6,677 research outputs found

    Message-Passing Inference on a Factor Graph for Collaborative Filtering

    Full text link
    This paper introduces a novel message-passing (MP) framework for the collaborative filtering (CF) problem associated with recommender systems. We model the movie-rating prediction problem popularized by the Netflix Prize, using a probabilistic factor graph model and study the model by deriving generalization error bounds in terms of the training error. Based on the model, we develop a new MP algorithm, termed IMP, for learning the model. To show superiority of the IMP algorithm, we compare it with the closely related expectation-maximization (EM) based algorithm and a number of other matrix completion algorithms. Our simulation results on Netflix data show that, while the methods perform similarly with large amounts of data, the IMP algorithm is superior for small amounts of data. This improves the cold-start problem of the CF systems in practice. Another advantage of the IMP algorithm is that it can be analyzed using the technique of density evolution (DE) that was originally developed for MP decoding of error-correcting codes

    Data Privacy Preservation in Collaborative Filtering Based Recommender Systems

    Get PDF
    This dissertation studies data privacy preservation in collaborative filtering based recommender systems and proposes several collaborative filtering models that aim at preserving user privacy from different perspectives. The empirical study on multiple classical recommendation algorithms presents the basic idea of the models and explores their performance on real world datasets. The algorithms that are investigated in this study include a popularity based model, an item similarity based model, a singular value decomposition based model, and a bipartite graph model. Top-N recommendations are evaluated to examine the prediction accuracy. It is apparent that with more customers\u27 preference data, recommender systems can better profile customers\u27 shopping patterns which in turn produces product recommendations with higher accuracy. The precautions should be taken to address the privacy issues that arise during data sharing between two vendors. Study shows that matrix factorization techniques are ideal choices for data privacy preservation by their nature. In this dissertation, singular value decomposition (SVD) and nonnegative matrix factorization (NMF) are adopted as the fundamental techniques for collaborative filtering to make privacy-preserving recommendations. The proposed SVD based model utilizes missing value imputation, randomization technique, and the truncated SVD to perturb the raw rating data. The NMF based models, namely iAux-NMF and iCluster-NMF, take into account the auxiliary information of users and items to help missing value imputation and privacy preservation. Additionally, these models support efficient incremental data update as well. A good number of online vendors allow people to leave their feedback on products. It is considered as users\u27 public preferences. However, due to the connections between users\u27 public and private preferences, if a recommender system fails to distinguish real customers from attackers, the private preferences of real customers can be exposed. This dissertation addresses an attack model in which an attacker holds real customers\u27 partial ratings and tries to obtain their private preferences by cheating recommender systems. To resolve this problem, trustworthiness information is incorporated into NMF based collaborative filtering techniques to detect the attackers and make reasonably different recommendations to the normal users and the attackers. By doing so, users\u27 private preferences can be effectively protected

    Fast Matrix Factorization for Online Recommendation with Implicit Feedback

    Full text link
    This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data. We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our eALS method consistently outperforms state-of-the-art implicit MF methods. Our implementation is available at https://github.com/hexiangnan/sigir16-eals.Comment: 10 pages, 8 figure

    Software library for stream-based recommender systems

    Get PDF
    Tradicionalmente, um algoritmo de machine learning é capaz de aprender com dados, dado um conjunto tratado e construído anteriormente. Também é possível analisar esse conjunto de dados, usando técnicas de mineração de dados e extrair conclusões a partir dele. Ambos os conceitos têm inúmeras aplicações em todo o mundo, desde diagnósticos médicos até reconhecimento de fala ou mesmo consultas a mecanismos de pesquisa. No entanto, tradicionalmente, supõe-se que o conjunto de dados esteja disponível a todo o momento. Isso não é necessariamente verdade com os dados modernos pois os aplicativos de sistemas distribuídos recebem e processam milhões de fluxos de dados em uma fração de tempo limitado. Portanto, são necessárias técnicas para extrair e processar esses fluxos de dados, em um período de tempo limitado, com bons resultados e dimensionamento eficaz à medida que os dados aumentam. Um sistema específico de análise e previsão de conclusões futuras a partir de dados fornecidos são os sistemas de recomendação. Vários serviços online usam sistemas de recomendação para fornecer conteúdo personalizado a seus usuários. Em muitos casos, as recomendações são um dos geradores de tráfego mais eficazes nesses serviços. O problema reside em encontrar o melhor pequeno subconjunto de itens em um sistema que corresponda às preferências pessoais de cada usuário, através da análise de uma quantidade muito grande de dados históricos. Esse problema recebe mais atenção se for considerado um problema genérico, não específico, ou seja, se uma biblioteca for construída para que possa ser estendida e usada como uma ferramenta para ajudar a construir um sistema para um caso de uso específico. Podem-se distinguir soluções entre perfeitas ou estatisticamente semelhantes. Devido a grande quantidade de dados disponíveis, a decisão de reprocessar todos os dados, sempre que novos dados chegam, não seria viável; portanto, algoritmos incrementais são usados ​​para processar os dados recebidos e manter o modelo de recomendação atualizado. O objetivo real deste trabalho é implementar uma biblioteca que contenha e avalie essas abordagens incrementais para recomendações de que as atuais são específicas da tarefa.Traditionally, a machine learning algorithm is able to learn from data, given a previously built and treated data set. One can also analyze that data set, using data mining techniques, and draw conclusions from it. Both of these concepts have numerous world-wide applications, from medical diagnosis to speech recognition or even search engine queries. However, traditionally speaking, it is being assumed that the data set is available at all times. That is not necessarily true with modern data, as distributed systems applications receive and process millions of data streams on a limited time fraction. Therefore, there is a need for techniques to mine and process these data streams,on a limited time period with good results and effective scaling as data grows. One specific use case of analyzing and predicting future conclusions from given data, are recommendation systems.Several online services use recommender systems to deliver personalized content to their users.In many cases, recommendations are one of the most effective traffic generators in such services.The problem lies in finding the best small subset of items in a system that matches the personal preferences of each user, through the analysis of a very large amount of historical data. This problem gets more attention if it is considered as a generic problem, not as a specific one, that is,if a library is built so that it can be extended and used as a tool to help build a system for a specific use case. One can distinguish solutions between perfect ones or statistically similar ones. Due to the large amount of data available, the decision to reprocess all the data every time new data arrives, would not be feasible so, incremental algorithms are used to process incoming data and keeping the recommendation model updated. The real purpose of this work is to implement such a library which contains, and evaluates these incremental approaches to recommendation since current ones are task-specific
    corecore