734 research outputs found

    Automatic level generation for platform videogames using genetic algorithms

    Get PDF
    In this document we present an investigation on automatically generating levels for platform videogames. Common approaches for this problem are rhythm based, where input patterns are transformed in a valid geometry, and chunk based, where samples are humanly created and automatically assembled like a puzzle. The proposal hereby presented is to explore this challenge with the usage of Genetic Algorithms, facing it as a search problem, in order to achieve higher expressivity and less linearity than in rhythm based approach and without requiring human creation as it happens with the chunk based approach. With simple heuristics the system is able to generate playable levels in a small amount of time (one level is created in less than a minute) and with considerable diversity, as our results show

    Mechanism and Behaviour Co-optimisation of High Performance Mobile Robots

    Get PDF
    Mobile robots do not display the level of physical performance one would expect, given the specifications of their hardware. This research is based on the idea that their poor performance is at least partly due to their design, and proposes an optimisation approach for the design of high-performance mobile robots. The aim is to facilitate the design process, and produce versatile and robust robots that can exploit the maximum potential of today's technology. This can be achieved by a systematic optimisation study that is based on careful modelling of the robot's dynamics and its limitations, and takes into consideration the performance requirements that the robot is designed to meet. The approach is divided into two parts: (1) an optimisation framework, and (2) an optimisation methodology. In the framework, designs that can perform a large set of tasks are sought, by simultaneously optimising the design and the behaviours to perform them. The optimisation methodology consists of several stages, where various techniques are used for determining the design's most important parameters, and for maximising the chances of finding the best possible design based on the designer's evaluation criteria. The effectiveness of the optimisation approach is proved via a specific case-study of a high-performance balancing and hopping monopedal robot. The outcome is a robot design and a set of optimal behaviours that can meet several performance requirements of conflicting nature, by pushing the hardware to its limits in a safe way. The findings of this research demonstrate the importance of using realistic models, and taking into consideration the tasks that the robot is meant to perform in the design process

    Reconfigurable Phase-Change Metasurface Absorbers for Optoelectronics Device Applications

    Get PDF
    This thesis is concerned with the design and development of dynamically reconfigurable optical metasurfaces. This reconfigurability is achieved by integrating chalcogenide phase-change materials with plasmonic resonator structures of the metal-insulator-metal type. Switching the phase-change material between its amorphous and crystalline states results in dramatic changes in its optical properties, with consequent dramatic changes in the resonant behaviour of the plasmonic metasurface with which it is integrated. Moreover, such changes are non-volatile, reversible and potentially very fast, in the order of nanoseconds. The first part of the thesis is dedicated to the design, fabrication and characterisation of metasurface devices working at telecommunications wavelengths, specifically at wavelengths corresponding to the C-band (1530 to 1565 nm), and that act as a form of perfect absorber when the phase-change layer (in this case Ge2Sb2Te5) is amorphous but reflect strongly when switched to the crystalline state. Such behaviour can be used, for example, to provide a form of optical amplitude modulator. Fabricated devices not only showed very good performance, including a large modulation depth of ~77% and an extinction ratio of ~20 dB, but also incorporated a number of practicable design features often overlooked in the literature, including a means for protecting the phase-change layer from environmental oxidation and, importantly, an electrically-driven in-situ switching capability. In the second part of the thesis a method, based on eigenmode analysis and critical coupling theory, is developed to allow for the design and fabrication of perfect absorber type devices in a simple and efficient way, while at the same time maintaining design control over the key performance characteristics of resonant frequency, reflection coefficient at resonance and quality factor. Validation of this new method was carried out via the design and fabrication of a family of absorbers with a range of ‘on-demand’ quality factors, all operating at the same resonant frequency and able to be fabricated simply and simultaneously on the same chip. The final part of the thesis is concerned with the design and development of a switchable phase-change metamaterial type absorber working in the visible part of the spectrum and with non-volatile colour generating capability. With the phase-change layer, here GeTe, in the crystalline phase, the absorber can be tuned to selectively absorb the red, green and blue spectral bands, so generating vivid cyan, magenta and yellow pixels. When the phase-change layer is switched into the amorphous phase, the resonant absorption is suppressed and a flat, pseudo-white reflectance results. This potentially opens up a route to the development of non-volatile, phase-change metamaterial colour displays and colour electronic signage.Engineering and Physical Sciences Research Council (EPSRC

    Optimisation of postbuckling stiffened composite structures

    Get PDF
    The thesis starts off with an introductory chapter on composite materials. This includes a definition of composites, a brief history of composite materials, their use in aerostructures (primarily as stiffened structures), and also optimization of composite structures. A literature review is then presented on postbuckling stiffened structures. This includes both experimental investigations on stiffened composite panels and investigations into secondary instabilities and mode jumping as well as their numerical modelling. Next, the Finite Element (FE) modelling of posthuckling stiffened structures is discussed, relating how ABAQUS models are set up in order to trace stiffened composite panels' buckling and postbuckling responses. An experimental programme conducted on an I-stiffened panel is described, where the panel was tested in compression until collapse. The buckling and postbuckling characteristics of the panel are presented, and then an FE model is described together with its predicted numerical behaviour of the panel's buckling and postbuckling characteristics. Focus then shifts to the modelling of failure in composites, in particular delamination failure. A literature review is conducted, looking at the use of both the Virtual Crack Closure Technique (VCCT) and interface elements in delamination modelling. Two stiffener runout models, representing two specimens previously tested experimentally, are then developed to illustrate how interface elements may be used to model mixed mode delamination. The previously discussed panel is revisited, and a global-local modelling approach used to model the skin-stiffener interface. FE models of a stiffened cylindrical shell are also considered, and again the postbuckling characteristics of the shell are compared with experimental results. . The thesis then moves on to optimization of composite structures. This starts off with a literature review of existing optimization methodologies. A Genetic Algorithm (GA) is devised to increase the damage resistance of the I-stiffened panel. The global-local ABAQUS model discussed earlier is used in conjunction with the GA in order to find a revised stacking sequence of both the panel flanges and skin so as to minimize skin-stiffener debonding subject to a variety of design constraints. A second optimization is then presented, this time linked to the FE model of the stiffened cylindrical shell. The objective is to increase the collapse load of the shell, again subject to specific design constraints. The thesis concludes by summarising the importance of the work conducted. FE models were created and validated against experimental work in order to model a variety of composite stiffened structures in their buckling and postbuckling regimes. These models were able to capture the failure characteristics of these structures relating to delamination at the skin-stiffener interface, a phenomenon widely observed experimentally. Various optimizations, able to account for failure mechanisms which may occur prior to overall structural collapse, were then conducted on the analysed structures in order to obtain more damage resistant designs.Imperial Users onl

    A kinematic numerical camera model for the SPOT-1 sensor

    Get PDF
    A novel method for modelling linear push-broom sensors has been developed. A numerical model which incorporates the satellite attitude and position data is used to compute the absolute orientation. This method makes a break with traditional photogrammetric practice, in that instead of using an approach based on collinearity equations, the absolute orientation is computed iteratively using a numerical multi-variable minimisation scheme. All current implementations of the model use the Powell direction-set method, but in principle, any multivariable minimisation scheme could be substituted. The numerical method has significant advantages over the collinearity approach. The number of ground control points needed to form an accurate model is reduced and the numerical approach offers a superior basis for the development of general purpose multi sensor modelling software. In order to test these assertions, a numerical model of the SPOT-1 sensor was coded and tested against a pre-existing collinearity based model. Exhaustive tests showed the numerical model, using 3 or fewer ground control points, consistendy equaled or bettered the performance of the earlier model, using between 6 and 15 ground control points, on the same test data. A general purpose sensor modelling system was developed using the code developed for the initial SPOT-1 model. Currently this system supports many rigid linear sensors systems including SPOT-1, SPOT-2, FTIR, MISR, MEOSS and ASAS. Further extensions to the system to enable it to model non-rigid linear sensors such as AVHRR and ATM are planned. Work to enable the system to perform relative orientations for a variety of sensor types is also ongoing

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La Géo-Simulation Multi-Agent (GSMA) est un paradigme de modélisation et de simulation de phénomènes dynamiques dans une variété de domaines d'applications tels que le domaine du transport, le domaine des télécommunications, le domaine environnemental, etc. La GSMA est utilisée pour étudier et analyser des phénomènes qui mettent en jeu un grand nombre d'acteurs simulés (implémentés par des agents) qui évoluent et interagissent avec une représentation explicite de l'espace qu'on appelle Environnement Géographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement géographique qui peut être dynamique, complexe et étendu (à grande échelle), un agent doit d'abord disposer d'une représentation détaillée de ce dernier. Les EGV classiques se limitent généralement à une représentation géométrique du monde réel laissant de côté les informations topologiques et sémantiques qui le caractérisent. Ceci a pour conséquence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de réduire les capacités de raisonnement spatial des agents situés. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent à calculer un chemin qui lie deux positions situées dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractéristiques de l'environnement (topologiques et sémantiques), ni celles des agents (types et capacités). Les agents situés ne possèdent donc pas de moyens leur permettant d'acquérir les connaissances nécessaires sur l'environnement virtuel pour pouvoir prendre une décision spatiale informée. Pour répondre à ces limites, nous proposons une nouvelle approche pour générer automatiquement des Environnements Géographiques Virtuels Informés (EGVI) en utilisant les données fournies par les Systèmes d'Information Géographique (SIG) enrichies par des informations sémantiques pour produire des GSMA précises et plus réalistes. De plus, nous présentons un algorithme de planification hiérarchique de chemin qui tire avantage de la description enrichie et optimisée de l'EGVI pour fournir aux agents un chemin qui tient compte à la fois des caractéristiques de leur environnement virtuel et de leurs types et capacités. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise à supporter la prise de décision informée et le raisonnement spatial des agents situés

    Computer graphic control over human face and head appearance: to, genetic optimisation of perceptual characteristics

    Get PDF
    The aims of this thesis are two-fold. The first is to develop computer graphics that allow quantitative manipulation of complex visual stimuli. The second is to show that such techniques have utility in the domain of perceptual psychology. There are three main sections to this thesis. The first section creates methods for performing transformations of facial appearance along particular perceptual dimensions. This work begins with 2-D image manipulations and then extends the general principles to 3-D. Effectiveness of the techniques is illustrated with plates showing transformation in age, gender and identity. The second section uses Genetic Algorithms to control the appearance of 3-D computer graphics objects and investigates methods of evolving objects that embody various consumer concepts. Computer graphic models of shampoo bottles are successfully evolved to satisfy a selection of aesthetic and perceptual characteristics. The final section returns to facial stimuli and extends the Genetic Algorithm approach to investigate aesthetic preference for 3-D facial surfaces. The study shows that individual human subjects can evolve facial surfaces based upon their own attractiveness preferences. The faces evolved are non-average and there is consistency between subjects about preferred characteristics. The three parts of this thesis have different theoretical backgrounds and literature relevant to each topic is therefore reviewed at the start of each section

    Squeak and Rattle Prediction for Robust Product Development in the automotive industry

    Get PDF
    Squeak and rattle are nonstationary, irregular, and impulsive sounds that are audible inside the car cabin. For decades, customer complaints about squeak and rattle have been, and still are, among the top quality issues in the automotive industry. These annoying sounds are perceived as quality defect indications and burden warranty costs to the car manufacturers. Today, the quality improvements regarding the persistent type of sounds in the car, as well as the increasing popularity of electric engines, as green and quiet propulsion solutions, stress the necessity for attenuating annoying sounds like squeak and rattle more than in the past. The economical and robust solutions to this problem are to be sought in the pre-design-freeze phases of the product development and by employing design-concept-related practices. To achieve this goal, prediction and evaluation tools and methods are required to deal with the squeak and rattle quality issues upfront in the product development process. The available tools and methods for the prediction of squeak and rattle sounds in the pre-design-freeze phases of a car development process are not yet sufficiently mature. The complexity of the squeak and rattle events, the existing knowledge gap about the mechanisms behind the squeak and rattle sounds, the lack of accurate simulation and post-processing methods, as well as the computational cost of complex simulations are some of the significant hurdles in this immaturity. This research addresses this problem by identifying a framework for the prediction of squeak and rattle sounds based on a cause-and-effect diagram. The main domains and the elements and the sub-contributors to the problem in each domain within this framework are determined through literature studies, field explorations and descriptive studies conducted on the subject. Further, improvement suggestions for the squeak and rattle evaluation and prediction methods are proposed through prescriptive studies. The applications of some of the proposed methods in the automotive industry are demonstrated and examined in industrial problems.The outcome of this study enhances the understanding of some of the parameters engaged in the squeak and rattle generation. Simulation methods are proposed to actively involve the contributing factors studied in this work for squeak and rattle risk evaluation. To enhance the efficiency and accuracy of the risk evaluation process, methods were investigated and proposed for the system excitation efficiency, modelling accuracy and efficiency and quantification of the response in the time and frequency domains. The demonstrated simulation methods besides the improved understanding of the mechanisms behind the phenomenon can facilitate a more accurate and robust prediction of squeak and rattle risk during the pre-design-freeze stages of the car development
    corecore