), W(q)W(q). Generalizing qq from Z+{\mathbb Z}_+ to C{\mathbb C}, we determine the continuous locus B{\cal B} in the complex qq plane where W(q)W(q) is singular. We find the interesting result that for all LyL_y values considered, the maximal point at which B{\cal B} crosses the real qq axis, denoted qcq_c is the same, and is equal to the value for the infinite square lattice, qc=3q_c=3. This is the first family of strip graphs of which we are aware that exhibits this type of universality of qcq_c.Comment: 36 pages, latex, three postscript figure

    A framework for semiqualitative reasoning in engineering applications

    Get PDF
    In most cases the models for experimentation, analysis, or design in engineering applications take into account only quantitative knowledge. Sometimes there is a qualitative knowledge that is convenient to consider in order to obtain better conclusions. These qualitative concepts can be labels such as ``high,’ ’ ``very negative,’ ’ ``little acid,’ ’ ``monotonically increasing’ ’ or symbols such as ¾; º, etc. . . Engineers have already used this type of knowledge implicitly in many activities. The framework that we present here lets us express explicitly this knowledge. This work makes the following contributions. First, we identify the most important classes of qualitative concepts in engineering activities. Second, we present a novel methodology to integrate both qualitative and quantitative knowledge. Third, we obtain signi® cant conclusions automatically. It is named semiqualitative reasoning. Qualitative concepts are represented by means of closed real intervals. This approximation is accepted in the area of Arti® cial Intelligence. A modeling language is speci® ed to represent qualitative and quantitative knowledge of the model. A numeric constraint satisfaction problem is obtained by means of corresponding rules of transformation of the semantics of this language. In order to obtain conclusions, we have developed algorithms that treat the problem in a symbolic and numeric way. The interval conclusions obtained are transformed into qualitative labels through a linguistic interpretation. Finally, the capabilities of this methodology are illustrated on different problems
    corecore