99,237 research outputs found

    Exploring reasons why Australian senior secondary students do not enrol in higher-level mathematics courses

    Get PDF
    In this research paper, I present the reasons why senior secondary students elect not to enrol in a higher mathematics course. All Year 11 and Year 12 mathematics students within Western Australian secondary schools were invited to participate in an online survey comprised chiefly of qualitative items. The key reasons espoused by students include an expressed dissatisfaction with mathematics, the opinion that there are other more viable courses of study to pursue, and that the Australian Tertiary Admissions Ranking (ATAR) can be maximised by taking a lower mathematics course. In addition, student testimony suggests that there are few incentives offered for undertaking a higher mathematics course

    Infusing Problem-Based Learning (PBL) Into Science Methods Courses Across Virginia

    Get PDF
    This article outlines the results of a collaborative study of the effects of infusing problem-based learning (PBL) into K-12 science methods courses across four universities in Virginia. Changes in pre-service teachers\u27 attitudes surrounding science teaching were measured before and after completing a science methods course in which they experienced PBL first-hand as participants, and then practiced designing their own PBL units for use in their future classrooms. The results indicate that exposure to PBL enhances pre-service teachers\u27 knowledge of inquiry methods and self-efficacy in teaching science

    Field Experience as the Centerpiece of an Integrated Model for STEM Teacher Preparation

    Get PDF
    The purpose of this study was to provide a descriptive account of one pathway for preparing high-quality STEM (science, technology, engineering, and mathematics) teachers for work in high-need urban schools. In this account, we discuss the supports that STEM majors need in learning how to think about the content that they know well, through an educational perspective that focuses on teaching and learning. We also describe the approach that we use that integrates content knowledge, pedagogical content knowledge, and three extensive teaching co-op experiences to facilitate the transition from successful STEM undergraduate students to effective teachers of STEM content. We suggest that by using the teaching co-op experiences to both filter and reflect on content and pedagogical content knowledge, the STEM undergraduates develop a particularly strong foundation of knowledge for teaching

    Course-based Science Research Promotes Learning in Diverse Students at Diverse Institutions

    Full text link
    Course-based research experiences (CREs) are powerful strategies for spreading learning and improving persistence for all students, both science majors and nonscience majors. Here we address the crucial components of CREs (context, discovery, ownership, iteration, communication, presentation) found across a broad range of such courses at a variety of academic institutions. We also address how the design of a CRE should vary according to the background of student participants; no single CRE format is perfect. We provide a framework for implementing CREs across multiple institutional types and several disciplines throughout the typical four years of undergraduate work, designed to a variety of student backgrounds. Our experiences implementing CREs also provide guidance on overcoming barriers to their implementation

    STEMteach: Preparing the Next Generation of Mathematics and Science Teachers

    Get PDF
    With an increasing demand for individuals prepared in Science, Technology, Engineering, and Mathematics (STEM), one university responded to this call by changing its teacher preparation program. Better-prepared mathematics and science teachers have the opportunity to engage and excite students, thereby preparing and promoting more of them to enter the STEM professions. The described program is a replication of the national UTeach model that recruits content majors in mathematics and science to explore the teaching profession during a first-semester course that includes an early field experience in the elementary grades. This field experience is designed to be engaging for both the teacher education candidates and the elementary students in an effort to demonstrate the joy of teaching and to retain the candidates in the program. The ultimate goal of the program is to increase the production of quality secondary mathematics and science teachers who can transfer their own deep understanding of their content to students so that these students will be career and college ready in the STEM disciplines

    Communities in university mathematics

    Get PDF
    This paper concerns communities of learners and teachers that are formed, develop and interact in university mathematics environments through the theoretical lens of Communities of Practice. From this perspective, learning is described as a process of participation and reification in a community in which individuals belong and form their identity through engagement, imagination and alignment. In addition, when inquiry is considered as a fundamental mode of participation, through critical alignment, the community becomes a Community of Inquiry. We discuss these theoretical underpinnings with examples of their application in research in university mathematics education and, in more detail, in two Research Cases which focus on mathematics students' and teachers' perspectives on proof and on engineering students' conceptual understanding of mathematics. The paper concludes with a critical reflection on the theorising of the role of communities in university level teaching and learning and a consideration of ways forward for future research

    Improving Underrepresented Minority Student Persistence in STEM.

    Get PDF
    Members of the Joint Working Group on Improving Underrepresented Minorities (URMs) Persistence in Science, Technology, Engineering, and Mathematics (STEM)-convened by the National Institute of General Medical Sciences and the Howard Hughes Medical Institute-review current data and propose deliberation about why the academic "pathways" leak more for URM than white or Asian STEM students. They suggest expanding to include a stronger focus on the institutional barriers that need to be removed and the types of interventions that "lift" students' interests, commitment, and ability to persist in STEM fields. Using Kurt Lewin's planned approach to change, the committee describes five recommendations to increase URM persistence in STEM at the undergraduate level. These recommendations capitalize on known successes, recognize the need for accountability, and are framed to facilitate greater progress in the future. The impact of these recommendations rests upon enacting the first recommendation: to track successes and failures at the institutional level and collect data that help explain the existing trends

    Using Data in Undergraduate Science Classrooms

    Get PDF
    Provides pedagogical insight concerning the skill of using data The resource being annotated is: http://www.dlese.org/dds/catalog_DATA-CLASS-000-000-000-007.htm

    Nevada K-12 STEM Pipeline

    Full text link
    • …
    corecore