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ABSTRACT OF DISSERTATION

DATA PRIVACY PRESERVATION IN COLLABORATIVE FILTERING
BASED RECOMMENDER SYSTEMS

This dissertation studies data privacy preservation in collaborative filtering based
recommender systems and proposes several collaborative filtering models that aim at
preserving user privacy from different perspectives.

The empirical study on multiple classical recommendation algorithms presents
the basic idea of the models and explores their performance on real world datasets.
The algorithms that are investigated in this study include a popularity based model,
an item similarity based model, a singular value decomposition based model, and
a bipartite graph model. Top-N recommendations are evaluated to examine the
prediction accuracy.

It is apparent that with more customers’ preference data, recommender systems
can better profile customers’ shopping patterns which in turn produces product rec-
ommendations with higher accuracy. The precautions should be taken to address
the privacy issues that arise during data sharing between two vendors. Study shows
that matrix factorization techniques are ideal choices for data privacy preservation
by their nature. In this dissertation, singular value decomposition (SVD) and non-
negative matrix factorization (NMF) are adopted as the fundamental techniques for
collaborative filtering to make privacy-preserving recommendations. The proposed
SVD based model utilizes missing value imputation, randomization technique, and
the truncated SVD to perturb the raw rating data. The NMF based models, namely
iAux-NMF and iCluster-NMF, take into account the auxiliary information of users
and items to help missing value imputation and privacy preservation. Additionally,
these models support efficient incremental data update as well.

A good number of online vendors allow people to leave their feedback on products.
It is considered as users’ public preferences. However, due to the connections between
users’ public and private preferences, if a recommender system fails to distinguish real
customers from attackers, the private preferences of real customers can be exposed.
This dissertation addresses an attack model in which an attacker holds real customers’
partial ratings and tries to obtain their private preferences by cheating recommender



systems. To resolve this problem, trustworthiness information is incorporated into
NMF based collaborative filtering techniques to detect the attackers and make rea-
sonably different recommendations to the normal users and the attackers. By doing
so, users’ private preferences can be effectively protected.

KEYWORDS: collaborative filtering, data update, matrix factorization, privacy,
trustworthiness
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1 Introduction

As technology develops, life becomes easier in many aspects. One of them is the emer-
gence of electronic commerce, which not only helps sellers save resources and time
but also facilitates customers in choosing and buying merchandise. Different kinds
of promotions have been adopted by merchants to advertise their products. Conven-
tional stores like Walmart and Sam’s Club present popular products, e.g., batteries,
gift cards, and magazines at the checkout line in addition to offering discounts. This
is a typical way of product recommendations. Same as conventional stores, online
shops provide recommendations to their customers as well. However, for returning
customers, online stores are superior to the conventional ones with respect to prod-
uct recommendations. This is due to the fact that the former have users’* purchase
history on file which is very helpful in recommending merchandise. Online shopping

websites often use recommender systems to do this task.

You viewed Customers who viewed this also viewed

Hausler 450 SE V2 RTF W Products - 4CH 2.4GHz Mini 38cm Double Horse 9116 Hausler 450P Standard ARF Carbon Helicopter Metal
Electric RC... Radio... 24GHzACH 4. Version... Upgrade...
Sedededers (19) WL Toy Froducts Toy Products Fodolelot (4) TS
33056 5184 00 OO (56) R (57) 545572 6120 00 FOHOHOOH (2)
st12:93 §40.50 543895 $57 .52 $75.99

Figure 1.1: Product recommendation on Amazon.com

A recommender system is a program that utilizes algorithms to predict users’
purchase preferences by profiling their shopping patterns. There are many research

publications about recommender systems since the mid-1990s [2]. Various approaches

!The terms “customer” and “user”are used interchangeably as they refer to the same thing in
this context. This interchangeability also applies to “product” and “item”.



and models have been proposed and applied to real world applications. Most recom-
mender systems are based on collaborative filtering (CF) techniques [23, 40], e.g.,
item/user correlation based CF’s [62], singular value decomposition (SVD) based la-
tent factor CF’s [64], and nonnegative matrix factorization (NMF) based CF’s [13, 87].

With CF, previous transactions are analyzed in order to establish connections
between users and products. When recommending items to a user, the CF based
recommender systems try to find information related to this user to compute ratings
for every possible item. Items with the highest rating scores will be presented to the
user.

In many online recommender systems, it is inevitable for data owners to expose
their data to other parties. For instance, due to the lack of easy-to-use technol-
ogy, some online merchants buy services from professional recommendation service
providers to help build their recommender systems. In addition, many shops share
their real time data with business associates for better product recommendations.
Such examples include two or more online bookstores that sell similar books, and on-
line movie rental websites that have similar movies in their systems. In these scenar-
ios, exposed data can cause privacy leakage of user information if no pre-processing
is done. Typical private information includes the ratings that a user has given to
particular items and on which items that this user has rated, or in general, user’s
preferences. People would not like others (except the website where they purchased
the products from) to know what they are interested in and to what extent they like
or dislike the items. This is the most fundamental privacy problem in collaborative
filtering. Thus privacy-preserving collaborative filtering algorithms [12, 59, 53] were
proposed to resolve the problem. However, different from datasets for general data
mining tasks, the rating matrices in collaborative filtering are typically very incom-
plete, meaning that there are a large number of missing values. Accordingly, data

owners should complete two tasks before releasing the data to a third party: imputing



missing ratings and perturbing the whole data.

User rating data Released rating data

Y

5‘5
2 7
‘*"-I |
&,
| D
Missing value imputation )

Q and data perturbation .

.

Figure 1.2: Missing value imputation and data perturbation

In addition, there are a few other problems and points with the CF based recom-
mender systems that would be studied in this dissertation:

(1) Managing fast data growth. In the collaborative filtering context, data
may grow in two aspects: the new item arrival and the new user arrival. It requires
the data owners to complete the aforementioned two tasks on the new data in a timely
manner. In other words, every time when the new data arrives, data owners only need
to perform some incremental data update process on it and send the imputed and
perturbed new data to the third parties.

(2) Utilizing auxiliary information. In some datasets, e.g., the MovieLens
dataset [64], the Sushi preference dataset [35], and the LibimSeTi dating agency
dataset [11], auxiliary information of users or items, e.g., users’ demographic data
and items’ category data, are also provided. This information, if properly used, can
improve the recommendation accuracy, especially when the original rating matrix is
extremely incomplete.

(3) Distinguishing between real users and attackers with the use of
social networks. It is known to people that on many online shopping websites,
customers can leave feedback on the products they purchased. This is treated as users’

public preferences. Due to the connections between people’s public preferences and



private preferences, if a recommender system fails to distinguish the real customers
from the attackers, it would be highly possible that the attackers can obtain users’
private preferences by cheating the system. Trustworthiness information in social

networks can be used to help identify attackers for privacy preservation purposes.

1.1 Dissertation Organization

First of all, a preliminary empirical study on several collaborative filtering algorithms
is presented in Chapter 2. Browsing history datasets from an American retargeting
company are used as the test datasets in this study to verify their performance in
binary rating data. Chapter 3 describes an SVD based privacy-preserving data up-
date scheme in collaborative filtering and discusses the experimental results on the
MovieLens dataset [64] and the Jester dataset [22]. An improved data update ap-
proach, which adopts NMF as its fundamental technique, is proposed in Chapter 4.
Chapter 5 addresses the rank determination issue that arises from the NMF based
approach and shows a solution to this issue. Chapter 6 proposes an attack model
in online recommender systems and presents a trust-aware privacy-preserving recom-
mender system that neutralizes the attack. The future work and concluding remarks

are discussed in 7.

1.2 Related Work

Collaborative filtering techniques have been extensively studied by many researchers.
In [42], Yehuda divided the collaborative filtering techniques into two subareas: the
neighborhood approaches and the latent factor models.

The neighborhood approaches focus on the relationships between either users or
items. There are user based models [25] and item based models [18] in this scheme.

For user based models, the recommendation algorithms compute the similarity de-



grees between users in order to obtain the like-minded users, i.e., the “neighbors”, of
the active users? who will receive recommendations. Items that have been purchased
by neighbors will be recommended to this user. Thus the key point of user based
neighborhood models is to find the “neighbors”. However, the computational cost of
these types of models grows fast with the increasing number of users and items. With
millions of users and items, it will take a substantial amount of time to compute the
user similarities [18]. One way to solve this problem is to build the recommendation
models based on the items. The basic principle is very close to the user based models.
It attempts to compute the item-item similarity matrix and the system will recom-
mend items which are similar to the ones that have been purchased by the same user
in the past. Since the number of items is much smaller than the number of users in
most cases, the item based models are more scalable than the user based ones. Pa-
pagelis et al. [55] also showed that the former models resulted in better performance
in prediction accuracy compared to the latter ones.

Different from the neighborhood approaches, the latent factor models transform
users and items to the same latent factor spaces. The characteristics of users and items
are “extracted” and represented at the latent level when factorizing the user-item
rating matrix. The singular value decomposition (SVD) [57], the principal component
analysis (PCA) [22], and the nonnegative matrix factorization (NMF) [13, 87] are
three typical techniques for the latent factor models. They attempt to reduce the
dimensionality of the rating matrices and utilize the reduced matrices. By doing so,
noise can be decreased and some trivial factors are eliminated such that the system
only retains the information that is essential to the recommendations.

However, a significant issue in most CF models is the privacy leakage. Canny [12]
first proposed the privacy-preserving collaborative filtering (PPCF) that addresses

this issue in the CF process. In his PPCF model, users could control all of their data.

°In many papers, the term “active users” and “test users” are used interchangeably. They both
represent the users whose preferences will be predicted.



Users in a community are able to compute a public “aggregate” of their data, in
which no individual user’s data is exposed. Local computation is performed by each
user to get the personalized recommendations. Besides Canny’s model, the PPCF
has been studied in both distributed systems [12, 84, 6, 83, 48, 65] and centralized
systems [60, 47, 34, 14]. While most peer-to-peer (P2P) environments adopt dis-
tributed recommender systems, centralized systems are widely used by almost all of
the most popular online vendors, e.g., eBay, Amazon, and Newegg. In centralized
systems, users send their data to a server and they do not participate in the CF
process; only the server needs to conduct the CF. Polat and Du [59, 60] applied ran-
domized perturbation techniques to the SVD based collaborative filtering to provide
privacy-preserving recommendations. In their method, uniform or Gaussian noise is
added to the users’ real ratings and then the server predicts the unknown ratings by
the perturbed data.

In this framework, the data owner also needs to manage the fast data growth and
should ensure that privacy protection is still kept at a reasonable level after the data
update. Among all data perturbation methods, SVD is acknowledged as a feasible and
effective data perturbation technique. Stewart [67] surveyed the perturbation theory
of singular value decomposition and its application in signal processing. Brand [9]
demonstrated a fast low-rank modification of the thin singular value decomposition.
This algorithm can update an SVD with new rows/columns and compute its low
rank approximation very efficiently. Tougas and Spiteri [72] proposed a partial SVD
update scheme that requires one QR factorization and one SVD in each update. Since
both factorizations are performed on small intermediate matrices, the computation
cost is not expensive. Based on their work, Wang et al. [75] presented an improved
SVD based data value hiding method and tested it with clustering algorithms on
both synthetic datasets and real datasets. Their experimental results indicate that,

by introducing the incremental matrix decomposition, the efficiency of the SVD based



data value hiding model is significantly increased. It also provides better scalability
and better real-time performance of the model. The scheme proposed in Chapter 3
is similar to this model but it modifies the SVD update algorithm and comes with
randomization and post-processing techniques so it can be incorporated into the SVD
based CF smoothly.

In addition to SVD, NMF has also been studied in collaborative filtering. Zhang et
al. [87] applied NMF to collaborative filtering to learn the missing values in the rating
matrix. They treated NMF as a solution to the expectation maximization (EM) prob-
lems. Chen et al. [13] proposed an orthogonal nonnegative matrix tri-factorization
(ONMTF) [20] based collaborative filtering algorithm. Their algorithm also takes into
account the user similarity and item similarity. To study how differently NMF would
perform from SVD, based on Polat’s model [60], Li et al. [47] used NMF instead of
SVD as the fundamental collaborative filtering technique and they obtained better
results than Polat’s method. While both methods were demonstrated to perturb the
data to a reasonable level and keep the prediction precision, it is not clear how much
contribution can be made by the methods to the real world recommender systems.
Different from Polat’s and Li’s work, Kaleli et al. [34] proposed a privacy-preserving
naive Bayesian classifier (PPNBC) CF approach. The approach employs randomized
response techniques (RRT) [76] to protect users’ privacy while producing referrals
by a naive Bayesian classifier (NBC). In their scheme, the RRT is applied to both
the one-group scheme and the multi-group scheme for data distortion purposes. The
distorted data is then fed to NBC for recommendations. Adding to [34], Bilge et
al. [8] utilized pre-processing to improve the privacy-preserving recommendations. In
their method, the masked data is pre-processed by identifying the most similar items
to each item off-line; some of the unrated items’ entries are also filled to improve
the density. Since the increasing numbers of features and groups would degrade the

online performance of the multi-group PPNBC significantly, decreasing the amount



of data involved in CF can be very beneficial. With the varying number of neighbors,
the central server can decide how many items would be recommended to the users.

As mentioned before, auxiliary information of users and items is helpful if properly
utilized. The fast data update approach proposed in Chapter 4 first converts this
information to the cluster membership indicator matrices which are then considered
as constraints for updating factor matrices. Nirmal et al. [71] proposed explicit
incorporation of the additional constraint, called the “clustering constraint”, into
NMF in order to suppress the data patterns in the process of performing the matrix
factorization. Their work is based on the idea that one of the factor matrices in
NMEF contains cluster membership indicators. The clustering constraint is another
indicator matrix with altered class membership in it. This constraint then guides
NMF in updating factor matrices. Based on this idea, the proposed model applies the
user and item cluster membership indicators to nonnegative matrix tri-factorization
(NMTF), which results in better imputation of the missing values.

With regard to the clustering algorithms, K-Means [51] is a popular and well
studied approach that is easy to implement and is widely used in many domains. As
the name of the algorithm indicates, K-Means needs the definition of “mean” prior
to clustering. It minimizes a cost function by calculating the means of clusters. This
makes K-Means most suitable for continuous numerical data. When given categorical
data such as users’ demographic data and movies’ genre information, K-Means needs
a pre-processing phase to make the data suitable for clustering. Huang [27] proposed
a K-Modes clustering algorithm to extend the K-Means paradigm to the categorical
domains. Their algorithm introduces new dissimilarity measures to handle categorical
objects and replaces means of clusters with modes. Additionally, a frequency based
method is used to update modes in the clustering process so that the clustering cost
function is minimized. In 2005, Huang et al. [28] further applied a new dissimilarity

measure to the K-Modes clustering algorithm to improve its clustering accuracy.



The fast data growth requires the clustering algorithms to update the clusters
constantly. The number of clusters might be increased or decreased. Su et al. [68]
proposed a fast incremental clustering algorithm by changing the radius threshold
value dynamically. Their algorithm restricts the number of the final clusters and
reads the original dataset only once. It also considers the frequency information of the
attribute values in the inter-cluster dissimilarity measure. The approach proposed in
Chapter 5 adopts their clustering algorithm with some modifications. It is known that
the NMF based collaborative filtering algorithms need to determine the dimensions
of the factor matrices and update them when necessary. It is not convenient for
people to manually specify these values and the automated decision making is highly
desired. To this purpose, the proposed method determines the number of clusters by
an incremental clustering algorithm and uses them as the dimensions in NMF.

Recent work on using trustworthiness in collaborative filtering indicates that this
information benefits prediction precision as well as privacy protection. It reveals the
trust relationships between users and can be obtained from online social networks.
Jamali et al. [31] proposed SocialMF, a recommender system that makes use of the
matrix factorization technique with trust propagation in social networks. Similar to
[31], [80] proposed TrustMF to handle data sparsity and cold start problems which
happen commonly in collaborative filtering based recommender systems. In TrustMF,
users are projected into low-dimensional latent feature spaces by the matrix factoriza-
tion technique according to their relationships. By doing so, users’ mutual influence
on their own opinions is reflected in a more reasonable way. In [33], the authors
presented a trust based recommendation scheme on vertically distributed data for
privacy preservation. The scheme builds a trust web of users and then uses it to filter
users’ neighbors in order to protect the privacy. The proposed privacy-preserving
recommender system framework in Chapter 6 incorporates trustworthiness into the

weighted nonnegative matrix tri-factorizarion to improve prediction accuracy and



privacy protection.

In [48] and [65], the authors proposed group based privacy-preserving recom-
mender systems in which recommendations are made at the group level as opposed
to the individual level. Their experimental results show that user groups can be used
as the natural protective mechanism for achieving promising privacy protection. In
[48], items are grouped in terms of their ratings so users’ public interests and private
interests can be separated. Then, preferences of group members are identified and
aggregated. Recommendations are made by personalizing the group preferences lo-
cally to conceal users’ private interests. Motivated by this framework, in Chapter 6,
items and users are grouped according to the factor matrices of NMF in centralized

systems to distinguish the real users from the attackers.

Copyright © Xiwei Wang 2015
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2 An Empirical Study of Recommendation Algorithms

In this chapter, several classical recommendation algorithms, namely the popularity
based model, the item similarity based model, the SVD based model, and the bi-
partite graph model, are studied on the clicking history datasets of online shopping
websites collected by an American retargeting company. A massive amount of lit-
erature in recommender systems examined the models on rating datasets, such as
the Netflix movie rating data [4], the MovieLens dataset [64], and the Jester dataset
[22]. While rating information is directly connected to people’s preferences, it is not
always available. Although a majority of online shopping websites provide rating
mechanisms for people to leave feedback on products, there are a few companies that
might only be able to collect users’ clicking data due to technical restrictions. For
example, the retargeting companies usually insert a piece of JavaScript code into the
web pages of online vendors to keep track of users’ clicking behaviors. They do not
have the permission to obtain or utilize data other than this. The datasets from the
retargeting company contains only clicking history, e.g., a certain user clicked the link
to a particular product. It is interesting to investigate the above recommendation al-
gorithms on binary browsing data instead of numerical rating data with respect to

prediction accuracy.

2.1 Description of the Models

2.1.1 Notational Conventions

A matrix is used to store the clicking relationships between users and items, called

the user-item rating! matrix, denoted by R. Assume there are m users and n items,

L Although the values in this matrix are not really ratings, the matrix is still called the rating
matrix for consistency.
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then R € R™*". An entry r;; is the click count that user ¢ did on item j in the given
time period. Though there is no definite proof that a user who clicks an item will
buy it, a high click count may imply that the user is interested in it. Since each user
may only click a few items and a single item only receives a small number of clicks,
R is incomplete, meaning that there are many missing entries.

For user ¢ and item j, the existing click count from ¢ to j is denoted as 7;; and
the predicted one is denoted as p;;. The recommended items should be interesting to

the active user, i.e., this user is likely to click the recommended items.

2.1.2 TItem Popularity Based Model

The item popularity based approaches are very traditional ones in recommender sys-
tems. The main idea of the item popularity based models is to recommend the most
popular, the most viewed, or the best selling items to users. Although the item popu-
larity based models overlook users’ preferences, these kinds of models are still effective
to a certain degree, and are adopted as an auxiliary component in recommender sys-
tems by many famous online shopping sites, such as eBay, Amazon, etc.

The item popularity based model that is tested in this chapter maintains a popu-
larity list for each data set, denoted by L = {t;};=12.. ». The elements in L are items
in descending order in terms of their view counts, denoted by np;.

For the simple implementation of the popularity based top-N recommendation,
items corresponding to the first NV elements in list L will be recommended. However,
these recommended items may not be interesting to a user, which means less accurate
predictions. Thus, a further filtering step should be employed in this model to improve
the prediction accuracy. The filtering step introduces a new parameter h; into the

model, where

o number of distinct items viewed by user ¢ @2.1)
"~ total number of items viewed by user i '
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The value of h; reveals some of users’ browsing habits, such as the user preferring
to view an item just once, or preferring to view an item for several times during
browsing. In the former case, the filtering step does not recommend the items that
have been already viewed by the user. In the latter case, such items could also be
presented to the user. A threshold h; is set to determine whether a further filtering

step is necessary for user i:

1. if h; < hy, recommend the top-/N items in L to the user;

2. if h; > hy, perform the filtering step.

Case 2 means the number of distinct items viewed by user ¢ is close to the total
number of items viewed by this user. In other words, this user is not prone to click
each item multiple times. Then the items that have been clicked by user ¢ will be
excluded from the recommendation list which is generated in the first step.

The filtering step is also applicable to other models, such as the item similarity-
based model. To utilize the filtering step, other models are required to generate an
ordered top-(2N) item list for top-N recommendation. The top-(2N) list will take

the place of popularity list L.

2.1.3 Item Similarity Based Model

Among all recommender systems, the similarity based models are one of the easiest
methods to implement. Papagelis et al. [55] showed that, in most cases, the item
similarity based models produce better prediction accuracy than the user similarity
based models. In the item similarity based model [55], when recommending items to
a user i, the system first retrieves neighbors of the items that have been viewed by
this user. It then selects the N most similar neighbors and recommends them to 7.
In the real world scenarios, a notable challenge in recommender systems is the

cold start problem [56]. It often occurs when users have presented very few to no
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opinions. To resolve this issue, the item popularity factor is incorporated into the
similarity based model to handle new users. Eq. (2.2) calculates the relationship

between user ¢ and item j.

1 np;
Pij:’Y'm Z p?k—l-(l_’Y)'FJ (2.2)
T3 keS(5;1), pjr>0 g

The first tier of the equation is the similarity score and the second tier is the
popularity score. S(j;4) is the set of items that were viewed by user ¢ and are similar
to item j. pj;i, is the Pearson correlation coefficient [62] between item j and item k.
The popularity score is the ratio between the view count of item j, denoted by np;,
and the global maximum view count, denoted by NN,. = controls the weight of each
part.

The formula for Pearson correlation coefficient is slightly modified to better de-

scribe the relationship between two items.

Zf:l ('r;t — Z;) () — k)

Pjk =
\/Z;lzl (% - j:j)Q Zf:l (wgct - j:k)Q

7 (2.3)

where 2%, = 2 (1+ HTlgnct) is a variation of x;; (nc¢, is the number of items that user
i has viewed) and d is the dimensionality of an item vector x;. Note that each entry
in x; corresponds to a user’s click count on this item.

The modification on z;; is based on the premise that users who have clicked fewer
items make more contribution to the similarity computation than those who have

clicked significantly more items.

2.1.4 SVD Based Latent Factor Model

The latent factor models [42] focus on reducing dimensionality of the user-item rating
matrix in order to discover some “latent factors”. These factors should best interpret

user preferences with the least noise. They can be exploited to approximate the
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original rating values.

In Paterek’s SVD based latent factor model [57], the user-item rating matrix
is factorized into two lower rank matrices, i.e., a “user factor” matrix UF and an
“item factor” matrix IF'. Thus, each user ¢ and item j can be represented as an f-
dimensional factor vector UF; (i-th row of UF') and I Fj (j-th row of I F'), respectively
[15]. The prediction of the rating left by user ¢ on item j is made by taking inner
product of UF; and IFj.

In order to obtain the user and item factor vectors, SVD is applied on the huge

incomplete matrix R with all the missing values being set to zeros?.

Rmxn = Um><7“ : err : VT

nxr’

(2.4)

where U and V' are orthonormal matrices, S is a diagonal matrix with singular values
on its diagonal and r is the rank of S.

With SVDLIBC (an SVD-package) [7], the dimension f (f < r) can be easily
specified when decomposing the rating matrix. Hence, the user factor matrix and the

item factor matrix are represented by

UFme:Ume- Sfxf, IFan:Van- Sfxf (2.5)

and so a prediction can be made by R;; = UF; - IFJ-T.

2.1.5 Bipartite Graph Model

In this graph model [26], users and items are represented as vertices of a graph and
can be divided into two disjoint sets, the item set I and the user set U. Every edge
is a connection between a vertex in U and one in I. It corresponds to an entry 7;; in

user-item rating matrix R, as shown in Figure 2.1.

2This is very biased and the missing value problem will be addressed in the following chapters.
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ltem Set

User Set

Figure 2.1: A bipartite graph

Sets I and U in the bipartite graph model are independent sets [7]. Therefore,
the transition probability between each item pair e; and e, can be obtained by Eq.

(2.6).

m

Plejler) = Y [Pleslue) - Plusle)], (2.6)

t=1
where P(ejluy) = ry;/ > ra, and Plugler) = o/ > | Te-

All item nodes now form a finite Markov chain with transition matrix P =
[ajk]j k=1, n, Where aj, = P(ejley) [44], i.e., the probability that this chain ends
in the specific item node e; with initial node ey, is a;j;. Therefore, given the previous
click history of user i, the probability for a certain item j that this user might be

interested in can be predicted according to

m

pi = Y (e Tir), (2.7)

k=1
where T; represents the initial state vector for user ¢ in a Markov chain and T} is the
component corresponding to item k. Note that Tj, = i/ 2?21 Tij-

In order to penalize the users (or items) with a large number of clicks, the pe-
nalization parameter « is introduced in the model [26, 46]. It is based on a similar

premise that was discussed in the item similarity based model when computing item
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similarities. Transition probability with penalization parameter « is:
Plejlu) =i/ () Plusler) = rae/ (Y ra)® (2.8)
i=1 t=1

2.2 Experimental Study

2.2.1 Data Description

The dataset in the experiments was gathered by a retargeting company for research
purposes. It consists of the browsing history from 139 online shopping websites in one
week (08/08/2010 — 08/14/2010). In the dataset, each row represents a transaction,
which has four attributes, product 1D, website 1D, user ID, and date.

Among 139 sites, 4 were selected for test purposes. Statistics are shown in Table

2.1

Table 2.1: Statistics of the data

Site ID | # of Users | # of Items | # of Clicks
3699 20,471 499 134,982
5202 148.409 1,004 300,757
8631 112,738 94 1,559,529
9093 70,049 2,303 120,836

Each dataset is divided into three subsets, the training set, test set and last
transaction set. The training set is obtained from the original dataset by removing
1000 active users and their accompanying data. In order to ensure the items that
have been viewed by active users also exist in the training set, the items should occur
at least 15 times in the training set after the active users’ data has been removed.
The last transactions of the removed active users form the last transaction set and
the remaining data form the test set.

The goal is to train the models using the training set and apply the models on

the data in the test set to predict the last transaction of the active users.
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2.2.2 Evaluation Strategy

In general, there are two ways to evaluate the prediction accuracy of the recommen-
dation algorithms: hit rates (or recall rates) for top-N recommendation, and error
measurement (e.g., root mean square error and mean absolute error) for rating value
predictions. Since the datasets are different from Netflix and MovieLens, which pro-
vide real ratings, it is more reasonable to make top-/N recommendations rather than
rating value predictions on the clicking data. Accordingly, the prediction accuracy is
evaluated in terms of the hit rates.

The recommended item set is named the predicted set. The hit rate of recom-

mendations (higher is better) is calculated as follows,

o number of correctly predicted active users (2.9)
e total number of active users '

Within the item popularity based model, an item popularity list is constructed by
collecting statistics on the clicking history. The filtering step is applied on this list to
obtain the final recommended items.

In the item similarity based model, the parameter ~ is tweaked to get the best
ratio of similarity score and popularity score. 7 is chosen from the interval of [0, 1]
with step size 0.1.

The bipartite graph model first builds a probability transition matrix with Eqgs.
(2.6) and (2.8). The prediction is computed based on the Markov chain in the matrix.

To investigate the influence of the filtering step on other models, this step is
applied to the ordered top-(2/N) recommendation lists generated by other models to

produce new top-N lists.
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2.2.3 Results and Discussion

Prior to the comparisons of prediction accuracy, the parameters in the item based
similarity model and the bipartite graph model are studied on the website with site
ID 5202.

2.2.3.1 Parameter Study

(1) v in the item based similarity model

0.25
0.2 /,4 Y
@ 0.15 %
2
g =
=
T o1 —
4
0.05
0
0 0.1 02 03 04 05 0.6 07 0.8 0.9 1

Figure 2.2: Hit rates with different ~ on site 52023

The curve in Figure 2.2 shows that with v increasing, better hit rates are reached.
The popularity score does not seem to be more effective than the similarity score.
Nevertheless, as stated before, the purpose of using the popularity score is to provide
recommendations for new users who have almost no preference. In the experiments,
the hit rates are tested by applying the models on users that have clicking records
in both the test set and the last transaction set. This test methodology does not
necessarily focus on the new user problem. Thus, the popularity score is eliminated
by setting v to 1.0, which means this model will recommend items based on the

similarity based score only in later experiments.

3“the website with site ID xxxx” and “site xxxx” are used interchangeably.
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(2) a in the bipartite graph model
In this model, « penalizes the users or items with lots of clicks. Therefore with
a larger «, the corresponding probabilities in Eq. (2.8) become smaller. Table 2.2

shows the hit rates with different «.

Table 2.2: Hit rates with different a on site 5202

o Hit Rate
0.5 20%
1 21.2%
14.2%

In the test datasets, the number of distinct items that each user has clicked does
not vary remarkably. Hence the penalization parameter o does not have significant
effects on the hit rates. Nevertheless, in grocery shopping [46], a customer purchasing
a large number of a specific product reflects a higher interest in this product. Gen-
erally speaking, o« = 1 is suitable for the cases in which the range of values in the

rating matrix is not wide.

2.2.3.2 Prediction on Datasets

The four models were first tested on site 3699. Figure 2.3(a) shows the hit rates. IP
denotes the item popularity based model; IS denotes the item similarity based model;
f-IS denotes the item similarity based model with the filtering step; BG is for the
bipartite graph model; f-BG is for the bipartite graph model with the filtering step;
SVD is for the SVD-based latent factor model; lastly, f-SVD is for the SVD-based
latent factor model with the filtering step.

On this site, the SVD based model with 60 factors achieved the highest hit rate,
which is significantly better than other models. More factors were also tested on it
but no better results were obtained. This means the first 60 factors were able to

capture the most critical latent properties of the items in this dataset.
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Figure 2.3: Hit rates in top-10 recommendation

The bipartite graph model reached a hit rate of 46.7%, which is close to the
results of the item similarity based model. Essentially, BG has a similar principle
with IS since they both need to build an item-item matrix. The difference lies on the
viewpoint of entries in the matrix — transition probability in BG and item similarity
in IS. In fact, some IS models obtain the similarities by computing the conditional
probability between items and users.

The item popularity based model performed worst on this dataset. This is because
there are 499 items but only 10 items were recommended to each active user. However,

the filtering step in IP worked quite well with IS and BG. The hit rate is 67.3% for
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f-1S (70.9% for £-BG) where the top-20 recommendation by the IS model made a hit
rate of 67.6% (71.0% for BG). It means that almost all irrelevant items were filtered
out while the correct ones were retained. The investigation on user browsing habits
reveals that most users clicked distinct items just once. Therefore they may not be
interested in the items they have already clicked.

It is worth mentioning that in the IS model, the neighbors of items that have been
viewed by a user may have already been viewed by the same person. Accordingly,
the IS based recommendation is not entirely suitable to these kinds of users and a
further filtering step is needed.

Nevertheless, the filtering step had no effect on the SVD based model. It can
be inferred that the latent factors in SVD not only captured the users’ click count
information but also the clicking patterns, i.e., the browsing habit, so no filtering step
is needed.

For the website with site ID 5202, the results charted in Figure 2.3(b) are quite
different from those on 3699. All the models with filtering step except {-SVD per-
formed better than others did. IS and BG, f-IS and f-BG had very similar hit rates,
respectively. IP produced the worst prediction accuracy once again. However, SVD
with 70 factors, the champion of the previous experiment, only achieved a hit rate of
18.6%. This indicates that the latent factors did not capture the correlations between
users and items very well. The f-SVD again had no improvement on SVD.

Figure 2.3(d) presents the results on the website with site ID 9093. The bipartite
graph model with filtering step performed best. SVD with 100 factors had a similar
hit rate on site 5202. The results show that on some datasets, the local relationships
among items that were obtained by BG and IS-like models play a more crucial role
in predicting the next item. Whereas on some other datasets, capturing the global
effects that were obtained by SVD-like latent factor models is more important.

The prediction results on site 8631 plotted in Figure 2.3(c) look completely dif-
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ferent. SVD and IP models had very high hit rates compared to others. In this case,
94 factors, which is the same as the number of items, were used in the SVD model.
Note that this website has special properties — it has very few items (94) and a large
number of users (112,738). Examining the recommended item list of the SVD model
shows that it only generated one item for each user. In other words, the top-1 recom-
mendation of SVD on this site provided correct predictions for 95.9% users. The item
popularity based model performed even better since the popular items are welcomed
by most users — this differs from that in the first dataset. -SVD was not employed
on this site due to the fact that there was no top-20 list for the filtering step to work
on.

An interesting question remains: why did BG and IS perform significantly worse
on this dataset compared to others? In [29], Huang et al. discussed the sparsity of the
user-item rating matrix which can be used to answer this question. Due to the small
number of items and the large number of users, most customers have only clicked
a few items. Then the number of edges in the BG model connecting to these users
is small. Hence, the transition probability will no longer represent the similarity
of products. This also happens in the IS model — an item is similar to almost all
other items with very close similarity degrees. If customers in this dataset tend to
be interested in several popular items, the prediction accuracy can be very low. This
also explains the positive results of the IP model in this case.

Furthermore, if the dataset has many items but very few customers who have
viewed several items, the number of edges associated with most customers would be
very high. Most entries in the transition matrix will then have small and close values,
which will prevent the model from discovering closely related items.

As a summary of top-10 recommendations, Table 2.3 gives the performance statis-

tics of seven models* on four datasets. The models are ranked by their hit rates —

4Since SVD and f-SVD have the same hit rates, SVD is used to represent both SVD and f-SVD
in this table.
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Table 2.3: Performance list

Performance Rank

Dataset | IP | IS | £-IS | BG | -BG | SVD
3699 6 | 5 3 4 2 1
5202 6 | 4 2 3 1 5
8631 1|5 3 6 4 2
9093 6 | 4 3 2 1 5

the model that performs best is ranked 1 and the one which performs worst is ranked
6. It is expected that the IP model has the lowest rank (rank 6 in total) since it is
only based on the popularity of items. The f~-BG and f-IS models attained the first
two places. SVD also worked well in most cases. It can be seen that some mod-
els predicted very accurately for only certain datasets while f-BG and f-IS models
had higher average hit rates than others. Thus, the models with the filtering step,
which take into consideration human behavior patterns, can be employed by most
recommendation tasks to achieve satisfactory results.

In the end, the hit rates with different N’s in top- N recommendation were studied.
The predictions with seven models were performed on four sites. Figure 2.4 shows
the variance.

The figures show the increasing trends with greater N for all models on all sites.
The differences lie in the slope of the curves. The models with the filtering step — {-BG
and f-IS had about 20% ~ 50% improvement in accuracy on the original models, BG
and IS. In this experiment, site 8631 is still a special one compared to others because
the hit rates of SVD and IP reached 95.9% and 98.6% when N = 5, respectively. That
means, for these two models, the top-5 recommended items were accurately predicted
and the hit rates for top-1 predictions are 95.2% and 98.5%. Consequently, on this
website, the top-5 recommendations are preferable for SVD and IP models since the
number of items recommended to users are expected to be small — users may not be

interested in a top-50 or top-100 recommendation list as they are not helpful at all.
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Figure 2.4: Hit rates in top-/N recommendation

2.3 Summary

In this chapter, several classical recommendation algorithms are studied on the datasets
from an American retargeting company, to find a good strategy in model selection
for specific datasets. The experimental results reveal that, if a dataset has few items
but a large number of users, the SVD based model and the item popularity based
model can be good choices. Whereas if a dataset has many items but fewer users, the
bipartite graph model and models with the filtering step (except SVD) are suitable
to it. However, if the designer of the recommender system wants to build one for

general purposes, the bipartite graph model with the filtering step can be selected
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due to its higher average performance in the experiments. The results also show that
the filtering step had no effect on the SVD based model which indicates that the

latent factors can capture both rating information and user clicking patterns.

Copyright (© Xiwei Wang 2015
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3 SVD Based Privacy-Preserving Data Update Scheme in Collaborative

Filtering

It was mentioned in Chapter 1 that in some scenarios, data owners need to share their
data with a third party. This behavior gives rise to the privacy leakage problem. There
are two challenges during the data sharing process: (1) how to protect customers’
private information while keeping data utility; (2) based on (1), how to handle data
growth efficiently.

In this chapter, a privacy-preserving data update scheme is proposed for collabora-
tive filtering based recommender systems. This scheme utilizes truncated SVD update
algorithms [9, 38] and randomization techniques. It can provide privacy protection
when incorporating new data into the original one in an efficient way. The scheme
starts with the precomputed SVD of the original rating matrix. New rows/columns
are then built into the existing factor matrices. Users’ privacy is preserved by trun-
cating the new matrix together with randomization and post-processing. It also takes
into account the missing value imputation during the update process to provide high
quality data for accurate recommendations. Results of the experiments conducted
on the MovieLens dataset [64] and the Jester dataset [22] show that the proposed
scheme can handle data growth efficiently and keep a low level of privacy loss. The

prediction accuracy is still at a high level compared to most published results.

3.1 Problem Description

Assume the data owner has a user-item rating matrix, denoted by R € R"™*" where
there are m users and n items. Differing from the click count matrix in Chapter 2,
the entry r;; in R here represents the rating left on item j by user ¢. The valid range

of rating value varies from website to website. Some websites use the 1 ~ 5 scale with
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1 as the lowest rating (most disliked) and 5 as the highest rating (most favorated)
while some others use the —10 ~ 10 scale with —10 as the lowest rating, 0 as neutral
rating, and 10 as the highest rating.

The original rating matrix contains the real rating values left by users on items,
which means it can be used to identify the shopping patterns of users. These patterns
can reveal some of the users’ privacy, so releasing the original rating data without
any privacy protection will cause a privacy breach. One possible way to protect user
privacy before releasing the rating matrix is to impute the matrix and then perturb
it. In this procedure, imputation estimates the missing ratings as well as conceals
the user preference on particular items; no missing value means there is no way to
tell which items have been rated by users since all items are marked as rated. On
the other hand, the perturbation distorts the ratings so that users’ preferences on
particular items are blurred.

When new users’ transactions arrive, the new rows (each row contains the ratings
left on items by the corresponding user), denoted by T" € RP*™, should be appended
to the original matrix R:

— R. (3.1)
T

Similarly, when new items arrive, the new columns (each column contains the
ratings left by users on the corresponding item), denoted by G € R™*? should be

appended to the original matrix R:
{ R F } — R (3.2)

To protect users’ privacy, the new rating data must be processed before it is
released. T, € RP*" is adopted to denote the processed new rows and G, € R"™*? is

for processed new columns.
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3.2 Privacy-Preserving Data Update Scheme

This section presents the data update scheme in collaborative filtering that could
preserve the privacy during the update process. Users’ privacy is protected in three
aspects, missing value imputation, randomization based perturbation and SVD trun-
cation. The imputation step can preserve the private information — “which items that
a user has rated”, however, since pure imputation will typically generate same values
and fill the empty entries with these values, the matrix is vulnerable to attack. This
also raises another kind of private information — “what are the actual ratings that
a user left on particular items”. In this scenario, randomization and truncated SVD
techniques are used to do a second phase perturbation that solves the problem. On
one hand, random noise can alter the rating values to some extent while leaving the
distribution unchanged. On the other hand, the truncated SVD is a naturally ideal
choice for data perturbation, since it captures the latent properties of a matrix and
eliminates the useless noise. If given a well-chosen truncation rank, SVD can provide
reasonable balance between data privacy and utility.

As stated in the previous section, new data could be treated as new rows or
columns in the matrix. They should be appended to the original matrix R and
further perturbed to protect users’ privacy. In the following sections, the proposed

scheme would be discussed in the row update and column update separately.

3.2.1 Row Update

In Eq. (3.1), T is added to R as a series of rows. The new matrix R’ has a dimension
of (m + p) x n. Prior to the updates, it is assumed that the truncated rank-k SVD

of R has been computed previously, as

Ry =Ug-%- VT, (3.3)
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where U, € R™* and V;, € R™** are two orthogonal matrices; ;, € R¥** is a diagonal
matrix with the largest k singular values on its diagonal.

As mentioned in Section 3.1, the user-item rating matrix is an incomplete matrix
thus before it is factorized, the missing values must be imputed. Similar to [64], the
column mean rating values are exploited to fill the empty entries. These mean values
are held in a vector 7pean = (71, -+, 7,) and will be used to update the SVD.

For new rows T', before incorporating them into the existing matrix, an imputation
step is performed. In this step, the empty entries should be filled with values that
have knowledge from both the mean values of the existing matrix and the ratings in
the new data. Eq. (3.4) calculates the new column mean.

m X Tj+ th:ﬂ,mﬂéo Tij

= (3.4)
m+
’ M+ 01

Note that the new column means do not affect the old matrix, which should be
kept unchanged as the third parties hold the perturbed old matrix and the data owner
only releases the perturbed new data.

The imputed matrices, R (with its factor matrices Uy, 3 and \A/k) and T are then
obtained. Now the problem space has been converted from Eq. (3.1) to Eq. (3.5):

R A
| =R (3.5)
T

After imputation, random noise drawn from Gaussian distribution is added to the
new data T, yielding T'. The update of the matrix follows the procedure in [72]. First,
a QR factorization is performed on T = (I, — \A/k . VkT) . TT, where [,, is an n X n

identity matrix. Thus we have Q7 - Sy = T, in which Qr € R™*? is an orthonormal
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matrix and S € RP*P is an upper triangular matrix. Then

A

T T T

m - (3.6)
U. 0 S 0 ) T

= . [ Vi Qr }
I, TV, Sy
The rank-k£ SVD is then computed on the middle matrix,

¥ 0

- ~ UL SV (37)

TV, ST

(k+p) % (k+p)

Since (k + p) is typically small, the computation of the SVD should be very fast.

Same as [75], the truncated rank-k SVD of R’ instead of a complete one is computed,

D/ Uk 0 / / ~ /T
k= - Uy 'Ek'([vk QT]'V;C) (3.8)

In CF context, the value of all entries should be in a valid range. For example,
a valid value r in MovieLens should be 0 < r < 5. Therefore, after obtaining the
truncated new matrix R;C, a post-processing step is applied to it so that all invalid

values will be replaced with reasonable ones.

validMinValue if 7 . <validMinValue
Aﬂmj = § wvalidMazValue if ﬂ“] > validMazxV alue (3.9)

N :
Thij otherwise

In Eq. (3.9), 7, is the (i, j)-th entry of R, validMinV alue and validMazV alue
depend on particular dataset. For the MovieLens dataset, validMinV alue = 0 and

validMazV alue = 5; for the Jester dataset, validMinV alue = -10 and valid M axV alue
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= 10. Eventually, the perturbed and updated user-item rating matrix, A}A%ﬁc €
RMHP)XM with A7} ;i as its entries, is generated.

In this scheme, it is assumed that the third party owns Ry so only AT (AT =
AR, (m+1:m+p,:) € R is sent to it.

Algorithm 3.1 summarizes the SVD based row update.

Algorithm 3.1 Privacy-Preserving Row Update

Input:
Precomputed rank-k SVD of R: Uy, > and Vk;
[tem mean of R: Trnean;
New data T € RP*™;

Output:
SVD for the updated full matrix: U}, %} and V/;
Perturbed new data: AT}
Updated item mean vector: f’me(m;

1: Impute the missing values in 7" with Eq. (3.4) and update the item mean vector
% T? ﬁmean;

2: Apply random noise X (X ~ N(u,0)) to T — T

3: Perform QR factorization on 7' = (I, — Vi, - VI) - T7 — Qr - St

. S 0 3
4: Perform SVD on X = [ Tvk S% ] —X~=U, -3 - VkITS

5: Compute ({ Uy 0 } U,g) — U}
0 I,
Compute ([ Vi Qr |- V}) — v/
Compute the rank-k approximation of &' — R} = UL - % - V7
Process the invalid values by Eq. (3.9) — AR};
AR (m+1:m+p,:) — AT;
Return (A],’f, i, Vk’, AT and 77,,00n.

3.2.2 Column Update

The column update is similar to the row update, however, there are several differences
between them. It is worth mentioning that item means are used to impute the missing

values in the raw user-item rating matrix. In the row update, the mean values change

1A}?§€ (m+1:m+p,:)is a Matlab notation that means the last p rows of Af%;e
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when the new rows/users are added while in the column update, the mean values

only depend on the new columns/items. With this property, it is not necessary to

keep an item mean vector in the column update.

Like Eq. (3.5), column update has the following task:
{ R F] — R (3.10)

Algorithm 3.2 depicts the SVD based column update.

Algorithm 3.2 Privacy-Preserving Column Update

Input:

Precomputed rank-k SVD of R: Uk, ik and Vk;
New data F' € R™*Y;

Output:

SVD for the updated full matrix: U J, X0 and \A/k” ;
Perturbed new data: AF;

1: Impute the missing values in /' with corresponding item mean values — F ;

Apply random noise X (X ~ N(u,0)) to F— F;

3: Perform QR factorization on F' = (1, — U, - U,CT) - F = Qp - Sp;

: 3 TT T .
Perform SVD on ¥ = [ X(])k U’}%FF ] =Y~ UV,
Compute (| U. Op 1-up) — U

Compute ({ Ve 0 } -Vk”) — V)
0 I,
Compute the rank-k approximation of R” — RY = U} - X - V'T,;
Process the invalid values like Eq. (3.9) (7}, ;; are now entries in R!) — ARY;
AR!(:;n+1:n+q) = AF;
Return U}, %/, Vi’ and AF.

The data owner should keep the updated factor matrices for the new user-item

rating matrix (U}, and V; for the row update, U, ¥} and V} for the column

update) and the perturbed new data matrix (AT for the row update, AF for the

column update). Moreover, the updated item mean T mean 1S also supposed to be held

by the data owner if a row update has been performed.

As shown in both algorithms, three perturbation techniques are combined together
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to preserve users’ privacy. Imputation at the beginning removes all the missing values.
Adding random noise to the imputed data makes values different from each other.
The truncated SVD update eliminates the factors that are trivial to the data. This
process keeps the data utility and protects the data privacy at the same time. Three

techniques make contributions to privacy preservation in different aspects.

3.3 Experimental Study

3.3.1 Data Description

The experiments were conducted on the MovieLens [64] and Jester [22] datasets.
The public MovieLens dataset has 3 subsets, 100K (100,000 ratings), 1M (1,000,000
ratings) and 10M (10,000,000 ratings). The first dataset, which is adopted in the
experiments, has 943 users and 1,682 items. The 100,000 ratings, ranging from 1 to
5, were divided into two parts: the training set with 80,000 ratings and the test set
with 20,000 ratings. Both sets are stored in matrices so they are very incomplete
(93.7% of the entries in the training matrix are not observed).

The Jester datasets were from a web based joke recommendation system, which
was developed by the University of California, Berkeley [22]. There are also three
subsets, namely jester-data-1, jester-data-2 and jester-data-3, among which, the first
one was chosen. It has 24,983 users and 100 jokes with 1,810,455 ratings ranging
from -10 to 10. 80% of the ratings were randomly selected as the training set and the
rest were used as the test set. Compared to MovieLens, the Jester dataset is not so

incomplete (27.5% of the entries in the training matrix are not observed).

3.3.2 Prediction Model and Error Measurement

In Section 2.1.4, an SVD based CF model that predicts the ratings by utilizing users’

latent factors is described. In this chapter, the same model is exploited to test the
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proposed data update scheme. Since the SVD can only work on complete matrices,
the missing values in the rating matrices are treated as zeros if no pre-processing is
performed. A typical way to impute missing values is using item means. For each
column, the mean value is calculated from the existing ratings and all the missing
values in this column are filled by the mean value.

Assume pj; is the predicted value computed by the SVD based CF model; to
ensure the predicted ratings are in the valid range, the same boundary check like Eq.

(3.9) is applied:

validMinValue if p}; <wvalidMinV alue
Dij = validMazxValue if p;j > validMaxV alue (3.11)

Dij otherwise

When testing the prediction accuracy, the user factor matrix UF and the item
factor matrix IF (see Eq. (2.5)) were first obtained from the training set; then for
every rating in the test set, the corresponding predicted value was computed and the
differences were measured. This was done for all the ratings in the test set and the

MAE (mean absolute error) [10, 66] can be calculated as follows:

1
MAE = ———— i — Dij 3.12
|T€StS€t| Z |TJ p]| ( )

TijeTestSet

3.3.3 Privacy Measurement

When measuring the privacy, Definition 3.1 defines the privacy level.

Definition 3.1. Privacy level [1(Y|X) is a metric that indicates the extent to which

a random variable Y could be estimated if given a random variable X .

(Y| X) = 2"V, (3.13)
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where h(Y'|X) is the differential entropy of Y given X.

This privacy measure was proposed by Agrawal and Aggarwal [3] and was applied
to measure the privacy in collaborative filtering by Polat and Du [59]. In addition
to the privacy level, Agrawal and Aggarwal [3] also proposed the conditional privacy

loss of Y after revealing X:

PY|X)=1-I(Y|X)/IY) = 1 — 2M¥X) joh(¥) (3.14)

Similar to Polat and Du’s work, the experiments measure privacy by II(Y|X) and

P(Y|X).

3.3.4 Evaluation Strategy

The proposed scheme was tested in several aspects: the prediction accuracy in recom-
mendation, the privacy protection level, how to split the new data in the update, when
to recompute SVD, and the randomization degree with its effect in perturbations, etc.

To test when to recompute SVD, the data in the training set, which is viewed as
a rating matrix, was split into two subsections with a particular ratio p;. Assuming
the first p; data has already been processed, the remaining data is then updated into
it. For instance, when rows are split with p; = 40%, the first 40% of the rows in
the training set is treated as R in Eq. (3.1). The imputation would be done on this
data without the knowledge from the remaining 60% of the data, yielding R in Eq.
(3.5). Then a rank-k SVD and the item mean vector are computed on this matrix.
The rank-k approximation of R is named the starting matrix. These data structures
are utilized as the input of Algorithm 3.1. Results are expected to be different with
the varying split ratio. If the result is too far from the predefined threshold or the
results evolve more slowly or even start to degrade at some point, a recomputation is

anticipated.
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However, the remaining 60% of the rows in the training set are not simply updated
in one round since data in real world applications usually grows incrementally. In the
experiments, the 60% of the rows were added to the starting matrix in several rounds,
depending on another split ratio py. For example, if p; = 1/10, the new data will be
added to the starting matrix in 10 rounds. The final matrix, which equals starting
matrix + ATy + - -- + ATjg, is the perturbed and updated matrix.

The algorithms were evaluated on both the MovieLens and Jester datasets by
testing the time cost of the update, the prediction error, and the privacy measure on

the final matrix.

3.3.5 Results and Discussion
3.3.5.1 Truncation Rank (k) in SVD

Due to the characteristics of SVD based CFs, the rank of the truncated matrix, k£,
must be chosen in advance. Most papers reported that £ = 13 is an optimal choice
for the MovieLens dataset and k = 11 for the Jester dataset. It was verified in the
experiments by probing k in {2, 5, ..., 25, 50, 100} and computing the corresponding
MAE’s [64]. The results on MovieLens are shown in Figure 3.1. Note that this
experiment is unrelated to the update since the SVD based predictions were performed
on the full imputed training data.

The curve shows the mean absolute errors with different k’s and the lowest MAE
(0.7769) was reached when k& = 13. The same experiment on Jester also confirms
that the lowest MAE (3.2871) was reached when k£ = 11. Accordingly, the truncation
ranks for the MovieLlens and Jester datasets are set to 13 and 11 in the following

experiments, respectively.
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Figure 3.1: MAE variation with different rank-%

3.3.5.2 Split Ratio p,

In this experiment, p; was fixed at 40%, meaning that the first 40% of the data in the
training set is treated as the starting matrix, while the remaining 60% will be added
to it. pg is set to 1/10, 1/9, 1/8, ...,1/2, and 1. The greater py is, the fewer rounds
will be needed in the update.

Figure 3.2 illustrates the time cost with the different split ratio p;. The row
update is represented by “Row”, while “Column” refers to the column update. To
eliminate randomization in both algorithms, p and o were set to zero. The results

with randomization are reported in Section 3.3.5.4.
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Figure 3.2: Time cost variation with split ratio po
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The curves of the MovieLens data are generally in an ascending trend with the
rising split ratio and the row update took more time than the column update. In the
Jester data, the column update reached the shortest time when py = 1/3 and the row
update took less time than the column update. It is clear that except for the column
update in the Jester data, updating the new data in more rounds with less data in
each round can decrease the time cost. However, the split ratio cannot simply be
determined by this factor alone. The prediction accuracy and the privacy protection
level should play an even more crucial role during this process.

Furthermore, the figure indicates that the time cost of the update depends on
dimensionality of the rows and columns. For example, the MovieLens dataset has
more columns (1,682 items) than rows (943 users) while the Jester dataset has fewer
columns (100 items) than rows (24,983 users). Each step of both the row and column
update algorithms shows that when the number of columns is greater than the number
of rows, steps 1 and 3 in Algorithm 3.1 need more time than those in Algorithm 3.2
due to higher dimensionality and vice versa. Nevertheless, compared to the time cost
for imputing the missing values and computing the SVD on raw training set, which
is 44.9744 (imputation) + 2.2866 (SVD) = 47.261s for MovieLens and 1,592.8075
(imputation) + 3.7552 (SVD) = 1,596.5627s for Jester, the proposed scheme ran
more efficiently in both row and column updates.

The mean absolute error charted in Figure 3.3 keeps stable with the different split
ratio py which implies that the quality of the updated data with respect to prediction
accuracy is not affected notably by p,. Similar results were obtained on the privacy
measure, see Figure 3.4.

Based on the experimental results about split ratio pe, it was fixed to 1/9 in both
the row and column updates for the MovieLens data in the following experiments.
The Jester data worked with p, = 1/10 in the row update and ps = 1/3 in the column

update.
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3.3.5.3 Split Ratio p;

Because of the inherent properties of the SVD update algorithms, errors are generated
in each run. The data owners should be aware of the correct time to recompute SVD
for the whole data so that the quality of the data can be kept. This problem is studied
by experimenting with the split ratio p;.

The time cost for updating new data with varying p; is plotted in Figure 3.5. It
is expected that updating fewer rows/columns takes less time. While different types
of split ratios were tested, the relation between the time cost of the row and column

updates did not change.
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Figure 3.6 shows the mean absolute error. The curve in the MovieLens data has a
descending trend in the row update but keeps at a stable level in the column update.
The case is different for the Jester data where the MAE is generally decreasing for
the column update and keeps stable for the row update with rising split ratio p;. It
indicates that with fewer ratings in the starting matrix, the prediction model tends to
less accurately profile users’ preferences and thus leads to a lower prediction accuracy.
In this case, the users in the MovieLens data affect more while the dominant factor of
the Jester data is the items. It can be assumed that the total amount of information
stored in a rating matrix is fixed, and every matrix entry contributes the same amount
of information. Therefore, the fewer users (or items) we have, the more information
each user (or item) can provide. In the MovieLens data, the row dimension is lower
than the column dimension. In this scenario, users play a more important role than
items because there are fewer users than items and each user contributes more than
each item does. Therefore, with the increasing number of users, the MAE dropped.
On the other hand, in the Jester data, the row dimension is higher than the item
dimension so items are more critical and have a greater effect on errors.

As for the prediction errors, when p = 40%, the MAE of the unperturbed training

matrix is 0.7769 for MovieLens and 3.2871 for Jester. The update schemes reached
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0.7951 for the row update and 0.7768 for the column update on the MovieLens dataset
and 3.2870 for the row update and 3.3221 for the column update on the Jester data.
The MAE’s are still comparable to the published results. If using more sophisticated

prediction models, the MAE could be lower.
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Figure 3.6: MAE variation with split ratio p;

The privacy level with the varying split ratio is displayed in Figure 3.7. It is
apparent that the privacy level decreases when the starting matrix holds more data.
In this experiment, the privacy levels on both datasets were higher and changed
faster in the row update than those in the column update. The results imply that
the privacy with respect to users (rows) plays a dominant role in the update. This is
reasonable because when people talk about the privacy, they mean the users’ privacy
and not the items’.

Corresponding to the privacy level, the privacy loss of the raw training data (V)
after revealing the perturbed and updated data (X)) is presented in Figure 3.8.

With the growing split ratio, the privacy loss increases where the privacy level
decreases. The curves in Figure 3.8 looks like an upside-down version of the curves
in Figure 3.7 due to the relation between them, see Eq. (3.14).

Now it can be decided when to recompute the SVD for the whole data according to

Figures 3.6 and 3.7. Since MAE’s on both datasets drop more slowly after p; > 50%
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Figure 3.7: Privacy level variation with split ratio p;

and there is no apparent variation of the slope for the privacy measure curves, the

recomputation can be performed when p; reaches 50%.
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Figure 3.8: Privacy loss variation with split ratio p;

3.3.5.4 Impact of Randomization in Data Updates

So far, randomization technique has not been applied to the proposed data update
scheme. In this section, the impact of randomization (Gaussian noise with x4 and o as
its parameters in Algorithms 3.1 and 3.2) is studied in both data quality and privacy
preservation. In the following experiments, p; is fixed to 40% and ps is set to 1/9. u

is probed in {0, 1} and o is probed in {0.1, 1} for both datasets. Table 3.1 collects
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the statistics of the test.

Table 3.1: Impact of randomization in data updates

MovieLens Data

Row Update Column Update
p| o | MAE | II(Y|X) | MAE | II(Y|X)
0| 0 07951 | 1.2671 | 0.7768 | 1.2124
010.1]0.7955 | 1.2792 | 0.7781 | 1.2558
0| 1 ]0.8331 | 1.2927 | 0.8219 | 1.2869
1]0.1]1.0764 | 1.2808 | 0.9837 | 1.2583
1] 1 |1.0421 | 1.2926 | 0.9258 | 1.2839

Jester Data

Row Update Column Update
p| o | MAE | II(Y|X) | MAE | II(Y|X)
0| 0 |3.2870 | 5.2894 | 3.3221 | 4.7178
00.1]3.2872| 54717 | 3.3390 | 4.9811
0| 1 |3.3007 | 6.4436 | 3.3542 | 6.1920
11]0.1]3.3221 | 54706 | 3.3629 | 5.0179
1] 1 |3.3358 | 6.4410 | 3.3799 | 6.2577

In this table, the row and column updates with the randomization technique is
compared to the non-randomized version. It is obvious that after applying the random
noise to the new data before the update, both privacy metrics (II(Y|X) and P(Y|X))
in all cases improved to a certain extent. Nevertheless, some utility of the data was
lost which resulted in greater MAE’s at the same time. Hence, the parameters should
be carefully chosen to deal with the trade-off between data utility and data privacy.
Moreover, the results indicate that the expectation u affected the results to a greater
extent than the standard deviation o did. It is a good idea to determine p first and
tweak o afterwards.

Apparently, the randomization technique can be exploited as an auxiliary step in
the SVD based data update scheme to provide better privacy protection. It brings
in randomness that perturbs the data before the SVD update. Therefore, the data

will be perturbed twice (randomization + SVD) in addition to the imputation during
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the update process and can achieve a higher privacy level. However, with the latent
factors captured by SVD, most of the critical information can be retained which

ensures the data quality for the recommendation.

3.4 Summary

In this chapter, a privacy-preserving data update scheme for collaborative filtering
purposes is presented. It is an incremental SVD based scheme with the randomization
technique and could be utilized in updating incremental user-item matrices and pre-
serving privacy at the same time. The scheme attempts to protect users’ privacy in
three aspects, missing value imputation, randomization based perturbation and SVD
truncation. The experimental results on the MovieLens and Jester datasets show that
the proposed scheme could update new data into the existing data very quickly. It
can also provide high quality data for accurate recommendations while keeping the

privacy.

Copyright © Xiwei Wang 2015
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4 Incorporating Auxiliary Information into Collaborative Filtering Data

Update with Privacy Preservation

In Chapter 3, an SVD based data update scheme is presented. It incorporates the
missing value imputation and randomization based perturbation techniques as well as
a post-processing procedure into the incremental SVD to update the new data with
privacy preservation. Nevertheless, the time complexity contains a cubic term with
respect to the number of new rows or columns. This is a potentially expensive factor
in the update process, especially when a large amount of new data comes in. It is
expected that a better technique can be developed to improve the update process.

Furthermore, it is beneficial to utilize the auxiliary information of users and/or
items that comes with the datasets, e.g., the MovieLens dataset [64] and the Li-
bimSeTi Dating Agency dataset [11]. Typical auxiliary information includes user
demographic data, item category data, etc. This information, if properly used, can
improve the recommendation accuracy, especially when the original rating matrix
contains a large number of missing values.

This chapter discusses an NMF based data update approach that solves these
issues. The approach, named iAux-NMF is based on the incremental nonnegative
matrix tri-factorization algorithms [20]. It starts with computing the weighted and
constrained nonnegative matrix tri-factorization for the original incomplete rating
matrix, utilizing both the rating matrix itself and the auxiliary information. The
factor matrices of NMF are then used to approximate the original rating matrix with
the missing values imputed. Meanwhile, the data is automatically perturbed due
to the intrinsic properties of NMF [74]. For new data, iAux-NMF is performed to
produce imputed and perturbed data. By doing so, even though the third party has
this data on hand, it does not know which ratings it can trust or to what extent it

can trust the ratings. Therefore, users’ privacy is protected. Experimental results
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on the MovieLens and LibimSeTi datasets show that this approach could update the

new data very fast with low levels of privacy loss and high levels of data utility.

4.1 Problem Description

In Chapter 3, the data update problem is discussed. In this chapter, the case is
further extended. In addition to the incomplete user-item rating matrix R € R™*",
the data owner has two more matrices: a user feature matrix Fyy € R™**  and an
item feature matrix F; € R™** where there are m users, n items, ky user features,
and £y item features.

The user feature matrix Fiy and the item feature matrix F; represent the auxiliary
information of users and items, respectively. They are taken into account to help
impute the missing entries in the rating matrix for better accuracy. The processed
matrix R, € R™*" is the one that will be transferred to the third party.

When new users’ ratings arrive, the new rows, denoted by T € RP*", should
be appended to the original matrix R (see Eq. (3.1)). Meanwhile, their auxiliary

information is also available, and thus the updated feature matrix is

F
A (4.1)
AFy

where AFy € RP¥ku
Similarly, when new items become available, the new columns, denoted by G €

R™*4_ should be appended to the original matrix R!,

{ R G} — R (4.2)

and the updated item feature matrix is

1Eq. (3.2) is rewritten due to a different notation G

47



— Fy, (4.3)
AFy

where AF; € R7%kr,

4.2 Using iAux-NMF for Privacy-Preserving Data
Updates

This section introduces the iAux-NMF algorithm and its application in incremental

data update with privacy preservation.

4.2.1 Aux-NMF

While iAux-NMF handles the incremental data update, it is necessary to present the
non-incremental version, named Aux-NMF beforehand. This section is organized as
follows: developing the objective function, deriving the update formulas, analyzing

the convergences, and the detailed algorithms.

4.2.1.1 Objective Function

Nonnegative matrix factorization (NMF) [45] is a widely used dimension reduction
method in many applications such as clustering [20, 37], text mining [79, 58|, image
processing and analysis [86, 63], data distortion based privacy preservation [32, 71],
etc. NMF is also applied in collaborative filtering to make product recommendations
(87, 13].

A conventional NMF is defined as follows [45],
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The goal is to find a pair of orthogonal nonnegative matrices U and V' that minimize

the Frobenius norm ||R — UVT||r. Thus the objective function for NMF is

minysovsof(R, U V) = ||R—UV"|% (4.5)

This chapter proposes an NMF based matrix factorization technique that takes
into account weights and constraints. It is expected to preserve the data privacy by
imputing and perturbing the values during its update process.

As stated in the previous chapters, one of the significant distinctions between col-
laborative filtering data and other data is the missing value issue. The rating matrices
are usually very incomplete so they cannot be directly fed to the matrix factorization
algorithms, such as SVD and NMF. Those missing values should be imputed properly
during the pre-processing step. Existing imputation methods include random value
imputation, mean value imputation [64], expectation maximization (EM) imputation
[17, 82], linear regression imputation [73], etc. Nevertheless, all of them require extra
time to compute the missing values. In contrast, the weighted NMF (WNMF) [87]
can work with incomplete matrices without a separate imputation procedure.

Given a weight matrix W € R"™*" that indicates the existence of values in the

rating matrix R (see Eq. (4.7)), the objective function of WNMF is

minysovsof (R, W,U,V) = |[Wo (R—UV")|% (4.6)

where o denotes the element-wise multiplication.

Wy; = ! 7£ (’LUZ‘J' € VV, Tij S R) (47)
0 ’lf Tz‘j =0

When WNMF converges, R = UV7 is the matrix with all missing entries filled. Since
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the residual exists, R is different from R, making it a perturbed version of R. As
discussed in Chapter 1, users do not want their privacy, e.g., their ratings left on
particular items and on which items they have rated, to be released to other people.
In WNMF, both of them are protected.

In [19], Ding et al. showed the equivalency between NMF and the K-Means
clustering algorithm. When given a matrix R with objects as rows and attributes
as columns, the two matrices U and V produced by NMF on R describe the cluster
information of the objects. Each column vector of U, u;, can be regarded as a basis
and each data point r; is approximated by a linear combination of these k bases,
weighted by the components of V' [50], where k is the rank of factor matrices. Thus
the objects are grouped into clusters in accordance with matrix U.

However, in some cases, the data matrix R can represent relationships between two
types of objects, e.g., user-item rating matrices in collaborating filtering applications
and term-document matrices in text mining applications. It is expected that both
row (user/term) clusters and column (item/document) clusters can be obtained by
performing NMF on R. Due to the intrinsic property of NMF, it is very difficult to
find two matrices U and V that represent user clusters and item clusters respectively
at the same time. Hence, an extra factor matrix is needed to absorb the different
scales of R, U, and V for simultaneous row clustering and column clustering [20]. Eq.
(4.8) gives the objective function of the nonnegative matrix tri-factorization (NMTF).

mingsossovsof (R, U,S, V) =||R—-USVT|% (4.8)

ZUyRD ZU, V.

where U € RT** S € R¥! and V € R (U and V are orthogonal matrices).
The use of S brings in a large scale of freedom for U and V so that they can
focus on row and column clustering and preserve the privacy during the factorization

process. In this scheme, both U and V' are cluster membership indicator matrices
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while S is the coefficient matrix. Note that objects corresponding to rows in R are
clustered into k& groups and objects corresponding to columns are clustered into [
groups.

With the auxiliary information of users and items, NMTF can be converted to a
supervised learning procedure by applying cluster constraints to the objective function

(4.8), giving the equation

minyo,szov=0f(R,U, S, V,Cy,Cr) = "

a-||R=USV' |5+ 8- IU = Cyllp+7- IV = Cilli
where «, 3, and 7 are coefficients that control the weight of each part. Cy and Cf
are user cluster matrix and item cluster matrix, respectively. They are obtained by
running the K-Means clustering algorithm on user feature matrix Fy; and item feature
matrix F; as mentioned in Section 4.1.
Combining Eqgs. (4.6) and (4.9), the objective function for the weighted and

constrained nonnegative matrix tri-factorization is developed as

mingso,s>o0,v>of (R, W,U,S,V,Cy,Cr) =
(4.10)

a-|[Wo(R=USV)|E+8- U~ Cullf+v- V= Cil

This matrix factorization is named Aux-NMF, indicating that it incorporates the user

and item auxiliary information into the factorization.

4.2.1.2 Update Formulas

In this section, the update formulas are derived for Aux-NMF.
Let L = f(R,W,U,S,V,Cy,C;), X = [Wo(R-USVT|2%,Y = ||U—Cyl||%, and
Z=|V- CIH%'
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Take derivatives of X with respect to U, S, and V:

X

g_U — (W o R)VST 4 2W o (USVT)V ST
aX T T T
S5 = —2UT(W o R)V + 20T W o (USVT)V
8X _ T T\1T
5 = —2(W o RTUS +2[W o (USV)[TUS

Take derivatives of Y with respect to U, S, and V:

oY ay oYy

gu ~ W20 g =gy =0
Take derivatives of Z with respect to U, S, and V:

oz 07 0Z

a0 ~ a5~ v V2

Using Eqgs. (4.11) to (4.15), we get the derivatives of L:

g_(L] = 2a[W o (USVH)V ST 4+ 28U

—2a(W o R)V ST — 2BCy

oL _
ov
—2a(W o R)TUS — 2+C;

2a[W o (USVTUS 4 29V

OL

o _ T T
5 = 2aU" (W o (USVT)V

—2aUT (W o R)V

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

To obtain the update formulas, the Karush-Kuhn-Tucker (KKT) complementary
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condition [43] is applied to the nonnegativities of U, S, and V. We have

{2a[W o (USV)V ST 4+ 28U — 2a(W o R)V ST — 28Cy}i;Ui; = 0 (4.19)

{2a[W o (USV)TUS + 29V — 2a(W o R)TUS — 2vCy}i;Vi; =0 (4.20)
{2aUT W o (USVT)V — 22U (W 0 R)V };S:; = 0 (4.21)

They give rise to the corresponding update formulas:

_y, . te0VoRIVS" 4 5y},

Vi =Y oW o USVIVST + AU, (4.22)
- V.. {O‘(WOR)TUS—{—VC’I}U

V;j - Vw {Q[W o (USVT)]TUS + W/V}z‘j (423)
S =g, WV, o

T{UTIW o (USVT) |V Y,
Assume k, [ < min(m,n), the time complexities of updating U, V', and S in each
iteration are all O(mn(k + [)). Therefore, the time complexity of Aux-NMF in each

iteration is O(mn(k +1)).

4.2.1.3 Convergence Analysis

This section follows [45] to prove that the objective function L is nonincreasing under

the update formulas (4.22), (4.23), and (4.24).

Definition 4.1. H(u,u') is an auziliary function for F(u) if the conditions
H(u,u') > F(u), H(u,u)=F(u) (4.25)

are satisfied.

Lemma 4.1. If H is an auxiliary function for F', then F' is nonincreasing under the
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update

u'™ = argmin H (u, u') (4.26)

Lemma 4.1 can be easily proved since we have F'(u'*') = H(u't, u't) < H(u'™, ut) <
H(u',u') = F(u).

The convergences of the update formulas (4.22), (4.23), and (4.24) will be proved
by their equivalence to Eq. (4.26), with proper auxiliary functions defined.

Let us rewrite the objective function L,

L=tr{a(WoR)" - (WoR)}+tr{—2a(WoR)" - [Wo (USVH]}
+tr{a[W o (USV)T - [W o (USVT)]}
(4.27)
+tr(BUTU) + tr(—2BUT Cy) + tr(BCLCY)

+ tr(vVTV) + tr(—2'yVTC’1) + tr(’yCITC’I)

where tr(x) is the trace of a matrix.
Eliminating the irrelevant terms, we can define the following functions that are

only related to U, V', and S, respectively.

LU) = tr{=2a(W o R)" - [W o (USVT)] 4+ a[W o (USVT)]" - [W o (USVT)]
+ BUTU — 28U Cy}
= tr{=2[a(W o R)V ST + CyJUT + UT[aW o (USVT)VST] + UT(BU)}
(4.28)

L(V) = tr{=2a(W o R)T - [W o (USVT)] + a[W o (USVI)]T - [W o (USVT)]
+ VIV —29VTCp}
= tr{—2[a(W o R)TUS + vC1]VT + VT]a(W o (USVT)TUS] + VT (yV)}
(4.29)
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L(S) = tr{—2a(W o R)T - [W o (USVT)] + a[W o (USV)|T - [W o (USVT)]}
= tr{[—2aU" (W o R)V]ST 4 [aUT (W o (USVT))V]ST}
(4.30)

Lemma 4.2. For any matrices X € R7", Y € RFF F e R F' € R, and X,

Y are symmetric, the following inequality holds

n k
XF'Y); F?
SN Uﬁ# > tr(FTXFY) (4.31)
i=1 j=1 ij
The proof of Lemma 4.2 is presented in [20]. This lemma is used to build an aux-

iliary function for L(U). Since L(V') and L(S) are similar to L(U), their convergences

are not necessary to be discussed.

Lemma 4.3.

HU,U') ==2 {[a(WoR)VS" + BCy U}
ij
{OéW o (U/SVT)VST + ﬁU’}UUZZJ
D> i

ij

(4.32)

is an auziliary function of L(U) and the global minimum of H(U,U’) can be achieved

by
U _ Ul {Q(WOR)VST+BOU}ZJ
Y {aW o (U'SVT)|VST 4 BU'};5

(4.33)

Proof. We need to prove two conditions as specified in Definition 4.1. It is apparent

that H(U,U) = L(U). According to Lemma 4.2, we have

Z {OéW (¢] (U/SVT)VST + 5U’}”UZ2]
— U.’A
ij
_ {aW o U’SVT) ST}ijUin n Z {/BU/}ijUizj (4.34)
U’ Ul
ij LY

tj

> tr{UT[aW o (USVTWV ST} + tr{UT(BU)}.
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Therefore, H(U,U’) > L(U). Thus H(U,U’) is an auxiliary function of L(U).
To find the global minimum of H (U, U’) with U’ fixed, we can take the derivative

of H(U,U’) with respect to U;; and let it be zero:

OH(U, U’
% — {=2[a(W o R)VST + BCy]}i;
N Q{QW o (U/SVT)VST + BU/}ijUij 0 (435)
U}, a
Solving for U;;, we have
T |
Ul-j _ U/ ) {Oé(W O R)VS + ﬁCU}Z] (436)

Y {Oé[W o} (U’SVT)]VST + ﬁUl}ij

Since F(U°) = H(U°,U%) > H(U", U% > F(U') > ..., F(U) is monotonically de-

creasing and updating U by Eq. (4.36) can reach global minimum. [

Similarly, the convergences of update formulas (4.24) and (4.23) can be proved as

well.

4.2.1.4 Detailed Algorithm

This section presents the specific algorithm for Aux-NMF in collaborating filtering
which is the basis of the incremental Aux-NMF.
Algorithm 4.1 depicts the procedure of performing Aux-NMF on a rating matrix.
Though Aux-NMF will eventually converge to a local minimum, it may take hun-
dreds or even thousands of iterations. In this algorithm, an extra stop criterion, the
maximum iteration count, is set to terminate the program at a reasonable point. In
collaborative filtering applications, this value varies from 10 ~ 100 and can generally

produce satisfactory results.
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4.2.2 1Aux-NMF

As discussed in Section 4.1, new data can be regarded as new rows or new columns in
the matrix. They are imputed and perturbed by the incremental Aux-NMF (iAux-
NMF) with the aid of U, S, V, Cy, Cy, Centroidsy, and Centroids; generated by Al-
gorithm 4.1.

iAux-NMF is technically the same as Aux-NMF, but focuses on a series of new
rows or new columns. Hence, in this section, the incremental case of Aux-NMF is

discussed by row update and column update separately.

4.2.2.1 Row Update

*****************************************

Original i i Aux-NMF i 3 x S x VT >i
Userg—ll‘em { R }|::> | U | kxl Ixn i Rf

wewses {_{ [T e | O] o [ T o

,,,,,,,,,,,,,,,,

Figure 4.1: Updating new rows in iAux-NMF

In Eq. (3.1), it can be seen that T € RP*" is added to R as a few rows. This
process is illustrated in Figure 4.1. T should be imputed and perturbed before it can
be released. Like Section 4.2.1.1, the objective function is developed by

minAUzof(T, WT, AU, S, V, ACU) =
(4.37)

o |[Wro (T = AUSVT)|[f + 3+ |AU = ACy |}
Accordingly, the update formula for this objective function is obtained as follows

. {a(Wr o T)VST + BACy }4
? A{a[Wr o (AUSVT)VST + BAU Y,

The convergence of Eq. (4.38) can be proved similarly as in Section 4.2.1.3. Since

the row update only works on new rows, the time complexity of the algorithm in each
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iteration is O(pn(l + k) + pkl). Assume k,! < min(p,n), the time complexity is then
simplified to O(pn(l + k)).

Algorithm 4.2 illustrates the row update in iAux-NMF.

4.2.2.2 Column Update

The column update is almost identical to the row update. When the new data
G € R™*1 arrives, it is updated by Algorithm 4.3. The time complexity for the
column update is O(gm(l + k)).

The data owner should hold the updated factor matrices (U’, S, and V') and
the cluster information (the user/item cluster membership indicator matrices and
the centroids) for future updates. Note that matrices S and V' (S and U) are left
unchanged in the row update (the column update), which does not indicate that
they will never change. The experimental study will show when Aux-NMF should be

recomputed to ensure the data utility and privacy.

4.3 Experimental Study

4.3.1 Data Description

In the experiments, the MovieLens [64], Sushi [35], and LibimSeTi [11] datasets were

adopted as the test data. Table 4.1 collects the statistics of the datasets.

Table 4.1: Statistics of the data

Dataset #users | #items | #ratings | Sparsity
MovieLens 943 1,682 100,000 93.7%
Sushi 5,000 100 50,000 90%
LibimSeTi | 2,000 5,625 129,281 | 98.85%

The public MovieLens dataset has been described in Chapter 3. In addition to

the rating data, user demographic information and item genre information are also
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available.

The Sushi dataset describes the user preferences on different kinds of sushi. There
are 5,000 users and 100 sushi items. Each user has rated 10 items, with a rating
ranging from 1 to 5. That is to say, there are 50,000 ratings in this dataset. To build
the test set and the training set, for every user, 2 out of 10 ratings were randomly
selected and were inserted into the test set (10,000 ratings) while the rest of ratings
were used as the training set (40,000 ratings). Similar to MovieLens, the Sushi dataset
comes with user demographic information as well as item group information and some
attributes (e.g., the heaviness/oiliness in taste, how frequently the user eats the sushi
etc.).

The LibimSeTi dating dataset was gathered by LibimSeTi.cz, an online dating
website. It contains 17,359,346 anonymous ratings of 168,791 profiles made by 135,359
users as dumped on April 4, 2006. However, only the user’s gender is provided with
the data. Later sections will show how to resolve the problem with the lack of item
information. Confined to the memory limit of the test computer, the experiments
only used 2,000 users and 5,625 items? with 108,281 ratings in the training set and

21,000 ratings in the test set. Ratings are on a 1 ~ 10 scale where 10 is best.

4.3.2 Data Pre-processing

The proposed algorithms require user and item feature matrices as the input. To build
such feature matrices, the auxiliary information of users and items is pre-processed. In
the MovieLens dataset, user demographic information includes user 1D, age, gender,
occupation, and zip code. Among them, age, gender, and occupation are utilized as
features. For age, the numbers are categorized into 7 groups: 1-17, 18-24, 25-34, 35-
44, 45-49, 50-55, >=56. For gender, there are two possible values: male and female.

According to the statistics, there are 21 occupations: administrator, artist, doctor,

2User profiles are considered as items for this dataset.
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and so on. Based on these possible values, a user feature matrix Fy; was built with
30 features (ky = 30). In other words, each user is represented as a row vector with
30 elements. An element is set to 1 if the corresponding feature value is true for this
user and 0 otherwise. An example is, for a 48-year-old female user, who is an artist,
the elements in the columns corresponding to female, 45-49, and artist should be set
to 1. All other elements should be 0. Similar to the user feature matrix, the item
feature matrix is built according to their genres. Movies in this dataset are attributed
to 19 genres and hence the item feature matrix F; has 19 features (k; = 19) in it.

In the Sushi dataset, some of the user demographic information, e.g., gender and
age, are used. In this case, user age has been divided into 6 groups by the data
provider: 15-19, 20-29, 30-39, 40-49, 50-59, >=60. User gender consists of male and
female, which is the same as MovieLens. Thus, the user feature matrix for this dataset
has 5,000 rows and 8 columns. The item feature matrix, on the other hand, has 100
rows and 16 columns. The 16 features include 2 styles (maki and other), 2 major
groups (seafood and other), and 12 minor groups (aomono (blue-skinned fish), akami
(red-meat fish), shiromi (white-meat fish), tare (something like baste; for eel or sea
eel), clam or shell, squid or octopus, shrimp or crab, roe, other seafood, egg, meat
other than fish, and vegetables).

Different from the MoiveLens and Sushi datasets, the LibimSeTi dataset only
provides user gender as its auxiliary information so it is directly used as the user
cluster indicator matrix Cy. It is worth noting that in this dataset, there are three
possible gender values: male, female, and unknown. To be consistent, the number of

user clusters is set to 3.

4.3.3 Evaluation Strategy

For comparison purposes, the proposed approach and the SVD based data update

approach presented in Chapter 3 were run on the datasets to measure the error of
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unknown value imputation and the privacy level of the perturbed data, as well as
their time cost. The SVD based data update approach first uses the column mean
to impute missing values in the new data and then performs the incremental SVD
update on the imputed data. The machine that ran the experiments was equipped
with Intel® Core' " i5-2405S processor, 8GB RAM and is installed with the UNIX
operating system. The code was written and run in MATLAB.

When building the starting matrix R, the split ratio was used to decide how many
ratings would be removed from the whole training data. For example, there are 1,000
users and 500 items with their ratings in the training data. If the split ratio is 40%
and a row update will be done, the first 400 rows are considered as the starting
matrix (R € R9%%00) " The remaining 600 rows of the training matrix will be added
to R in several rounds. Similarly, if a column update will be performed, the first 200

columns are considered as the starting matrix (R € R1000x200)

while the remaining
300 columns will be added to R in several rounds.

In each round, 100 rows/columns were added to the starting matrix. If the number
of the rows/columns of new data is not divisible by 100, the last round will update
the rest. Therefore, in this example, the remaining 600 rows will be added to R in 6
rounds with 100 rows each. It is worth mentioning that the Sushi data only has 100
items in total but the test of the column update was still expected on it so 10 items

were added instead of 100 in each round.

The basic procedure of the experiments is as follows:

1. Perform Aux-NMF and SVD on R, producing the approximated matrix R, (see

Figure 4.1);

2. Append the new data to R, by iAux-NMF and the SVD based data update

algorithm which is proposed in Chapter 3, yielding the updated rating matrix

R,;
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3. Measure the prediction error and the privacy level of the updated rating matrix

R,
4. Compare and study the results.

In the experiments, the same measurements in Section 3.3.3 were adopted. How-
ever, unlike Chapter 3, there was no particular CF prediction model running on the
released data R,. Instead, the differences between the ratings in the test data and
the released data were calculated.

Furthermore, the random variable Y in Definition 3.1 corresponds to only non-
zero values in the training set while in Chapter 3, the same variable corresponds to
all the values in the training set. X represents the perturbed values (at the same

positions as those in the training set) in the released data.

4.3.4 Results and Discussion

This section presents and discusses the experimental results in two stages. Aux-
NMF and SVD were first run on the whole training data to evaluate the performance
of the non-incremental algorithm. Then the incremental algorithms were evaluated

following the steps as specified in the previous section.

4.3.4.1 Test on Full Training Data

Some parameters of the proposed algorithms need to be determined in advance. Table

4.2 gives the parameter setup for Aux-NMF.

Table 4.2: Parameter setup for Aux-NMF

Dataset a | B | v | k|l | Maxlter
MovieLens | 0.2 | 0 |08 | 7| 7 10
Sushi 04106 0 |[7]5 10
LibimSeTi | 1 0 [ 0 [3]10 10
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For the MovieLens dataset, a = 0.2, § = 0, and v = 0.8, which means that
the prediction relied mostly on the item cluster matrix, and then the rating matrix,
whereas it eliminated the user cluster matrix. This combination was selected after
probing many possible cases. Section 4.3.4.3 discusses how the parameters were cho-
sen. It is highly possible that there exist better combinations. Both k and [ were
set to 7 because K-Means was prone to generate empty clusters with greater k and [,
especially on the data with very few users or items. Note that if § or v is a non-zero
value, the user or item cluster matrix will be used and & or [ is equal to the number of
user clusters or item clusters. As long as [ or -y is zero, the algorithm will eliminate
the corresponding cluster matrix and k or [ will be unrelated to the number of user
clusters or item clusters.

For the Sushi dataset, « = 0.4, § = 0.6, and v = 0. The parameters indicate
that the user cluster matrix plays the most critical role during the update process.
In contrast, the rating matrix is the second important factor as it indicates the users’
preferences on items. The item cluster matrix seemed trivial so it did not participate
in the computation. k was set to 7 and [ to 5 based on the same reason as mentioned
in the previous paragraph.

For the LibimSeTi dataset, full weight was given to the rating matrix. The user
and item cluster matrices received zero weight since they did not contribute anything
to the positive results. As mentioned in the data description, users’ auxiliary infor-
mation only includes the genders with three possible values. So k was set to 3. In
this case, [ just denotes the column rank of V' and was set to 10.

In SVD, since it cannot run on incomplete matrices, item mean was used to impute
the missing values. The rank was set to 13 for MovieLens, 7 for Sushi, and 10 for

LibimSeTi. Table 4.3 lists the results on the three datasets.
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Table 4.3: Results on MovieLens dataset

Dataset Method MAE | II(Y|X) | Time Cost

Aux-NMF | 0.7481 | 1.2948 0.9902s

MovieLens
SVD 0.7769 | 1.2899 34.1341s
Aux-NMF | 0.9016 | 1.4588 0.5350s
Sushi
SVD 0.9492 | 1.4420 5.4175s
Aux-NMF | 1.2311 | 1.0715 5.7962s
LibimSeTi

SVD 1.2154 | 1.0537 | 390.2246s

In this table, the time cost of SVD includes the imputation time while the time cost
of Aux-NMF includes the clustering time. For instance, on the MovieLens dataset,
the imputation took 32.2918 seconds and SVD itself took 1.8423 seconds, for a total
of 34.1341 seconds; the clustering time took 0.0212 seconds and Aux-NMF itself
took 0.9690 seconds, for a total of 0.9902 seconds. One can see that Aux-NMF
outperformed SVD in all aspects on all three datasets. It is apparent that the former
is significantly more efficient than the latter. It saved 97% time on MovieLens, 90%
time on Sushi, and 98% time on LibimSeTi. This is mainly because the SVD based
algorithm needs to impute missing values, which is time consuming. However for
Aux-NMF, it can directly work on incomplete matrices, though it needs to cluster
beforehand, which is fast in general.

It is interesting to investigate the results of running the K-Means algorithm on
the final matrix generated by Aux-NMF and the matrix generated by SVD. As shown
in Figure 4.2(a), the MovieLens users with ratings produced by Aux-NMF were clus-
tered into 7 groups with clear boundaries. The result is different for SVD - most
users were grouped together and thus the clusters cannot be distinguished from each
others. In both figures, the axes denote the ratings left by users on items. The

results indicate that the ratings generated by Aux-NMF distributed more normally
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than those that were produced by SVD. Remember that the goal is to provide good
imputation accuracy as well as high privacy level. In addition, the data should look
like real world values. To this purpose, the ratings should be distributed normally,
e.g., people may leave more 3 stars on a 1 ~ 5 scale than 1 star and 5 stars. In this

regard, Aux-NMF generated more reasonable data than SVD did.
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Figure 4.2: Clustering results on ratings predicted by Aux-NMF (a) and SVD (b) on
MovieLens dataset

4.3.4.2 The Incremental Case

In the previous section, the experiments examined Aux-NMF on three datasets in
terms of MAE, the privacy level, as well as the time cost. This section presents the
same measurements on iAux-NMF.

Figure 4.3 shows the time cost for updating new rows and columns by iAux-NMF
and the SVD based data update algorithm (SVDU).“RowN” and “ColumnN”" are
used to represent the row and column updates in iAux-NMF. Similarly, “RowS” and
“ColumnS” are for the row and column updates in SVDU. The same parameter setup

listed in Table 4.2 was adopted.
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It can be seen that iAux-NMF outperformed SVDU in both row and column
updates. As pointed out in Section 4.2.2, the time complexity of the row update in
iAux-NMF is O(pn(l+k)) and the column update has a time complexity of O(gm(l+
k)). As a reference, the time complexities of the row and column updates in SVDU
are O(k® + (m +n)k? + (m + n)kp + p*) and O(k® + (m + n)k? + (m + n)kq + ¢*),
respectively. When the rating matrix has high dimensionality, the time cost difference
can be significant. For example, the LibimSeTi dataset has both more users and more
items than MovieLens so the improvement of iAux-NMF over SVDU plotted in Figure
4.3(c) was greater than Figure 4.3(a). However, the Sushi data is a bit special as
the time difference between the two methods in row updates was very small, though
iAux-NMF was still faster. In Section 4.3.4.1, the time cost of both methods was split
into two pieces. For SVDU, the cost consists of the imputation time and the SVD
computation time. For Aux-NMF, the cost consists of the clustering time and the
Aux-NMF computation time3. By tracking the time cost of each stage, it was found
that the imputation in SVDU took considerably shorter time in the row update than
the column update on this dataset but the time cost of Aux-NMF in the row update
and the column update did not differ remarkably. Essentially, the faster imputation
in the row update can be attributed to the small number of items. Since SVDU uses
the column mean to impute the missing values, if there are only a few items, the
mean value calculation will be fast.

However, with the substantial improvement in time cost, iAux-NMF should not
produce a significantly higher imputation error than SVDU.

Figure 4.4 shows the mean absolute errors of the prediction. When the split ratio
was greater than 20%, iAux-NMF achieved lower errors than SVDU on the MovieLens
and Sushi datasets. The average improvement on MovieLens was 9.79% for row

update and 9.76% for column update. The Sushi dataset had a little less average

3Before running the algorithms, the parameters need to be determined. The time cost for this
part is discussed in Section 4.3.4.3.
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Figure 4.4: MAE variation with split ratio

improvement than MoiveLens but still noticeable. Nevertheless, both of them had
greater errors by iAux-NMF than by SVD when the split ratio was less than 20%.
This is because the centroids chosen by the K-Means algorithm did not distribute
over the data that was adequately large enough to reflect the complete set. With not
optimally selected centroids, K-Means cannot produce reasonable clustering results
which further affect Aux-NMF and iAux-NMF, so the errors will be large. Unlike
MovieLens and Sushi, the LibimSeTi dataset received different results. In this case,
iAux-NMF still performed better than SVDU but the gap tended to be smaller as the
split ratio increased. The results imply that the auxiliary information is important
to iAux-NMF as it is used as the constraints in the update process. On the contrary,
SVDU does not need it. This can explain why SVDU performed better than iAux-
NMEF on LibimSeTi since no auxiliary information was used in the update process.

In Section 4.2.2.2, the Aux-NMF recomputation issue is addressed. As presented
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in Figure 4.4, the MAE’s of both the row and column updates on the MovieLens
dataset decreased more slowly at 70% and leveled off after this point. Similarly, but
more interestingly, the MAE of the row update on the Sushi dataset began to increase
at 70%. Therefore, a recomputation can be performed at 70% for these two datasets.
For the LibimSeTi dataset, the MAE’s did not stop decreasing so the recomputation
was not immediately necessary.

In addition to MAE, it is expected to investigate the privacy metrics presented
in Section 4.3.3. The privacy levels with varying split ratios are plotted in Figure
4.5. The curve shows that the privacy levels of the data produced by iAux-NMF
were higher and more stable than SVDU while the latter had decreasing trends with

greater split ratios.
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Figure 4.5: Privacy level variation with split ratio

As a summary, the iAux-NMF data update algorithm performed more efficiently

than SVDU while maintaining nearly the same data utility and privacy, if not better.

4.3.4.3 Parameter Study

In iAux-NMF, three parameters, «, 3, and v need to be set. In this section, several
parameter combinations are compared. Note that the split ratio was kept at 40% and
the initial random matrices in Algorithms 4.2 and 4.3 were pre-generated to eliminate
the effect of randomness in the experiments. The same parameter setup in Table 4.2 is

adopted because it is the best combination obtained by probing multiple cases. The
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pseudocode in Algorithm 4.4 shows the procedure to find out the parameters that
produce the lowest MAE’s. The step is set to 0.1 when incrementing the parameters.
Since there is a constraint a+ 4y = 1, the total number of parameter combinations
is 66. It took 806.28 seconds to run a full test on the MovieLens dataset, 1,116.9
seconds on Sushi, and 11,517.87 seconds on LibimSeTi. The times are relatively long
when compared with the times of running the incremental algorithms. However, the
parameters only need to be determined offline once so this process does not affect the
online performance.

Table 4.4 lists some representative combinations with their results on the Movie-
Lens dataset. The best combinations are in bold font. It can be seen that if the
updates simply rely on the rating matrix, the results are only a little worse than
those that take into account the auxiliary information. In contrast, if only the auxil-
iary information is considered, the MAE is unacceptable, though the privacy level is
the highest. It is clear that between user features and item features, the latter makes
a positive contribution to the results while the former seems trivial. Nevertheless,
the weight of the rating matrix can be lowered but should not be ignored. The Sushi
dataset (Table 4.5) has a similar conclusion but it is the user features that played a
more dominant role.

As shown in Table 4.6, the rating matrix of the LibimSeTi dataset is the only
information used in the computation. This indicates that even the dataset comes
with users’ genders, they do not help in the proposed model. This is reasonable as
the gender is not a necessary factor for people to determine their ratings, e.g., a female
can rate another female with a fairly high rating. It is worth noting that since there
is no item feature available in this dataset, v was set to zero all the time.

Therefore, it can be concluded that the rating matrix should always be utilized

while the auxiliary information makes contributions to the improved results as well.
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Table 4.4: Parameter probe on MovieLens dataset

Parameters Update | MAE | TI(Y|X)

Row 0.7643 | 1.2913

a=15=07v=0 Column | 0.7538 | 1.2964
Row 0.7643 | 1.2913

@=050=057=0 s 07539 | 1.2063
Row 0.7624 | 1.2909

@=050=0y=05 s 07531 | 1.2058
Row 0.9235 | 1.3149

@=0,5=057=05 5 n 00164 | 1.3150
a=0.2,3=0,v=0.8| Row |[0.7616 | 1.2890
a=0.4,3=0,y=0.6 | Column | 0.7533 | 1.2955

Table 4.5: Parameter probe on Sushi dataset

Parameters Update | MAE | TI(Y]X)

Row | 0.9083 | 1.4578

a=1LB=07=0 " s (00221 | 14613
Row | 0.9073 | 1.4530

@=050=057=0 e 0.9201 | 14614
Row | 0.9085 | 1.4530

@=050=07=05 e 0.0221 | 1.4614
Row | 1.0468 | 1.4851

@=0,0=057=05 = TT.0371 | 1.4849
a=04,3=06,y=0| Row |0.9071 | 1.4580
a=0.2,3=0.8,y =0 | Column | 0.9180 | 1.4620

Table 4.6: Parameter probe on LibimSeTi dataset

Parameters Update | MAE | II(Y|X)
Row 1.2589 | 1.0719

a=1,8=0v=0
Column | 1.2911 | 1.0717
Row 1.3378 | 1.0713

a=0508=05~=0
Column | 1.3926 | 1.0709
Row 0.4017 | 1.0782

a=0,=1,v=0

Column | 5.4017 | 1.0782
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4.4 Summary

This chapter proposes an NMF based privacy-preserving data update approach for
collaborative filtering purposes. This approach utilizes the auxiliary information to
build the cluster membership indicator matrices for users and items. These matrices
are regarded as the additional constraints in updating the weighted nonnegative ma-
trix tri-factorization. The proposed approach, named iAux-NMF, can incorporate the
incremental data into existing data quite efficiently while maintaining the high data
utility and privacy. Furthermore, the inevitable missing value imputation issues in
collaborative filtering is solved in a subtle manner by this approach without using any
particular imputation methods. Experiments conducted on three different datasets
demonstrate the superiority of iAux-NMF over the previously discussed SVD based

data update method in the incremental data update.

Copyright © Xiwei Wang 2015
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Algorithm 4.1 Aux-NMF

Input:
User-Item rating matrix: R € R™*";
User feature matrix: Fy € R™*kv;
Item feature matrix: F; € R™%r:
Column dimension of U: k;
Column dimension of V: [;
Coefficients in objective function: «, [, and ~;
Number of maximum iterations: MaxIter.
Output:
Factor matrices: U € R™** S € RV ¢ R
User cluster membership indicator matrix: Cy € R™**:
Item cluster membership indicator matrix: C; € R™*:
User cluster centroids: Centroidsy;
Item cluster centroids: Centroidsy;

1: Cluster users into k groups according to Fy by K-Means algorithm — Cy,
Centroidsy;

2: Cluster items into [ groups according to F; by K-Means algorithm — Cf,
Centroidsr;

3: Initialize U, S, and V with random values;

4: Build weight matrix W by Eq. (4.7);

5: Set iteration = 1 and stop = false;

6: while (iteration < MaxIter) and (stop == false) do

7 Uij — Uij ) {a{[l(/xl/gzll? ];%/‘;i]TV;%iUﬁ}l}] }ij;

8 Vi Vi lwams oS

{UT(WOR)V}i j .
9: Sij — Sij : {UT[Wo(USVT)}‘J/}ij’

100 Lo |[[Wo(R=-USVI|E+ 8- U= Culf+7- V= CilE;
11:  if (L increases in this iteration) then

12: stop = true;
13: Restore U, S, and V to their values in last iteration.
14:  end if

15:  teration = iteration + 1;
16: end while
17: Return U, S|V, Cy, Cy, Centroidsy, and Centroidsy.
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Algorithm 4.2 iAux-NMF for Row Update

Input:
New rating data: T' € RP*™;
New user feature matrix: AFy € RP*ku:
Coefficients in objective function: «, 3, and ~;
Factor matrices: U € R™** S € RV ¢ R
User cluster membership indicator matrix: Cp € R™*¥:
User cluster centroids: Centroidsy;
Number of maximum iterations: MaxIter.
Output:
Updated factor matrix: U’ € Rm+p)xk.
Updated user cluster membership indicator matrix: Cj, € R(m+P)*k;
Updated user cluster centroids: Centroidsy;
Imputed and perturbed new data: T, € RP*™;

1: Cluster new users into k groups based on AFy and Centroidsy by K-Means
algorithm — ACy, Centroidsy;

Initialize AU € RP** with random values;

Build weight matrix Wr by Eq. (4.7);

Set iteration = 1 and stop = false;

while (iteration < MaxlIter) and (stop == false) do

{a(W oT)VST+5AC }7,
AUij A AUU ) {a[WTo(ZUSVT)]VST-&-ZA(]J}ij

L+ a-|[Wro(T = AUSVT)|5 + 8- [JAU = ACy |l
if (L increases in this iteration) then
stop = true;
Restore U’ to its value in last iteration.
end if
iteration = iteration + 1;
: end while
: Append ACy to Cy — Cf;
: Append AU to U — U’;
. Calculate AUSVT — T,.;
. Return U’, C{;, Centroidsy;, and T,.

e e e e e e e T
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Algorithm 4.3 iAux-NMF for Column Update

Input:

New rating data: G € R"™*;

New item feature matrix: AF; € R?<F1;

Coefficients in objective function: «, 3, and ~;

Factor matrices: U € R™** S € RV ¢ R
Item cluster indicator membership matrix: C; € R™*¢:
Item cluster centroids: Centroidsy;

Number of maximum iterations: MaxIter.

Output:

e e e e e e e T

Updated factor matrix: V' € R(»+axt,

Updated item cluster membership indicator matrix: C} € R+ox!;
Updated item cluster centroids: Centroids’;

Imputed and perturbed new data: G, € R™*4;

Cluster new items into [ groups based on AF; and Centroids; by K-Means algo-
rithm — ACY, Centroids’;

Initialize AV € R?! with random values;

Build weight matrix Wg by Eq. (4.7);

Set iteration = 1 and stop = false;

while (iteration < MaxlIter) and (stop == false) do

{a(W, OG)TUS+’YAC }ij
A‘/ij — A‘/;j ’ {a[WC;o(gSAVT)]TUS+§A€/}Z-]-

L a-[Wgo(G—USAVT)|2 4+~ |AV — ACH|3:
if (L increases in this iteration) then

stop = true;

Restore V' to its value in last iteration.
end if

iteration = iteration + 1;

: end while

: Append ACT to C; — C;

: Append AV to V — V7,

. Calculate USAVT — G,;

. Return V', C}, Centroids;,, and G,.

Algorithm 4.4 Pseudocode for Parameter Probing

1:
2:
3:
4:

5:
6:
7

fora=0:0.1:1do
for =0:01:1-ado
y=1—a-3.
Run Aux-NMF and iAux-NMF on a dataset with parameter «, (3, and ~,
saving the MAE’s as well as «, 3, and 7 to the corresponding variables.
end for
end for
Find out the lowest MAE and return the associated parameters.
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5 Automated Dimension Determination for NMF Based Incremental

Collaborative Filtering

In the previous chapter, an NMF based incremental data update scheme, named
iAux-NMF, is introduced. It is well known that in NMF, the dimensions of the factor
matrices have to be determined in advance. Moreover, data is growing fast; thus, in
some cases, the dimensions need to be changed to reduce the approximation error.
The recommender systems should be capable of updating new data in a timely manner
without sacrificing the prediction accuracy.

This chapter proposes an NMF based data update approach with automated di-
mension determination for collaborative filtering purposes. The approach can deter-
mine the dimensions of the factor matrices and update them automatically. It ex-
ploits the nearest neighborhood based clustering algorithm to cluster users and items
according to their auxiliary information, and uses the clusters as the constraints in
NME. The dimensions of the factor matrices are associated with the cluster quantities.
When new data becomes available, the incremental clustering algorithm determines
whether to increase the number of clusters or merge the existing clusters. Experi-
ments on three different datasets (MovieLens, Sushi and LibimSeTi) were conducted
to examine the proposed approach. The results show that this approach can update

the data quickly and provide satisfactory prediction accuracy.

5.1 Using iCluster-NMF for Collaborative Filter-
ing Data Updates

In this section, the improved version of iAux-NMF, named iCluster-NMF algorithm,
is introduced. The new algorithm utilizes the same objective function as well as the

update formulas of iAux-NMF but with different clustering mechanisms.
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5.1.1 Clustering the Auxiliary Information

In Eq. (4.10), the cluster membership indicator matrices are used as the constraints
to perform the supervised learning. This requires the auxiliary information to be
clustered beforehand. In [68], Su et al. proposed a nearest neighborhood based
incremental clustering algorithm that can directly work on categorical data. Thus,
their algorithm was modified and integrated into iCluster-NMF as the fundamental
clustering technique.

Algorithm 5.1 depicts the steps to build the initial clusters for the existing feature
matrices Fyy and Fj. It is worth mentioning that since this algorithm takes categorical
data as the input, for each attribute, all possible values are stored in one column. For
example, a user vector (a row in Fy) contains 3 attributes (columns): gender, age,
and occupation. Each column has a different number of possible values, e.g., gender

has two possible values: male and female. The same format applies to F7.

5.1.2 Detailed Algorithm

The whole procedure of performing Cluster-NMF, the non-incremental version of
iCluster-NMF, on a rating matrix is illustrated in Algorithm 5.2 which is generally

the same as Algorithm 4.1.

5.1.3 iCluster-NMF

When new rows/columns are available, they are imputed by iCluster-NMF with the
aid of U, S,V, Cy, and C} generated by Algorithm 5.2.

Technically, iCluster-NMF is identical to Cluster-NMF, but focuses on a series of
new rows or columns. Meanwhile, according to Algorithm 5.3, when new feature data
AFy and AF} arrive, they need to be clustered into existing clusters, otherwise new

clusters are created. Eq. (4.10) indicates the relationship between the dimensions of
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U and Cy, V and (. This means that once the clusters are updated, NMF must be

completely recomputed.

5.2 Experimental Study

The experiments in this chapter tested iAux-NMF and iCluster-NMF on the same

datasets that were used in Chapter 4 for their time cost and prediction errors.

5.2.1 Data Pre-processing

Because iAux-NMF and iCluster-NMF require different feature data formats (numer-
ical vs categorical), the data fed to them should be processed in different ways. While
in Section 4.3.2, data pre-processing for iAux-NMF is already described, the data that
would be used by iCluster-NMF has to be processed in another way. Nevertheless,
the way to build the data for iAux-NMF is also discussed as a reference.

For the MovieLens dataset, since iCluster-NMF directly works on categorical data,
the user feature matrix Fy; was built with 3 attributes (ky = 3). They correspond
to gender (2 possible values), age (7 possible values), and occupation (21 possible
values), respectively. In contrast, for iAux-NMF, the categories were converted to
numbers since the K-Means algorithm can only work on numerical data. The user
feature matrix Fyy was built with 30 attributes (ky = 30); each user was represented
as a row vector with 30 elements. An element will be set to 1 if the corresponding
attribute value is true for this user and 0 otherwise. Similar with the user feature
matrix, the item feature matrix was built in terms of their genres. Movies in this
dataset were attributed to 19 genres and hence the item feature matrix F; has 6
attributes for iCluster-NMF (k; = 6 as a single movie could have up to 6 genres) and
19 attributes for iAux-NMF (k; = 19).

In the Sushi dataset, eight of the users’ demographic attributes are used: gen-
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der, age, and city in which the user has lived the longest until age 15 (plus region
and east/west). Additionally, the city (plus region and east/west) in which the user
currently lives is also used. As described in Section 4.3.2, users’ age has been catego-
rized into six groups while users’ gender has two possible values. There are 48 cities
(Tokyo, Hiroshima, Osaka, etc.), 12 regions (Hokkaido, Tohoku, Hokuriku, etc.) and
2 possible east/west values (either the eastern or western part of Japan). Thus, the
user feature matrix for iCluster-NMF on this dataset has 5,000 rows and 8 columns.
Nevertheless, since there are too many possible values (246 + (48 +12+2) x 2 = 132
values) for all attributes, only gender and age are used to build the user feature ma-
trix for iAux-NMF. This makes the matrix have 5,000 rows and 8 columns (2 genders
plus 6 age groups). The item feature matrix, on the other hand, has 100 rows and
3 columns for iCluster-NMF (16 columns for iAux-NMF) since there are 2 styles, 2
major groups, and 12 minor groups.

Since the LibimSeTi dataset only provides the user gender information, it is simply
used as the user cluster indicator matrix Cy. To be consistent, the number of user

clusters is set to 1 for iCluster-NMF and 3 for iAux-NMF.

5.2.2 Evaluation Strategy

To evaluate the algorithms, the error of unknown value prediction and the time cost
are measured. Besides iCluster-NMF and iAux-NMF, a naive Cluster-NMF is ex-
ploited as the benchmark in the experiments for comparisons. The general idea of
the naive Cluster-NMF is quite close to iCluster-NMF'. The only difference is the way
of updating the clusters. In iCluster-NMF, it uses Alogrthim 5.1 to build the initial
clusters which are then updated by Algorithm 5.3. In contrast, the naive Cluster-
NMEF does not use incremental clustering but simply uses the idea of Alogrthim 5.1
to cluster the existing objects to the fixed number of clusters and re-cluster them

(to the fixed number of clusters as well) when new data is available. In other words,
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F/, in Eq. (4.1) and F] in Eq. (4.3) are re-clustered every time there is an update
on the data. This will significantly lower the performance of the algorithm but it
theoretically produces the most accurate result among all.

In order to demonstrate how much improvement the proposed algorithms have
achieved, they were compared to two SVD based collaborative filtering algorithms
and the performance was evaluated. In [9], Brand proposed a recommender system
that leveraged the probabilistic imputation to fill the missing values in the incom-
plete rating matrix and then used the incremental SVD to update the imputed rating
matrix. This makes SVD work seamlessly for CF purposes. In the experiments, this
algorithm is denoted as iSVD. The SVD based method that is proposed in Chapter 3
is similar to [9] but has additional processing steps to ensure privacy protection. Ad-
ditionally, it uses the mean value imputation instead of the probabilistic imputation
to remove missing values. It is denoted as pSVD. Note that neither of them considers
auxiliary information so only the rating matrix is used.

The experiments measure the prediction errors and the time cost on three proposed
algorithms as well as iSVD and pSVD. The prediction error is measured by MAE
defined in Eq. (3.12).

The basic procedure of the experiments is as follows:
1. Perform Algorithm 5.1 and Algorithm 5.2 on R;

2. Append the new data to R by iCluster-NMF, iAux-NMF, and naive Cluster-

NMF (nCluster-NMF for short), yielding the updated rating matrix R, ;

3. Measure the prediction error and the time cost of the updated rating matrix

R,;

4. Compare and study the results.
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5.2.3 Results and Discussion
5.2.3.1 Parameter Setup

The parameters that have to be determined by iAux-NMF are listed in Table 4.2 in
Chapter 4.

The iCluster-NMF and nCluster-NMF are in general the same as iAux-NMF but
with different clustering approaches and NMF recomputation strategies. In Algorithm
5.1, the maximum number of clusters maxz K, the initial radius threshold s, and
the radius decreasing step ds; must be determined in advance. Table 5.1 gives the
parameter setup for iCluster-NMF and nCluster-NMF. It is worth noting that the

LibimSeTi dataset has max K = 3 for user clusters and mazxK = 1 for item clusters.

Table 5.1: Parameter setup for iCluster-NMF and nCluster-NMF

Dataset maxK | s | dg
MovieLens 10 1101
Sushi 10 1]0.1
LibimSeT1 3/1 1]0.1

As far as iSVD and pSVD, the only parameter involved is the rank of the singular
matrix. To determine this value, both algorithms were run for multiple times with
different ranks. The numbers that achieved the optimal outcomes were selected. The
best ranks for the MovieLens, the Sushi, and the LibimSeti datasets are 13, 7, and

10, respectively.

5.2.3.2 Experimental Results

Figure 5.1 shows the time cost for updating new rows and columns by iAux-NMF,
iCluster-NMF, nCluster-NMF, as well as iSVD and pSVD. In most cases, nCluster-
NMF and pSVD took significantly longer time than others. This is because nCluster-
NMEF was used to probe all possible cluster quantities to find out the choices that

achieve the best MAE’s. That is to say, it tries to cluster users into k groups and

80



items into [ groups, where k,l = {1,2, ..., 10}, which results in 100 combinations. In
addition, nCluster-NMF needs to re-cluster the whole data every time the new portion
arrives. This requires even more time. As for pSVD, since it uses the mean value
of each column to impute all missing values in that column, when a large amount of
data is involved in the update (e.g. the row update on MovieLens and the column
update on Sushi), the time cost can be high. The performance of iSVD is not as
sensitive as pSVD to the data size but it also suffers from high matrix dimensionality,

as shown in Figure 5.1(e).
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Figure 5.1: Time cost variation with split ratio
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Comparing iAux-NMF and iCluster-NMF, it can be seen that their time costs were
close in the process, though the former was slightly faster than the latter. This is
because iCluster-NMF not only updates the clusters’ content as iAux-NMF does, but
also combines existing clusters or creates new clusters when necessary. The cluster
update itself does not cost more time but since the number of clusters changes in

some cases, the NMF has to be recomputed, which requires additional time.
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Figure 5.2: MAE variation with split ratio

As a reference, Table 5.2 lists the optimal number of clusters on the Sushi dataset.

Note that the split ratio determines how many rows or columns should be present in
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Table 5.2: Optimal number of clusters on Sushi dataset
Split Ratio 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%

. #UserClusters 10 10 10 10 10 10 9 10 8
iCluster (Row) e Glusters | 10 [ 10 | 10 | 10 [ 10 | 10 [ 10 | 10 | 10
s o [BCmen s [ Ls Lo e T fe e ls
Y e B B A B A
nCluster (Col) ﬁﬁiﬁgﬁiﬁ 160 160 160 160 160 160 160 160 160

the starting matrix. iCluster-NMF first runs Algorithm 5.1 on R to find the optimal
number of clusters for users and items. Then they will be updated when new data is
added to R. The numbers shown in this table are the final cluster quantities. When
the rows were being updated, the model kept the columns unchanged and vice versa.
This is why the number of item clusters remained the same when performing the
row update and the number of user clusters remained the same when performing the
column update. From the table, one can see that the best combinations obtained by
nClsuter-NMF were 7 user clusters / 7 item clusters for the row update and 6 user
clusters / 10 item clusters for the column update. Although the numbers are different
from the ones obtained by iCluster-NMF, their MAE’s are nearly the same.

The mean absolute errors of the predictions are plotted in Figure 5.2. iSVD
performed worst on all datasets while nCluster-NMF reached the best results in most
cases. Due to the way that nCluster-NMF works, the MAE’s were consistently at
the same level. They did not change significantly with varying split ratios. The only
exception was the row update on the Sushi dataset, where iCluster-NMF achieved
lower MAE than nCluster-NMF when the split ratio became higher. This to some
extent means that updating the number of clusters in iCluster-NMF benefited the
lower global prediction error. The figures show that iCluster-NMF outperformed
iAux-NMF on all three datasets. It is interesting to look at the errors of pSVD, which

were very close to iCluster-NMF on LibimSeTi but were worse on other datasets.
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Remember that LibimSeTi only provides user gender information. In other words,
the proposed models did not receive any extra helpful information from this dataset.
Thus, its prediction accuracy was almost identical to pSVD’s, which does not utilize
auxiliary information at all.

The promising results can be attributed to not only the incremental clustering but
also the recomputations of NMF. On one hand, clusters are updated when the new
data comes in. This strategy ensures that the cluster membership indicator matrices
Cy and C7 in Eq. (4.10) always maintain up-to-date relationships between either
rows or columns. This, in turn, benefits the NMF update. On the other hand, due
to the accumulated error in the incremental updates, NMF needs to be recomputed
to maintain the accuracy. It is not convenient for the data owner to determine when
to perform recomputations and update the dimensions of the factor matrices. In this
situation, iCluster-NMF recomputes NMF when the number of clusters changes. It
also explains why the MAE’s of iAux-NMF and iCluster-NMF tend to be close when
the split ratios become higher —since iAux-NMF does not recompute NMF, the more
data it starts with, the less accumulated update error it has. Nevertheless, with more
data available, the error will inevitably become larger.

Essentially, the iCluster-NMF data update algorithm produced higher prediction
accuracy while costing just slightly more time, if not the same as iAux-NMF did. More
importantly, the former does not require the data owner to determine the number of
user and item clusters and can recompute NMF when necessary.Once useful auxiliary
information became available, both algorithms outperformed the incremental SVD

based algorithms with respect to the prediction accuracy.
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5.3 Summary

In this chapter, an improved NMF based data update approach, named iCluster-
NMF, is proposed. It can automatically determine the dimensions for NMF during the
data update process. iCluster-NMF integrates the incremental clustering technique
into the NMF based data update algorithm. This approach utilizes the auxiliary
information to build the cluster membership indicator matrices of users and items.
These matrices are regarded as the constraints in updating the weighted nonnegative
matrix tri-factorization. iCluster-NMF does not require the data owner to determine
when to recompute the NMF and the dimensions of the factor matrices. Instead, it
sets the dimensions of the factor matrices according to the clustering result on users
and items and updates them automatically. Experiments conducted on three different

datasets demonstrate the high accuracy and performance of iCluster-NMF.

Copyright © Xiwei Wang 2015
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Algorithm 5.1 Initial Cluster Builder

Input:
Object feature matrix: D € R™*/, where there are m objects and f attributes;
Maximum number of clusters: mazrK;
Initial radius threshold: s;
Radius decreasing step: ds;
Empty cluster collection: C'S;
Initial cluster feature: C'F.

Output:
Updated radius threshold: s';
Updated cluster collection: C'S’;
Updated cluster feature: C'F”;

1: Set C'S’ to empty and maxScore to 0;
2: for numK =1 to maxK do
3:  Reset D, s, C'S, and CF;

4:  while D is not empty do

5: Read a new object O from D;

6: if C'S is empty then

7: Create a cluster with O and place it into C'S;

8: else

9: Calculate the distance between O and each cluster in C'S and find out the
smallest distance minD1is,.;

10: if minDis,. < s then

11: Insert O into the nearest cluster and update C'F;

12: else

13: Create a cluster with O and place it into C'S;

14: end if

15: end if

16: if |C'S| > numK then

17: Calculate the distance between any two clusters and merge the two clusters
with the minimum distance minDis,.;

18: if minDis.. > s then s = minDis,,;

19: end if

20: end while

21:  if |CS| < numK then s = s — d;; Goto 3;

22:  Calculate the inter-cluster distance and inner-cluster distance to obtain the
clustering score [Score.

23:  if [Score > mScore then mScore = [Score; CS" =CS; CF' = CF; s’ = s;

24: end for
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Algorithm 5.2 Cluster-NMF

Input:
User-Item rating matrix: R € R™*";
User feature matrix: Fy; € R™*ku;
Item feature matrix: F; € R "
Coefficients in objective function: «, [, and ~;
Number of maximum iterations: MaxIter.
Output:
Factor matrices: U € R™** S ¢ R*>*! vV € R,
User cluster membership indicator matrix: Cy € R™**:
Item cluster membership indicator matrix: C; € R™*:

Cluster users based on Fy by Algorithm 5.1 — Cy;
Cluster items based on F; by Algorithm 5.1 — C7;
Initialize U, S, and V with random values;
Build weight matrix W by Eq. (4.7);
Set iteration = 1 and stop = false;
while (iteration <= MaxIter) and (stop == false) do
Uij < Uij - {a{[;/(:?(j?%?f VEBTCJFUB}(?}Q
{a(WoR)TUS+~Cr}4j
T WoTSV TS5V,
% Sy + Sy WU
10 L a-[[Wo(R-=USVI|E+8-IU~-Cult+v- V- Cil#:

11:  if (L increases in this iteration) then

8: ‘/1,]%‘/1]

12: stop = true;
13: Restore U, S, and V to their values in last iteration.
14:  end if

15:  ateration = iteration + 1;
16: end while
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Algorithm 5.3 Incremental clustering algorithm

Input:
Object feature matrix: AD € R™*/ where there are m objects and f attributes;
Maximum number of clusters: maxK;
Radius threshold: s';
Cluster collection: C'S’;
Cluster feature: C'F”.
Output:
Updated radius threshold: s”;
Updated cluster collection: C'S”;
Updated cluster feature: C'F”;

1: while AD is not empty do

2:  Read a new object O from AD,;

3:  Calculate the distance between O and each cluster in C'S’” and find out the
smallest distance minDis,;

4: if minDis,. < s’ then

5: Insert O into the nearest cluster and update C'F”;

6: else

7: Create a cluster with O and place it into CS’;

8: end if

9: if |CS’| > maxK then

10: Calculate the distance between any two clusters and merge the two clusters
with the minimum distance minDis,.;

11: if minDis.. > s then s” = minDis..;

12:  end if

13: end while
14: CF" =CF'; CS" =0C8; s" =¢;
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6 Trust-aware Privacy-Preserving Recommender System

It has been discussed in the previous chapters that almost all online shopping websites
store users’ sensitive information on their central servers, such as users’ purchase
history as well as their ratings and comments on products. When writing reviews,
some websites allow users to choose publishing or saving them as drafts. If the
reviews are not sensitive, they can be simply published by their authors. However,
if users just want to save those comments for personal purposes and do not hope to
share with others, they can keep the drafts unpublished. By doing so, people can
ensure that these comments are only visible to themselves. With that said, people’s
published reviews are exposed to the public so anyone can read them freely. Though
these comments might not be considered as customers’ privacy, malicious users are
able to identify customers’ private preferences on particular products by cheating
recommender systems. In a typical attack model, the attackers create fake user
profiles containing real customers’ public comments and then obtain recommendations
from the system [48]. Due to the connections (either implicit or explicit) between
users’ public preferences and private preferences, if a recommender system fails to
distinguish the real customers from the malicious users, it would be highly possible
that the private preferences of the real customers can be exposed.

On some product review websites, such as Epinions.com and Ciao.com, in addition
to leaving reviews on items, users can also tag trust votes based on their opinions on
others’ reviews [30]. In other words, every user maintains a list of the users that he
trusts. Now an assumption is added to the aforementioned attack model - attackers
are not easily trusted by other people because they only duplicate real customers’
reviews and ratings and create the fake profiles in a relatively short time. This
assumption is made because before a user tags his trusted users, he must have read

many of their reviews in the past. If a newly created account has very similar or the
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same product reviews and ratings as his trusted users, people might suspect that this
account is fake so they would not trust it.

This chapter proposes a privacy-preserving recommendation framework, named
TrustRS, which preserves users’ private preferences when providing accurate recom-
mendations. The framework uses NMF based CF techniques that work on both
users’ rating information and their trustworthiness to provide personalized recom-
mendations. The procedure is divided into two stages: unknown rating predictions
and unrelated entries filtering. The raw ratings and trustworthiness information par-
ticipate in the weighted nonnegative matrix tri-factorization [20] to approximate the
original rating matrix. User and item groups are then established according to the
factor matrices. The framework utilizes the group information to filter out unrelated
entries so that a majority of real users’ items of interest are concealed from the at-
tackers. The experiments examined TrustRS on the Epinions [52] and Ciao datasets
[69] in two aspects: (1) unknown rating prediction accuracy, and (2) user’s privacy
preservation level. The results show that the proposed framework can tell the real
customers from the attackers to a great extent without compromising the prediction

accuracy.

6.1 Problem Description

Assume the data owner has two matrices: a user-item rating matrix, denoted by
R € R™™ and a user-user trust matrix, denoted by 7" € R™*™ where there are m
users and n items. An entry r;; in R represents the rating left on item j by user i.
The trust matrix 7" indicates the trust relationships among users. Possible values of
the entry ¢;, in T" are 1, 0, and -1. t; = 1 means user ¢ is trusted by user k, while
t;x = —1 means user ¢ is distrusted by user k. If the trust relationship is unknown,

then ¢;, = 0.
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As discussed in the previous chapters, since most users rate only a few items and
most items are rated by a small amount of users, R is incomplete. The main task of
recommender systems is to predict the unknown ratings in R, which are further used
to make recommendations. The collaborative filtering based recommender systems
predict ratings by using relevant users’ preferences. In this scheme, if two users have
very similar preferences, they are very likely to receive close or same recommendations.
Malicious users can take this advantage to obtain real users’ private interests, which
are considered sensitive information. Definition 6.1 gives the formal description of

the attack model.

Definition 6.1. An Attack model is a 4-tuple: Attack(u,a) = {Ry, R4, Ly, Lo},
where uw 1s a real user and a s the attacker; R, and R, are their rating vectors; L,
and L, are their recommendation lists'.

To attack a recommender system, the attacker makes a fake profile with R, ac-
cording to the real users’ preferences R, and receives the recommendations from the

system. The closer L, and L, are, the more successful of an attack is achieved.

As mentioned earlier, an attacker can easily collect real users’ public preferences.
However, it is not easy for the attackers to be trusted by the same people who trust the
attackees. Therefore, in the proposed attack model, it is assumed that the attackers
only possess attackees’ partial ratings but are not in other people’s trust lists.

The purpose of the proposed recommendation framework is to distinguish the real
users from the attackers by differing their recommendation lists without degrading

the accuracy of the unknown rating predictions.

!The recommendation list in this framework contains all relevant items to the active user. They
might receive either low or high ratings from this user.
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Figure 6.1: An attack model

6.2 Trust-aware Privacy-Preserving Recommenda-
tion Framework

This section introduces the proposed recommendation framework —TrustRS in two

phases: unknown rating predictions and unrelated entries filtering.

6.2.1 Unknown Rating Predictions

In Chapter 4, the model uses the weighted and constrained nonnegative matrix tri-
factorization for privacy-preserving data updates. In TrustRS, users’ trustworthiness
information is incorporated into a similar matrix factorization to approximate the
original rating matrix. The proposed approach will be presented as follows: develop-
ing the objective function, deriving the update formulas, and analyzing the conver-

gences.



6.2.1.1 Objective Function

Recall that in Chapter 4, a conventional NMF is defined in Eq. (4.4) and the goal is to
find a pair of orthogonal nonnegative matrices U and V' that minimize the Frobenius

norm ||R — UV7T||r. Thus the objective function for NMF is

minysov=of (R, U,V) = |R - UVT|%. (6.1)

It is also discussed that R must not contain missing values as NMF is not suitable
for such matrices. If all missing values in R are replaced with zeros and NMF' is
performed on the imputed rating matrix, it will lead to very biased results. Moreover,
the trustworthiness is expected to be incorporated into the matrix factorization, and
the users as well as items are expected to be grouped in terms of the factor matrices.
Therefore, additional constraints need to be applied to NMF. To do so, the trust-

incorporated NMF as illustrated in Eq. (6.2) is proposed.

minUZO,SZO,VZO,BZOf(R7 WR7 T7 WT? UJ Su ‘/7 B) = Q- HWR o (R - USVT)H%’ (6 2)
+ B [Wr o (T = UB)|5 +~ - (1015 + 1S5 + IVIE + I BII7)-

where U € R S ¢ R** vV € R and B € R7**. U, V, B are orthogonal
matrices. o denotes the element-wise multiplication.

In this equation, R is a rating matrix and 7" is a trust matrix. Since both R and T’
are incomplete, two weight matrices Wx and Wy are introduced to resolve the missing
value issues [87]. They indicate the locations of the observed entries in R and 7" as

1 of ri; #0

WRij = (wRij € Wg,rij € R) (6.3)
0 Zf Tij = 0
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1 of t;; #0
Wrij = ! (wTij c WT,tij € T) (64)
While the first two terms focus on optimizing R and 7', the third term of this

equation is adopted to avoid overfitting. Coefficients «, 3, and v are used to control

the weight of each term.

6.2.1.2 Update Formulas

This section follows the derivation procedure in Section 4.2.1.1 to derive the update

formulas to minimize the objective function in Eq. (6.2).

Let L = f(R,Wg,T,Wr,U,S,V, B), and take the derivatives of L with respect to

U, S, V., and B:
oL vy, QT T
— =2aWgo (USV)VS" —2a(Wgro R)V S
ou (6.5)
+98[Wr o (UBTY)B — 26(Wr 0 T)B + 29U
oL T T T
55 = 2aU° [Wgro (USVH)]V —2aU" (Wgo R)V + 248 (6.6)
oL T\|T T
F =2a[Wgro (USV")|'US —2a(Wgo R)'US + 27V (6.7)
oL T\IT T
o5 = 28Wr o (UB)|'U = 28(Wr o T)7U + 298 (6.8)

The corresponding update formulas are:

{a(Wgo R)VST + 3(Wz o T)B}y;

Uij = U - {a[Wg o (USVT)|VST + 3[Wp o (UBT)|B +~U}y

(6.9)
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{OZUT(WR o R)V}w

Sip = S {aUT[Wg o (USVT)]V +~S}y (6.10)
V.. {a(Wro R)TUS}y;

Vi = Vi {3 o (USV)TUS + 4V, (6.11)

B, =B {80y o T) U}y (6.12)

v {B[Wr o (UBT)]TU +vB}y;
Assuming k,l < min(m,n), the time complexities of each update is O(mn(k +

)+ (m? 4+ n?)k).

6.2.1.3 Convergence Analysis

The proof of convergence of the derived update formulas is similar to Section 4.2.1.3.
The convergences of the update formulas (6.9), (6.10), (6.11), and (6.12) will be
proved by showing that they are equivalent to Eq. (4.26) in Chapter 4, with proper
auxiliary functions defined.

Let us rewrite the objective function L,

L=tr{aWgoR)T - (WgoR)} +tr{—2a(Wgro R)T - [Wgo (USVT)]}
+tr{a[Wg o (USV)]T - [Wr o (USV)]} +tr[B(Wr o T) (Wr o T)]
+tr{=28(WroT)" - [Wro (UB")]} (6.13)
+tr{B[Wr o (UB")]" - [Wr o (UB")]}

+ tr('yUTU) + tr(fySTS) + tr(’yVTV) + tr(yvBT B)

where tr(x) is the trace of a matrix.

Eliminating the irrelevant terms, we define the following functions that are only
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related to U, V', S, and B, respectively.

L(U) =

tr{—2a(Wgo R)T - [Wro (USVT)] + a[Wg o (USV)|T - [Wro (USVT)]
—28(Wr o T)" - [Wr o (UBT)] + B[Wr o (UBT)T - [Wr o (UBT)] + U U}
= tr{—2[a(Wg o R)VST + B(Wyp o T)BIUT + UT[yU + aWg o (USVT)V ST

+B[Wr o (UB")|B]}

(6.14)
L(S) = tr{—2a(Wr o R)' - [Wxr o (USVT)] +~5TS
+ a[Wgo (USVDT - [Wgo (USVT)]} (6.15)
= tr{—2[aUT (Wg o R)V]ST + ST[yS 4+ aUT [Wx o (USVT)]V]}
L(V) = tr{—2a(Wgro R)* - [Wr o (USVT)]| + VTV
+ a[Wg o (USVT)T - [Wg o (USVT)]} (6.16)
= tr{—2[a(Wgo R)TUS|VT + VI [yV + a[Wg o (USV)TUS]}
L(B) = tr{—2B(WroT) - [Wro (UB")| +~vB'B
+ BWp o (UBM)T - [Wr o (UBM)]} (6.17)

= tr{=2(8(Wr o T)'U|B" + B"[yB + B[Wr o (UB")]" U]}

Lemma 4.2 is used to build an auxiliary function for L(U). Since L(U) is similar

to L(V) and L(S), their convergences will not be discussed.
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Lemma 6.1.

_QZ{ (Wro R)VST + B(WroT)BIU};

(U + Wi (U'SVT)VST + B[Wr o (U'BT)|B};;U3 (6.18)

+
>

ij

is an auziliary function of L(U) and the global minimum of H(U,U") can be achieved

by

, {Oé(WR @) R)VST + B(WT @) T)B}l]

i {50 + aWg o (USVT)VST + B[Wr o (UBT)|B}; (6.19)

Proof. We need to prove two conditions as specified in Definition 4.1 in Chapter 4.

It is apparent that H(U,U) = L(U). According to Lemma 4.2, we have

Z {’}/U/ + CYWR O (U/SVT)VST + /B[WT o (U/BT)]B}Z]UZZJ
U’
]

]

_ Z {’}/U/}ZJUZZJ n Z {OCWR o (U/SVT)VST}UUEJ
— Uy 8 Ul
ij ij ’ (6.20)

{BWr o (U'B")|B};;Uj

+ Z 7

> tr{yU} + tr{aWg o (USVI)VSTY + tr{B[Wr o (UBT)|B}.

Therefore, H(U,U") > L(U) and H(U,U’) is an auxiliary function of L(U).
To find the global minimum of H (U, U’) with U’ fixed, we can take the derivative

of H(U,U’) with respect to U;; and let it be zero:

%{Z’U') = {—2[a(Wg o R)VST + B(Wr o T)B]};;
ij
o U+ oW o (USVI)VST + §[Wr o (UB")| B} Uy (6.21)
U/
—0
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Solving for U;;, we have

o {OC(WROR)VST—FB(WT OT)B}”
Uig = Uy (WU + aWg o (USVT)V ST + 3[Wy o (UBT)|B}y; (6.22)

Since F(U°) = H(U°,U°) > H(U',U®) > F(U") > ..., F(U) is monotonically

decreasing and updating U by Eq. (6.22) can reach global minimum. ]

Similarly, the convergences of update formulas (6.10), (6.11), and (6.12) can be

proved as well.

6.2.2 Unrelated Entries Filtering

In the previous section, an NMF model that considers rating as well as trustworthiness
is developed. By updating the formulas, the objective function’s global minimum can
be achieved. Thus R = USV7 is the approximated original rating matrix with all un-
known entries filled. To make personalized and privacy-preserving recommendations,
TrustRS filters unrelated ratings before it generates the recommendation lists.

To this purpose, users and items are grouped based on U and V in Eq. (6.2) so
that only relevant items would be presented to the users. The following definitions

define the user group and the interest group that would be used next.

Definition 6.1. A user group gy, = {1v,, Du,}, where Ty, is the set of users that

belong to this group; Dy, contains the membership degree of each user in Ty,,.

Definition 6.2. An interest group gr, = {T]q,M]q,g&q}, where Ty, is the set of
items that belong to this group; My, contains the average rating of each item in Ty,
9y o U8 the group of users (with their membership degrees) who have rated at least one

item in Ty,

Interest groups, denoted by G; = {911,915, -.-,91;}, can be established in terms
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of matrix V according to the equivalence between NMF and the K-Means clustering

algorithm [19]. For a given V' € R items are clustered into [ groups by Eq. (6.23).

¢; = argmax Vj; (6.23)

1<j<l
where ¢; is the index of the group that item ¢ belongs to.
For each item group 77,, the average rating of every item is calculated and the
related users are also identified. In this case, a single user may belong to multi-
ple groups. This way of user grouping is called the interest based grouping. The

membership degree of user u to interest group g can be calculated by Eq. (6.24).

dug = (1 — disyg) - Wayg - why, (6.24)

where dis,, is the normalized distance between user u’s ratings and the corresponding
average ratings in My, of interest group g; wa,, is the fraction of user u’s ratings left
on items in g; wb,, is the fraction of items in g that are rated by user . wa and wb
are used to weight (1 — dis,,) so the greater they are, the higher d,, will be.

In addition to the interest based grouping, users are also clustered by matrix U
like the way that items are clustered by matrix V. Note that U € RTXk is updated
by taking into account both rating matrix R and trust matrix 7. Hence the groups
obtained in this way, denoted by G = {91, gus, ---, Ju |, reflect users’ rating patterns
as well as their trustworthiness. This grouping strategy is named the trust based
grouping.

Algorithm 6.1 illustrates the procedures to recommend items to a user u. The
general idea of this algorithm is to recommend user u the items that are rated by u’s
neighbors. The corresponding ratings are predicted by the NMF model proposed in

the previous section.
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Algorithm 6.1 Rating filtering algorithm

Input:

Raw rating matrix: R;

Imputed rating matrix: Re Rm*n.
User groups: Gt = {guy, Jugs - GUk};
Interest groups: G; = {911, gras -, 91, };
User index: u;

Membership degree threshold: m,,;

Output:

10:
11:
12:
13:

Recommendation list: L,;

Maxdegree = 0, 9Iclosest = 9, NLI7 NLr = &;
fori=1t0ldo
if d,; > m, and d,; > mazgegrec then
maxdegree = dmv
Iclosest — Y143
end if
end for
Add users in g7 ,sess With membership degree > m,, to u’s interest neighbor list
NLp;
Search in G and identify the user group gy, that u belongs to;
Add all users in gy, to u’s trust neighbor list N Lr;
Take the intersection of NL; and N L. The result is saved in N L,;
Search in R to find items that are rated by users in NL,. Save them in IL,;

~

L, < (j, Ry;), where j € IL,.

6.3 Experimental Study

6.3.1 Data Description

The experiments adopted the Epinions [52] and Ciao [69] datasets to examine TrustRS.

Both provide rating and trustworthiness information. Table 6.1 collects the statistics

of the datasets.

Table 6.1: Statistics of the data

Dataset | #users | #items | #ratings | #trusts
Ciao 2,056 1,458 53,312 36,432
Epinions | 7,260 2,440 172,497 | 49,248

100

The raw Epinions dataset has 22,166 users and 296,227 items with 912,441 ratings




and 355,217 trust values. Due to the memory limit, 7,260 users (who have rated at
least 10 items) and 2,440 items with 172,497 ratings and 49,248 trust values were
selected for testing. The ratings were divided into two subsets: a training set and
a test set. To build the test set, users with more than 100 ratings and 20 trust
values were chosen. For each of these users, 20 ratings were randomly selected and
added into the test set. The rest of the ratings were added into the training set.
Consequently, there are 171,577 ratings in the training set and 920 ratings in the test
set.

Similarly, only partial ratings were selected from the Ciao dataset for the exper-
iments. In this case, there are 2,056 users and 1,458 items with 53,312 ratings and
36,432 trust values. The test set contains 2,960 ratings from users who have at least
60 ratings and 20 trust values. The remaining ratings form the training set.

It is worth noting that both datasets provide the helpfulness of the ratings. For
example, a user left 5 stars on an item and another user thought the helpfulness
of this rating was 7 out of 10. This additional “rating of a rating” makes users’
feedback more reliable. Therefore, in the experiments, all the ratings were pre-
processed by considering their helpfulness. In this example, the user’s rating becomes
original rating x helpfulness degree = 5x(7/10) = 3.5 as opposed to 5 accordingly.

For each dataset, some of the test users were chosen and 30% of their ratings
were used to create the attackers®. For instance, if a test user has 100 ratings in the
training set and 20 ratings in the test set, 30 of his training ratings are used to create
an attacker profile. The test ratings of this attacker are identical to the real user’s,
meaning that the attacker has 20 ratings in the test set as well. Moreover, attackers

are not trusted by anyone, so they do not have trust values.

2In this chapter’s experiments, the active users include both test users and attackers.
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6.3.2 Evaluation Strategy

The experiments tested TrustRS in two aspects: unknown rating predictions and user
privacy preservation. The error measurement of the experiments was MAE.

To obtain the privacy preservation level,the recall rates derived from Eq. (6.25)
were calculated for both the real users and the corresponding attackers. The experi-
ments then measured how much the recall rate is reduced. More specifically, higher
recall rates for the real users and lower recall rates for the attackers are expected
because fewer items that are related to the real users would be recommended to the
attackers. Therefore the higher privacy preservation level is achieved.

_ LuNT

Recall, = ———— (6.25)
Tl

where L, is the set of items that are recommended to user u; T, is the set of items
that appear in the test set and are rated by user w.

The proposed recommender system was compared against three existing algo-
rithms that are discussed in Section 1.2: the SVD based CF with random perturba-
tion [60] (referred to as RandSVD), the NMF based CF with random perturbation
[47] (referred to as RandNMF), and the naive Baysian classifier based PPCF with
pre-processing [8] (referred to as PRNBC).

Since RandSVD and RandNMF focus on perturbing rating matrix instead of re-
fining the recommendation list, no ratings are filtered out, and the recall rates will
always be 1. Thus the experiments only compared them with TrustRS in unknown
rating predictions. PRNBC, in contrast, has a filtering step so both prediction accu-

racy and privacy preservation level were investigated on this algorithm.
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6.3.3 Results and Discussion

In this section, the experimental results with respect to privacy preservation level and

the prediction accuracy are studied.

6.3.3.1 Privacy Preservation

As mentioned in Section 1.2, PRNBC applies a pre-processing step to the naive
Baysian classifier based PPCF to filter out the less important neighbors. By doing
so, the online performance of PPCF is improved. A side effect is that the number of
recommended items can be controlled — greater number of neighbors result in more
recommended items. This facilitates the comparisons because different neighbor sizes
can be probed for PRNBC to obtain the real users’ recall rates that are very close to
the recall rates produced by TrustRS. Then how much the recall rate is reduced from
the real users to the attackers on both methods can be measured.

Note that the authors in [8] did not study MAE of PRNBC but converted the
integer ratings to binaries. Whereas in this chapter’s experiments, it is expected to
examine both MAE’s and recall rates so this conversion is not carried out. However,
more classes (e.g., 5 classes in a 1-5 rating system, and 2 classes in a binary rating
system) require significantly more computation time. To compensate for it, the one-

group scheme was used as opposed to the multi-group scheme.

Table 6.2: Parameter setup for TrustRS

Dataset | a | B8 | v | k| My,
Ciao 0.1 03106 |20 13| 0.0005
Epinions | 0.1 | 0.7 | 0.2 | 20 | 20 | 0.0017

Table 6.2 lists the parameter setup for TrustRS. «, 8, and ~ are the coefficients that
control the weight of each term in Eq. (6.2). k and [ are utilized as the dimensions of
the factor matrices as well as the number of user/item clusters. m,, is the membership

degree threshold required by Algorithm 6.1.
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The parameters were determined by probing different combinations. The exper-
iments first fixed k, [, and m, to test «, f, and 7 in {0.1,0.2,...,0.9} under the
constraint a + 8 + v = 1. Then k and [ were probed in {1,2,...,20} with everything
else unchanged. m, was obtained last. The parameters were selected by taking into
account both MAE’s and the reductions of the recall rates.

In this table, [ is greater than « on both datasets. It means that the trust matrices
play a more important role than the rating matrices. Two k’s and one [ are 20, which
is the largest number that were probed so it is very likely that better results might
exist if giving larger numbers. Nonetheless, the more clusters that are produced, the
longer computation time will be required.

The privacy protection levels, measured by the recall rate reduction percentages,
are illustrated in Table 6.3. “RecallU” represents the average recall rate for real users,
and “RecallA” represents that of the attackers. It can be seen that TrustRS has
greatly reduced the recall rates from the real users to the attackers. For example, the
Ciao dataset has 2,960 ratings in its test set. TrustRS recommended 2, 960 x 0.9297 ~
2,751 items to the real users but only 2,960 x 0.4595 =~ 1, 360 items to the attackers.
It protected half of the real users’ relevant items from being exposed to the attackers.
PRNBC, on the contrary, merely reduced the recall rates. The reduction percentages
of TrustRS on the Epinions dataset are not as high as those on Ciao, but it still

outperformed PRNBC to a great extent.

Table 6.3: Privacy protection level

Dataset | Method | RecallU | RecallA | %Reduced
PRNBC | 0.9295 | 0.9228 0.007%
TrustRS | 0.9297 | 0.4595 50.581%
PRNBC | 0.8886 | 0.8815 0.008%
TrustRS | 0.8870 | 0.5935 33.088%

Ciao

Epinions

The recall rates with varying membership degree threshold m,, were also recorded.

Since a user might belong to multiple interest groups, this value affects the results in
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two aspects: (1) it determines which groups are considered as the active users’ interest
groups; (2) it controls the number of similar users that would be recognized as the
active users’ interest neighbors. A smaller m,, causes higher recall rates and vice versa.
With that said, m, should not be extremely small because the filtering step will fail to
distinguish the real users from the attackers thus no privacy can be preserved. Figure
6.2 plots the recall rates on two datasets, in which m, € {0.0001,0.0002,...,0.01}.
With the increasing m,,, both recall rates decreased but they tended to be closer when

m,, was very small or very large.

Epinions Ciao
12 4 1.0

Recallu 0.9 [ Recallu

1.0 4 +— RecallA ] R +— RecallA

0.7 4
0.6 4

Recall

T T T o 0.0 T T T T 1
0.002 0.004 0.006 0.01 0 0.002 0.004 0.006 0.008 0.01

mu mu

Figure 6.2: Recall rates with varying m, in TrustRS

It is depicted in Algorithm 6.1 that TrustRS filters the unrelated items based on
user groups G and interest groups G;. While m,, directly affects the selection of a
user’s interest neighbors, there is no extra constraint on the formation of his trust
neighbors. That is to say, all users in the same group as an active user are saved
in his trust neighbor list NLy. In Eq. (6.2), U is optimized for both R and T.
Therefore, the user groups established from U are highly related to customers’ rating
patterns and trustworthiness, which are consequential to identifying malicious users.
To investigate the impact of N Ly on the final recall rates, each active user’s list was
sorted according to the membership degrees of the users in the list, and the top n
neighbors were kept for filtering.

Figure 6.3 charts the recall rates with multiple n’s. The curves in this figure

105



indicate that when just a few trust neighbors were used, TrustRS was not able to
tell the real users from the attackers. With more neighbors’ participation, the recall
rates increasingly differed but kept stable after some points. The results imply the
importance of the trustworthiness.

As a reference, the recall rates for PRNBC with different numbers of neighbors
were also studied in Figure 6.4. When more neighbors were retained, the recall rates

increased subsequently. Nevertheless, the algorithm failed to tell the real users from

the attackers as their recall rates were almost identical.
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Figure 6.4: Recall rates with varying #neighbors in PRNBC
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6.3.3.2 Prediction Accuracy

The prediction accuracy was judged in terms of MAE on all the ratings in the test set.
Thus the second step of TrustRS, which is unrelated entries filtering, was ignored.
The experiments used the same parameter setup presented in the previous section.
For both RandSVD and RandNMF, the experiments calculated the z-scores for
each user and replaced the values in the original rating matrix R with z-scores. The
missing entries were imputed by the users’ mean ratings. The noise drawn from the

normal distribution was added to the imputed matrix for perturbation purposes.

Table 6.4: Prediction accuracy

Dataset Method MAE
RandSVD | 0.4124 | rank = 4
RandNMF | 0.4162 | rank =1

Clao PRNBC | 1.7851 -
TrustRS | 0.2725 -
RandSVD | 0.5362 | rank = 16
. RandNMF | 0.5480 | rank =1
Epinions

PRNBC 1.0202 -
TrustRS | 0.4084 -

The MAE’s of all four methods are shown in Table 6.4. It is worth noting that
the rank of RandSVD and RandNMF were probed in {1,2,...,20} and the lowest
MAE’s were taken. As one can see, TrustRS produced the lowest prediction errors
on both datasets. RandSVD and RandNMF had very close values which were not
significantly worse than TrustRS. This result is considered as normal owing to the
inherent connections between SVD and NMF: they both focus on reducing the di-
mensionality of rating matrices and finding the latent factors. TrustRS is based on
NMF but it uses weight matrices to avoid biased missing value imputation and incor-
porates trustworthiness to improve the prediction accuracy. Thus TrustRS achieved
lower MAE’s than other two matrix factorization based algorithms. PRNBC, the

naive Bayesian classifier based recommendation algorithm, performed worst and the
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prediction errors were remarkably higher than others. It is attributed to the random-
ized response techniques (RRT) used in the one-group scheme [34]. Because in this
scheme, each user’s ratings are placed in the same group. According to the RRT, they
either remain unchanged or are completely reversed (e.g., change 1 to 5, 2 to 4). It
perturbs the ratings to a certain degree and protects the privacy, but the prediction
errors would increase as well.

It can be concluded that the proposed recommendation framework TrustRS out-
performed three existing privacy-preserving recommendation algorithms with regard
to unknown rating prediction accuracy and privacy preservation level. The results
demonstrate that the trustworthiness information makes a substantial contribution
to correctly filtering out unrelated ratings. The membership degree threshold needs
to be carefully determined as it directly affects the recall rates for both the real users

and the attackers.

6.4 Summary

This chapter studies an attack model that aims at finding customers’ potentially in-
terested items by cheating recommender systems. A weighted nonnegative matrix tri-
factorization based privacy-preserving recommendation framework, named TrustRS,
is proposed to neutralize this type of attack. TrustRS utilizes customers’ trustwor-
thiness to filter out unrelated ratings so that their privacy can be preserved. Exper-
iments conducted on two popular rating datasets show that TrustRS can preserve

users’ privacy to a great extent without compromising the prediction accuracy.

Copyright © Xiwei Wang 2015
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7 Conclusions and Future Work

This dissertation presents the research work in privacy-preserving algorithms for the
collaborative filtering based recommender systems. This work involves the empirical
study of classical recommendation algorithms, singular value decomposition based
privacy-preserving data updates, incorporating auxiliary information into the NMF
based collaborative filtering, the incremental clustering based data updates, and a
trust-aware privacy-preserving recommender system. This chapter summarizes the

dissertation work and proposes some future research topics.

7.1 Research Accomplishments

Over the past 20 years, the Internet has served as the major technology connecting
our world. Economists have discovered the great potential that lies in that piece of
technology. They have tried and are still trying to find suitable ways to make it as
easy and pleasant as possible to spend money while surfing the Internet. Almost
every shop now has an online presence that makes it possible to search, compare, and
buy specific items or groups of items without the necessity of personal presence. To
sell their products better, most online shopping websites provide recommendations
to the customers who have visited their websites in the past. It is well known that
recommender systems have achieved great success in providing product recommen-
dations for online shopping. With recommender systems, customers can find their
desired merchandise in a timely manner. It not only facilitates customers’ purchases,
but also promotes the sales. While recommender systems can predict customers’
preferences accurately, they suffer from privacy leakage in many aspects.

This dissertation addresses several topics in collaborative filtering based recom-

mender systems. In general, it can be divided into three parts: (1) Empirical study
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on classical recommendation algorithms; (2) Matrix factorization based recommender
systems that preserve user privacy in data sharing; (3) A trust-aware recommender
system that can tell the normal users from the attackers who attempt to cheat rec-

ommender systems.

Empirical Study on Classical Recommendation Algorithms

The empirical study in Chapter 2 presents several classical recommendation algo-
rithms and studies the experiments on the clicking history data from a retargeting
company. The predictions produced by different models have varied accuracies. It
demonstrates that when selecting recommendation algorithms, people should care-
fully examine the data to identify what kinds of algorithms (e.g., user/item correla-
tion based models, latent factor based models, and genetic algorithm based models)
might be suitable. It also suggests that multiple methods can be combined to provide

optimal predictions.

SVD based Privacy-Preserving Data Updates

Chapter 3 proposes an SVD based privacy-preserving data update scheme that makes
use of the incremental SVD update technique to update the fast growing collaborative
filtering data and preserve user privacy during data sharing. It protects the privacy by
performing the truncated SVD on the original rating matrix with randomization and
post-processing techniques. It also takes into account the missing value imputation
during the update process to provide high quality data for accurate recommendations.
Results of the experiments conducted on the MovieLens and Jester datasets show
that the proposed scheme can handle data growth efficiently and keep a low level of
privacy loss. The prediction accuracy is still at a satisfactory level compared to most

published results.
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Incorporating Auxiliary Inforamtion into NMF based Data Update Scheme
Performance analysis shows that the time complexity of the scheme proposed in Chap-
ter 3 contains a cubic term with respect to the number of new rows or columns. It is
a potentially expensive factor in the update process, especially when a large amount
of new data comes in. Therefore, a better technique is needed to improve the update
process so that it can be done faster. Chapter 4 uses NMF instead of SVD as the
fundamental matrix factorization technique to reduce the dimensionality of the rat-
ing matrix and impute the missing values. By selecting reasonable iteration counts
and the factor matrix dimensions in NMF updates, the scheme can be very efficient.
Furthermore, the auxiliary information of users and items, e.g., user demographic
information and item category information, is considered additional constraints in
the NMF objective function. This behavior brings new knowledge into the update
process and the experimental results indicate that it has improved both prediction

accuracy and the privacy level.

Automated Dimension Determination for NMF based Incremental Collab-
orative Filtering

As a prerequisite, the dimensionality of the factor matrices in NMF has to be deter-
mined in advance. Moreover, data is growing fast. Thus in some cases, the dimensions
need to be changed to reduce the approximation error. Recommender systems should
be capable of updating new data in a timely manner without sacrificing the predic-
tion accuracy. However, the data update scheme proposed in Chapter 4 does not
consider these issues. In Chapter 5, an incremental nearest neighborhood based clus-
tering algorithm is exploited to automatically determine and update the dimensions
of the factor matrices in NMF updates. Experiments on three different datasets were
conducted to examine the proposed approach. The results show that this approach

can update the data quickly and provide encouraging prediction accuracy without
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needing predetermined matrix dimensions.

Trust-aware Privacy-Preserving Recommender System

In Chapters 3, 4, and 5, the privacy issues that are studied occur when two data
owners are sharing/transferring their customer preference information. In real world
scenarios, there are also quite a few other privacy issues on the Internet. Chapter 6 ad-
dresses an attack model in which an attacker holds some of the real customers’ ratings
and attempts to obtain their private preferences by cheating recommender systems.
Due to the connections between users’ public preferences and private preferences,
if a recommender system fails to distinguish the real customers from the malicious
users, it would be highly possible that the real customers’ private preferences can be
exposed. To neutralize this problem, a trust-aware privacy-preserving recommender
system is proposed in this chapter. The system makes use of the trustworthiness in-
formation in online social networks to detect attackers and makes reasonably differed
recommendations to the normal users and the attackers. The results demonstrate
that this recommender system can distinguish between the real customers and the

attackers to a great extent without compromising the prediction accuracy.

7.2 Suggestions for Future Work

In the future, it would be interesting to investigate more details of the collaborative
filtering problem together with the privacy issue. In general, the following three topics
would be studied:

(1) Utilization of the temporal information;

(2) Handling data growth with privacy preservation in distributed scenarios;

(3) Large scale recommender systems.

112



Privacy-Preserving Data Updates with Temperal CF

“There is nothing permanent except change.”, said by Heraclitus (540-480BC), the
Greek philosopher. In other words, the only thing that does not change is change
itself. This is the case for people’s shopping habits. For example, a person who
was initially interested in digital SLR cameras a few years ago is now interested
in cars. People cannot predict what will be attractive to this person in the near
future. Therefore, his product preferences vary from time to time. The conventional
collaborative filtering techniques may not work properly for him because most of
the techniques assume that users’ shopping patterns do not change. To make better
recommendations, the corresponding temporal information should be fully utilized as
it reveals the time-evolving trends of both user shopping patterns and item popularity.

While there are some temporal CF algorithms proposed in the past[21, 41, 78,
61, 36, 54, 1], they did not address the privacy issues that arise in this case. As
it is stated in Chapter 3, users’ privacy includes the exact ratings of a user left on
particular items and on which items that this user has rated. When time factor is
considered, this privacy information is extended to a further step: at what time this
user rated which item with what rating. This motivation needs a conversion on the
problem space from 2-D to 3-D which requires a tensor structure to process the data.
In the future, nonnegative tensor factorization (NTF) would be used to handle the
additional dimension — the temporal information, so that the approximated rating
tensors are capable of providing more accurate predictions.

Similar to SVD and NMF that are used to protect user privacy in the accomplished
works, NTF also has to preserve the privacy information. Some regular techniques
would be used, e.g., applying random noise, manipulating the dimensionality of the
factor matrices (which works like the truncated SVD), as well as perturbing the over-
all distribution of the samples while preserving the local distribution. Additionally,

various kinds of information like trustworthiness and friendship, would also be con-
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sidered.
The NTF model would be extended to the incremental case, as shown in Figure
7.1. In this scenario, once new items or users arrive in different time slots, the time

factor matrix must be updated.

Figure 7.1: Incremental nonnegative tensor factorization

The Distributed Scenario
Collaborative filtering has proved to be one of the most effective techniques in recom-
mender systems. An inevitable issue is, as data grows, the computational complexity
of conventional centralized CF algorithms increases dramatically. It requires not only
more memory but also faster processors to handle the large scale data. It is unrealistic
to extend the memory to the unlimited size and the processor to unlimited fast speed
on a single computer. Thus the distributed CF was proposed to resolve the problem.

Tveit[70] first proposed a distributed CF algorithm for the Peer-to-Peer mobile
recommender systems. After that, the P2P based collaborative filtering techniques
have been extensively studied, e.g., [81], [5], [24], [77], etc. Zhang et al. [85] studied
the similar problem but in the cloud computing environment.

In future work, a distributed CF model that has one central server and sev-
eral worker servers would be designed. This distributed model is inspired by the
MapReduce[16] framework which was proposed by Google for processing large datasets.

Figure 7.2 shows how MapReduce works.
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Figure 7.2: The MapReduce framework

However, the problems that need to be solved are: (1) how to manage the cluster
membership indicator matrices in the MapReduce operations; (2) how to handle the
partition of matrices as there are more than two matrices in the multiplication; (3)
how to address the data growth issue.

To overcome the above three problems, insightful investigations of the update
formulas in iAux-NMF are expected so that a good strategy to partition the matrices

can be developed in order to adapt the update process to the MapReduce model.

Large Scale Recommender Systems

With the increasing popularity of online applications, the problem of managing fast
growing data has become one of the major research topics in data science. Although
the accomplished works in this dissertation have addressed the data update issues, the
algorithms still need to be verified on huge datasets. Conventional CF models focus
on the complete rating data to find the underlying correlations. However, if the size of
the data is extremely large, the time cost would be unacceptable. A feasible solution

is to sample the data. In other words, the models need to extract information that
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is manageable in size and can maximally represent the complete set. The subsequent
CF algorithms can be performed only on the sample data to maintain the online
performance.

In the future, the sampling techniques that can be used on large collaborative
filtering data would be studied. It is expected that efficient and effective algorithms
can be proposed to identify and obtain the representative features of the original
rating and auxiliary data. These features are then fed to the existing collaborative
filtering algorithms for real time fast recommendations. Nevertheless, the computa-
tion ability of single servers is limited so the sampling models should be adapted to

the distributed scenarios. By doing so, the overall performance can be guaranteed.

Copyright © Xiwei Wang 2015
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