445 research outputs found

    The robust single machine scheduling problem with uncertain release and processing times

    Get PDF
    In this work, we study the single machine scheduling problem with uncertain release times and processing times of jobs. We adopt a robust scheduling approach, in which the measure of robustness to be minimized for a given sequence of jobs is the worst-case objective function value from the set of all possible realizations of release and processing times. The objective function value is the total flow time of all jobs. We discuss some important properties of robust schedules for zero and non-zero release times, and illustrate the added complexity in robust scheduling given non-zero release times. We propose heuristics based on variable neighborhood search and iterated local search to solve the problem and generate robust schedules. The algorithms are tested and their solution performance is compared with optimal solutions or lower bounds through numerical experiments based on synthetic data

    Resource-constrained project scheduling for timely project completion with stochastic activity durations.

    Get PDF
    We investigate resource-constrained project scheduling with stochastic activity durations. Various objective functions related to timely project completion are examined, as well as the correlation between these objectives. We develop a GRASP-heuristic to produce high-quality solutions, using so-called descriptive sampling. The algorithm outperforms other existing algorithms for expected-makespan minimization. The distribution of the possible makespan realizations for a given scheduling policy is studied, and problem difficulty is explored as a function of problem parameters.GRASP; Project scheduling; Uncertainty;

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem.Postprint (published version

    Flexible Job Shop Scheduling with Sequence-dependent Setup and Transportation Times by Ant Colony with Reinforced Pheromone Relationships

    Get PDF
    This paper proposes a swarm intelligence approach based on a disjunctive graph model in order to schedule a manufacturing system with resource flexibility and separable setup times. Resource flexibility assigns each operation to one of the alternative resources (assigning sub-problem) and, consequently, arranges the operation in the right sequence of the assigned resource (sequencing sub-problem) in order to minimize the makespan. Resource flexibility is mandatory for rescheduling a manufacturing system after unforeseen events which modify resource availability. The proposed method considers parallel (related) machines and enforces in a single step both the assigning and sequencing sub-problems. A neighboring function on the disjunctive graph is enhanced by means of a reinforced relation-learning model of pheromone involving more effective machine-sequence constraints and a dynamic visibility function. It also considers the overlap between the jobs feeding and the machine (anticipatory) setup times. It involves separable sequence-independent and dependent setup phases. The algorithm performance is evaluated by modifying the well-known benchmark problems for JOB shop scheduling. Comparison with other systems and lower bounds of benchmark problems has been performed. Statistical tests highlight how the approach is very promising. The performance achieved when the system addresses the complete problem is quite close to that obtained in the case of the classical job-shop problem. This fact makes the system effective in coping with the exponential complexity especially for sequence dependent setup times

    Investigation of service selection algorithms for grid services

    Get PDF
    Grid computing has emerged as a global platform to support organizations for coordinated sharing of distributed data, applications, and processes. Additionally, Grid computing has also leveraged web services to define standard interfaces for Grid services adopting the service-oriented view. Consequently, there have been significant efforts to enable applications capable of tackling computationally intensive problems as services on the Grid. In order to ensure that the available services are assigned to the high volume of incoming requests efficiently, it is important to have a robust service selection algorithm. The selection algorithm should not only increase access to the distributed services, promoting operational flexibility and collaboration, but should also allow service providers to scale efficiently to meet a variety of demands while adhering to certain current Quality of Service (QoS) standards. In this research, two service selection algorithms, namely the Particle Swarm Intelligence based Service Selection Algorithm (PSI Selection Algorithm) based on the Multiple Objective Particle Swarm Optimization algorithm using Crowding Distance technique, and the Constraint Satisfaction based Selection (CSS) algorithm, are proposed. The proposed selection algorithms are designed to achieve the following goals: handling large number of incoming requests simultaneously; achieving high match scores in the case of competitive matching of similar types of incoming requests; assigning each services efficiently to all the incoming requests; providing the service requesters the flexibility to provide multiple service selection criteria based on a QoS metric; selecting the appropriate services for the incoming requests within a reasonable time. Next, the two algorithms are verified by a standard assignment problem algorithm called the Munkres algorithm. The feasibility and the accuracy of the proposed algorithms are then tested using various evaluation methods. These evaluations are based on various real world scenarios to check the accuracy of the algorithm, which is primarily based on how closely the requests are being matched to the available services based on the QoS parameters provided by the requesters
    corecore