
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Software library for stream-based
recommender systems

Fernando André Bezerra Moura Fernandes

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. João Nuno Vinagre Marques da Silva

Cosupervisor: Prof. Luís Filipe Pinto de Almeida Teixeira

August 8, 2020

© Fernando André Bezerra Moura Fernandes, 2020

Software library for stream-based recommender systems

Fernando André Bezerra Moura Fernandes

Mestrado Integrado em Engenharia Informática e Computação

August 8, 2020

Abstract

Traditionally, a machine learning algorithm is able to learn from data, given a previously built and
treated data set. One can also analyze that data set, using data mining techniques, and draw con-
clusions from it. Both of these concepts have numerous world-wide applications, from medical
diagnosis to speech recognition or even search engine queries. However, it is assumed that the
dataset is stationary. This is not necessarily true with modern data, as many of today’s applica-
tions are required to receive and process large number of observations from incoming data streams
within strict time frames. Therefore, there is a need for techniques to mine and process these data
streams, on a limited time period with high accuracy and effective scaling as data grows. One
specific use case of analyzing and predicting future conclusions from given data, are recommen-
dation systems. Several online services use recommender systems to deliver personalized content
to their users. In many cases, recommendations are one of the most effective traffic generators in
such services. The problem lies in finding the best small subset of items in a system that matches
the personal preferences of each user, through the analysis of a very large amount of historical
data. One can distinguish solutions between perfect ones or statistically similar ones. Due to the
large amount of data available, the decision to reprocess all the data every time new data arrives,
would not be feasible so, incremental algorithms are used to process incoming data and keeping
the recommendation model updated. This problem gets more attention due to the fact that there
is no software library which facilitates the investigation and development as well as evaluation
mechanisms on this field of work. Current options are micro-libraries which are task-specific and
make them hard to extend. This work presents a library that implements incremental approaches
to recommendation and mechanisms to evaluate them, including the visualization of results. This
dissertation provides implementation details, along with a demonstration with real world data and
a discussion of results.

i

ii

Resumo

Tradicionalmente, um algoritmo de machine learning é capaz de aprender com dados, considerando
um e conjunto de dados tratado. Também é possível analisar esse conjunto de dados, usando técni-
cas de data mining, e tirar conclusões sobre ele. Ambos os conceitos têm inúmeras aplicações em
todo o mundo, desde diagnóstico médico, a reconhecimento de fala ou mesmo consultas a motores
de busca. No entanto, assume-se que o conjunto de dados é estacionário. Isso não é necessaria-
mente verdade com os dados modernos, pois as aplicações modernas recebem e processam mil-
hões de novas instâncias em uma fração de tempo limitada. Desta forma, são necessárias técnicas
para extrair e processar esses fluxos de dados, em um período de tempo limitado, com boa precisão
e dimensionamento eficaz à medida que os dados aumentam. Um caso de uso específico de anal-
isar e prever conclusões futuras com dados fornecidos são os sistemas de recomendação. Vários
serviços on-line usam sistemas de recomendação para fornecer conteúdo personalizado para seus
utilizadores. Em muitos casos, as recomendações são um dos meios geradores de tráfego mais
eficazes nestes serviços. O problema está em encontrar o melhor pequeno subconjunto de itens
em um sistema que corresponda ao pessoal preferências de cada usuário, através da análise de uma
quantidade muito grande de dados históricos. Podem-se distinguir entre soluções perfeitas ou es-
tatisticamente semelhantes. Devido à grande quantidade de dados disponíveis, a decisão de repro-
cessar todos os dados sempre que novos dados chegassem, não seria viável, portanto, algoritmos
incrementais são usados para processar dados recebidos e mantendo o modelo de recomendação
atualizado. Esse problema chama mais atenção devido ao fato de não haver nenhuma biblioteca
de software que facilite a investigação e desenvolvimento e que possua mecanismos de avaliação
neste campo de trabalho. As opções atuais são micro-bibliotecas demasiado específicas talhadas
para uma tarefa específica aquando da sua construção o que as torna difícil de estender. Este
trabalho apresenta uma biblioteca que implementa abordagens incrementais para recomendação
e mecanismos para as avaliar, incluindo a visualização de resultados. Esta dissertação fornece
detalhes de implementação, juntamente com demonstrações com dados do mundo real e discussão
dos resultados.

iii

iv

Acknowledgments

I would like to thank my father, mother and brother for being my role models in my personal
growth and supporting my academic formation without question since i was born.
To all my friends and girlfriend for the long-run so far.
My gratitude to the great help of Prof. João Vinagre and Prof. Luís Teixeira.

Fernando André Bezerra Moura Fernandes

v

vi

“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

Alan Turing

vii

viii

Contents

Abstract i

Resumo iii

Acknowledgments v

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Document Structure . 3

2 Traditional Recommendation Systems 5
2.1 Collaborative Filtering Systems . 6

2.1.1 Neighborhood-Based Collaborative Filtering 7
2.1.2 Model-Based Collaborative Filtering 15

2.2 Content-Based Recommender Systems . 21
2.2.1 Unupervised feature selection . 21
2.2.2 Supervised Feature Selection . 22
2.2.3 User Profiles and Filtering . 23

3 Incremental Recommendations 25
3.1 Neighborhood-based . 25

3.1.1 Item-based . 25
3.1.2 User-based . 27

3.2 Model-based . 28
3.2.1 Matrix Factorization . 28

3.3 Prequential Evaluation . 29

4 Software library for stream-based recommender systems 31
4.1 Problem Definition . 31

4.1.1 Related work . 32
4.1.2 Architecture . 33
4.1.3 Why Python? . 34
4.1.4 Design patterns in action . 34

4.2 The algorithms module . 34
4.2.1 Matrix Factorization algorithms . 36
4.2.2 Neighborhood-Based algorithms . 38

4.3 The data structures module . 47
4.3.1 Dynamic Array . 47

ix

x CONTENTS

4.3.2 Symmetric Matrix . 49
4.4 The prequential evaluator module . 50

4.4.1 Implicit Prequential Evaluator . 51
4.4.2 Explicit Prequential Evaluator . 51

4.5 The file stream module . 52
4.5.1 Implicit file stream . 52
4.5.2 Explicit file stream . 53

4.6 The graphic module . 53
4.7 Continuous integration and deployment . 54

5 Results 55
5.1 Algorithm Tests . 55

5.1.1 Model-based algorithms tests . 57
5.1.2 Neighborhood-based algorithms tests 62

6 Conclusions and future work 77
6.1 Conclusions . 77
6.2 Limitations and future work . 78

A Appendix 79

References 81

List of Figures

2.1 The long tail problem. 5
2.2 The user/item matrix. 7
2.3 Jaccard Similarity. 8
2.4 Angle between two vectors. 9
2.5 Cosine function. 9
2.6 Pearson Correlation Coefficient. 10
2.7 Ratings table. 15
2.8 Decision Tree for a predicted rating. 16
2.9 Latent factor models - Geometric view. 17

4.1 Increc’s architecture diagram. 33
4.2 Matrix Factorization implementation diagram. 36
4.3 Neighborhood collaborative filtering implementation diagram. 39
4.4 Clustering collaborative filtering implementation diagram. 40
4.5 Locality-sensitive min-hashing draft in Increc. 42
4.6 A user/item matrix example. 47
4.7 Matrix Update. 48
4.8 Symmetric Matrix. 49
4.9 Prequential Evaluator. 50
4.10 File stream. 52
4.11 Graphical evaluation diagram. 53
4.12 Increc’s deployment diagram. 54

5.1 IMF; LF = 20; LR = 0.01; REG= 0.1; ML-100k. 57
5.2 IMF; LF = 20; LR = 0.01; REG= 0.1; SW = 20 ; ML-100k. 57
5.3 IMF; LF = 20; LR = 0.01; REG= 0.1; ML-1m. 58
5.4 IMF; LF = 20; LR = 0.01; REG= 0.1; ML-10m. 58
5.5 IMF; LF = 20; LR = 0.01; REG= 0.1; INESC. 59
5.6 EMF; LF = 20; LR = 0.01; REG= 0.1; ML-100k. 59
5.7 EMF; LF = 20; LR = 0.01; REG= 0.1; SW = 20; ML-100k. 60
5.8 EMF; LF = 20; LR = 0.01; REG= 0.1; ML-1m. 60
5.9 EMFP; LF = 20; LR = 0.01; REG= 0.1; ML-100k. 61
5.10 EMFP; LF = 20; LR = 0.01; REG= 0.1; SW = 20; ML-100k. 61
5.11 EMFP; LF = 20; LR = 0.01; REG= 0.1; ML-1m. 62
5.12 IIBN; NEIGHBORS = 5; ML-100k. 62
5.13 IIBN; NEIGHBORS = 5; ML-1m. 63
5.14 IIBC; NEIGHBORS = 5; ML-100k. 63
5.15 IIBC; NEIGHBORS = 5; SW = 20; ML-100k. 64
5.16 IIBC; NEIGHBORS = 5; ML-1m. 64
5.17 IILSMH; PERMS = 120; BANDS = 4; ML-100k. 65

xi

xii LIST OF FIGURES

5.18 IILSMH; PERMS = 120; BANDS = 4; SW = 2; ML-100k. 65
5.19 IILSMH; PERMS = 120; BANDS = 4; ML-1m. 66
5.20 IUBN; NEIGHBORS = 5; ML-100k. 66
5.21 IUBN; NEIGHBORS = 5; SW = 20; ML-100k. 67
5.22 IUBN; NEIGHBORS = 5; ML-1m. 67
5.23 IUBC; NEIGHBORS = 5; ML-100k. 68
5.24 IUBC; NEIGHBORS = 5; SW = 20; ML-100k. 68
5.25 IUBC; NEIGHBORS = 5; ML-1m. 69
5.26 IULSMH; PERMS = 120; BANDS = 4; ML-100k. 69
5.27 IULSMH; PERMS = 120; BANDS = 4; SW = 20; ML-100k. 70
5.28 IULSMH; PERMS = 120; BANDS = 4; ML-1m. 70
5.29 EUBN; NEIGHBORS = 5; ML-100k. 71
5.30 EUBN; NEIGHBORS = 5; SW = 20; ML-100k. 71
5.31 EUBN; NEIGHBORS = 5; ML-1m. 72
5.32 EUBC; NEIGHBORS = 5; ML-100k. 72
5.33 EUBC; NEIGHBORS = 5; SW = 20; ML-100k. 73
5.34 EUBC; NEIGHBORS = 5; ML-1m. 73

List of Equations

2.1 Jaccard Similarity 2.1 . 8
2.2 Cosine Similarity 2.2 . 8
2.3 Pearson Correlation Coefficient 2.3 . 9
2.4 Mean Rating 2.4 . 10
2.6 Centered user rating 2.6 . 11
2.7 Predicted rating on UB CF 2.7 . 11
2.9 Mean-centered item rating2.9 . 11
2.10Adjusted cosine similarity2.10 . 12
2.11Predicted rating on IB CF 2.11 . 12
2.12Bayes Rule for MB CF 2.12 . 15
2.13Naive Assumption MB CF 2.13 . 15
2.14Algebric MF MB CF 2.14 . 17
2.16Mean Squared Error 2.16 . 18
2.17L2-regularized error 2.17 . 18
2.23Inverse Document Frequency CB 2.23 . 22
2.24TF IDF CB 2.24 . 22
2.27Laplacian Smoothing CB 2.27 . 23
3.2 Activation Weight ICF 3.2 . 26
3.4 Covariance UCF 3.4 . 28
3.5 Variance UCF 3.5 . 28
5.1 Increc’s implicit error metric 5.1 . 55
5.2 Increc’s explicit error metric 5.2 . 56

xiii

xiv LIST OF EQUATIONS

Abbreviations and Symbols

UB - User Based
IB - Item Based
CF - Collaborative Filtering
MB - Model Based
MF - Matrix Factorization
TF - Term Frequency
IDF - Inverse Document Frequency
CB - Content Based
SGD - Stochastic Gradient Descent
ALS - Alternate Least Squares
LSH - Locality-sensitive-hashing
SW - Sliding window
IMF - Implicit matrix factorization
EMF - Explicit matrix factorization
EMFP - Explicit matrix factorization with matrix preprocessing
LF - Latent factors
LR - Learning rate
REG - Regularization factor
IIBN - Implicit item-based neighborhood
IILSMH - Implicit item-based locality-sensitive min-hashing
PERMS - Number of permutations
IUBN - Implicit user-based neighborhood
IUBC - Implicit user-based clustering
IULSMH - Implicit user-based locality-sensitive min-hashing
EUBN - Explicit user-based neighborhood
EUBC - Explicit user-based clustering

xv

Chapter 1

Introduction

1.1 Context

The increasing usage of the Web by the everyday user on the numerous web applications scattered

around the globe provides a tremendous amount of information to the companies who own these

web applications. This information is collected through the feedback provided by users, in the

form of ratings, by their actions. For example, for a company like Amazon.com feedback could

consist of a product purchase or product page click. Web businesses provide a huge quantity of

content for users to watch, read, click or buy, to the point where there is so much content available,

that the regular user has some trouble deciding what to do next: "What film do I watch?", "What

game do I buy?", "Which food do I order?". This is where Recommender Systems come into ac-

tion. They are capable of inferring user preferences and then make personalized recommendations

based on those preferences. They do so, by analyzing user-item interactions, processing them

and then returning results based on those interactions. These recommender systems are extremely

valuable to companies because they provide an objective way of boosting sales with their acquired

data. In 2006, Netflix released a large movie rating dataset and proceeded to challenge data min-

ing, machine learning and computer science experts to build their own recommender system and

gave a set of prizes to the ones who performed better than the Netflix one, by certain amounts [9].

1.2 Motivation

Traditional recommender systems work the same way as a Machine Learning model, on the

way they use data. They iteratively consume a dataset and form a recommendation model used

to provide recommendations for users. However, due to an increase in internet trafficking this is

becoming more and more unsustainable. For companies such as Google, Spotify or Facebook, data
streams come every second with website clicks, song requests or page likes which will increase

the size of the dataset. If the dataset had to be reprocessed every time a new data stream arrived,

it would be impossible to provide in real-time updated recommendations because there would not

be enough computer power or time to do it. We can clearly see that it is not a scalable solution.

1

2 Introduction

Some companies choose to do these expensive computations offline, and periodically update their

recommendation model, keeping in real-time recommendations, but this scheme does not allow

to keep recommendations accurate and updated since a lot of information is transferred between

updates which is not being used [27]. Current incremental approaches are not vast, neither they

are diversified and the ones that exist are task-specific. So, there must be another way of creating

highly scalable recommender systems capable of dealing with incoming data streams keeping in

real-time and updated recommendations of items to users. An effective solution for this problem

is the adoption of incremental learning approaches. Each time a new data stream comes to

the system, it can be observed as a rating and the new rating will be a function of the previously

calculated ratings and the newest one. This way the model does not have to be recalculated again

since it was calculated before. Thus, it would be useful for a library which aided the development

of incremental recommender systems for highly scalable solutions to exist, and be imported by

a third party as a project dependency. This would allow the development of new algorithms, the

comparison between them, and since they should be built in a generic way, this would allow their

appliance in real-world applications.

1.3 Objectives

The main goal of this dissertation is to build a scalable cross-platform library which contains

a collection of algorithms who can form recommendations based on an incoming data stream.

Therefore, the library:

• Must be able to efficiently receive data streams and incrementally update the recommenda-

tion model.

• Must have a collection of different incremental algorithms that make different types of rec-

ommendations which are applicable in different enterprise scenarios.

• Must be extensible.

• Must be built in a generic way so that it can be easily used for different application domains.

• Must be lightweight, not having too many dependencies.

• Must have mechanisms to measure algorithm efficiency and accuracy.

• Must be tested.

• Must be open-sourced.

1.4 Document Structure 3

1.4 Document Structure

The rest of this document will explain in detail theory around recommender systems, the newest

incremental trend and the planned solution. Firstly we will divide recommender systems into Col-
laborative Filtering models and Content-based Models and explain the differences. Then, we

will discuss the Incremental Recommendation algorithms which is not yet a very thoroughly re-

searched field. After this, a solution to this problem will be explained with the implemented library

Increc. With regard to the implementation, there is also a chapter discussing the results obtained

of the implemented approaches. Then, there is a final chapter for conclusions and limitations of

the proposed work.

4 Introduction

Chapter 2

Traditional Recommendation Systems

Recommender systems are a type of machine learning business application which provides sug-

gestions of items to users [30]. We understand items as products of a business, books for an online

bookshop, music on Spotify or videos on Youtube. Users, naturally, are these platforms customers

who generate traffic with their actions and intents. Usually, a recommender system has two types

of tasks:

1. Predict a rating of a user to a certain item

2. Find out the top-k items for a targeted user (or top-k users for a designated) item.

These tasks are gravely affected by the Long Tail Problem.

50 100 150 200

0.1

0.2

0.3

0.4

products

po
pu

la
ri

ty

Figure 2.1: The long tail problem.

Statistically speaking, the tail of a distribution of values is the portion with very large or very

small values compared to the rest. A distribution is called long-tailed if it contains values which

are far from the main body of the data [43]. Whilst physical stores can offer thousands of products

on shelves to a customer, online retailers have millions of them in their databases. A physical

5

6 Traditional Recommendation Systems

newspaper can print several dozen articles per day, while online news services offer thousands.

The offer is much bigger on online platforms. By looking at figure 2.1 the vertical axis represents

popularity and on the horizontal axis there are placed items which are ranked according to their

popularity. Physical stores provide the items on the uncolored area, and online stores provide all

the range of items on the horizontal axis, including the items in the blue area. Product catalogs

can be extremely large, however, only a small percentage of the products is responsible for traf-

fic generation. Recommender systems are capable of recommending items from the long-tail to

specific users. It is not possible to recommend all items to individual users neither enterprises can

expect users to have heard of each of the items they might like [19]. Furthermore, it is also not a

good option to keep recommending hyped items to the users since it will pose no interest to them

if we do it repeatedly. There are two essential types of recommendation models:

1. Collaborative Filtering Systems

2. Content-Based Systems

These two types of systems will be explained in the next sections.

2.1 Collaborative Filtering Systems

Collaborative Filtering is a type of recommendation technique which attempts to match similar

users or similar items by looking at users’ feedback and then making recommendations based

on these matches [37]. They use different forms of feedback provided by the users. We can

distinguish these forms as two types of feedback:

1. Explicit feedback

2. Implicit feedback

Explicit feedback relates to directly provided information by the users and a good example of

this are movie ratings on an evaluation system. On IMDb, registered users can rate movies on

a 1-10 star rating system and on the Google Play Store the same system is applied on a 1-5

scale for the available apps. Implicit feedback consists of a set of user actions through which the

system generates conclusions. If a user clicks on several gaming mouse pads on a website, or

even buys one, it means he is interested on this type of product. These types of systems attempt

to match similar items by viewing closely view/rated items by users. They can also do the same

for users, matching them by tracking and calculating users which saw the same items. When

analyzing collaborative filtering, one must discuss how data is modeled in these types of systems.

These systems use a user-item ratings matrix, where each row represents a user, each column
represents an item, and the cells are filled with the rating of a user to a certain item.

The purpose of collaborative filtering is predicting the unknown ratings on the user-item matrix

because the observed ratings are highly correlated among users and items [6]. They do this by

identifying patterns in the observed interactions between users and items.

2.1 Collaborative Filtering Systems 7



item1 item2 item3 ... itemk
user1 1 ? ? ... rating1k
user2 3 ? 3 ... rating1k
user3 ? ? ? ... rating1k
...

usern ratingn1 ratingn2 ratingn3 ... ratingnk


Figure 2.2: The user/item matrix.

There is one problem with this matrix, which is its sparsity. Notice that on 2.2 most of the cells

are not filled with any value(marked with "?"). This happens because there are no ratings by most

users to most items. When someone has a Netflix account, he/she only watches a limited amount

of movies or TV series. When people go on Medium, they only click a limited amount of links of

articles to read them. When people shop on Amazon.com, they only buy certain items or browse

for related ones, not the entire catalogue. This way, in collaborative filtering we deal with very

sparse vectors of users and items, which in turn have high dimensionality. This results in problems

related to machine learning models reliability and accuracy [14].

Another main concern with Collaborative Filtering algorithms has to do with Cold-Start. This

problem occurs when it’s not possible to generate accurate recommendations because of an initial

lack of ratings [32]. Let’s imagine a recent user has entered a system. Since we have no previous

information regarding his/her feedback, there is no feasible way of matching him up with other

users. The same principle applies to recent items, since no user got the opportunity to interact

with it in the first place, which makes it difficult to get matched with other items. This has a

great impact when measuring model accuracies in this field since is is very difficult to generate

recommendations for new users or include new items in these recommendations.

The next sections will describe two different types of collaborative filtering models:

1. Neighborhood-Based

2. Model-Based

2.1.1 Neighborhood-Based Collaborative Filtering

Neighborhood-based approaches to collaborative filtering build a machine learning model con-

sisting of neighbors for each user or item in the system. They are also known as Memory-Based.

The recommendations are generated for a user depending on his/hers neighbors. Neighborhood-

based methods can be viewed as generalizations of nearest neighbor classifiers in the machine

learning literature [6].

Using a user-item matrix of m users and n items, where rik represents the rating of the ith user to

the kth item, each row or column can be represented as a vector:

• The ith user u can be represented as ui = {ri1,ri2,ri3, ...,rin} and ||ui||= n

• The kth item i can be represented as ik = {r1k,r2k,r3k, ...,rmk} and ||ik||= m

8 Traditional Recommendation Systems

Neighbors are calculated using previously computed similarities between pairs of users and items.

If we represent items and users as previously mentioned we gain new possibilities to infer their

similarities. One of these possibilities is using the well known Jaccard similarity or Jaccard
Distance, represented in figure 2.3 which is defined as the size of the intersection divided by the

size of the union of the sample sets [19].

JaccardSimilarity(A,B) =
|A∩B|
|A∪B|

(2.1)

Figure 2.3: Jaccard Similarity.

This measure is specially useful for implicit feedback since every user/item consists of a vector

of binary ratings, causing the jaccard similarity to measure the relative number of common items

rated by both users. However, the actual values of non-binary ratings are not taken into account

[23]. We could ignore values in the matrix and focus only on the sets of items rated. If the ratings

matrix only reflected purchases, this measure would be a good one to choose. However, when

ratings are more detailed, the Jaccard distance loses important information [19].

Another type of common similarity measure is the cosine similarity which measures the cosine

of the smallest angle between the two vectors [33], as we can see in 2.4.

cos(θ) =
A.B
||A||||B||

(2.2)

2.1 Collaborative Filtering Systems 9

Figure 2.4: Angle between two vectors.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

α

co
s(

α
)

Figure 2.5: Cosine function.

We are only dealing with angles from the range [0, 90]. As we see from figure 2.5, as the angle

increases, the cosine function decreases until it reaches 0. This means that higher angles between

two vectors representing users or items will result in lower similarities between them.

Another used correlation measure is called the Pearson Correlation Coefficient, which measures

the strength and direction of linear relationships between pairs of continuous variables. For 2

sample variables, A and B of the same size n:

ρ(A,B) =
∑

n
i=1(Ai−A)× (Bi−B)√

∑
n
i=1(Ai−A)×

√
∑

n
i=1(Bi−B)

(2.3)

For recommender systems A and B will be representing user or item vectors where each element

is a rating. If we use population terms for these samples the numerator can be viewed as the

10 Traditional Recommendation Systems

covariance and the 2 denominator can be viewed as the variances. The Pearson correlation

coefficient measures linear correlation between two vectors [35], and its values range from [-1,

+1] where +1 means total positive linear correlation, -1 means total negative correlation and 0

means no linear correlation, as explained in 2.6.

Figure 2.6: Pearson Correlation Coefficient.

These similarities’ heuristics when calculated for pairs of users/items help build a neighborhood

model to process recommendations. Essentially, neighborhood-based models are divided into

two categories: The user-based and item-based models. On the next sections we will discuss

methods of recommendation using both types of neighborhood based collaborative filtering, their

main advantages and disadvantages and ways of tackling the neighborhood problem.

2.1.1.1 User-based collaborative filtering

In this approach, the neighborhood model is constructed using similarities between pairs of users.

The most common way of doing this is through the Pearson correlation coefficient. Lets assume

two users, u and v and let their respective list of indexes of rated items be Iu and Iv.

µu =
∑k∈Iu ruk

|Iu|
(2.4)

Pearson(u,v) =
∑k∈Iu∩Iv(ruk−µu).(rvk−µv)√

∑k∈Iu∩Iv(ruk−µu)2
√

∑k∈Iu∩Iv(rvk−µv)2
(2.5)

In equation 2.5, µu represents the mean rating of a user u, and ruk represents the rating of user

u to item k. The Pearson correlation acts as the similarity between user u and v and has to be

calculated for the target user and all the other users. Through the neighborhood of a user u we can

make inferences to the predicted rating for an unrated item i by u. We do this through the ratings

2.1 Collaborative Filtering Systems 11

of other users in the neighborhood of u which rated i. When we are specifying a target for which

to predict a rating for a user, the ratings of the set of users with an higher pearson correlation vary

significantly, so we must return a weighted average of the mean centered ratings as a predicted

rating. This has to do with the fact that different users use the rating scale differently, or interpret

the values in the scale in a different way.

sui = rui−µu (2.6)

The mean rating of the target user is then added back to this prediction to provide a raw rating

prediction. Let Nu(j) be the set of the k users with the highest Pearson correlation with user u who

specified ratings for item j

ˆru j = µu +
∑v∈Nu(j) Sim(u,v).(sv j)

∑v∈Nu(j) Sim(u,v)
(2.7)

Note that, when using the Pearson correlation coefficient the ratings are computed over the co-

rated items of the designated pair of users, in equation 2.5 represented by Iu ∩ Iv. Several other

variants of similarity function are used in practice. Items with an higher predicted rating are then

recommended to the user.

One variant of this method is to use the cosine function on the raw ratings rather than the mean-

centered ratings [6].

2.1.1.2 Item-based collaborative filtering

In item-based collaborative filtering, we focus on using pairwise item similarities to build a neigh-

borhood for each item in the system. For items, it is common to use the cosine similarity for

computing similarities. Assuming U contains the set of users in the system and Ui, U j represents

the users who rated item i and j respectively:

Cosine(i, j) =
∑u∈Ui∩U j rui× ru j√

∑u∈Ui∩U j r2
ui

√
∑u∈Ui∩U j r2

u j

(2.8)

Like before, we should center these item’s ratings in terms of a mean, getting a mean-centered

rating. Here, we will use the item’s average rating.

sui = rui−µi (2.9)

Ad justedCosine(i, j) =
∑u∈Ui∩U j sui× su j√

∑u∈Ui∩U j s2
ui

√
∑u∈Ui∩U j s2

u j

(2.10)

12 Traditional Recommendation Systems

If we define Ni a set of top-k items most similar to i for which the user has provided a rating, the

predicted similarity is:

ˆrui =
∑ j∈Ni Ad justedCosine(i, j)× ru j

∑ j∈Ni |Ad justedCosine(i, j)|
(2.11)

If we can predict a rating of a user to an item, then we can recommend for a user, the items whose

predicted score is the highest between the different candidates.

2.1.1.3 Item-based vs User-based

Neighborhood-based methods start with an offline phase and proceed to an online phase. In the

offline phase, the similarity values of pairs of users(or items) are computed to form peer groups

and store these groups for each user (or item). These peer groups are the top-k more similar

elements (items or users). In the online phase, predictions are formed based on the peer groups

and similarities as we’ve seen before. Let k’ be the maximum number of specified ratings by a user,

and p’ be the maximum number of specified ratings to an item. In this sense, k’ is the maximum

running time for computing the similarity between a pair of users, and p’ is the maximum running

time for computing the similarity between a pair of items. For user-based methods, the process

of determining the peer group of a target user may require O(m× k′) time. Therefore, the offline

running time for computing the peer groups of all users is given by O(m2× k′). For item-based

methods, the corresponding offline running time is given by O(n2× p′). Plus, every time there is

a rating update, a user is added, or a new item appears in the system, the entire neighborhood has

to be recalculated because there is no way of knowing beforehand, that if with an update to an

element, the updated element leaves the neighborhood of another element or enters another, or if

its neighbors change.

Item-based recommendations rely on the users own ratings and then recommend items similar to

the ones he intends to like. Inherently, since users own ratings are very indicative of items he might

like, item-based methods often provide better recommendations and are more likely to be accurate.

However, of course, this accuracy issue depends on the dataset at hand. In terms of processing
time, it is obvious that if a system has more users than items then user-based algorithms will

take a longer time to run than item-based ones and vice-versa. However, generally speaking, in

online businesses the amount of users is normally higher than the number of items which has some

consequences. This leads to pairs of users having a small number of co-rated items, but pairs of

items having a larger number of users who co-rated them. And since the neighborhood has to be

recalculated every time a new user or a new item is added, and since new users are added more

frequently, user-based methods spend more time recalculating neighborhoods for their users that

item-based methods do for their items.

2.1 Collaborative Filtering Systems 13

2.1.1.4 Locality-Sensitive Hashing

As mentioned in section 2.1.1.3, a problem with common neighborhood-based approaches has

to do with their scalability as data grows. Since classic algorithms need to verify each user or

item, to calculate the k-nearest-neighbors, it does not scale well with large amounts of data, so

it is not a very good option for stream-based recommender systems. One way of solving this

problem is to use ANN (Approximate Nearest Neighbor) search. Like the name suggests, instead

of calculating neighbors based on a heuristic we come up with a way of approximating the "true"

neighborhood model with another, creating a tradeoff between accuracy and performance. One

technique to perform ANN is called Locality-Sensitive Hashing. LSH attempts to create a way

with which there is a high probability of similar elements getting hashed to the same "bucket".

Locality-Sensitive Hashing defines a series of hashing functions which compose an hashing family.

Using AND-CONSTRUCTION [8], we can construct a random hashing function which hashes each

element to a bucket. Elements in the same bucket form a candidate pair. This means that, if we

have k hashing functions, h1,h2, ...,hk, elements, u and v are a candidate pair if for every i ∈ [0,k],

hi(u) = hi(v). To see neighborhoods of users or items we hash these elements and check other

users or items with the same hash, that is, mapped to the same bucket.

ALGORITHM 1
Locality-Sensitive Hashing

e← element
H← HashMap()
F ← [f1, f2, f1, ..., fn]
for f ∈ F do

H[f (e)]← e
end for

2.1.1.5 Clustering

Another possible way of solving the high complexity of the offline phase of the neighborhood-

based collaborative filtering mentioned in section 2.1.1.3 is by clustering the matrix. The idea

behind this is to reduce the number of elements to calculate similarities. Whether we decided

to use user-based or item-based the technique is based on clustering rows or columns and then

calculating the peer groups of users using only their clusters as a comparison. One common

algorithm for clustering is the k-means clustering. Assuming c is a map of centroids to a set of

rows in that cluster, g a set of centroids and M the ratings matrix.

The clusters are sets of users(for user-based) or items(for item-based), and the centroids are the

mean values of these sets of users or items respectively. The increase of efficiency results in

a decrease in accuracy because the closest set of neighbors inside the cluster has lower quality

than the ones who would be in an entire dataset. This tradeoff varies according to the number of

clusters one uses to wish for the k-means. As we increase the number of clusters, since clusters are

smaller we improve efficiency, but we reduce the accuracy. This section could have been covered

14 Traditional Recommendation Systems

ALGORITHM 2
K-Means Clustering

c← 0
oldg← 0
g← set of random generated centroids
while g 6= oldg do

oldg← g
for u/i ∈M do

centroid← min(g, i,measureDistance)
c[centroid]← i

end for
for (centroid,cluster) ∈ c do

g.remove(centroid)
g.add(mean(cluster))

end for
end while

in section 2.1.2, since it is considered to be a model-based approach, however, since if fitted

within one of the ways the neighborhood approach could be changed to perform more efficiently

it was positioned here.

2.1 Collaborative Filtering Systems 15

2.1.2 Model-Based Collaborative Filtering

To avoid the main drawbacks of neighborhood-based methods which are related to their intense

space and time usage as data grows making them non-scalable there is another type of collab-

orative filtering approach. Model-Based Collaborative Filtering attempts to compress a huge

dataset into a model and create a referencing mechanism to provide recommendations out of that

model [10]. In one way, like in machine learning, this type of collaborative filtering builds a model

summarizing the data available separating the model-building phase from the rating-prediction
phase. In traditional machine learning, as we are going to see, this can be closely related to Clas-
sification. In another way, there is no clear separation from what is a independent variable or not,

there is no separation from training set or testing set, and there is no separation between features

and data instances. These types of models have some advantages over neighborhood-based be-

cause they are more space-efficient, provide an higher training-speed and avoid overfitting. Over

the next sections we will describe a number of model-based methods for collaborative filtering.

2.1.2.1 Naive-Bayes

The Naive-Bayes model works best for categorical data on which ratings belong to a set of l

possible categorical values r ∈ {v1,v2, ...,vl}. For instance a rating could be Like, Neutral, or

Dislike, as presented in figure 2.7.

user_id item_id label
1 1 Like
1 2 Dislike
2 3 Dislike

Figure 2.7: Ratings table.

For collaborative filtering, if we are predicting a rating given by a user u to an item j, then the we

would like to determine the probability of user u rating j with one of the values he has rated items

with, represented by Iu. In other words, P(ru j = vs|Iu). According to the Bayes Theorem:

p(ru j = vs|Iu) =
P(ru j = vs)×P(Iu|ru j = vs)

P(Iu)
(2.12)

The expression P(ru j = vs) can be the fraction of users who rated the jth item with vs, including

only the ones who actually rated item j. The term P(Iu|ru j = vs) is determined using a naive
assumption, assuming conditional independence between all the ratings:

P(Iu|ru j = vs) = ∏
k∈Iu

P(ruk|ru j = vs) (2.13)

16 Traditional Recommendation Systems

Here, P(ruk|ru j = vs) is computed as the the fraction of users who rated the kth item as ruk given

that they rated the jth item as vs. In the end the value of vs with an higher probability value is

returned as a predicted rating.

2.1.2.2 Decision Trees

Decision Trees consist of a series of hierarchical partitioning of the data space into decisions,

which are known as the split criteria. The construction of the tree is a recursive process, which

starts at the root node, and from there on, at each node, an item’s attribute is picked as the split

attribute. The choice of the split attribute is through a heuristic, and there are many different ways

of doing this. The recursive process continues until all the items in the node’s set share the same

target attribute value or the number of items reaches a certain threshold [24].

Figure 2.8: Decision Tree for a predicted rating.

Regarding collaborative filtering, user feedback is used for each item in the system, and a decision

tree is built for each item which consumes a considerable amount of memory. The feedback

on a targeted item is considered to be a decision for the final prediction, as we can see in figure

2.8. When talking about recommender systems we need to take into account that there is no clear

difference between dependent and independent variables. So for if we are predicting a rating of

an item j for a user u, all the items in the system become independent variables except j whose

predicted rating will depend on the ratings of u for the items in the tree.

2.1.2.3 Latent Factor Models

These models leverage well-known dimensionality reduction methods to fill in the missing entries

[6]. By rotating the axis system, pairwise correlations are removed, and the reduced and rotated

representation can be estimated from the original incomplete user-item matrix. They are also

2.1 Collaborative Filtering Systems 17

known as Matrix Factorization methods, and combine row and column correlations in one shot

to estimate blank ratings.

A geometric perspective

For a geometric perspective on what latent factors are, in terms of recommendations, lets assume

we have a ratings matrix with m rows and n columns, R : Nm×n. For a geometric representation of

items, we would have m axis and the points’ coordinates would be the ratings users gave to those

items. So, suppose we had 3 items, all correlated, between each other, the 3 dimensional scatter

plot could be represented as a line. This also means that the rank of the matrix is equal to 1. In

this case, only one rating would need to be specified so that the other 2 could be predicted, by

intersecting the given rating hyperplane with the line. This line is called the latent vector. We can

generalize this and say if the R matrix has a rank p, such as p << min(m,n), the predicted ratings

will be the intersection of the p-dimensional hyperplane with the latent vectors. We attempt to

represent all the points scattered in the domain space as an approximation projected on the line, as

we can see in figure 2.9.

0
2

4 0

2

40

2

4

Figure 2.9: Latent factor models - Geometric view.

An algebraic approach

Any matrix R ∈ Nn×m, where n is the number of rows and m is the number of columns, and

rank(R)<< min(m,n) = k can be expressed as:

R =UV T ,U : Nm×k,V : Nn×k (2.14)

We can interpret the columns of U as the k basis vectors of the column space of R and the rows as

the coefficients of the basis vectors of the row space of R. In the same way, the rows of V contain

the coefficients which combine the basis vectors of U into the column space of R. As the rank of

18 Traditional Recommendation Systems

the matrix grows, the equation turns into an approximation:

R≈UV T (2.15)

The absolute error is calculated by ||R−UV T || where R−UV T is the residual matrix. We can

see that the user-item interactions are now going to be represented as inner products in this space

[22]. That being said, it is worthwhile to formulate a valid error expression. The squared error
is calculated using the absolute error to the power of 2: ||R−UV T ||2. Taking this expression, the

mean squared error is computed by dividing the squared error by the n observed ratings:

MSE =
||R−UV T ||2

n
(2.16)

.

Introducing the concept l2-regularization, which penalizes large weights in the error function to

lower model variance [3]:

L2 =
||R−UV T ||2

n
+λ × (||U ||2 + ||V ||2) (2.17)

.

The term λ is the regularization term.

Matrix Factorization

Following the previous idea, each column of the result of the factorization is a latent vector whose

dimensionality is equivalent to the number of latent factors. The rows in U are known as user
factors and the rows in V are known as item factors. These last 2 factors represent the affinity of

users and items respectively towards the concepts on the original R matrix. So if we are trying to

predict a rating of a user i to an item j:

r̂i j ≈Ui.V T
j (2.18)

However, we are assuming that the factorized matrix R was not sparse and was entirely filled with

ratings. This is not true in real case situations so, the question lies on how to factorize sparse

matrices. Before jumping into that let us just make a note on the special case of explicit feedback.

This type of feedback causes some issues due to the differences in the popularity of items and

rating scales of users. Therefore, it is important to create a preprocessed matrix to be factorized

by normalizing the ratings.:

normalized_rua = rua−0.5× ru−0.5× ra (2.19)

2.1 Collaborative Filtering Systems 19

Stochastic Gradient Descent for Matrix Factorization

Stochastic Gradient Descent is an algorithm which intends to optimize an objective function in a

smooth way making use of the gradient function of the error associated with the objective function,

known as the loss function. Let S be a set of user-item pairs that have been rated in the rating

matrix R, where each pair is (i,j), i ∈ {1,2,3, ...m}, j ∈ {1,2,3, ...n}, and S = (i, j) : ri j 6= null

ALGORITHM 3
Stochastic Gradient Descent for Matrix Factorization

U ← random
V ← random
while not(convergence) do

RS← randomize(S)
for (i, j) ∈ RS do

ei j← ri j−−→ui .
−→v j−−→utmp← ui +α× (ei j×−→v j −λ ×ui)−−→vtmp← v j +α× (ei j×−→ui −λ × v j)−→ui ← utmp−→v j ← vtmp

end for
end while

On the pseudocode, α is the learning rate, also known as the step size. This parameter is set in a

way to influence the convergence of the algorithm. With a larger value, bigger steps are taken at

every iteration and the algorithm might diverge. Lower values make the algorithm have an higher

probability to converge, with an higher amount of iterations. The convergence criterion can be

understood as when the rating error has reached an acceptable value or when a maximum number

of iterations has passed. At each iteration the algorithm does one passage through the dataset,

updating the values of the factorized matrices according to a learning rate and an error. λ stands

for the regularization factor which is used to avoid overfitting. When the algorithm ends, we will

have two matrices, U and V, and can predict ratings as previously discussed. For data stream

mining it is common to implement algorithms in a way that it can be distributed among different

independent clusters. This is generally difficult to do for SGD, however, there is a proposal to

do so in [13], with the exploit of the summation form of the loss function at each iteration by

computing the local gradients in parallel and summing them.

Alternate Least Squares for Matrix Factorization

Alternate least squares attempts to minimize the l2-regularized error by fixing a set of latent

vectors(e.g matrix U) and treating it as a constant and updating the other set and then alternating

the fixed set to the opposite(V) and updating the other one. We keep doing it back and forth until

convergence. Assuming we are predicting a rating of a user i to an item i, let us try to minimize

20 Traditional Recommendation Systems

the l2-regularized error with ALS:

L(R) = ||Ri j−UiV T
j ||2 +λ × (||Ui||2 + ||Vj||2) (2.20)

The gradient function ∇(L(R)) is computed as:

∂L(R)
∂U

= RiVj(VjV T
j +λ I)−1 (2.21)

∂L(R)
∂U

= R jUi(UiUT
i +λ I)−1 (2.22)

Let S be a set of user-item pairs that have been rated in the rating matrix R, where each pair is (i,j),

i ∈ {1,2,3, ...m}, j ∈ {1,2,3, ...n}, and S = (i, j) : ri j 6= null

ALGORITHM 4
Alternate Least Squares for Matrix Factorization

U ← random
V ← random
while not(convergence) do

for i ∈ 0...m do
for j ∈ R(i, j) do

Ui← R jVj(VjV T
j +λ I)−1

end for
end for
for j ∈ 0...n do

for i ∈ R(i, j) do
Vj← RiUi(UiUT

i +λ I)−1

end for
end for

end while

2.2 Content-Based Recommender Systems 21

2.2 Content-Based Recommender Systems

One problem with collaborative filtering has to do with the cold start concept. When a product is

inserted into the system, it initially has no ratings whatsoever by any user, making it impossible to

recommend that product. Content-Based recommendation instead of focusing on all the ratings

by different users across the platform, makes use of the set of attributes that can describe an item,

and try to match users to items they have liked in the past. They acquire these attributes by looking

at data from item descriptions, which are common in large scale web platforms, such as Shopify

whose stores provide descriptions for their products. These recommender systems also analyze

user feedback, being it either implicit or explicit, but only for the user whose recommendations

are being calculated for. Then a user profile is built mapping user feedback to item attributes. An

advantage of content-based models is, as previously mentioned, when it is used for cold-start sce-

narios with items, partially alleviating the problem. However, cold-start scenarios with users are

still a problem, and disregarding ratings from other users may lead to a repetitive recommendation

of the same set of products. This is explained by the fact that the obvious choices of recommenda-

tion may be items that the user has already consumed, or at least has already seen, since the set of

attributes for the items are similar. Recommending always the same items will pose little surprise

to the user. Now, a series of phases that build up to be a content-based recommender system will

be described.

2.2.1 Unupervised feature selection

Normally, items are represented with unstructured documents(plain text), so one should apply

feature extraction techniques for items to representable as a Bag-Of-Words or as a multidimen-

sional vector. However, before that, the text has to be preprocessed and cleaned, with a series of

techniques listed below:

• Remove Stop Words remove a set of useless words such as "a", "at", "an", which appear

very frequently in the text and are not very specific for the item at and.

• Tokenize the text by breaking down the document’s text into different words and repre-

senting a document in memory by its words. One example is to divide the document by the

space character and getting the words that way.

• Stemming the words which means to get the base word and removing the derivational

affixes.

• Lemmatization by removing the inflectional ending of the words and getting the root word

ensuring it belongs to a language.

After these modifications, each word will be transformed into a vector-space representation which

will be composed by the word itself and its frequency. The document will be represented as a

bag of words which is a set of vector-space representations of keywords. Words are known in

22 Traditional Recommendation Systems

information retrieval systems as terms. The raw frequency is not used, instead, firstly an inverse
document frequency is calculated due to the existence of more common words who were not

eliminated when removing stop words, which have a high frequency and are statistically less

discriminative. Assuming n as the number of documents in a document collection, or as the

number of item descriptions(if there is one per item, this will mean the number of items), and ni

the number of items in which the term i occurs:

IDFi = log(n/ni) (2.23)

Then, we can use the raw term frequency or a normalized form of it, using log or squared root

functions to calculate the Term Frequency - Inverse Document Frequency of the word in the

document. Assuming xi the raw frequency of the ith term:

T F− IDFi = f (xi)× IDFi (2.24)

Where f (xi) = xi or, using a normalized version f (xi) = log(xi), f (xi) =
√

xi.

2.2.2 Supervised Feature Selection

In the previous section, we discussed unsupervised feature selection with the removal of stop

words and the calculation of tf-idf values for the keywords. These methods do not take into

account user feedback, so now we will describe a set of useful techniques that do so.

2.2.2.1 Gini Index and Entropy

The Gini Index is commonly used for binary or ordinal ratings. Assuming a specific term w, t as

the number of possible ratings the documents can have and {p1(w), p2(w), ...pt(w)} as the fraction

of items rated with one of those t possible values:

Gini(w) = 1−
t

∑
i=1

pi(w)2 (2.25)

The values of the previous equation has a range of [0,1− 1
t] and lower values suggest an higher

discriminative power for the term. Entropy is very similar in principle to the Gini index except

that information-theoretic principles are used to design the measure.

Entropy(w) =−∑ i = 1t pi(w)log(pi(w)) (2.26)

2.2 Content-Based Recommender Systems 23

2.2.3 User Profiles and Filtering

Firstly let us assume we have a set D of documents who can be interpreted as textual descriptions.

Some of these items are labeled(rated) by the active user and some of them are not. The objective

is to be able to label the ones which are not yet labeled with predictions. To do so, a model needs

to be computed for every user, differing from matrix factorization, where we had a global model

for all the users. Now we will explore a series of algorithms that can be used for content-based

filtering.

2.2.3.1 Nearest Neighbor Classifier

Lets imagine we have two documents −→x = {x1...xd} and −→y = {y1...yd} composed of normal-

ized term term frequencies calculated using either tf-idf or other supervised techniques already

discussed. In −→x the similarity between them can be calculated as cos(−→x ,−→y). For each document

whose label we are trying to predict, we can calculate their k-nearest neighbors and then average

their ratings using a weighted average and return the value as a prediction. The problem with this

technique is its complexity, which is linear. We need to determine the nearest neighbors of all the

documents whose labels are not known, Du, and the calculations grow linearly as the amount of

documents whose ratings we know, Dl , grows: O(|Du|×|Dl|). One way of solving this is through

clustering.

2.2.3.2 Naive-Bayes Classifier

For this section, we will assume the Bernoulli model for data representation where labels belong

to the 0,1 set. Lets assume we have a user u and a document −→x , where −→x = {x1...xd} What we

are trying to compute is the P(u liking −→x |x1...xd). Since we are dealing with binary ratings we

can express the option of user u towards item−→x by, u(x). So we transform the previous expression

into P(u(x) = 1|x1...xd).

P(u(x) = 1|x1...xd) = P(u(x) = 1)×
d

∏
i=1

P(xi|c(x) = 1)

P(u(x) = 0|x1...xd) = 1−P(u(x) = 1|x1...xd)

Here, P(u(x) = 1) is the fraction of instances where the user has liked an item. For overfitting
purposes we can use Laplacian smoothing:

P(u(x) = 1) =
|u(1)|+α

|u|+2×α
(2.27)

Here, P(xi|u(x) = 1), is the fraction for the number of times when a user has liked an item and

the ith feature of that item takes the value of xi. This computation can also be processed with

Laplacian smoothing. In the end the predicted rating should be the one with an higher probability.

24 Traditional Recommendation Systems

2.2.3.3 Decision Trees

In section 2.1.2.2, we explored the idea of using decision trees for collaborative filtering. For

content-based recommenders, the features of each of the items are used to build a model that

explains the user’s preferences, so the information gain of every feature is used as splitting criteria.

In [39], they remember the well-known ID3 tree algorithm. Lets consider A = {a1,a2, ...,an}, as

a set of attributes set, V = {v1,v2,v...,vi} as a set of sets of values for those attributes, where vi j

represents the jth possible value for the ith attribute. In the case of collaborative filtering, A could

be the items in the system, V could contain the values (binary or not) which users have rated that

item with, and for content-based recommender systems, A could be item’s attributes (color, genre,

etc..) and V the set of possibilities for those attributes. To construct the tree:

ALGORITHM 5
Decision Trees

if vi contains always the same value then
Tree.append(Leaf with that value)

else
abest ← attribute for which E(a) is the min
for vbest,i do

Tree.append(Node from abest to recursive(vbest))
end for

end if
return Tree

Chapter 3

Incremental Recommendations

Incremental algorithms are becoming a serious need for online processing, due to their inherent

nature of being able to process incoming data streams incrementally and updating models. In-
cremental learning aims at building a model that adapts to incoming and dynamic change and

reducing the cost of model update and retraining [34]. This makes incremental learning specially

useful for data stream mining. In this chapter, we will discuss a series of incremental algorithms

directly applied in the recommendation field, as well as some related work about other potentially

useful incremental algorithms. Such as in 2 we will divide the following sections according to

their specific field on recommendation systems. All the approaches about to be mentioned are

located in the Collaborative Filtering area of recommendation systems.

3.1 Neighborhood-based

3.1.1 Item-based

For both of the approaches we are about to see, they focus on the usage of implicit ratings, so an

item i could be represented as
−→
i = {1,0,0,1,}. In both approaches the pairwise similarity is

calculated using cosine similarity:

cos(
−→
i ,
−→
j) =

|−→i ∩−→j |√
|−→i |

√
|−→j |

(3.1)

In equation 3.1, |−→i ∩−→j |, represents the number of users who co-rated items i and j, and
√
|−→i |

stands for the L1 norm or Manhattan Distance of
−→
i , or the number of users which rated item

−→
i .

The first example we are going to look at is [25] which uses the concept of activation weight,
representing this weight of an item i as W(i). Let Qa(i) be the items in the neighborhood of i seen

by user a and Q(i) the items on the neighborhood of i. For an active user, ua, we calculate every

25

26 Incremental Recommendations

activation weight for the items he has not seen yet:

W (i) =
∑ j∈Qa(i) S(i, j)

∑ j∈Q(i) S(i, j)
(3.2)

Then, we recommend the items with an higher activation weight. They add incrementalism by

also storing another matrix(besides S), denoted as Int with the numbers of users who evaluate each

pair of items. So, if we represent a data stream Ia which holds items a user a has rated:

ALGORITHM 6
Incremental IB CF

for Pairs (i, j) ∈ Ia do
Inti j← Inti j +1
Si j← cos(

−→
i ,
−→
j)

end for

Another two approaches were used in [20], the Dynamic Index and a Parallel procedure of the

dynamic index algorithm based on the MapReduce paradigm. Their dynamic index algorithm

uses an inverted index to identify affected pairs of items when a new data stream arrives, making

use of data sparsity. User binary preferences are called pageviews. They introduce the concept

of recommendable items, which consist on the set of items that can be recommended at a given

point in time because they gather a set of characteristics(i.e, stock). To incrementally update these

sets they store in a data structure, a matrix of n×m items containing all item-pair intersections

at a given time t, Mt ∈ Nn×m, and a array of items l1-norms Nt ∈ Nn. In algorithm 7, Ln repre-

ALGORITHM 7
Dynamic Index

for (u, i,s) ∈ Pt do
for j ∈ Lr[u] do

Mi, j←Mi, j +1
end for
if i ∈ Rt then

for j ∈ Ln[u] do
Mi, j←Mi, j +1

end for
Lr[u]← Lr[u]∪{i}
Ni← Ni +1

else
Ln[u] = Ln[u]∪{i}

end if
end for

sents an inverted index of users to non recommendable items and Lr stands for the same but to

recommendable ones. From this algorithm they concluded that there is an independence between

the contributions of different users to the similarity of two items. This is ideal, because we can

3.1 Neighborhood-based 27

now separate each user in a different map-procedure and then the reduce-process will consist on

summing the different matrices M and vectors N.

3.1.2 User-based

In this section we will focus on the work proposed in a paper [27], on which the authors propose

an interesting way of incrementally updating the user similarities, making use of the Pearson

Correlation terms. Remembering the formula in 2.3, in the following expressions, A refers to the

covariance and C and D refer to the variance.

A =
B′√

C′
√

D′

B′ = B+ e

C′ =C+ f

D′ = D+g

(3.3)

Considering a new rating incoming as a tuple (ua, ia,rua):

ALGORITHM 8
Incremental UB CF

if uy had already rated ia then
if ua had never rated ia then

e← (rua,ia− r′ua
)(ruy,ia− ruy)−∑

n′
h=1(r′ua

− rua)(ruy,ih− ruy)

f ← (rua,ia− r′ua
)2 +n′(r′ua

− rua)
2−2∑

n′
h=1(r′ua

− rua)(rua,ih− rua)
g← (ruy,ia− ruy)

2

else
e← (r′ua,ia− rua,ia)(ruy,ia− ruy)−∑

n′
h=1(r′ua

− rua)(ruy,ih− ruy)

f ← (r′ua,ia−rua,ia)
2+2(r′ua,ia−rua,ia)(rua,ia−r′ua

)+n′(r′ua
−rua)

2−2∑
n′
h=1(r′ua

−rua)(rua,ia−
rua)
g← 0

end if
else

if ua had never rated ia then
e←−∑

n′
h=1(r′ua

− rua)(ruy,ih− ruy)

f ← n′(r′ua
− rua)

2−2∑
n′
h=1(r′ua

− rua)(rua,ih− rua)
g← 0

else
e←−∑

n′
h=1(r′ua

− rua)(ruy,ih− ruy)

f ← n′(r′ua
− rua)

2−2∑
n′
h=1(r′ua

− rua)(rua,ih− rua)
g← 0

end if
end if

When calculating the similarities they split the Pearson Correlation into 3 factors, B’, C’ and D’.

All these factors are calculated using the previous ones plus the increments e, f and g. If we

28 Incremental Recommendations

consider the similarity between two users, we must consider their co-rated items for calculations,

represented as n’. This way, the covariance between two users ua and uy:

covariance(ua,uy) =
n′

∑
h=1

(rua,ih− rua)× (ruy,ih− ruy) (3.4)

The variance of an user a is calculated as:

variance(ua) =
n′

∑
h=1

(rua,ih− rua)
2 (3.5)

In algorithm 8, you may notice the usage of "’" next to some variables, which are meant to repre-

sent the new values after the update. For instance, r′ua
, stands for the new average rating of user a

after the new processing of the incoming rating.

3.2 Model-based

3.2.1 Matrix Factorization

When we talked about matrix factorization in 2.1.2.3, we did not address the issue of what would

have to be done, if a new rating by a user would arrive. The algorithm trains a model in order to

minimize an L2-regularized squared error for the values in the user-item matrix which are known.

If we factorize a ratings matrix R into 2 matrices U and V, then we want to minimize this error as

minU,V ∑(u,i)∈D(Rui−Uu.V T
i)2 +λ (||Uu||2 + ||Vi||2).

Remember that Uu×V T
i was the predicted rating R̂ui, and λ acts as the regularization term, which

is used to avoid overfitting. We described a stochastic gradient descent approach for factorizing

the ratings matrix, however the discussed algorithm would need to be repeated every time a new

update is made. In [44] the authors propose a subtle alteration which can deal with incoming data

streams more efficiently. Their work was based on positive only feedback so in the pseudocode

below the error calculation was changed and adapted to not only positive feedback. Using the

notation we previously used when describing the latent factor models, when an incoming set D of

incoming data stream pairs user-item (i,j), the authors Incremental Stochastic Gradient Descent
is as follows:

ALGORITHM 9
Incremental Matrix Factorization

for (i, j) ∈ D do
ei j← ri j

−→ui .
−→v j−→ui ←−→ui +η(ei j×−→v j −λ ×−→ui)−→v j ←−→v j +η(ei j×−→ui −λ ×−→v j)

end for

3.3 Prequential Evaluation 29

The main difference is the elimination of the outer loop of the algorithm, causing only one passage

on data per incoming data stream and the elimination of shuffling.

3.3 Prequential Evaluation

One question arises when thinking about a method to evaluate these incremental machine learning

algorithms. As previously discussed, these algorithms are dynamic and do not focus on a batch

of data, instead deal with live dynamic data stream scenarios. A solution to this problem lies in

the field of Prequential Evaluation, which creates a learning curve, monitoring the evolution of

learning as a live process [11]. Prequential Evaluation is a method of evaluating each element

of the data stream before being processed by an algorithm, which causes the first elements of the

(timely ordered) stream to cause an impact on the error rate since the model has known very few

instances when evaluating them. The machine learning model is not stationary, and will change as

data grows. The prequential error can be calculated using a sliding window at time i using:

Pw(i) =
∑

i
k=i−w+1 ek

w
(3.6)

This is useful in order to avoid influences of errors at the beginning of the processing when little

information was known beforehand, and we can visualize how well the algorithm is performing

for the latest known information. In the equation, ek represents the error.

30 Incremental Recommendations

Chapter 4

Software library for stream-based
recommender systems

The main purpose of this work lies in this chapter which will explain the design and contents of

the library: increc.

Increc is meant to be an open-source software library, designed in the field of incremental learn-
ing to deal with data streams for recommendation purposes. This chapter contains explanations

regarding the implementation of increc’s algorithms as well as used test metrics, evaluators, data

structures, and existent dependencies. This chapter will also make reference to choices related to

the chosen tech stack and how the library is being packaged and deployed. Increc focuses on the

implementation of incremental Collaborative Filtering algorithms in contrast to Content-Based
ones. This is explained due to the inherent simplicity in generalizing Collaborative Filtering prob-

lems and the difficulty in doing the same for Content-Based ones. Collaborative Filtering can be

used every time there are user and item interactions that can be modeled in some specific way.

This is more generic than Content-Based problems where user/item profiles might need to be built

out of text information, or image/video pixels, or even audio feedback, which makes the problem

more domain-dependent.

4.1 Problem Definition

Before any further discussion, we should first look at the problem at hand and try to visualize

how that affects the overall architecture. When a platform has an online recommender system,

it receives a stream of timely ordered data, which in turn will be incrementally processed by the

system. This data includes information regarding user actions, and it can be represented by a tuple

(userid , itemid ,value) rating, where userid represents the user, itemid is the item identifier and the

value is the rating’s preference for the item, typically expressed by a numerical value within a

defined range. When considering implicit feedback, that value does not exist, and every pair of

user/item is interpreted to be a positive interaction which, in increc is represented by the value

1. Therefore, there must be a clear distinction and separation in the library between algorithms

31

32 Software library for stream-based recommender systems

regarding the type of input they receive. The first problem which immediately appears is that

naturally, we need to dynamically scale the used data structures to accommodate new users and

items. This problem is related to memory. A dynamic data structure is needed to be able to cope

with this problem. The second problem is related to scalability. As the number of items and

users grows, so does the number of necessary computations to keep recommendations updated

which after some time can be a problem. In this chapter, we will explore how different algorithms

react to this problem. Another problem arises in measuring the efficiency and accuracy of the

recommendation model. This means we need to verify how much time an algorithm spends at

processing an incoming rating and making a recommendation as well as if the recommendations

are plausible or not, by including some evaluator within the library. The final problem is related

to visualization because it makes sense to have some sort of mechanism to visualize how each

algorithm evolves through time.

4.1.1 Related work

Regarding the purpose of this work, it is worth mentioning the existence of several recommen-

dation libraries that already exist and represent state-of-the-art knowledge in this field. The first

example is called LibRec [15]. LibRec is written in Java and implements a set of non-incremental

algorithms for rating-prediction and item ranking in the collaborative filtering scenario. Another

example is My Media Lite [12], written in C#, also used in collaborative filtering for rating pre-

diction and item prediction with positive-only feedback. Another example is recommenderlab,

[17], a package written in the R language which besides containing several collaborative filtering

algorithms, also contains hybrid recommendations. Finally, a note on the usage of deep learn-

ing for recommender systems, which does not fall in the purpose of this document, in May 2020

Nvidia announced NVIDIA Merlin which is a framework that aims to provide fast feature en-

gineering and high training throughput to enable fast experimentation and production retraining

of deep learning recommender models [1]. The field of incremental recommendation has a lot of

research and development to be done, but incremental algorithms are not new to machine learning.

In [38], a new algorithm ID5R was proposed to incrementally update decision tree models, which

can be useful for decision tree algorithms on content-based recommendation. Another example is

[31], where they propose new ideas for incrementally updating probabilities in the Naive Bayes

context. There is a lot of background on incremental algorithms, which with some tuning can be

used for the recommendation field. Since the main topic of this work is building a software library,

it is worth mentioning the libraries on the field of incremental algorithms. We can start with MOA,

Massive Online Analysis which is related to the WEKA project and written in Java. MOA has a

collection of Machine Learning algorithms that focuses on data stream mining as well as tools for

evaluation and benchmarking. Similar to MOA, we also have another implementation in Python

called Scikit-Multiflow, following the same philosophy as the well-known Scikit-Learn. Finally,

it is of course worth mentioning the libraries in the field of incremental recommendation. Flurs,

[36], is a Python library, used for online recommendation, with incremental collaborative filtering

4.1 Problem Definition 33

algorithms. Another example is FlowRec [28], built on top of Scikit-Multiflow with baseline rec-

ommendation algorithms and the usage of prequential evaluation. However, the problem with the

existent libraries is the scarcity of implemented approaches. There is no library which allows the

development and evaluation of stream-based recommender algorithms and this work aims to fill

that hole. Current approaches are too much task-specific and not easy to extend.

4.1.2 Architecture

Figure 4.1: Increc’s architecture diagram.

As modeled in figure 4.1, Increc is designed around 6 main modules: Stream, Evaluator, Graphic,

Algorithms, Data Structures and Utils.

• The Stream module contains methods for generating data streams, namely through file

consumption.

• The Evaluator module contains solutions which tackle the measurement problem.

• The Collaborative Filtering module contains implementations of several algorithms.

• The Data Structures module contains some classes which act as data structures used by the

algorithms.

34 Software library for stream-based recommender systems

• The Graphic module contains strategies related to graph constructions for later analysis.

• The Utils module contains utility functions shared across modules.

There are two more modules in the code Examples and Test. The first one includes working

examples of how to use the contents of the library. The second module refers to unit tests required

for continuous integration.

4.1.3 Why Python?

When starting increc a choice of programming language was needed and so Python was chosen.

This section aims to explain why.

It is true, that being an interpreted language has its performance disadvantages when compared to

other languages such as C++, however, python has a sort of syntactic sugar which makes it very

easy to understand and perform tasks. This is specifically useful for complex machine learning

tasks which are in turn easier to implement due to the language’s simplicity. Besides this, python

already has some useful powerful libraries which make current machine learning tasks easier to

implement, the most common one being numpy. Another advantage being lingua franca for data

science and machine learning.

Increc was written using Python3.

4.1.4 Design patterns in action

Increc was built around the Composite design pattern for OOP. Since we are dealing with hierar-

chical relationships between objects, due to the inherent division between algorithm types and the

feedback which they are expected to receive which in turn leads to the need to compose objects

into a tree structure this design pattern is very useful. Even though Composite is meant to be

used with implemented interfaces, in Python we do not have that functionality, so the workaround

was to use multiple inheritance. In practice, each final algorithm is represented by its own class

and extends the parent classes it needs for its supposed behavior. In example, the implicit matrix

factorization algorithm which uses stochastic gradient descent extends the implicit matrix factor-

ization class as well as a stochastic gradient descent one. If we wished to implement a matrix

factorization algorithm which dealt with implicit feedback and used alternate least squares to train

the decomposed matrices we would create a class for ALS and a class for the final algorithm which

would extend ALS and the implicit matrix factorization class.

4.2 The algorithms module

This section explains in detail the implementation of increc’s algorithms as well as its design

choices. The implemented algorithms include:

1. Explicit user-based neighborhood

4.2 The algorithms module 35

2. Explicit user-based clustering

3. Implicit user-based neighborhood

4. Implicit user-based clustering

5. Implicit item-based neighborhood

6. Implicit item-based clustering

7. Implicit item-based locality-sensitive min-hashing

8. Implicit user-based locality-sensitive min-hashing

9. Implicit matrix factorization

10. Explicit matrix factorization with matrix preprocessing

11. Explicit matrix factorization without matrix preprocessing

Each algorithm is represented by a class with its name and due to similarities between some of

them, some superclasses were implemented to avoid code duplication.

The CollaborativeFiltering class

Every collaborative filtering algorithm needs to store a ratings matrix and must keep track of the

model’s users and items. The ratings matrix is a Dynamic Array which will be explained in

section 4.3.1, but it can be understood, for now, as an array of arrays where each array represents

a row, which in turn represents a user vector and each element of the array represents the values

of the ratings of the user to the items represented by the indexes of the array. Every column,

represents an item vector. For example, the 7th array at the 5th position holds the value of the

rating of the 7th user to the 5th item. Since there is the possibility that these algorithms can be

used intermittently, increc provides the possibility to receive previously computed models, to avoid

repeated initial computations. The function _init_model checks if the model is empty returning

an initial computed model with the callback function provided as a parameter if that is true. Since

we are dealing with dynamic environments we must keep track of all the users and items that are

required for computations at a given time. This class stores these identifiers in two sets, one for

users and another for items, and this is a great help to prevent unnecessary computations of items

and users which do not yet exist in the system. This class is extended by all the implemented

algorithms and is not supposed to have objects directly instantiating it. Its constructor expects to

receive the user-item matrix. For standardization purposes, each algorithm is expected to have a

new_rating method which receives a tuple parameter of the form (user_id, item_id, value). For

implicit algorithms, value is omitted and assumed to be equal to 1. Besides this, a recommend
method is also implemented which expects to receive the user to process recommendations for,

the number of items to recommend, and an optional parameter which states if repeated items can

36 Software library for stream-based recommender systems

be included or not(defaults to false). Explicit feedback algorithms also contain a predict method

which, like the name suggests, predicts a user’s rating o an item.

4.2.1 Matrix Factorization algorithms

Figure 4.2: Matrix Factorization implementation diagram.

In this section, we will discuss the implementation of matrix factorization methods making a

distinction on implicit and explicit feedback and the algorithm through which matrix factorization

is obtained. As explained in 4.2, there is a clear separation between the implicit and explicit class

and the used algorithm for updating the U and V matrices. For notation purposes, the U matrix is

used for the user latent factors and the V matrix is used for the item latent factors.

The MatrixFactorization class

There is a generic class named MatrixFactorization which extends CollaborativeFiltering and

holds code to initialize the decomposed matrices, U and V, through the _init_u_v, _init_u and

_init_v functions as well the prediction and recommendations logic, with the predict and recom-
mend functions respectively. Its constructor expects to receive the standard collaborative filtering

parameters as well as possible pre-computed U and V matrices and the number of latent factors

to be used on the decomposed matrices. As explained before in section 2.1.2.3, the goal of matrix

factorization is to decompose the ratings matrix in 2 other matrices reducing the columns and rows

high dimensionality to a number of latent factors. This way, the predicted rating of a user i to an

item j results in the inner product of the ith row of matrix U and the jth column of matrix V.

The decomposed matrices are instances of DynamicArray, and are initialized with random values

in the range [0,1] before training. After the initialization, the _initial_training function takes into

account all the ratings in the user/item matrix to update the factors.

4.2 The algorithms module 37

The predict function receives a user and an item, selects the respective row and column from

the U and V matrices and returns the inner product of these two vectors using numpy’s inner
function. The recommend function is used by all subclasses and sorts the items according to a

heuristic defined in each subclass and is passed along as a function parameter. In increc matrix

factorization procedures use SGD to update the U and V factors.

The SGD class

This class intends to define the way the U and V decomposed matrices are updated, according to

the Stochastic Gradient Descent algorithm, as explained in section 2.1.2.3 and adapted in section

3.2.1. Its constructor expects to receive a function that returns the default value for new elements of

the matrices, which is important because we are dealing with dynamic environments and dynamic

data structures, a learning rate and a regularization factor. The updates are done using the

_update_factors function which expects to receive a user, an item and the associated error. This

updates the row associated with the user on U, the column associated with the item on V. For this

implementation, the versatility of numpy arrays was useful since it made vector operations, when

updating U and V factors, easier to implement and more efficient during runtime.

4.2.1.1 Implicit Matrix Factorization

The MFImplicitSGD

This class extends MatrixFactorization and SGD. Its constructor accepts the standard Matrix-

Factorization parameters. Regarding this implementation, it is worth mentioning the new_rating
and recommend functions. When processing a new rating the error is calculated as 1− prediction,

which is passed as a parameter to the _updated_factors function. The matrix is updated and the

user and item will be added to the respective sets. The overloaded recommend function uses the

parent’s recommend function as in section 4.2.1 with a heuristic defined as recommending the

products whose prediction is closest to 1.

4.2.1.2 Explicit Matrix Factorization

Regarding Explicit Matrix Factorization, it is worth mentioning that there are two different

implementations. The main difference is the usage of matrix preprocessing.

The MFExplicitSGD class

This class extends MatrixFactorization and SGD. Its constructor accepts the standard Matrix-

Factorization parameters. The procedure is the same as 4.2.1.1, however the error is calculated

using the target rating actual value, as actual_value− predicted. The overloaded recommend
function uses the parent’s recommend function as in section 4.2.1 with a heuristic defined as

recommending the products whose rating prediction is the highest.

38 Software library for stream-based recommender systems

The PreprocessMatrix class

This class extends MatrixFactorization. Its constructor accepts the default parameters, plus

an array of user and item average ratings, as well as a preprocessed ratings matrix. The

_init_user_avg and _init_item_avg functions initialize the respective arrays, returning a Dynami-
cArray whose elements are the average rating of users and item respectively.

The _init_preprocessed_matrix initializes the preprocessed matrix by normalizing ratings through

user and item average ratings as referred in section 2.1.2.3, returning a DynamicArray with nor-

malized values. The predict function makes use of the _predict_prep function which just returns

the superclass predict function results and then removes the previous normalization.

The MFExplicitPrepSGD class

This class extends PreprocessMatrix and SGD. The main difference is in the new_rating which,

for every new rating it updates the user and item average ratings, the preprocessed matrix and the

U and V factors based on the previous updates.

4.2.2 Neighborhood-Based algorithms

This section will be dedicated to the implementation of neighborhood-based algorithms for online

recommendations on increc. The general flow of these algorithms is to find neighbors of users

and items and to recommend items based on those neighbors for a user. There is a distinction

between standard neighborhood approaches and procedures that use element clustering, which

helps reduce the complexity of the neighbors calculation. There is also a locality sensitive hashing

implementation for both user and item-based methods.

4.2.2.1 Standard neihborhood approach

The standard neighborhood approach in increc computes the entire neighborhood at every itera-

tion.

The NeighborhoodCF class

Since all of the standard neighborhood-based collaborative filtering algorithms implemented in

increc have this common ground it made sense to create a common neighborhood class, named

NeighborhoodCF which deals with neighborhood-related logic. Its constructor accepts the num-

ber of neighbors, as well the neighborhood of each element whether it is a user or an item. The

_init_neighborhood function calculates the neighborhood for each element (user or item) and

receives the candidates as a parameter. The returned neighborhood is a DynamicArray object

where each element is the return value of the _neighborhood function for each element. This

function returns the k-nearest-neighbors. In increc, knn is implemented in the knn function in

the utils module, using the Python built-in sorted function. Python’s sorted function uses a strat-

egy implemented by Tim Peters in 2002 [7] and has a complexity of O(n log(n)) for average and

4.2 The algorithms module 39

worst cases. Knn receives the candidates, a function which is a heuristic to sort elements by and

the number of elements to return.

Figure 4.3: Neighborhood collaborative filtering implementation diagram.

There is a clear distinction between user-based and item-based methods which are divided be-

tween two different classes: UserNeighborhood and ItemNeighborhood. Their goal is just to

specify which element set are neighbors going to be computed for, the item set fot ItemNeigh-

borhood and the user set for UserNeighborhood. All these classes are meant to only concern

themselves with neighborhood-related logic. There is also a distinction, seen in figure 4.3, be-

tween classes which calculate element-wise similarities and classes which compute neighbors

using those similarities.

4.2.2.2 Clustering approach

The clustering approach incrementally separates the element sets into clusters in order to reduce

the neighborhood search only for the clusters where each element is mapped to. The incremental

approach follows the work of [16].

The Clustering class

This class is implements an incremental version of k-means clustering as described in section

10. It extends the NeighborhoodCF class and besides the default parameters it also expects to re-

ceive a similarity threshold, the clusters, the centroids and a cluster map. The _init_centroids
function generates a random centroid from the element set (which can be the users or the items),

returning a list of size 1, containing the initial centroid. The _init_clusters function returns a list

of sets, which are the clusters. Finally, _init_cluster_map returns a Python’s dictionary which

maps every element to the cluster they are currently in. The neighborhood is calculated for every

cluster, which is done by the _init_neighborhood function, which iterates through each cluster

40 Software library for stream-based recommender systems

calling the _init_neighborhood_cluster function to each cluster. This last function returns a Dy-
namicArray whose elements are the neighbors of each element in the cluster. The clusters and

neighbors are updated through the increment function. This function receives an identifier(user

or item), and checks the similarity between that element and all the centroids. It then maps the

element to the closest centroid, that is, the centroid whose similarity between the element provided

as a parameter is the highest. If this similarity is not higher than the threshold, then this element

becomes a new centroid.

Figure 4.4: Clustering collaborative filtering implementation diagram.

ALGORITHM 10
Incremental clustering

centroid← maxSimilarity(centroids,element)
if similarity(centroid,element)< threshold then

clusters[centroid].add(element)
clusterMap[element]← centroid

else
centroids.add(element)

end if

Like before, there is a clear separation between item and user logic, with the ItemClustering and

UserClustering classes.

4.2 The algorithms module 41

4.2.2.3 Locality-sensitive hashing

This section is dedicated to the implementation of locality-sensitive min hashing for users and

items.

The LSHMinHash class

The LSHMinHash which extends CollaborativeFiltering and is responsible for dealing with com-

mon logic of the locality-sensitive min-hashing algorithm for both users and items. Its constructor

accepts the standard collaborative filtering algorithms as well as a signature matrix, buckets,

number of permutations and number of bands. It follows the same heuristic explained in sec-

tion 2.1.1.4 but with some differences from [8], since the authors of the paper follow a different

family of hashing functions for cosine similarity to describe their LSH scheme. The hashing func-

tion family is defined through the MinHashing technique. This technique is used to estimate the

Jaccard Similarity [45] and consists on returning the first not-null element in a vector. In the _cal-
culate_signatures function the ratings matrix is shuffled according to the number of permutations

parameter, and for each permutation the _generate_signature function iterates over each element

calling the _min_hash function which returns the index of the first user which rated that item (for

items), or the index of the first item which a user has rated (for users) making it the resulting hash.

Note that when we permute a matrix, for items we just shuffle the order of the user vectors, but for

users we shuffle the order of the items for every user vector. The permutations are done by using

the permutation function from the numpy library and every subclass defines how are they pro-

cessed. In this implementation, the signature matrix, represents the hashing of each element(user

or item), where each column represents an element and each row has the hashing value for a spe-

cific permutation defined by a hashing function. It is an object of the DynamicArray class. The

next part of the algorithm is related to the number of bands parameter. Each element-hash vector

is grouped by the number of bands provided, and each resulting band-group forms a bucket. Each

element possessing that band-group is mapped to the same bucket. The grouping is done by the

_group_by_bands function. We can see that as we increase the number of permutations, we will

increase the runtime of the algorithm and the length of the hashing vectors, which will increase the

probability of matching items. If we increase the number of bands we will get greater quality in

the elements that are mapped to the same bucket decreasing the number of false-positives, which

are items who are mapped to the same bucket but are not similar to each other. However, if we

increase this parameter too much, the number of false-negatives will also increase, which means

similar elements will not be mapped to the same bucket. When the new_rating function is called

the ratings matrix is updated and the item and user are added to their respective sets. We update

the signature matrix on the column of the element provided in the argument, and then recalculate

the buckets for that element. This whole process is explained in figure 4.5.

42 Software library for stream-based recommender systems

Figure 4.5: Locality-sensitive min-hashing draft in Increc.

If we consider m for the length of each element vector (user or item), and p as the number of

permutations, the signature matrix computation has O(m× p) complexity. Taking n as the number

of elements (users or items) and b as the number of bands, the bucket group computation has

O(n×b) complexity.

4.2.2.4 User and Item approaches

In section 4.2.2, we described how neighbors are being calculated, however we have not talked

about how similarities are being calculated. We should take a step further and discuss the im-

plementation of how similarities between pairs of elements are calculated which then are used to

perform neighborhood computations. In this section, we will address the implementation of the

user-based collaborative filtering methods, for explicit and implicit feedback as well as an implicit

item-based algorithm. Lets start with the user-based approach.

4.2 The algorithms module 43

The UserBasedCF class

Both algorithms share a common superclass named UserBasedCF which deals with shared logic

regarding similarities initialization and co-rated items. This class extends CollaborativeFiltering
and its constructor expects to receive the user/item matrix, and a matrix of co-rated items. The

_init_co_rated function returns a co-rated matrix by computing co-rated items for each pair of

users. The co-rated model is stored inside a Symmetric Matrix object and represents the iden-

tifiers of items which have been rated (implicitly or explicitly) for each pair of users. To avoid

duplicate memory usage, the Symmetric Matrix class was used since theco-rated items of the

user pair (usern,userm) are the same as the user pair (userm,usern). To update the co-rated items

matrix, the _update_co_rated function is used, which accepts a user, a item and a comparison

function as a parameter. The _init_similarities computes a similarity matrix. This class calls the

_init_similarity function for every pair of users, which defines the computation of the similarity

for every subclass and, therefore must be written and declared in each subclass of UserBasedCF.

Similarities are also stored inside a Symmetric Matrix for the exact same reason, however, the ex-

plicit and implicit user-based have different ways of calculating the similarity between two users,

so we will dig deeper on this further.

The UserBasedExplicitCF class

The explicit version was implemented following the work of [27], mentioned in section 3.1.2 but

not taking into consideration rating updates, which means cases where a user updates a rating of

an item previously rated by that user. This decision was made because, during implementation

and research, the formulas proved to be doubtful and lead to wrong calculations and computations

(see A). It extends UserBasedCF and expects to receive its parents’ parameters as well as a sim-
ilarities matrix and the users’ average ratings. The _init_avg_ratings function computes the

users’ average ratings which is a DynamicArray objects whose elements’ indexes coincide with

the user id’s and each position has the respective user average rating. Like previously mentioned in

section 4.2.2.4, this class needs to implement the _init_similarity function. In UserBasedExplic-

itCF, this function computes pairwise similarities using the pearson_correlation_terms function

that is located on the utils module, and returns 4 terms: the covariance between the 2 variables,

the variance of the 2 variances, and the actual similarity pearson correlation value. The actual

similarity makes use of the pearson_correlation function also defined in the utils module. These

terms include the covariance of the ratings of both users, and the variances of the ratings of each

user to the co-rated items. Since the variance depends exclusively on the items co-rated by each

pair of items we cannot store variance per user, and must store per pair of users, two computed

variances, one per each user. The variance of a user will differ from the pair of users we are ana-

lyzing because co-rated items are different. Because we increment these terms at every iteration,

instead of calculating them all over again they are stored in a dictionary for each pair of users. Due

to the inherent symmetry of this issue, also correlated to the similarity matrix, we will only store

these terms one time per pair of users. This causes an issue if we want to know the variance of the

44 Software library for stream-based recommender systems

ratings of a certain user for a specific user pair. To solve this issue the variances were stored inside

a class which deals with this problem. This class is named PairVariances and will be explained

here since its use case is only adequate for this algorithm. PairVariances checks the identifiers

of the users in question and returns the variance depending on their absolute values. It receives

two variances, the first and the second, the first variance corresponds to the user whose identifier

has a bigger absolute value in the pair. The new_rating function, updates the similarities, using

the _new_rating function which accepts a user, an item and a value, and calculates the term in-

crements for each pair of user where the user is present, using the _new_rating_terms function.

The predict function, such as the names suggests, calculates a possible rating of a user to an item,

by verifying the user neighborhood and returning the average of the ratings of the users in the

neighborhood for that item. This method is used on the recommend function, while sorting the n

items with the highest predicted rating.

The UserBasedImplicitCF class

The implicit version was implemented following the work in [25] and located inside the User-
BasedImplicitCF class. This class extends UserBasedCF, and besides the default parameters, it

also receives a similarities matrix. As described in section 4.2.2.4, the _init_similarity function

is defined to return a pairwise similarity between two users. Similarities are calculated using the

cosine_similarity function located in the utils module. This function receives the number of co-

rated items between the two users and the total number of items. This implementation is much

simpler, since it only depends on incrementing the number of co-rated items at every iteration. The

_update_similarities expects to receive a user, and updates every pairwise similarity on which

that user is included. Every time the new_rating function is called, the user and item are added to

the respective storage sets and the ratings matrix is updated. The co-rated matrix is also updated

by checking all the other users who rated the specific item and the similarities between that user

and all the other ones are recalculated. After this, the neighborhood of all users is also recalcu-

lated. The recommend function checks items which the user has rated, and then recommends the

ones with an higher activation weight. This measure is calculated with the _activation_weight
function.

The ItemBasedImplicitCF class

The approach used to implement the item-based neighborhood collaborative filtering is similar to

the Dynamic Index explained in [20]. The big difference is related to the usage of recommend-
able items which the authors take into account in their original paper. Increc does not take into

account the notion of recommendable or non-recommendable items because of generalization pur-

poses. Of course, it helps to limit the number of computations necessary for item similarities and

neighborhoods, however this is highly related to business logic and so, it is a matter of respon-

sibility of the people using increc has a dependency. The ItemBasedImplicitCF class extends

4.2 The algorithms module 45

CollaborativeFiltering, accepting the default parameters as well as a matrix of item intersec-
tions, an array of items’ l1 norms and a dictionary which is the inverted index of users to items.

The _init_intersections, computes the intersections matrix which holds the number of users who

co-rated each pair of items. The item intersections is a SymmetricMatrix because the number

of users who have rated the tuple, (itema, itemb) is the same as the number of users who rated

(itemb, itema). Intersections are updated using the _update_intersections function. The items l1-

norms array, is a DynamicArray and computed by the _init_l1 function. Each index of the array

is the same as the item identifier, and its position stores the corresponding Manhattan Distance of

the item vector. The inverted index is a Python defaultdict, created by the _init_inv_index func-

tion, which maps a set of items for each user identifier, having an empty set by default. Finally,

item-pair similarities are, as expected, stored inside a SymmetricMatrix object, for the same rea-

sons previously explained. Similarities are calculated using the cosine_similarity function from

the utils module, which receives the number of item intersections and the squared-roots of each

one of the items’ L1-norms of the pair. Note that, the number of intersections is the same as cal-

culating the dot product between the two item vectors, and the squared-root of the items l1-norms

is the same as calculating a l2-norm (euclidean distance) because item vectors are made up of

binary values. The _init_similarity function computes the similarity between a pair of items, and

the _update_similarities uses the previous function to compute the similarities between a user

provided in the arguments and all the others. The recommend function checks the neighborhood

of all the items which the user provided in the arguments has rated and then shuffles that list.

4.2.2.5 The actual neighborhood algorithm classes

Previously, we described the classes that implemented neighborhood search and similarity com-

putation. However these classes are not supposed to be instantiated and this section is dedicated

to the classes which extend the previous heuristics and actual implement the algorithms.

The explicit UserBasedNeighborhood class

This class implements the classic explicit user-based neighborhood and extends UserBasedEx-
plicitCF and UserNeighborhood.

It only implements the new_rating function which calls UserBasedExplicitCF’s new_rating to

compute similarities and then recalculates the entire neighborhood.

The explicit UserBasedClustering class

This class implements a clustering version of the explicit user-based neighborhood and extends

UserBasedExplicitCF and UserClustering. It only implements the new_rating function which

calls UserBasedExplicitCF’s new_rating to compute similarities and then increments the clusters,

calculating the neighborhood according to the cluster where the user in the rating is present.

46 Software library for stream-based recommender systems

The implicit UserBasedNeighborhood class

This class implements the classic implicit user-based neighborhood and extends UserBasedIm-
plicitCF and UserNeighborhood.

It only implements the new_rating function which calls UserBasedImplicitCF’s new_rating to

compute similarities and then recalculates the entire neighborhood.

The implicit UserBasedClustering class

This class implements a clustering version of the implicit user-based neighborhood and extends

UserBasedImplicitCF and UserClustering. It only implements the new_rating function which

calls UserBasedImplicitCF’s new_rating to compute similarities and then increments the clusters,

calculating the neighborhood according to the cluster where the user in the rating is present.

The UserLSHMinHash class

This class implements the user-based locality-sensitive min hashing algorithm.

It extends the LSHMinHash class. It implements a new_rating function which calls LSHMin-

Hash’s new_rating and updates the signature matrix and the buckets according the user identifier.

The get_vector function returns a row from the given matrix (since by default users are stored on

rows), and the _elements function returns the user set. The recommend function groups the given

user by bands, and for each band we check the users in that respective bucket which are sorted

according to the number of times they come up. Then we list the items the top n (where n comes

in the arguments) users have rated, shuffle that list, and return the first n elements.

The ItemBasedNeighborhood class

This class implements implements the classic implicit item-based neighborhood and extends Item-
BasedImplicitCF and ItemNeighborhood.

It only implements the new_rating function which calls ItemBasedImplicitCF’s new_rating to

compute similarities and then recalculates the entire neighborhood.

The implicit ItemBasedClustering class

This class implements a clustering version of the implicit item-based neighborhood and extends

ItemBasedImplicitCF and ItemClustering. It only implements the new_rating function which

calls ItemBasedImplicitCF’s new_rating to compute similarities and then increments the clusters,

calculating the neighborhood according to the cluster where the item in the rating is present.

The ItemLSHMinHash class

This class implements the item-based locality-sensitive min hashing algorithm.

It extends the LSHMinHash class. It implements a new_rating function which calls LSHMin-

Hash’s new_rating and updates the signature matrix and the buckets according the item identifier.

4.3 The data structures module 47

The get_vector function returns a column from the given matrix (since by default items are stored

on columns), and the _elements function returns the item set. The recommend function checks

the rated items by the user provided in the arguments, and retrieves their signatures from the sig-

nature matrix. Then it groups every signature by the number of bands and for each signature and

each band we retrieve the items in the band-bucket sorting the items for most appearances. After

this we return the top n items.

4.3 The data structures module

This section is dedicated to the description of the implemented data structures in increc, challenges

they were meant to solve and how they solved those same challenges.

4.3.1 Dynamic Array

The DynamicArray class aimed to create a dynamic data structure which would help simplify

code for incoming new ratings. This is related to the nature of the user and item identifiers. In

live recommendation systems, data is only timely ordered (normally through) a timestamp. This

means that there is no guarantee that a rating for a user10 will come before user20 just because

10 < 20. The same applies for items. So we have a problem of dynamically allocating memory

to hold data for unknown users or items. Plus, since algorithm classes store a lot of information

for each user or item, it would not be feasible to check if the new rating’s user and item identifiers

were greater than the current highest ones for every manipulation that needed to be done. That

would be chaotic to implement. To solve this issue, a dynamic data structure was created so that

the algorithm classes could just access the indexes they pleased, without having to worry about

identifiers or index errors. Before getting further into more details, we will take a look at a specific

example. Let us imagine we are storing a user-item matrix, with a current state of 3 users for 3

items, as in figure 4.6. 
item1 item2 item3

user1 1 ? ?
user2 3 ? 3
user3 ? ? ?


Figure 4.6: A user/item matrix example.

Let us now consider we receive a new rating: (u6, i4,5). In increc, this matrix is represented

through the usage of DynamicArray objects, where each row is an object of that class. In this

specific example two more DynamicArray objects are created with empty ratings for the items

since they had not appear in the system beforehand. A final user is created, and this DynamicArray

object holds 5 items, on which only the rating for the 5th item is known. This process is represented

in figure 4.7. As we can see, not all the rows of the matrix have the same length, which is not

problematic.

48 Software library for stream-based recommender systems

Figure 4.7: Matrix Update.

This means that, when we want to access an index, the DynamicArray class first checks whether

it is greater than the current size, and if it is it adds new elements until it matches the specified

index. This means that lookup operations will nots have necessarily O(1) complexity. This class

is implemented on top of Python’s lists. The option for lists instead of numpy arrays was made

due to the fact that numpy is optimized for homogeneous arrays, which does not match our use

case [26]. DynamicArray overrides Python’s __iter__, __len__, __getitem__ and __setitem__ to

simulate a normal list behavior and implements an extend method for dynamicist purposes. Due

to column operations needed in section 4.2.2.3, a set_col and col methods were implemented for

setting a column and retrieving a column respectively.

4.3 The data structures module 49

4.3.2 Symmetric Matrix

The SymmetricMatrix class is responsible for storing parts of the algorithms’ models which

can be fit inside a matrix with symmetric characteristics. This class was needed to make a more

efficient use of memory, taking advantage of the fact that there was no need to store information

for the same tuple of elements twice.

Figure 4.8: Symmetric Matrix.

This class is built on top of DynamicArray due to the need of dynamically scaling models when

updates need to be done. The SymmetricMatrix is represented by a DynamicArray object not

following the traditional implementation of a matrix. Its implementation follows the approach

present in figure 4.8. It is a flat, 1 dimensional object, which follows the following computation to

get row-column pairs:

index = row× row+1
2

+ column (4.1)

This means that, the position (3,2) will be stored on the 3× 3+1
2 + 2 = 8th index. This class

accomplishes this by overriding the __iter__, __setitem__ and __getitem__ methods. When

accesses to an index are done, the row and column provided in the arguments are switched if the

column is greater than the row, since we are looking at the left side of the matrix.

50 Software library for stream-based recommender systems

4.4 The prequential evaluator module

As discussed in 3.3, and similarly to what is present in [11], increc supports the existence of

Prequential Evaluators and makes a distinction between implicit and explicit feedback. Besides

measuring error rates, it also measures how much time it takes for a model to process ratings and

recommendations as data grows with time. The PrequentialEvaluator class holds logic common

to both subclasses which deal with their type of data. This class’ constructor expects to receive an

algorithm class, a window size, and the number of recommendations to be done. Every time

a new rating is about to be processed, the prequential evaluator executes code which is subclass

dependent, which in turn generates an error. This superclass adds the error to a window array and

when the window limit is reached, it calculates the average error of the window. If no window is

specified, the error is calculated at each iteration, making it a global average error. This process

can be viewed in 4.9.

Figure 4.9: Prequential Evaluator.

4.4 The prequential evaluator module 51

4.4.1 Implicit Prequential Evaluator

This evaluator deals with implicit/nominal type of feedback. Its implementation is located inside

the PrequentialEvaluatorImplicit class. For every incoming rating, of the type (ua, ib) where a

and b represent the user and item identifiers respectively, the evaluator first asks the recommen-

dation model for a recommendation of n items for user a. If item b is in the recommended items,

it returns a 0, else it returns a 1 which is added to the evaluators window data. This is similar

to an hit-ratio approach where we calculate the number of times an item was predicted to be

recommended before it appeared as a user preference. This measure was implemented instead

of the hit-ratio one so that for both types of feedback, increc could compute an error measure

for both types of feedback, instead of having an error measure for one and success measure for

another, which in turn makes latter visualization more comprehensible. Having said this, in increc

we calculate the error at iteration k, with a tuple (user, item)k as:

ALGORITHM 11
Implicit prequential evaluation - Error calculation

recommendations← recommendation(userk)
if item ∈ recommendations then

error← 0
else

error← 1
end if
window_counter← window_counter+1
window_error.append(errork)
if window_counter > window_size then

window_average_error = sum(window_error)
window_size

end if

4.4.2 Explicit Prequential Evaluator

It does not make sense to calculate hit ratios for explicit type of data feedback. Since, with this

type of data, represented as (ua, ib,value), we have access to the absolute preference of user a to

item b in the form of value we can compute the difference between a predicted value user a to

item b, and the real one: value. This way, since every explicit recommendation algorithm needs to

have a predict method, at iteration k with a tuple (user, item,value)k we calculate the error as:

52 Software library for stream-based recommender systems

ALGORITHM 12
Implicit prequential evaluation - Error calculation

prediction← predict(user, item)
error← prediction− value
window_error.append(error)
window_counter← window_counter+1
if window_counter > window_size then

window_average_error = sum(window_error)
window_size

end if

4.5 The file stream module

This module is located inside the stream module and is aimed at building a ratings data stream

out of a dataset file. This stream is later used for recommendation algorithms.

The FileStream class

This class implements generic logic for both implicit and explicit feedback datasets. It expects

to receive the path to the file and a column-wise separator which defaults to the TAB character.

A file is supposed to have a rating per line, and each line is supposed to have a user, an item, a

rating value (for explicit feedback) and a timestamp, each separated by a separator character. The

constructor creates a stream with the _parse_file function which receives a path and a separator

character and iterates over each line forming a rating tuple with the _parse_rating (defined in

each subclass) and returning a list of rating tuples, as portrayed in 4.10.

Figure 4.10: File stream.

4.5.1 Implicit file stream

The FileStreamImplicit class

This class extends FileStream and expects to receive the same arguments. It implements the

_parse_rating returning the first two elements of a line in the file which are supposed to be the

user and item, in the form of an int.

4.6 The graphic module 53

4.5.2 Explicit file stream

The FileStreamExplicit class

This class extends FileStream and expects to receive the same arguments. It implements the

_parse_rating returning the first three elements of a line in the file which are supposed to be the

user, item and rating value in the form of an int for the user/item identifiers and float for the latest.

4.6 The graphic module

Increc supports a feature of graphic visualization through the implementation of the Evaluation-
Static class. Before digging further, it is worth mentioning that part of the library uses matplotlib
as a dependency. Matplotlib is a software library written in Python which offers support for cre-

ating static, animated and interactive data visualizations. EvaluationStatic’s goal is to provide

a visualization of the variation of the error rate and time execution of a recommendation model

as data grows. Its constructor accepts a data stream and a PrequentialEvaluator object, and it

constructs 3 matplotlib plots: error ratio, time of rating processing and time it takes to recom-
mend items. EvaluationStatic uses the process function to process a data stream. As we can see

from 4.11, it starts by evaluating the whole data stream with the evaluate function, which sets up a

progress bar from Pypi progress package. At the end, it plots the graph with the plot function and

then renders it with the show function. This class is useful to compare algorithms’ performances

between each other and with different datasets.

Figure 4.11: Graphical evaluation diagram.

54 Software library for stream-based recommender systems

4.7 Continuous integration and deployment

Increc is open-sourced at https://github.com/Marko50/FEUP-DISS, under the MIT li-

cense which provides the ability to be commercially used, distributed, modified and privately used

without any kind of liability or warranty. It’s packaged using Python’s setuptools, under Travis
continuous integration platform which deploys the library automatically to the Python’s pack-

age index: PyPi. TravisCI also runs all the linting and unit test verifications. It also uses Azure
Pipelines to keep track of code coverage using codecov.io which is integrated with Github. Docu-

mentation is done using the Sphinx package and is present at http://www.andrefernandes.

me/increc-documentation/. Figure 4.12, located below, sums up the whole deployment

process.

Figure 4.12: Increc’s deployment diagram.

https://github.com/Marko50/FEUP-DISS
http://www.andrefernandes.me/increc-documentation/
http://www.andrefernandes.me/increc-documentation/

Chapter 5

Results

This chapter aims to provide information about increc’s results with useful chart visualizations

and discussion about them.

5.1 Algorithm Tests

This section is dedicated to the output of increc’s algorithms. It is meant to act as a confirmation

of the accuracy and efficiency of the developed code and that the algorithms are functional. Before

showing the graphics it is worth mentioning how the testing was done and why. First of all, all the

graphs presented in this section are produced by increc’s graphic module using the Evaluation-
Static class explained in section 4.6 combined with the PrequentialEvaluator class explained in

section 4.4. There are 2 tested metrics: Time efficiency, how long do algorithms take to run and

accuracy, how good are they at recommending or predicting ratings. They are spread across 3

different charts:

1. Average error - Average recommendation error using a sliding window.

2. Rating process time - The amount of time it takes to process a new rating, in seconds.

3. Recommendation time - The amount of time it takes to recommend products to a user, in

seconds.

The error was calculated for implicit and explicit feedback as explained in sections 4.4.1 and 4.4.2

respectively. With this being said we can refer to the error calculation as the average error of the

window applied to the prequential evaluator. This means that for implicit feedback we calculate

the error for a window as :

window_average_error =
number_o f _unsuccess f ul_recommendations

window_size
(5.1)

55

56 Results

Similarly, for explicit feedback, we sum the error inside the window:

window_average_error =
sum_o f _errors_in_window

window_size
(5.2)

Regarding test data, 3 different datasets were used:

1. MovieLens (100k) - 100.000 ratings on a 1-5 rating scale from 943 users on 1682 movies.

Used in its entirety.

2. MovieLens (1M) - 1.000.209 ratings on a 1-5 of 3.900 movies made by 6.040 users. Used in

its entirety for implicit matrix factorization, implicit clustering and locality-sensitive hash-

ing approaches, and and implicit neighborhood methods the first 50000 implicit ratings were

used. The first half was used for explicit matrix factorization approaches, the first 250.000

ratings were used for explicit user-based clustering and the first 100.000 were used for the

equivalent user-based neighborhood algorithm.

3. MovieLens (10M) - 10.000.054 ratings on 10.681 movies by 71.567 users of the online

movie recommender service MovieLens. This dataset was only used for implicit matrix

factorization with the first 1.000.000 implicit ratings.

4. INESC (Playlisted tracks) - 111.942 implicit ratings. Used in its entirety only for implicit

matrix factorization. This dataset is taken from the portuguese music social network "Palco

Principal", that gathers non-mainstream musicians with fans. The website allows free mu-

sic streaming and users can organize their favorite music tracks in personal playlists. The

dataset consists of a music track playlisting log (users adding music tracks to their personal

playlist).

The MovieLens datasets are broadly used in education and research and are the result of user

interactions with the MovieLens online recommender system [18]. All these datasets have been

timely ordered before being fed to the algorithms. For implicit feedback algorithms, the datasets

were parsed only to include favorable ratings, that is only ratings whose value equals 5, in order to

simulate implicit preference in the form of ratings. The graphs with sliding windows are present

for the Ml-100k and are meant to act just as a confirmation of that feature and to help visualize

the difference between sliding windows. Some datasets were not used in its entirety due to time

related issues in order to speed up the test process. The tests were done using a remote Google
Compute Engine VM, with 8 vCPU’s, 2.2 GHz, with 30 GB of RAM working on an Ubuntu
18.04 operating system. The graphs’ x axis describes the ratings and the y axis, the related test

metric.

5.1 Algorithm Tests 57

5.1.1 Model-based algorithms tests

5.1.1.1 Implicit Feedback

Implicit Matrix Factorization

Figure 5.1: IMF; LF = 20; LR = 0.01; REG= 0.1; ML-100k.

Figure 5.2: IMF; LF = 20; LR = 0.01; REG= 0.1; SW = 20 ; ML-100k.

58 Results

Figure 5.3: IMF; LF = 20; LR = 0.01; REG= 0.1; ML-1m.

Figure 5.4: IMF; LF = 20; LR = 0.01; REG= 0.1; ML-10m.

5.1 Algorithm Tests 59

Figure 5.5: IMF; LF = 20; LR = 0.01; REG= 0.1; INESC.

As we can see from 5.1, 5.2, 5.3, 5.4 and 5.5, in terms of accuracy, there is an initial high error rate

followed by a decrease at a steady pace until it reaches a point where it starts rising slowly again.

The recommendation time has a small increase in time in contrast to the rating process time and

we can spot some sudden increases in recommendation time along the chart.

5.1.1.2 Explicit Feedback

Explicit Matrix Factorization

Figure 5.6: EMF; LF = 20; LR = 0.01; REG= 0.1; ML-100k.

60 Results

Figure 5.7: EMF; LF = 20; LR = 0.01; REG= 0.1; SW = 20; ML-100k.

Figure 5.8: EMF; LF = 20; LR = 0.01; REG= 0.1; ML-1m.

Similarly, in figure 5.6, 5.7 and in figure 5.8 we can see the error decreasing steadily along the

x axis. Only the recommendation time is worth mentioning since we can see its increase, even

though limited, at each iteration.

5.1 Algorithm Tests 61

Explicit Matrix Factorization with matrix preprocessing

Figure 5.9: EMFP; LF = 20; LR = 0.01; REG= 0.1; ML-100k.

Figure 5.10: EMFP; LF = 20; LR = 0.01; REG= 0.1; SW = 20; ML-100k.

62 Results

Figure 5.11: EMFP; LF = 20; LR = 0.01; REG= 0.1; ML-1m.

For explicit matrix factorization with matrix preprocessing, in image 5.9, 5.10, and in image 5.11

we can see a initial much more sudden decrease in the error, followed by a flat line with no

substantial changes. Regarding the time measure the rating process time has low values in the

order of milliseconds, which is much lower than the recommendation time.

5.1.2 Neighborhood-based algorithms tests

5.1.2.1 Implicit Feedback

Item-based neighborhood

Figure 5.12: IIBN; NEIGHBORS = 5; ML-100k.

5.1 Algorithm Tests 63

Figure 5.13: IIBN; NEIGHBORS = 5; ML-1m.

In figure 5.12 and in figure 5.13, we can see the error decreasing but the magnitude being much

higher in comparison with matrix factorization methods. We can also that the increase in time

processing is much higher causing the algorithm not to scale well.

Item-based clustering

Figure 5.14: IIBC; NEIGHBORS = 5; ML-100k.

64 Results

Figure 5.15: IIBC; NEIGHBORS = 5; SW = 20; ML-100k.

Figure 5.16: IIBC; NEIGHBORS = 5; ML-1m.

From figures 5.14, 5.15 and 5.16 we can see that in terms of time preprocessing the algorithm

scales much better with this solution, since time processing values have a much lower magnitude.

We can also see that after this initial decrease in the error rate it reaches a stable point without

much noticeable differences.

5.1 Algorithm Tests 65

Item-based locality-sensitive hashing

Figure 5.17: IILSMH; PERMS = 120; BANDS = 4; ML-100k.

Figure 5.18: IILSMH; PERMS = 120; BANDS = 4; SW = 2; ML-100k.

66 Results

Figure 5.19: IILSMH; PERMS = 120; BANDS = 4; ML-1m.

In terms of item-based locality-sensitive min-hashing, by looking at images 5.17, 5.18 and 5.19,

we can observe the decrease in the average error with the number of iterations, with surprisingly

better recommendation accuracy than the other neighborhood-based approaches. The processing

time and recommendation time do not vary significantly along time and have much lower values

than the standard neighborhood approach.

User-based neighborhood

Figure 5.20: IUBN; NEIGHBORS = 5; ML-100k.

5.1 Algorithm Tests 67

Figure 5.21: IUBN; NEIGHBORS = 5; SW = 20; ML-100k.

Figure 5.22: IUBN; NEIGHBORS = 5; ML-1m.

By looking at figures 5.20, 5.21 and 5.22, we can see an initial error instability with a decrease

followed by a rise which then leads to a a steady decrease in the error with values similar to what

happens in the item-based version. Similarly, by looking at the rating processing time, we can see

its incapability to scale, as we see it reaching rating processing times of 1 or more seconds.

68 Results

User-based clustering

Figure 5.23: IUBC; NEIGHBORS = 5; ML-100k.

Figure 5.24: IUBC; NEIGHBORS = 5; SW = 20; ML-100k.

5.1 Algorithm Tests 69

Figure 5.25: IUBC; NEIGHBORS = 5; ML-1m.

Similarly to what happened in the item-based version, if we look at figures 5.23, 5.24 and in 5.25,

after an initial error decrease there is an error increase followed by a stable flat line. Recommen-

dation and processing times do not vary significantly in relation with time even though they have

higher values than the item-based version.

User-based locality-sensitive hashing

Figure 5.26: IULSMH; PERMS = 120; BANDS = 4; ML-100k.

70 Results

Figure 5.27: IULSMH; PERMS = 120; BANDS = 4; SW = 20; ML-100k.

Figure 5.28: IULSMH; PERMS = 120; BANDS = 4; ML-1m.

In the user version of locality-sensitive min-hashing, by looking at images 5.26, 5.27 and 5.28,

the average error line steadily decreases from the initial value 1, but according to the shown time

metrics the algorithm does not scale well in terms of recommendation time.

5.1 Algorithm Tests 71

5.1.2.2 Explicit Feedback

User-based neighborhood

Figure 5.29: EUBN; NEIGHBORS = 5; ML-100k.

Figure 5.30: EUBN; NEIGHBORS = 5; SW = 20; ML-100k.

72 Results

Figure 5.31: EUBN; NEIGHBORS = 5; ML-1m.

Regarding the explicit user-based neighborhood, from figures 5.29, 5.30 and 5.31, we can see the

algorithm decreasing its average error before reaching a stable line with worse performance than

explicit matrix factorization methods. In terms of processing time we can see it cannot scale well,

as we see the rating process time reach values of 1 second at the end.

User-based clustering

Figure 5.32: EUBC; NEIGHBORS = 5; ML-100k.

5.1 Algorithm Tests 73

Figure 5.33: EUBC; NEIGHBORS = 5; SW = 20; ML-100k.

Figure 5.34: EUBC; NEIGHBORS = 5; ML-1m.

By observing 5.32, 5.33 and 5.34, in the clustering version we see the average error line behaving

in the same way as in the standard neighborhood approach, and with values in a similar range.

The rating process time scales much better, however it is increasing alongside the iterations. The

recommendation also time increases with time to values even higher than the neighborhood ap-

proach.

5.1.2.3 Result discussion

First we can see that using different sliding windows portrays different accuracy results. This is

related to the fact that not using a sliding window, calculates the average error at every iteration

74 Results

which produces a more "fluid" line of evolution, contrasting with using a sliding window of size

20 which only calculates the error for the past 20 iterations, resulting in more abrupt "spikes" and

sudden changes in the average error. There is another topic that needs to be discussed, which is

related to the usage of dynamic data structures. Due to the dynamic environment on which data

streams are involved in, the used datasets were ordered by timestamp, to replicate what happens

in live systems. This meant that some of the processing time was spent on memory operations and

allocation. In section 5.1, there are numerous evidences some "spikes" due to this characteristic.

These sudden increases in time processing happen when a new user or item identifier has a much

higher value than the size of the DynamicArray at that time, which causes some time to allocate

memory until the index which equals that user or item identifier is reached. With datasets that have

an higher number of users and items, this effect is much more noticeable because the identifiers

will also be much higher. However, for most of the iterations, every identifier has already had its

respective memory index allocated, so we only experience this phenomenon sporadically.

Implicit feedback

If we start with model-based algorithms, in section5.1.1.1 we can see the average error going

down with time although at some point the algorithm loses generalization power and the error

rate starts to ascend. This algorithm running time is the best of all the implemented ones for

implicit feedback. For standard neighborhood methods in section 5.1.2.1 and in section 5.1.2.1,

we can see the rating process time growing much faster in relation with the number of iterations

when compared with other implementations which make these algorithms not suitable for data

stream mining. This effect has to do with the time complexity of the algorithm since it calculates

the entire neighborhood model at each iteration. The error rate acts as expected, decreasing at a

very slow pace. Comparing them to other neighborhood approaches such as in section 5.1.2.1,

we can initially see the recommendation power is almost none, but as soon as buckets start to

form, the error steadily starts to go down. If we increase the number of bands the algorithm

will take more time to start forming buckets and grouping elements, however the bucket quality

will be much higher. Regarding time efficiency it is notoriously more efficient than standard

neighborhood methods, even though it takes more time than matrix factorization implementations.

We cannot really see the same effect with section 5.1.2.1, due to the differences we are performing

recommendations on both algorithms. On the item-based version we can see the items which are

in the same buckets than those items which the user has rated and directly sort them based on

the number of appearances. The same cannot be done for the user-based version since buckets

are made of users, and so we need to check the users that appear in the same buckets and return

a shuffled list of the items these users rated. The recommendation quality is much higher in the

item-based version of the locality-sensitive min hashing algorithm. For clustering algorithms,

in sections 5.1.2.1 and 5.1.2.1, the recommendation quality was not affected when comparing

them with standard neighborhood methods, but we can see that after an initial decrease, the error

curve ascends, which has to do with elements inside clusters not being able to be candidates to

recommendations of elements outside their cluster.

5.1 Algorithm Tests 75

Explicit feedback

Similarly to what we did before, let us first discuss the model-based algorithm results. A similar

behavior to 5.1.1.1 happens in 5.1.1.2, with a more initial abrupt error descent, due to the fact we

are looking at explicit feedback, however we can see the error decreasing. By looking at section

5.1.1.2 we see an initial error instability but with a lower absolute value than the non preprocessing

version, followed by a much slower curve descent. The rating normalization affects the initial error

lowering it down. As for the explicit user-based neighborhood implementations, in section 5.1.2.2,

we can also see the absolute average error decreasing but with a much higher absolute value in

comparison with matrix factorization approaches. The clustering approach provides an initial error

decrease followed by a flat line which is not a very good indicator of generalization.

76 Results

Chapter 6

Conclusions and future work

This chapter is dedicated to this work’s conclusions and plans for future improvements on increc.

We’ll discuss how increc’s design and decisions influenced the shown results, what increc’s im-

plementation has lead to and mention limitations we currently have which could be implemented

in the future.

6.1 Conclusions

Increc overall

Increc was implemented to be a state-of-the-art data stream mining for recommendation systems.

It implements a series of baseline incremental algorithms for recommendation purposes on the

model-based and neighborhood-based categories as well as mechanisms to evaluate and visualize

their output. This library is meant to be used to aid the development and investigation of recom-

mender systems.

Dynamic data structures

The usage of Dynamic data structures proved to be an interesting matter of discussion in two

different ways. In one way, it helped to reduce the number of lines of code of each algorithm and

helped separate the responsibility of memory allocation for unseen elements, either users or items

in a specific place. On the other hand this implementation with these memory operations impacted

the performance of the algorithms. Even for the SymmetricMatrix objects, the internal data is

stored inside a DynamicArray object, so when algorithms process a new rating, there are many

accesses to their data structures which use a DynamicArray has its internal storage which might

cause some delay in processing, used for memory operations.

Object oriented programming

Even though Python is not the best language to be used for OOP and some critics might find it

a bad design, this paradigm combined with the usage of Composite, was a great aid in grouping

77

78 Conclusions and future work

common functionalities together and in giving a good, extensible and cohesive structure to the

library. This was very important due to the amount of divisions that needed to be done, whether

the algorithms were model-based or neighborhood-based, whether were focused on implicit or

explicit feedback, whether they were item or user-based. They allowed the code to be divided in a

understandable way.

Algorithmic comparison

The current implementations and their results coincide with the expected results. In terms of

time execution and accuracy, matrix factorization methods overcome the rest of the implemen-

tations. Standard neighborhood-based proved to be unreasonable to be used in live systems due

to their time complexity. Clustering solutions have better time performance, but with a general-

izations power loss. Locality-sensitive min-hashing came as a good surprise to work around the

neighborhood-search problem with better results and time efficiency.

From evaluators to a graphic visualization

This work implements a prequential evaluator mechanism for implicit or explicit feedback which

computes test metrics for dynamic environments. These metrics include the average error rate, the

time it takes to process a new rating, and the time it takes to make a recommendation for a user.

The graphic module makes use of this evaluator to output a graphical evaluation of the output

produced into 3 different charts for visualization.

6.2 Limitations and future work

One of increc’s limitations is the fact that it does not support model persistance for future reuse.

This means that, if we run an algorithm we have to manually inspect the objects fields and man-

ually store them somehow, since increc does not automatically provide a way of doing this. This

is one of the improvements which could be done in the future. The second limitation is the fact

that there is no reference or mentioning to the use of deep learning in increc which could be one

of the actions to develop increc for the future. Besides this, regarding locality-sensitive hashing,

the only implementation concerns min-hashing. There are some other hashing techniques which

aim to simulate similarity measures other than the jaccard distance. It would be nice to improve

on the number of implemented hashing solutions. Another important limitation is related to the

algorithm implementation. All of them were implemented according to their baseline definition as

explained in literature. This results in some accuracy loss and there is a need for some tweaking

in order to improve performance. The last limitation regards error measures implemented in the

prequential evaluators. It would be much better if those measures could be changed to different

ones in order to see how the algorithms perform under certain error measures.

Appendix A

Appendix

Proof of the inequality regarding [27] rating updates. Let us assume 3 users: u3 = {1,None,4,None,None},
u4 = {3,None,4,None,5}, u5 = {2,None,None,None,3}, on a [0,5] rating scale. The average rat-

ings of the rated items become: u3 =
1+4

2 = 2.5, u4 =
3+4+5

3 = 4 and u5 =
2+3

2 = 2.5. If there is

a rating update of the form (5,4,5), then we represent u5 as {2,None,None,None,5}. The new

average rating is u5 = 3.5.

When the other user had already rated the item

The user’s co-rated item items are the items with the indexes 0 and 4. The users’ sample standard

deviation using only co-rated items is calculated as

σu4 =
√
(3−4)2 +(5−4)2 ≈ 1.4142 and σu5 =

√
(2−2.5)2 +(3−2.5)2 ≈ 0.7071. The covari-

ance between the users is covariance(u4,u5) = ((3−4)× (2−2.5)+ (5−4)× (3−2.5)) = 1.0.

With the new rating we calculate the user factors as e = (5− 3)× (5− 4)− (3.5− 2.5)× ((3−
4)+ (5−4)) = 2.0, f = (5−3)2×2× (5−3)× (3−3.5)+2× (3.5−2.5)2−2× (3.5−2.5)×
((2− 2.5) + (3− 2.5)) = −6.0 and g = 0. This way the new similarity computation would

be 1.0+2.0
1.4142×0.7071−6 ≈ −0.4008. However, if we recompute the terms after the update, the co-

variance is now equal to (3− 4)× (2− 3.5) + (5− 4)× (5− 3.5) = 3.0, and the variances are

σu4 =
√
(3−4)2 +(5−4)2 ≈ 1.4142 and σu5 =

√
(2−2.5)2 +(5−2.5)2 ≈ 2.5495. This means

that the e and g terms are correct but the f term is incorrect.

When the other user had not previously rated the item

The user’s co-rated item item is the item with the index 0. The users’ sample standard deviation

using only co-rated items is calculated as

σu3 =
√

(1−2.5)2 = 1.5 and σu5 =
√

(2−2.5)2 = 0.5. The covariance between the users is

covariance(u3,u5) = ((1− 2.5)× (2− 2.5)) = 0.75. With the new rating we calculate the user

factors as e =−((3.5−2.5)×(1−2.5)) = 1.5, f = 1×(3.5−2.5)2−2×(3.5−2.5)×(1−2.5 =

4.0 and g = 0. This way the new similarity computation would be 0.75+1.5
1.5×0.5+4 ≈ 0.3333. However,

if we recompute the terms after the update, the covariance is now equal to (1−2.5)× (2−3.5) =

79

80 Appendix

2.25, and the variances are σu3 =
√

(1−2.5)2 = 1.5 and σu5 =
√

(2−3.5)2 = 1.5. This means

that the e and g terms are correct but the f term is incorrect.

References

[1] Announcing NVIDIA Merlin: An Application Framework for Deep Recommender
Systems. https://devblogs.nvidia.com/announcing-nvidia-merlin-
application-framework-for-deep-recommender-systems/. Accessed
25/05/2020.

[2] MOA - Machine Learning for Streams. https://moa.cms.waikato.ac.nz/. Ac-
cessed 22/11/2019.

[3] Principles and Techniques of Data Science. https://www.textbook.ds100.org/ch/
16/reg_ridge.html. Accessed 30/05/2020.

[4] scikit-multiflow. https://scikit-multiflow.github.io/. Accessed 22/11/2019.

[5] The Legal Side of Open Source | Open Source Guides. https://opensource.guide/
legal/. Accessed: 2020-05-10.

[6] Charu C Aggarwal. Recommender Systems. Springer International Publishing, 2016.

[7] Nicolas Auger, Cyril Nicaud, and Carine Pivoteau. Merge Strategies: from Merge Sort to
TimSort. working paper or preprint, December 2015.

[8] Ahmet Maruf Aytekin and Tevfik Aytekin. Real-time recommendation with locality sensitive
hashing. Journal of Intelligent Information Systems, pages 1–26, 2019.

[9] James Bennett, Stan Lanning, and Netflix Netflix. The netflix prize. In KDD Cup and
Workshop 2007, 01 2009.

[10] Minh-Phung Do, Dung Nguyen, and Academic Network of Loc Nguyen. Model-based ap-
proach for collaborative filtering. In The 6th International Conference on Information Tech-
nology for Education (IT@EDU2010), 08 2010.

[11] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On evaluating stream learning
algorithms. Machine Learning, 90(3):317–346, Mar 2013.

[12] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. My-
MediaLite: A free recommender system library. In 5th ACM International Conference on
Recommender Systems (RecSys 2011), 2011.

[13] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix
factorization with distributed stochastic gradient descent. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11,
page 69–77, New York, NY, USA, 2011. Association for Computing Machinery.

81

https://devblogs.nvidia.com/announcing-nvidia-merlin-application-framework-for-deep-recommender-systems/
https://devblogs.nvidia.com/announcing-nvidia-merlin-application-framework-for-deep-recommender-systems/
https://moa.cms.waikato.ac.nz/
https://www.textbook.ds100.org/ch/16/reg_ridge.html
https://www.textbook.ds100.org/ch/16/reg_ridge.html
https://scikit-multiflow.github.io/
https://opensource.guide/legal/
https://opensource.guide/legal/

82 REFERENCES

[14] Miha Grčar, Dunja Mladenić, Blaž Fortuna, and Marko Grobelnik. Data sparsity issues in
the collaborative filtering framework. pages 58–76, 10 2006.

[15] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. Librec: A java library for rec-
ommender systems. In Alexandra I. Cristea, Judith Masthoff, Alan Said, and Nava Tintarev,
editors, Posters, Demos, Late-breaking Results and Workshop Proceedings of the 23rd Con-
ference on User Modeling, Adaptation, and Personalization (UMAP 2015), Dublin, Ireland,
June 29 - July 3, 2015, volume 1388 of CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[16] Nidhi Gupta and R.L. Ujjwal. An efficient incremental clustering algorithm. World of Com-
puter Science and Information Technology Journal (WCSIT), 3(4):97–99, 2013.

[17] Michael Hahsler. recommenderlab: A framework for developing and testing recommenda-
tion algorithms, 02 2015.

[18] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5(4), December 2015.

[19] Jure Leskovec Jeffrey D. Ullman and Anand Rajaraman. Recommendation systems. In
Mining Massive Datasets, pages 325–360. Cambridge University Press, Cambridge, 2013.

[20] Olivier Jeunen, Koen Verstrepen, and Bart Goethals. Efficient similarity computation for col-
laborative filtering in dynamic environments. In Proceedings of the 13th ACM Conference on
Recommender Systems, RecSys ’19, page 251–259, New York, NY, USA, 2019. Association
for Computing Machinery.

[21] Takuya Kitazawa. Incremental factorization machines for persistently cold-starting online
item recommendation. ArXiv, abs/1607.02858, 07 2016.

[22] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender sys-
tems. Computer, 42(8):30–37, 2009.

[23] Soojung Lee. Improving jaccard index for measuring similarity in collaborative filtering. In
Kuinam Kim and Nikolai Joukov, editors, Information Science and Applications 2017, pages
799–806, Singapore, 2017. Springer Singapore.

[24] Maizan Mat Amin, Jannifer Lan, Mokhairi Makhtar, and Abd Mamat. A decision tree based
recommender system for backpackers accommodations. International Journal of Engineer-
ing and Technology(UAE), 7:45–48, 04 2018.

[25] Catarina Miranda and Alípio M. Jorge. Incremental collaborative filtering for binary ratings.
In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology - Volume 01, WI-IAT ’08, page 389–392, USA, 2008. IEEE
Computer Society.

[26] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[27] Manos Papagelis, Ioannis Rousidis, Dimitris Plexousakis, and Elias Theoharopoulos. Incre-
mental collaborative filtering for highly-scalable recommendation algorithms. In Mohand-
Said Hacid, Neil V. Murray, Zbigniew W. Raś, and Shusaku Tsumoto, editors, Foundations
of Intelligent Systems, pages 553–561, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

REFERENCES 83

[28] Dimitris Paraschakis and Bengt J. Nilsson. Flowrec: Prototyping session-based recom-
mender systems in streaming mode. In Hady W. Lauw, Raymond Chi-Wing Wong, Alexan-
dros Ntoulas, Ee-Peng Lim, See-Kiong Ng, and Sinno Jialin Pan, editors, Advances in
Knowledge Discovery and Data Mining, pages 65–77, Cham, 2020. Springer International
Publishing.

[29] Miguel Sozinho Ramalho, João Vinagre, Alípio Mário Jorge, and Rafaela Bastos. Incremen-
tal multi-dimensional recommender systems: Co-factorization vs tensors. In João Vinagre,
Alípio Mário Jorge, Albert Bifet, and Marie Al-Ghossein, editors, Proceedings of the 2nd
Workshop on Online Recommder Systems and User Modeling, volume 109 of Proceedings
of Machine Learning Research, pages 21–35, ACM RecSys 2019, Copenhagen, Denmark,
19 Sep 2019. PMLR.

[30] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender Systems
Handbook, pages 1–35. Springer US, Boston, MA, 2011.

[31] Christophe Salperwyck, Vincent Lemaire, and Carine Hue. Incremental weighted naive
bayes classifiers for data stream. Springer in the Springer Series “Studies in Classification,
Data Analysis, and Knowledge Organization, 06 2014.

[32] Jesus Bobadilla Sancho, Fernando Ortega Requena, Antonio Hernando Esteban, and
Jesús Bernal Bermúdez. A collaborative filtering approach to mitigate the new user cold
start problem. Knowledge-Based Systems, 26:225–238, February 2012.

[33] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th International Conference
on World Wide Web, WWW ’01, page 285–295, New York, NY, USA, 2001. Association for
Computing Machinery.

[34] Jeffrey C. Schlimmer and Douglas Fisher. A case study of incremental concept induction.
In Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, AAAI’86,
page 496–501. AAAI Press, 1986.

[35] Leily Sheugh and Sasan H. Alizadeh. A note on pearson correlation coefficient as a metric
of similarity in recommender system. 2015 AI & Robotics (IRANOPEN), pages 1–6, 2015.

[36] Takuya Kitazawa. Flurs: A python library for online item recommendation. https://
takuti.me/note/flurs/. Accessed 22/11/2019.

[37] Loren Terveen and Will C. B. Hill. Beyond recommender systems: Helping people help each
other. In In HCI In The New Millennium, Jack Carroll, ed., Addison-Wesley, 2001, 02 2001.

[38] Paul E Utgoff. Id5: An incremental id3. In Fifth International Conference on Machine
Learning, pages 107–120. Morgan Kaufmann Publishers, 1988.

[39] Paul E. Utgoff. Incremental induction of decision trees. Mach. Learn., 4(2):161–186,
November 1989.

[40] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

[41] Benjamin Van Durme and Ashwin Lall. Online generation of locality sensitive hash signa-
tures. In Proceedings of the ACL 2010 Conference Short Papers, pages 231–235, Uppsala,
Sweden, July 2010. Association for Computational Linguistics.

https://takuti.me/note/flurs/
https://takuti.me/note/flurs/

84 REFERENCES

[42] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009.

[43] John Verzani. Using R for Introductory Statistics. CHAPMAN & HALL/CRC, 2005.

[44] João Vinagre, Alípio Mário Jorge, and João Gama. Fast incremental matrix factorization for
recommendation with positive-only feedback. In Vania Dimitrova, Tsvi Kuflik, David Chin,
Francesco Ricci, Peter Dolog, and Geert-Jan Houben, editors, User Modeling, Adaptation,
and Personalization, pages 459–470, Cham, 2014. Springer International Publishing.

[45] Wei Wu, Bin Li, Ling Chen, Junbin Gao, and Chengqi Zhang. A review for weighted min-
hash algorithms. ArXiv, abs/1811.04633, 2018.

[46] Xiao Yang, Zhaoxin Zhang, and Ke Wang. Scalable collaborative filtering using incremental
update and local link prediction. In Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, CIKM ’12, page 2371–2374, New York, NY,
USA, 2012. Association for Computing Machinery.

	Front Page
	Abstract
	Resumo
	Acknowledgments
	Table of Contents
	List of Figures
	List of Equations
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Traditional Recommendation Systems
	2.1 Collaborative Filtering Systems
	2.1.1 Neighborhood-Based Collaborative Filtering
	2.1.2 Model-Based Collaborative Filtering

	2.2 Content-Based Recommender Systems
	2.2.1 Unupervised feature selection
	2.2.2 Supervised Feature Selection
	2.2.3 User Profiles and Filtering

	3 Incremental Recommendations
	3.1 Neighborhood-based
	3.1.1 Item-based
	3.1.2 User-based

	3.2 Model-based
	3.2.1 Matrix Factorization

	3.3 Prequential Evaluation

	4 Software library for stream-based recommender systems
	4.1 Problem Definition
	4.1.1 Related work
	4.1.2 Architecture
	4.1.3 Why Python?
	4.1.4 Design patterns in action

	4.2 The algorithms module
	4.2.1 Matrix Factorization algorithms
	4.2.2 Neighborhood-Based algorithms

	4.3 The data structures module
	4.3.1 Dynamic Array
	4.3.2 Symmetric Matrix

	4.4 The prequential evaluator module
	4.4.1 Implicit Prequential Evaluator
	4.4.2 Explicit Prequential Evaluator

	4.5 The file stream module
	4.5.1 Implicit file stream
	4.5.2 Explicit file stream

	4.6 The graphic module
	4.7 Continuous integration and deployment

	5 Results
	5.1 Algorithm Tests
	5.1.1 Model-based algorithms tests
	5.1.2 Neighborhood-based algorithms tests

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Limitations and future work

	A Appendix
	References

