187,324 research outputs found

    Quantitative modelling of the human–Earth System a new kind of science?

    No full text
    The five grand challenges set out for Earth System Science by the International Council for Science in 2010 require a true fusion of social science, economics and natural science—a fusion that has not yet been achieved. In this paper we propose that constructing quantitative models of the dynamics of the human–Earth system can serve as a catalyst for this fusion. We confront well-known objections to modelling societal dynamics by drawing lessons from the development of natural science over the last four centuries and applying them to social and economic science. First, we pose three questions that require real integration of the three fields of science. They concern the coupling of physical planetary boundaries via social processes; the extension of the concept of planetary boundaries to the human–Earth System; and the possibly self-defeating nature of the United Nation’s Millennium Development Goals. Second, we ask whether there are regularities or ‘attractors’ in the human–Earth System analogous to those that prompted the search for laws of nature. We nominate some candidates and discuss why we should observe them given that human actors with foresight and intentionality play a fundamental role in the human–Earth System. We conclude that, at sufficiently large time and space scales, social processes are predictable in some sense. Third, we canvass some essential mathematical techniques that this research fusion must incorporate, and we ask what kind of data would be needed to validate or falsify our models. Finally, we briefly review the state of the art in quantitative modelling of the human–Earth System today and highlight a gap between so-called integrated assessment models applied at regional and global scale, which could be filled by a new scale of model

    Collective dynamics of belief evolution under cognitive coherence and social conformity

    Full text link
    Human history has been marked by social instability and conflict, often driven by the irreconcilability of opposing sets of beliefs, ideologies, and religious dogmas. The dynamics of belief systems has been studied mainly from two distinct perspectives, namely how cognitive biases lead to individual belief rigidity and how social influence leads to social conformity. Here we propose a unifying framework that connects cognitive and social forces together in order to study the dynamics of societal belief evolution. Each individual is endowed with a network of interacting beliefs that evolves through interaction with other individuals in a social network. The adoption of beliefs is affected by both internal coherence and social conformity. Our framework explains how social instabilities can arise in otherwise homogeneous populations, how small numbers of zealots with highly coherent beliefs can overturn societal consensus, and how belief rigidity protects fringe groups and cults against invasion from mainstream beliefs, allowing them to persist and even thrive in larger societies. Our results suggest that strong consensus may be insufficient to guarantee social stability, that the cognitive coherence of belief-systems is vital in determining their ability to spread, and that coherent belief-systems may pose a serious problem for resolving social polarization, due to their ability to prevent consensus even under high levels of social exposure. We therefore argue that the inclusion of cognitive factors into a social model is crucial in providing a more complete picture of collective human dynamics

    Futures Studies in the Interactive Society

    Get PDF
    This book consists of papers which were prepared within the framework of the research project (No. T 048539) entitled Futures Studies in the Interactive Society (project leader: Éva Hideg) and funded by the Hungarian Scientific Research Fund (OTKA) between 2005 and 2009. Some discuss the theoretical and methodological questions of futures studies and foresight; others present new approaches to or procedures of certain questions which are very important and topical from the perspective of forecast and foresight practice. Each study was conducted in pursuit of improvement in futures fields

    Competing Claims on Natural Resources: What Role for Science?

    Get PDF
    Competing claims on natural resources become increasingly acute, with the poor being most vulnerable to adverse outcomes of such competition. A major challenge for science and policy is to progress from facilitating univocal use to guiding stakeholders in dealing with potentially conflicting uses of natural resources. The development of novel, more equitable, management options that reduce rural poverty is key to achieving sustainable use of natural resources and the resolution of conflicts over them. Here, we describe an interdisciplinary and interactive approach for: (i) the understanding of competing claims and stakeholder objectives; (ii) the identification of alternative resource use options, and (iii) the scientific support to negotiation processes between stakeholders. Central to the outlined approach is a shifted perspective on the role of scientific knowledge in society. Understanding scientific knowledge as entering societal arenas and as fundamentally negotiated, the role of the scientist becomes a more modest one, a contributor to ongoing negotiation processes among stakeholders. Scientists can, therefore, not merely describe and explain resource-use dynamics and competing claims, but in doing so, they should actively contribute to negotiation processes between stakeholders operating at different scales (local, national, regional, and global). Together with stakeholders, they explore alternatives that can contribute to more sustainable and equitable use of natural resources and, where possible, design new technical options and institutional arrangements

    The Macro-Social Benefits of Education, Training and Skills in Comparative Perspective [Wider Benefits of Learning Research Report No. 9]

    Get PDF
    This report, the second from the Centre's strand of comparative research, complements an earlier WBL research report (Education, Equity and Social Cohesion: A Distributional Model) in exploring further themes of societal comparison and the distributional effects of education systems. Despite generally high levels of educational attainment there is huge diversity amongst Western Societies in terms of crime, tolerance, trust and social cohesion. In this report, we take a comparative approach to investigating relationships between education and these outcomes at a societal level. Through an interdisciplinary review of literatures from sociology, history, economics and psychology we examine the role of education systems from a number of countries in influencing trends in, and levels of, these variables. Whilst the importance of country and historical context is stressed throughout we arrive at some general conclusions concerning the role of education systems in the development of various forms of social cohesion. This report will be of interest to policy makers, researchers and practitioners who are interested in the social impact of education systems. In particular, we examine implications for current UK policy targeted at increasing national educational attainment

    The value of theoretical multiplicity for steering transitions towards sustainability

    Get PDF
    Transition management, as a theory of directing structural societal changes towards sustainable system innovations, has become a major topic in scientific research over the last years. In this paper we focus on the question how transitions towards sustainability can be steered, governed or managed, in particular by governmental actors. We suggest an approach of theoretical multiplicity, arguing that multiple theories will be needed simultaneously for dealing with the complex societal sustainability issues. Therefore, we address the steering question by theoretically comparing transition management theory to a number of related theories on societal change and intervention, such as multi-actor collaboration, network governance, configuration management, policy agenda setting, and adaptive management. We conclude that these related theories put the managerial assumptions of transition management into perspective, by adding other steering roles and leadership mechanisms to the picture. Finally we argue that new modes of steering inevitable have consequences for the actual governance institutions. New ways of governing change ask for change within governance systems itself and vice versa. Our argument for theoretical multiplicity implicates the development of multiple, potentially conflicting, governance capacitie

    What is systemic innovation?

    Get PDF
    The term ‘systemic innovation’ is increasing in use. However, there is no consensus on its meaning: four different ways of using the term can be identified in the literature. Most people simply define it as a type of innovation where value can only be derived when the innovation is synergistically integrated with other complementary innovations, going beyond the boundaries of a single organization. Therefore, the term ‘systemic’ refers to the existence of a co-ordinated innovation system. A second, less frequent use of the term makes reference to the development of policies and governance at a local, regional or national scale to create an enabling environment for the above kind of synergistic, multi-organizational innovations. Here, ‘systemic’ means recognition that innovation systems can be enabled and/or constrained by a meta-level policy system. The third use of the term, which is growing in popularity, says that an innovation is ‘systemic’ when its purpose is to change the fundamental nature of society; for instance, to deliver on major transitions concerning ecological sustainability. What makes this systemic is acknowledgement of the existence of a systems hierarchy (systems nested within each other): innovation systems are parts of economic systems, which are parts of societal systems, and all societies exist on a single planetary ecological system. Collaboration is required across organizational and national boundaries to change the societal laws and norms that govern economic systems, which will place new enablers and constraints on innovations systems in the interests of sustainability. The fourth use of the term ‘systemic innovation’ concerns how the people acting to bring about an innovation engage in a process to support systemic thinking, and it is primarily this process and the thinking it gives rise to that is seen as systemic rather than the innovation system that they exist within or are trying to create. It is this fourth understanding of ‘systemic’ that accords with most of the literature on systems thinking published between the late 1970s and the present day. The paper offers an overview of what systems thinkers mean by ‘systemic’, and this not only enables us to provide a redefinition of ‘systemic innovation’, but it also helps to show how all three previous forms of innovation that have been described as systemic can be enhanced by the practice of systems thinking
    • 

    corecore