
FLEXIBLE JOB SHOP SCHEDULING WITH SEQUENCE-DEPENDENT SETUP AND TRANSPORTATION

TIMES BY ANT COLONY WITH REINFORCED PHEROMONE RELATIONSHIPS

AUTHOR: ANDREA ROSSI
1

1
Department of Civil and Industrial Engineering, Università di Pisa, Via Bonanno Pisano, 25/B,

Pisa, 56126, ITALY

•••• Corresponding author: Tel. ++39 50 2218123, Fax ++39 502218140; E-mail:

andrea.rossi@dimnp.unipi.it

HIGHLIGHTS:

• ACO enhances machine assigning/sequencing constraints and dynamic visibility

function

• Statistical tests suggest the superiority of the ACO with systems in literature

• ACO shows no significant difference to schedule sequence-dependent/independent setups

• Tests suggest the system is no significantly influenced by low setup and feeding times

• Experiments suggest that the CPU time slight increases with problem complexity

Abstract

This paper proposes a swarm intelligence approach based on a disjunctive graph model in order to

schedule a manufacturing system with resource flexibility and separable setup times. Resource

flexibility assigns each operation to one of the alternative resources (assigning sub-problem) and,

consequently, arranges the operation in the right sequence of the assigned resource (sequencing sub-

problem) in order to minimize the makespan. Resource flexibility is mandatory for rescheduling a

manufacturing system after unforeseen events which modify resource availability. The proposed

method considers parallel (related) machines and enforces in a single step both the assigning and

sequencing sub-problems. A neighboring function on the disjunctive graph is enhanced by means of

a reinforced relation-learning model of pheromone involving more effective machine-sequence

constraints and a dynamic visibility function. It also considers the overlap between the jobs feeding

and the machine (anticipatory) setup times. It involves separable sequence-independent and

dependent setup phases. The algorithm performance is evaluated by modifying the well-known

benchmark problems for job shop scheduling. Comparison with other systems and lower bounds of

benchmark problems has been performed. Statistical tests highlight how the approach is very

promising. The performance achieved when the system addresses the complete problem is quite

close to that obtained in the case of the classical job-shop problem. This fact makes the system

effective in coping with the exponential complexity especially for sequence dependent setup times

Keywords: parallel machines, metaheuristics, swarm systems, benchmark problems, computation time

1. Introduction

A common aim in the practical job shop environment is to improve resource flexibility and setup lag times.

Resource flexibility deals with flexible (or hybrid) job shop scheduling (FJS) where alternative resources are

present to increase performance, to manage preventive maintenance or to tackle breakdown and other

unforeseen events which modifies resource availability. The FJS problem is thus to determine both an

assignment of each operation to one of the alternative resources (assignment sub-problem) and an ordering of

the operations on each assigned resource (sequencing sub-problem) with the aim of optimising an objective

function.

The FJS problem arises in at least two types of workshop. The first is a flexible manufacturing system

where a small number of multi-purpose machines are equipped with different tools and a number of

modes (multiple modes) are allowed to perform each operation. A FJS has a total flexibility if any

operation can be processed by each machine present in the system. This method gives the required

routing flexibility but the managing of machine capabilities to meet the tolerances of design (process

planning) is a very difficult problem.

In the great majority of practical industrial applications, however, resource flexibility is combined with

scheduling operations on alternative (identical) machines. It consists of workshops with a partition of

available machines into groups of parallel machines tools. The machines of the same group (e.g. lathes,

milling machines, washing/sterilization machines, measuring machines, assembly robots, etc.) as related:

they group the manufacturing capability in order to process a set of technologically similar operations and

hence, for example, they include equal processing and setup times (Stecke and Raman, 1995). If the jobs

have an identical routing among the groups, the problem is the hybrid (non-permutation) flow-shop

scheduling.

Job shop scheduling with the objective of makespan minimization Jm||Cmax, which only deals with the

sequencing problem, is strongly NP-hard (Garey et al, 1976). An extensive and rapidly growing series of

approaches are proposed; nevertheless, only a few special cases can be optimally solved with effective

computing times (see Jain and Meeran, 1999; Blazewicz et al., 1996 for a review). As it is an extension of

job shop scheduling, the flexible job shop scheduling FJm||Cmax is NP-hard as well. Flexible job shop

scheduling has only been treated in recent literature by a number of approaches where the routing

flexibility is achieved by multiple modes with partial flexibility (Brucker and Schlie, 1990; Hurink et al.,

1994; Brucker and Thiele, 1996; Dauzère-Pérès et al., 1998; Mastrolilli and Gambardella, 2000; Kacem et

al. 2002; Kumar et al. 2003; Chan et al. 2006). In addition, Kacem et al. (2002) and Chan et al. consider

FJS with total flexibility.

Compared with the extensive research on FJS where the routing flexibility is achieved by multiple modes,

in the last years the systems and the applications to solve the parallel machine job shop scheduling

problem has not received sufficient attention. Besides, the majority of FJS systems assume release date of

jobs and resources, operation setup and job transportation (travel) times as negligible or part of the

processing time. While these assumptions simplify the analysis in certain applications, they adversely

affect the solution quality for many applications which require explicit treatment of these time lags. Such

applications have motivated an increasing interest to include setup considerations, in order to reduce

costs.

According to the α|β|γ notation of Graham et al. (1979), the problem under consideration can be denoted

by PJm(k)| sjk ,prec |Cmax, where the field α denotes a job shop with k parallel resource per group and m

groups, the field β indicate the presence of sequence-dependent setup times and linear routings, i.e. the

occurrence of simple precedence constraints in the job routing and, the field γ denotes the makespan as

the adopted measure of performance. In such a system, an operation is subjected to the following lag

times: i) sequence-dependent (SD) setup, the setup which depends on the previous operation processed on

the resource; ii) sequence-independent (SI) setup, the setup which depends on the previous operation in

the job routing (i.e job transportation) (Allahverdi et al., 2008). Overlapping among transportation and

processing times and anticipatory setup, which causes the part not to be necessarily available on the

resource during the setup period, involves separable SI and SD setup phases.

A number of job shop scheduling approaches assume the material handling system as a further resource

where travelling operations involve non-negligible transportation times. Thus, the material handling system

can be scheduled together with the resources, in order to avoid transportation costs which could influence the

makespan (Artigues and Roubellat, 2001; Hurink and Knust, 2005). In such approaches, the scheduling

algorithm must schedule twice the number of operations and one (or more) further resource included in the

material handling system. Among the minor considerations, resource setup and transportation times can be

seen as related to a single operation setup phase which includes separable SD and SI times. This approach

reduces the number of operations in the system because no additional resource is used to model

transportation times. Ivens and Lambrecht (1996) consider separable sequence-independent setup and travel

times in the case of multi-stage multiprocessor flow-shop scheduling and non-linear routing. They extend the

disjunctive graph (digraph) representation for job shop scheduling, originally proposed by Roy and Sussman

(1964). Blazewicz et al. (1996) state that the digraph model is becoming the standard model for scheduling

applications because it is more efficient than Gantt diagrams to describe knowledge for optimisation search

techniques. Rossi and Dini (2001) propose a PJm(k)| prec |Cmax where separable setup and transportation

times are related to a single operation setup phase and the problem knowledge for an evolutionary approach

is still modelled by a Gantt diagram. A digraph approach to a case of study of the parallel machine job shop

scheduling with setup lag times is proposed by Rossi and Dini (2007).

Artificial life methods have been developed in order to tackle the computational complexity of hard

problems by means of a sort of implicit parallelism which offers a population-based iterative algorithm. This

offers the possibility of obtaining a reactive, robust algorithm, which is basic for an industrial dynamic

production process (De Jong and Spears, 1995). The Ant Colony Optimization (ACO: Bonebeau et al., 2000)

is a promising metaheuristic and an emerging class of research, dealing with swarm intelligence, a set of

artificial life methods which exploit the experience of an ant colony as a model of self-organisation in co-

operative food retrieval by means of a proper pheromone trail model. The pheromone trail is the basic

mechanism of communication among real ants and it is mimicked by the ACO in order to find the shortest

path connecting source and destination on a weighted graph which represents the optimization problem. As

soon as a path is generated, the artificial ant deposits on the arc a further amount of pheromone proportional

to the path length and a pheromone decay routine is performed to prevent stagnation.

Jm||Cmax has been approached by an ant system (AS) proposed by Colorni et al. (1994). Kumar et al.

(2003) propose an AS to approach the FJm| sjk ,prec| Cmax problem. Nevertheless, ant systems has been

improved by Ant Colony Optimization (ACO). Two main classes of ACO systems are proposed in

literature in order to improve intensification and diversification mechanisms of ant systems: the Ant

Colony System (ACS: Dorigo and Gambardella, 1997) and the MinMax Ant System (MMAS: Stutzle and

Hoos, 2000). A MinMax Ant System was proposed by Blum and Sampels (2004) for solving a kind of

job shop scheduling in which some routing constraints are removed. This ACO hybridizes some

components of the current state-of-the-art system for job shop scheduling, the tabu search proposed by

Nowicki and Smutnicki (1996), in order to outperform the pure-MMAS. Besides, no ACO has been

extended to approach resource flexibility.

This paper describes an ACO approach to PJm(k)| sj =sjk ,prec |Cmax problem, where the reconfiguration tasks

of the resources of the same group are standardized with a predetermined number of procedures. This

standardization is very important in real manufacturing systems for the efficient planning of the clamping or

the batching of the parts to be produced. It is based on the digraph model of the flexible job shop scheduling

problem with separable transportation and sequence-dependent setup times. The proposed system uses an

algorithm similar to the list scheduler (originally proposed by Giffler and Thompson, 1960, for classic

Jm||Cmax) to generate a feasible schedule on the digraph by visiting every operation once and only once.

Here, the aim is to minimize the makespan, although an amount of results is independent of the selected

objective function.

2. Job shop Scheduling with Resource Flexibility and Separable Setup Times

In FJS, n jobs have to be scheduled on m resources in accordance with its linear routing represented by a

sequence of li ≤ m operations, Oi j r; each of these has to be processed as the r
th
 operation on a single

resource selected within a set of resources Mi j (| M i j | ≤m), with a setup activity fi j, which takes the time

t(fi j), and a processing time ti j r; st(Oi j r) and t(Oi j r) denote respectively the starting and the completion

time of the operation.

No resource can process more than one operation at a time; no operation Oi j r can start until Oi j r-1 is

completed or can stop after it starts; finally, an operation must be processed by one, and only one,

resource.

In order to process the entire set of planned operations, the system includes F dedicated setup activities,

grouped per resources, F1,..,Fm. A resource j includes all the equipment capable of performing the setup

activity fi j of the set Fj. Each job i and each resource j are subjected to, respectively, a release date, Di

and a deadline dj. Finally, a material handling system is able to offer the required flexibility in order to

move a part through the system. A transportation time matrix δ includes the times to move a job among

the stations.

The quantity k = mini j |Mij| represents the degree of parallelization capability of the system. Job shop

scheduling is a particular case of FJS where k=1. The assignment of operations to a resource of a pool gives a

sort of further flexibility, and hence an increase of complexity, in addition to the flexibility represented by

the possibility of sequencing operations on the resources. In particular, the FJS has a total flexibility if k = m

and has a partial flexibility if k<m.

The PJm(k1,.., km)||Cmax, where kj is the number of resources of group j, is a restriction of the FJS in which

the sets of related resources Mi j is a total grouping:

mkM
m

i

j

n

i

m

j

ji ==∑∑∑
== = 11 1

 (1)

() () zwmzwMM
n

i zi

n

i wi ≠=∅=
==

,,..,1,,
11 I II (2)

The degree of parallelization capability is represented by the quantity k = min j=1,..,m kj. The PJm(k)||Cmax

has a degree k of parallelization; as a consequence, PJm(1,.., 1)||Cmax is the classic job shop scheduling,

Jm||Cmax, and reflects the fact that it has non-parallelization capability.

The starting time of an operation is evaluated by considering: i) anticipatory (sequence-dependent) setup and

overlapping of processing and transportation times; ii) the semi-active schedule, where operations are

processed as early as possible. This necessarily means that the starting time of an operation depends on the

longest time between the SI and SD setup. Hence, setting Oi’ j r’ the previous operation in the queue of

resource h of pool j, the starting time of the current operation is evaluated by the following expression:

st(Oi j r) = max{t(SD), t(SI)}= max{t(Oi’j r’)+t (fij), tA +δ (h, h1)} (3)

where tA is the instant of availability of the material handling system; t(fij) and δ (h, h1) are the lag times for,

respectively, SD and SI setup. The first setup on every resource starts from the resource release date (i.e.

t(Oi’j r’)=dh). By expression (1), SI setup depends on the availability and the time of the material handling

system (i.e. tA ≥ t(Oi j r-1) if r>1, tA ≥ Dj, otherwise).

3 Disjunctive graph representation

Disjunctive graph representation is becoming the standard model for job shop scheduling; moreover, it offers

a scheme for sequence-dependent setup times (Brucker and Thiele, 1996) and FJS (Dauzère-Pérès and Paulli,

1997). A disjunctive graph is represented by:

DG = (N, A, Ej) (4)

where N is the set of operations plus the dummy start and finishing operations 0 and *; A is the set of

conjunctive arcs between every pair of operations on a job routing, between 0 and every first operation on a

routing, and between every last operation on a routing and *; Ej is the set of disjunctive arcs between pairs of

operations, O*j* , that have to be processed on the same resource j (j=1,..,m); it also includes disjunctive arcs

between 0 and O*j*, between O*j* and * and between 0 and * for all Ej. Figure 1 shows an example of a FJS

with parallel resources (Figure 1.a). In the former, each operation Oij* is connected with disjunctive arcs

belonging to each alternative resource of the set Mij. In the latter case, each arc which connects a pair of

operations O*j* to be processed on the same pool j, is replicated kj times (as many times as the number of

resources of pool j). The disjunctive graph is modified by including the sets Ej h, i.e. DG = (N, A, Ej h); Ej h is

the set of disjunctive arcs between pairs of operations, O*j* , that have to be processed on the same resource h

(h=1,..,kj) of the same pool j (j=1,..,m). Thus all and only the kj disjunctive arcs of Ej h, are connected to every

operation O*j*. In general, a PJm(k)||Cmax problem is represented by m pools of k kinds of arcs Ejh; as the arcs

of Ejh connected with n nodes are n(n-1), the number of disjunctive arcs in the digraph is O(kmn
2
). As a

consequence in the FJS with total flexibility, the number of disjunctive arcs is O((mn)
2
).

Figure 1 – Example of FJS with replicates resources: a) disjunctive graph; b) acyclic conjunctive

graph; in particular, a PJm(k)||Cmax with n=3 and m=2 is showed.

A finite sequence of conjunctive (directed) arcs between two operations is called a path. The length of an arc

is equal to the processing time of the operation at which it ends. The path length is equal to the sum of the

lengths of its arcs. A path which starts from 0 and ends at * is the loading sequence on a resource. A cycle is

a path which starts and ends at the same operation. If no cycle is present in a conjunctive graph achieved by

directing some disjunctive arcs and including all the operations, the conjunctive graph is acyclic, and the

related loading sequences on the resources are a feasible schedule. In an acyclic conjunctive graph, the

makespan of the feasible schedule S is the length of the critical path, i.e. the longest path between the dummy

start and finishing operations, and it is indicated as makespan(S). Finally, the length of the longest path

between the dummy start operation 0 and a given operation is its completion time. Figure 1.b shows an

acyclic conjunctive graph and a related critical path achieved by directing arcs of the DG. The weighted path

is achieved by moving the weights from an operation to the two arcs which end at it.

3.1 Integrating separable setup times

The digraph used to approach the problem with a given number of lag times, includes different kinds of

nodes and further weights on the operations. This graph is represented by:

WDG=(NF, A, Eh j, WN) (5)

a)

job

routing

0 *

arcs of E11

arcs of E12

arcs of E21

arcs of E22

b)

O111 O122

O212
O231 O223

O133

O311 O332

a)

job

routing

0 *

arcs of E11

arcs of E12

arcs of E21

arcs of E22

b)

O111 O122

O212
O231 O223

O133

O311 O332

0 *

O111 O122

O212 O231 O223

O133

O311 O332

1

2

1

3

4

3

2

4

1
1

4 2

2

3

3

3

2

4

4

1

1

4

critical path

where the new component WN is the weight on the nodes, represented by the four-dimensional array

WN (Oi jr)=(ti j, t (fij), δ (h, h1), Di), which includes, respectively, processing time, lag times for SI and SD and

release date of the related job; NF is the partitioning of the set of nodes into the subsets of setup activities,

where the operations which have the same setup are included in the same subset (i.e. they are associated to

the same kind of node as proposed by Brucker and Thiele, 1996).

Figure 2 shows these aspects on the digraph of the example in Figure 1.a. The first and the second pools of

resources perform two setup activities: F1 ={ f11, f21= f31}, F2 ={ f12, f22 = f32}; they are represented by two

kinds of nodes. The third pool has one setup activity for each job; this is represented by three kinds of nodes.

The release date of the resources is represented by the further weight on the arcs connected to the dummy

operation 0; the release date of the jobs is represented by the further weight on the first operation on the

routing. For each operation the two setup activities SI and SD are also showed in this example.

Figure 2 – Representation of flexible job-shop scheduling with separable transportation and

sequence-dependent setup times. The operations which have the same setup activity are

represented by the same kind of node.

3.2 Finding a feasible schedule

The proposed system uses a list scheduler (LS) algorithm to generate a feasible schedule on the digraph by

visiting every operation once and only once. At every step, a node is connected to the acyclic conjunctive

F1={ , }

 t112

 t111

0
*

O111
O122 O133

O2 3 1 O2 12 O223

O311 O322 O333

 t113

t231

t212

 t223

 t311

 t322

 δ 0, O111

 t(f11)

 D3

F2={ , } F3={ , , }

 δ O111, O122

 t(f12)

 δ O122, O133

 t(f13)

 δ 0, O311

 t(f21)

 δ 0, O231

 δ O231, O212
 t(f21)

 δ O311, O322

 t(f22)

 δ O322, O333

 t(f33)

 δ O133, *

 δ O333, *

D2

 D1

 d2

 d2

d4

 t(f23)

 δ O212, O223

 t(f22)

 t333

graph which represents the partial schedule, by means of a feasible move. A feasible move is a disjunctive

arc which can be directed in the partial conjunctive graph without creating a cycle. The following is a

pseudo-code description of the proposed LS algorithm. It possesses the required skills to generate a feasible

schedule S with completion times placed on the related nodes and weights on the conjunctive arcs in

accordance with expression (3).

LS algorithm for FJS with separate setup times

Input: a weighted digraph WDG=(NF, A, Eh j, WN)

O ← {Oi j r  i=1,..,n, j=1,..,m, r=1,..,m} // m operations for each job are considered

for each w =1 to Σi=1,..,n li do

1.1.1.1. Inizialization of Candidate Nodes: build the allowed list ALw for the current step w:

ALw←{Oi j r ∈OOi j r-1 ∩O = ∅}

2. Restriction: restriction of the allowed list by means of optimality criteria (i.e. active or non-

delay schedule); let the candidate list CLw be the restricted allowed list.

3. Inizialization of Feasible Moves: mark as a feasible move each disjunctive arc (Oi’j r’, Oi j r) of

Ej where Oi j r∈CLw and Oi’j r’ is the last operation of the loading sequence of resource j (it

creates the possibility for the candidate operation to become the new last operation of that

loading sequence);

4. Move Selection: select a feasible move (Oi’j r’, Oi j r) of Ej by directing the related disjunctive

arc (Oi’j r’ =‘dummy 0’,if r =1);

5. Arcs Removal: remove all the remaining disjunctive arcs connected to Oi’j r’ (i.e. no other

operation can be immediately subsequent to Oi’j r’ in the loading sequence); remove all the

remaining disjunctive arcs of Eh connected to Oi j r, i.e. h∈Mij and h≠j (i.e. no other loading

sequence can include the operation);

6. Computing length: the length of the arc (Oi ’j r’, Oi j r) is evaluated as the sum of processing

and lag times of node Oi j r by means of expression (1) where tA = t(Oi j r-1);

7. Transferring length: this length is placed on the related arc and on the arc of the job routing

(arc of A) which ends at Oi j r; also, the completion time t(Oi j r) = st(Oi j r) + ti j = max{t(SI),

t(SD)} + ti j is placed as a mark of the node Oi j r;

8. Updating Structures: update O by removing operation Oi j r : O ← O \ Oi j r;

end for

9. Directing the remaining disjunctive arcs: the arcs are connected to the dummy operation *;

Output: the schedule S (i.e. CG with the completion times of the operations)

The LS algorithm generates in O(mn(m+n)) a complete selection of arcs of WDG i.e. is an acyclic

conjunctive graph which includes all the nodes. This property results from the following considerations:

 a) the achieved graph includes all the nodes: the main loop is performed |O| times and

 initially the candidate list includes all the nodes; at each iteration one and only one node is

 removed from candidate list (step 8);

 b) the achieved graph is conjunctive: for each iteration, the selected feasible move is a

 conjunctive arc which ends at the node removed from candidate list (step 4); all the

 disjunctive arcs which starts from the first node of the conjunctive arc are removed (step 5);

 c) the conjunctive graph is acyclic: each feasible move ends to a node which is in the candidate

 list, i. e. is a not scheduled operation (steps 1 and 3).

 In order to evaluate the computational complexity of the LS algorithm, it can be noted that the main loop is

performed n⋅m times and the most time-consuming step is the Arcs Removal step. The selection of a feasible

move (Oi’jr’, Oi jr) entails that the following alternative arcs are removed:

i) alternative sequencing arcs: all the disjunctive arcs connected to the last operation Oi’j r’ in the

loading sequence of resource j; they are at most n-1, one for each alternative job in order to

approach the sequencing problem;

ii) alternative assigning arcs: all the disjunctive arcs of Eh , h∈Mij and h≠j, connected to the

candidate operation Oi jr; they are at most m-1, one for each alternative resource in order to

approach the assigning problem;

As a consequence of these computational complexity considerations, the LS algorithm finds a feasible

schedule by means of an implicit visit of a large number of disjunctive arcs. Another consequence is that the

two sequencing and assigning decisional points are considered at the same time in the selection of a feasible

move because, at the same time, it is both an alternative sequencing arc and alternative assigning arc.

Dauzère-Pérès and Paulli (1997) state that the neighbouring function that considers at the same time

alternative sequencing arcs and alternative assigning arcs is more effective compared to the approaches

where assigning and sequencing problems are considered separately.

Finally, the completion time of an operation evaluated by expression (3) is the length of the longest path

which starts from the dummy node 0. In fact, a selected operation Oi j r has as its predecessors the previous

operation in the routing, Oi j,r-1, and the last operation in the loading sequence of resource j, Oi’j r’. From

expression (3), the starting time of the operation is evaluated for the maximum time between t(SD) = t(Oi’j

r’)+t(fij) and t(SI) = tA +δ (h, h1). Two cases have to be considered: i) t(SD) ≥ t(SI); ii) t(SD) < t(SI). In the first

case the lag time is the sequence-dependent setup time t(fij); in the computing length step, this lag time is

added to the processing time and this length is placed on the directed arc in the transferring length step. As a

consequence, the longest path includes the directed arc and the predecessor node Oi’j r’. On the basis of the

same considerations, in the latter case the longest path includes the arc of the job routing and the predecessor

node Oi j r-1.

3.3 Pheromone trail model

The pheromone trail models for job shop scheduling applications are represented by a graph where the node

represents the operations and the arc represents the possibility for the two nodes to be visited in some

precedence order by the ant; examples of precedence order are: i) operations to be processed in sequence on

a resource; ii) operations which have sub-sequential finishing times (i.e. no other operations are completed in

the time interval which ranges between the first and the last operations considered). In particular, an

emerging model of the pheromone trail, the relation-learning model, uses the precedence order i) and hence

can be represented by the disjunctive graph DG (Blum and Sampels, 2004). In this representation, only the

operations which have to be processed on the same resource are connected; hence it tackles the complexity

which arises in previous models of pheromone (Colorni et al., 1994; Kumar et al., 2003), in which every

operation is connected to the others. In the relation-learning model, an amount of pheromone is deposited on

the arcs of DG. In particular, two values of pheromone amount, related to the two possible directions in

which the ant proceeds, are associated with a disjunctive arc of DG. As a consequence, in the relation-

learning model, each disjunctive arc (Oi ’j r’, Oi j r) of Ej supports: i) an amount of pheromone τ(Oi’j r’, Oi jr)

which represents the desirability of including the feasible move (Oi’j r’, Oi jr) in the ant path (i.e. the

desirability of assigning the loading sub-sequence Oi’j r’, Oi j r to resource j); ii) an amount of pheromone τ(Oi

j r , Oi’j r’) which represents the desirability of including the feasible move (Oi j r , Oi’j r’) in the ant path.

3.4 Relation-learning Ant Colony Systems

In the relation-learning model, an ant visits the disjunctive graph by means of the list scheduler algorithm,

producing a path (path generation) which starts from dummy operation 0 and ends at dummy operation * for

each set Ej. The ant path is represented by the acyclic conjunctive graph CG. The length of a critical path on

CG produced by ant a is the makespan(Sa), which represents an index of desirability of the schedule Sa.

A relation-learning ant colony system is an iterative population-based system where at each epoch. A

colony of ps ants builds a step-by-step feasible schedule by selecting a feasible move with the transition

probability rule which depends on the intensification and the diversification mechanisms of pheromone

amount. The best ant so far Sb deposits on the ant path an amount of pheromone which is a function of the

desirability of the schedule Sb (off-line pheromone rule). In this way the local search is strengthened with

the colony stigmergy which enhances the effective move selection.

The process ends when an optimality condition is verified represented by the reaching of:

a) the optimal solution or

b) a number of epochs without improvement of the best solution (stability condition).

The following procedures allow path generation and off-line update rule:

i) path generation - at each construction step w, an ant selects the next feasible move, Z, from the

set of feasible moves, by means of the following transition probability rule which is a function of

both the visibility function, η, and the amount of pheromone τ on the related arc:




























>

≤⋅
= ∈

0
,

0
)
''

(η)
''

(τmaxarg

if

if,

ijr

qqJ

qq
jri

,O
ijr

O
jri

,O
ijr

O
Z CLO

β

 (6)

where q is a random number which ranges in [0,1] and q0 is the cutting exploration parameter (0≤

q0 ≤1). If q is higher than q0, the feasible move J is selected in accordance with the random

proportional rule of AS:

1 where
)
''

(η)
''

(τ

)(η)(τ)(, =
⋅

⋅

∑
∈

= αα
α

β

β

wCL
ijr

O
jri

,O
ijr

O
jri

,O
ijr

O

JJJPa

 (7)

After selecting feasible move (Oi j r , Oi’j r’), the ant applies the local updating rule which imposes

laying on the arc the following negative amount of pheromone:

(Oi j r , Oi’j r’) = (1-ρ) ⋅ τ(Oi j r , Oi’j r’) + ρ ⋅ τ0 (8)

where the parameter ρ is the evaporation coefficient, 0 ≤ ρ ≤1, and τ0 is a small positive constant

which is initially deposited on all the arc of the digraph. When an ant path is generated, the

solution is taken to its local optimum by means of a neighbouring structure implemented by a

steepest descent local search routine.

ii) off-line pheromone update - the best ant Sb lays the following amount of pheromone at the end of

each epoch:

τ(Oi j r , Oi’j r’) = (1-ρ)⋅⋅⋅⋅ τ(Oi j r , Oi’j r’) + ρ ⋅ makespan(Sb)
-1

, M∈Sb (9)

The transition probability rule allows an intensification mechanism in order to select a node in the vicinity

of the current best path denoted by the complete selection S*. If makespan (Sb)<makespan (S
*
), the

current best path is updated by the complete selection Sb.

The role of cutting exploration is to find a compromise between the random proportional rule (7) and a

mechanism of exploring near the best path so far. By tuning parameter q0 near 1, cutting exploration

allows the activity of the system to concentrate on the best solutions (exploitation activity), whereas,

when q0 is close to 0, all the solutions are examined in probability (exploration activity). The pheromone

updating rules (8) and (9) are achieved by means of convex combinations between the point τ(Oi j r , Oi’j r’)

and, respectively, the points τ0 and makespan(Sb)
-1

. Thus, the local updating rule involves a negative

amount of pheromone deposited on the ant path, whilst the off-line updating rule entails that the closer the

ant path is to the optimum path, the more positive the amount of pheromone which is laid. The first rule

makes possible a diversification mechanism in order to produce promising alternative paths by the other

ants of the colony, whilst the latter rule makes possible an intensification of the search in the vicinity of

the best path.

4. The proposed approach

The proposed ant colony system is a Reinforced Relation-learning ACS (RR-ACS) where the relation-

learning model of pheromone is modified in order to consider a new component: the positioning

constraints of a feasible move within the loading sequence of the assigned resource (described in section

4.1).

RR-ACS also adopted: i) the list scheduler algorithm for path generation, ii) the local search with the

neighbourhood structure proposed by Nowicki and Smutnicki (1996) and iii) the adaptive parameter of

cutting exploration q0 proposed by Kumar et. al. (2003).

The Selection Move step is performed by means of the transition probability function (6) while the Local

Updating rule of the pheromone makes possible an effective stigmergy with the other ants of the colony,

which, obviously, is not obtained by the LS algorithm. Finally, a novel method for both generating the

candidate list and achieving a more profitable visibility function is described. The following algorithm

implements the proposed system.

RR-ACS for flexible job shop scheduling with separable setup times

Input: a weighted digraph WDG=(NF, A, Eh j, WN, WE)

// Initialization

for each edge of WDG, deposit a small constant amount of pheromone τ0

for each ant a, a=1 to ps, place the ant on a randomly chosen operation Oi j 0

epoch ← 1; best_so_far, best_epoch ← MAXINT

// Main Loop

while “optimality condition is not satisfied" do

// Epoch Loop

 for each ant a, a=1 to ps do

 // Path Generation

Sa ← ∅;

O ← {Oi j r  i=1,..,n, j=1,..,m, r=1,..,li };

 for each w =1 to Σi=1,..,n li do

1. Inizialization of Candidate Nodes (see algorithm LS)

2. Restriction

3. Inizialization of Feasible Moves

4. Move Selection: select a feasible move (Oi’j r’, Oi j r) of Ej by means of the transition

probability rules (6); directing the related disjunctive arc (Oi’j r’ =‘dummy 0’,if r =1);

5. Arc Removing

6. Computing length

7. Transferring length

8. Updating Structures

9. Local Updating: Apply the local update rule (8) to the arcs (Oi’j’r’, Oi jr) of WDG;

end for

Directing the remaining disjunctive arcs

 Local Search: Apply local search routine to Sa;

 Best Evaluation: if (makespan(Sa)<makespan(Sbe))

 then (makespan(Sbe)← makespan(Sa) and Sbe ←Sa)

 end if

 end for

 Global Updating: Apply the global update rule (9);

 Best Ant Evaluation: if (makespan(Sbe)<makespan(S*))

 then ((makespan(S*) ← makespan(Sbe) and S* ←Sbe and epoch←0);

 else epoch ++;

 end if

end while

Output: S*

4.1 Reinforced relation-learning Representational Model of Pheromone

The Relation-learning model of pheromone trail is represented by the weighted disjunctive graph WDG ∪

WE,p, where WDG = (NF, A, Eh j, WN) (see section 3.1) and WE,p are the weights on the disjunctive arcs. The

weight on the disjunctive arcs (Oi’j’r’, Oi jr) of Eh j is represented by the 2 x n x n matrix WE,p(Oi’j’r’,Oijr)

=(τp[Oi’j’r’, Oi jr], τp[Oi jr, Oi’j’r’]). The first component array τp[Oi’j’r’, Oi jr] gives an index of desirability in

order to insert the feasible move [Oi’j’r’, Oi jr] in the location p of the loading sequence of resource j (p=1,..,n),

in addition to the standard desirability for assigning the sub-sequence [Oi’j’r’, Oi jr] to resource j of the

standard relation-learning model.

 4.2 Candidate List Restriction

The candidate list restricts the choice of the next node to visit at the construction step w to a subset of the

most promising operations in the allowed list, i.e. CLw ⊆ ALw. The allowed list includes all the operations

that can be selected at a given construction step of the list scheduler algorithm in order to achieve a final

feasible schedule. Nevertheless, it is well-known that the optimal schedule is always an active schedule,

i.e. a feasible schedule in which no operation could be started earlier without delaying some other

operations or breaking a precedence constraint. Thus the search space can be safely limited to the set of

all active schedules. An important class of active schedules is the Non-Delay schedule: these feasible

schedules are schedules in which no resource is kept idle when it could start processing some operation.

As not all optimal schedules are non-delay, the concept of parameterized Non-Delay schedules is used.

This type of schedule consists of schedules in which no resource is kept idle for more than a predefined

value δ if it could start processing some operations. As the minimum starting time of the operations in

ALw is:

)(min ijrrji
Ost

wALO ∈ (10)

all the operations O* which can start if no resource is kept idle for more than a predefined value δ, verify the

following condition:

wALO ALOOstOst
w

∈+≤ ∈ *,)(min*)(ijrrji
δ (11)

 In this paper the following parametric value δ (rf) is used:

rf

OstOst
rf

ww ALOALO)(min)(max
)(

ijrijr rjirji ∈∈ −
=δ (12)

where rf is the restricted factor. If the restriction is maximum, i.e. rf → +∞, the predefined value δ(rf) tends

to zero and we obtain a non-delay schedule; on the contrary, if rf is set to more than 0, the property of the

non-delay schedule is relaxed; finally, if rf = 0, the candidate list does not differ from the allowed list, i.e. no

restriction is achieved. To sum up, the following candidate list is used:











 −

+≤∈=
∈∈

∈
rf

OstOst
OstOstALOCL

ww

w

ALOALO

ALOW

)(min)(max
)(min*)(|*

ijrijr

ijr

rjirji

rji

 (13)

 4.3 Visibility Functions

The visibility function represents the heuristic information that, together with the pheromone amount,

guides the selection of the next operation in the partial schedule. It is a critical component that influences

system performance. The Earliest Starting Time (EST) dispatching rule is the best function of visibility

among a number of dispatching rules compared in reference (Blum and Sampels, 2004). However in this

paper a novel heuristics are describes.

The first is a static rule, evaluated one time only at the starting of RR-ACS, which drastically differs

from a classic dispatching rule. It is represented by a loss function obtained by comparing the starting

times of a candidate operation and its lower bound obtained with a heuristic reasoning upon the routing-

precedence based schedule. In the routing-precedence based schedule, all the operations which may be

processed on the same resource are grouped (and processed in a sequence in a block of subsequent

operations termed layer) on the basis of the related precedence constraint in the job-routing. A layer Lrj is

the block of the r
th
 operations in the job routing which must be processed on a resource j; if the resources

are related, the layer Lrj is the block which must be processed on a pool j. A lower bound for the starting

time of the r
th
 operation in the job routing which must be processed on a resource of the pool j, can be

evaluated by the maximum completion time of the layer Lr-1 h , h=1,..,m, plus half of the sum of the

processing times of the layer Lr j:













+











+−=

=

∑∑

∑

==

=

=

n

i

rji

n

i

rhihmhj

n

i

jij

ttrstrst

tst

11

,..,1

1

0

)1(max)(

)0(

 (14)

If the resources are related, the average processing time on the resources of the pool replaces the sum of

processing times. As a consequence of expression (12), the visibility function for an operation Oijr can be

defined by means of the following loss function:

2
)()(

1










 −
−

lb

rstOt jrij (15)

where lb is a lower bound for the minimum makespan. It is equal to the optimal makespan if

makespan(S*) is known; otherwise lb can be evaluated, for example, by the maximum stj(m+1), j=1,..,m,

the maximum starting time of the layer which has the precedence m+1. The loss function (15) ranges in

[0,1]; it presents a maximum when an operation is selected such that the difference between the lower

bound of the starting time and the starting time of the operation in the partial schedule is the lowest. It

may be noted that in expression (15), the lower bounds for the starting times stj(r) (and in particular lb),

do not depend on the starting time of the operations, and hence they are evaluated at the Initialization step

of algorithm LS. The static visibility function is achieved by normalising function (15) with respect to the

pheromone amount (which ranges in [τ0, makespan(S*)
-1

]). Thereby, the following static visibility

function is adopted:

[] 2

3
)()(

1
)(η rstOtlb

lb
O jrijrij +−= (16)

The second heuristic is a dynamic rule, evaluated for each candidate operation within the loop of RR-ACS. It

is a more sophisticated version of the EST visibility, based on the normalized difference between the earliest

starting time among the candidate operations and the starting times of each candidate operation. Thus, one

values of visibility function is obtained for each candidate operation. The scale factor is the sum of the

differences between the earliest starting time and the starting time of the single candidate operations.

5. Computational experiments and results

The performance of the proposed system is evaluated by benchmark problems appropriately designed for

job shop scheduling with partial flexibility and separable setup times. They are obtained by modifying a

set of 10 job shop scheduling problems, indicated as [PJm(1)| prec |Cmax], which includes some problems

considered challenging by Balas and Vazacopoulos, (1998): LA02 and LA03 (10x5), LA15 (15x5),

ORB1 and ORB4 (10x10), LA21 and LA25 (15x10), LA27 and LA29 (20x10) and the well-known FT10

(10x10).

The problem instances belong to the following datasets:

i) [PJm(k)| prec |Cmax]k=2, 3 dataset: 10 problems achieved by duplicating and tripling the 10 job

shop scheduling problems of the [PJm(1)| prec |Cmax] dataset; the paradigm to generate

benchmark problems for job shop scheduling with parallel machines has been taken by Rossi

and Dini (2001) where each problem involves k replications of each original resource and k

replications of each original job.

ii) [PJ5(2)| prec |Cmax] dataset: 10 problems LA01’-10’ which involves 2 replications (k=2) of

each original five resources (m=5) and each original job of LA01-10.

iii) [PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset - 108 instances of the considered (general) problem

derived by the famous FT10 (n=10, m=10, k=1): including its duplicate and triplicate version

(k=2 and 3). For each of these, 4 scenarios are proposed; they are related to the following 4

setup activities for each resource j=1,..,10: Fj =z, z=1, 2, 5, 10 with fij = i mod z. They represent

the problem with: a) z=1, only one resource setup at the starting of the plan, the other setup

times are simply removed from processing times (no setup times); b) z=2, a low rate of

sequence-dependent setup times; c) z=5, a high rate of sequence-dependent setup times; d) z=

n, the setup times are sequence-independent; each setup can be run on the machine during the

moving of the job on board the machine (in any case, before processing). The processing

times are achieved by reducing by the same percentage the original times of FT10 within the

range of lag_times_rate =10,..,40%; this reduction in time is applied to the lag times (SI and

SD setup phases). SI activity includes maximum transportation times of 10%, 20% and 40% of

the lag time (SI_rate).

The following metaheuristics for flexible job shop scheduling are considered for comparison:

• GT-BDDR: the list scheduling algorithm with the best dynamic dispatching rule used for

move selection among the following: SPT, LPT, FIFO, LIFO, EST, EFT, MWR (Most Work

Remaining) and Random;

• RD-GA: the genetic algorithm for PJm(k)| prec |Cmax proposed by Rossi and Dini (2000);

• IGA: the current best single component metaheuristics (GA-based) for PJm(k)| prec |Cmax,

proposed by Chan et al. (2006);

• RR-ACS
1
, RR-ACS

2
, RR-ACS

3
, RR-ACS

4
: 4 versions of the proposed ant colony system

achieved by all the possible combinations of the following system components: a) standard

relation-learning (RR-ACS
1
, RR-ACS

2
) or reinforced relation-learning model of pheromone

(RR-ACS
3
, RR-ACS

4
); b) dynamic (RR-ACS

1
, RR-ACS

3
) or static visibility (RR-ACS

2
, RR-

ACS
4
). Every other system parameter is configured by means of preliminary tests for each

RR-ACS algorithm (i.e. β=0.3, ρ=0.12, rf=4 or 3 for, respectively, RR-ACS
3
 and RR-ACS

4
).

Batch or k-decomposition is not allowed by the considered heuristics.

The [PJm(k)| sj ,prec |Cmax]k=1,2,3 dataset is generated to compare the performance of the proposed system

towards the general problem considered. The difficulty of optimally solving the general problem is

progressively enhanced by instances with increasing number of parallel machines (k) and increasing rates of

sequence-dependent setup times (z).

All the algorithms are implemented in Visual C++ 5.0 and run on Intel


 Core™2 Duo, 3.1 GHz based PC. In

all the experiments, except for the [PJ10(2)| prec |Cmax] dataset, 5 ants (i.e. ps = 5) and ne=4 10
4
 of allowed

epochs without improvement of the best solution are adopted. Having benchmark problems, the optimality

condition also includes the reaching of the optimal solution.

All the metaheuristics has been run 5 times for each benchmark, except for the rule-based heuristic GT-

BDDR; a total of 620, 50 and 540 runs have been performed for the three considered datasets.

.

 5.1 Performance comparison by means dataset described at point i)

Table 1 shows the following results obtained with the [PJm(k)| prec |Cmax]k=2, 3 dataset:

a) the average makespan for each of the six (meta)heuristics,

b) the minimum makespan for each of the six (meta)heuristics and

c) the average computation time of the best heuristic.

Also, the values are grouped according to the degree k of parallelization capability of the system giving an

index of performance represented by the percent average relative error, ARE%, of the average makespan

achieved by 5 runs on the single instance y (denoted by makespany), y=1,..,20 which is evaluated by:

10,..,1,
)2(

1)2(
,10%

10

1

=




⋅=
−⋅=−

⋅= ∑
=

noInst
noInsty

noInsty

opt

optmakespan
ARE

noInst y

yy (17)

where opty, is best known makespan of instance y.

The makespany are showed in the same column in Table 1 (reported in normal font); y=(2·Inst no)-1 and

y=(2·Inst no) are indices used to evaluate the percent average relative error obtained for the instance Inst no,

respectively, k=2 and k=3. The same procedure is used to evaluate the percent average relative error, ARE%,

of the minimum makespan (in italics).

The dispatching rules-based approach, GT-BDDR, offers a real-time response but, in general, produces high

errors (ARE% > 22). Generally, this approach offers a similar performance compared to the number of

parallel resources, k=2 and 3. The genetic algorithm RD-GA shows a similar performance compared to GT-

BDDR for k=2 and the minimum makespan; slightly worse for the average makespan in the cases of k=3.

The proposed ACOs significantly improve GT-BDDR and RD-GA. Its performance gives an ARE% which

range (among its 4 versions) between 5.44 and 6.28, for k=2, and between 6.69 and 7.82, for k=3, which are

about 3 times lower than that achieved by the compared systems. RR-ACS
1-4

 offer a quite stable performance

during the different runs: ARE% for the minimum makespan differs from that one of the average makespan

lesser than 0.7.

On the other hand, the performance of four versions of the proposed ACO is quite different. For each row

(instance), Table 1 shows in bold the minimum of the average makespan and the absolute minimum

makespan obtained from six (meta) heuristics. RR-ACS
3
 offers the best results in 17 of 20 instances as

minimum of the average makespan and in 12 of 20 instances as absolute minimum makespan. The remaining

3 best minimums of the average makespan and the 8 absolute minimums are equally divided between RR-

ACS
1
 and RR-ACS

4
.

Moreover, the following considerations can be supported by the results of Table 1:

i) In the case of k=2, all the different versions give ARE% values up to 1.8% lower than those

obtained in the case of k=3;

ii) For k=2 the reinforced model of pheromone achieves the best performance; ARE% obtained

by the dynamic visibility is less than about 0.5 (see at the bottom of Table 1 for both

average and minimum makespan) compared to that one obtained by static visibility;

iii) For k=3 the dynamic visibility achieves the best performance; the reinforced model of

pheromone obtains an increase in performance compared to the standard model; also in this

case, the AREs% differ of about half point.

Instance

no

opt n m y k GT-BDDR RD-GA RR-ACS
1
 RR-ACS

2
 RR-ACS

3
 RR-ACS

4
 Time

(10
2
s)

742 759.4 686.2 687.0 678.6 680.2 10.1
1 2

742 748 682 684 672 674 7.1

745 782.8 700.4 701.2 697.4 697.0 47.8
1 LA02 655 10 5

2 3
745 768 696 699 693 692 32.8

677 705.3 635.5 642.5 627.3 635.8 13.9
3 2

677 700 631 638 625 633 9.4

677 746.3 652.0 662.0 645.5 653.5 43.9
2 LA03 597 10 5

4 3
677 737 647 653 640 651 32.8

1375 1390.3 1239.5 1239.8 1234.3 1235.8 93.1
5 5 2

1375 1384 1234 1235 1231 1230 64.6

1411 1411.3 1253.8 1259.3 1251.3 1257.8 264.7
3 LA15 1207 20

 6 3
1411 1384 1249 1255 1246 1246 251.3

1115 1207.2 978.4 980.2 973.6 974.8 29.3
7 2

1115 1187 974 977 969 963 22.8

1124 1228.2 981.2 988.6 975.2 988.4 120.4
4 FT10 930 10 10

8 3
1124 1211 967 981 965 984 100.9

1199 1416.0 1089.0 1086.0 1095.8 1096.0 105.5
9 2

1199 1393 1077 1082 1092 1091 77.2

1177 1438.4 1085.0 1086.6 1098.5 1100.5 278.9
5 ORB1 1059 10 10

10 3
1177 1421 1081 1084 1097 1094 258.7

1272 1189.6 1043.3 1040.0 1034.0 1036.8 23.8
11 2

1272 1175 1041 1027 1030 1030 16.0

1190 1214.6 1044.0 1049.8 1033.3 1043.3 109.8
6 ORB4 1005 10 10

12 3
1190 1196 1034 1045 1023 1040 85.4

1253 1345.0 1118.8 1118.8 1114.0 1117.4 142.7
12 2

1253 1325 1116 1111 1108 1112 107.8

1332 1363.6 1129.8 1132.6 1126.4 1127.6 307.1
7 LA21 1046 15 10

14 3
1332 1348 1124 1126 1118 1122 288.3

1300 1223.4 1049.0 1056.8 1044.6 1051.8 164.1
15 2

1300 1187 1036 1053 1037 1041 95.1

1329 1269.4 1068.6 1079.6 1058.8 1063.8 636.9
8 LA25 977 15 10

16 3
1329 1255 1063 1077 1054 1060 552.6

1608 1576.2 1324.8 1323.8 1317.8 1326.6 307.2
17 2

1608 1538 1316 1316 1302 1322 224.1

1619 1628.8 1332.3 1338.7 1325.8 1327.7 575.8
9 LA27 1235 20 10

18 3
1619 1602 1324 1335 1317 1327 566.9

1653 1507.8 1301.8 1313.0 1294.5 1309.3 210.6
19 2

1653 1494 1295 1290 1280 1301 180.8

1594 1507.8 1322.8 1330.5 1312.3 1331.0 558.1
10 LA29 1153 20 10

20 3
1594 1520 1315 1327 1305 1327 426.8

22.67 24.33 6.02 6.28 5.44 5.96 110.0

22.67 22.45 5.37 5.55 4.76 5.26 80.5

22.72 27.31 7.18 7.82 6.69 7.37 294.4
ARE%

22.72 25.76 6.46 7.30 6.00 6.88 259.7

Table 1 – Results achieved by using [PJm(k)| prec |Cmax]k=2, 3 dataset. The average (minimum)

makespan of 5 runs is showed in normal font (italics). Time is the computation time of RR-ACS
3
.

ARE% is evaluated by the expression (17) and is showed in normal font (italics) for average

(minimum) makespan.

A more detailed investigation is faced by means of the non-parametric statistical Kruskall-Wallis H-test in

order to determine if any algorithm performs significantly better than others. In general, the use of this test

takes the place of a test for normal distribution, like Student’s T test, where the value returned by the

algorithm are gathered into a lower bound (i.e. the differences between the optimum values of the

benchmarks and the are gathered into 0+). The null hypothesis is that the samples returned of Table 1 are

originate from the same distribution when they are grouped among the various categories of membership (k=

2, 3 and ALL, where ALL merges the categories k= 2 and k= 3).

Table 2 shows the main steps of the H test statistic for the category ALL. The null hypothesis must be

rejected at the significance level of 0.05. A significant difference among the algorithms performance is very

likely because for each the categories the H test values is higher than critical value at the alpha level.

Having established that the null hypothesis of H test statistic should be rejected, a pair-wise comparison

between the best and second best algorithm is able to explain which performs better. The Wilcoxon Signed

Rank test for paired data in Table 1. The following considerations for the proposed algorithm can be

supported by the results of Table 2 (bottom):

1. for each category k= 2, 3 and ALL, the best average makespan algorithm, RR-ACS
3
,

performs significantly better than its second best counterpart, RR-ACS
1
;

2. considering both the performed test statistics, RR-ACS
3
 offers the best performance

among all the compared algorithms.

These features confirms that the proposed ACO which includes the reinforced relation-learning model of

pheromone and early starting time-based visibility is superior. Without loss of generality, henceforth we will

refer to RR-ACS
3
 in terms of RR-ACS.

Test k GT-BDDR RD-GA RR-ACS
1
 RR-ACS

2
 RR-ACS

3
 RR-ACS

4

Average rank

sum (ri/N),

N=20

ALL

93.45 100.65 42.73 45.43 37.85 42.90

(ri –[N+1]/2)
2
 ALL 1085.70 1612.02 315.95 227.26 513.02 309.76

Ties ALL 6 2 4 3 2 4

Factor of

correction
ALL

0.99987

ALL 67.18

2 34.42 H

3 35.75

Kruskall–

Wallis H test

statistic

Critical value

for α= 0.05
11.07

Table 2 – Non-parametric Kruskall–Wallis H test statistics for algorithms comparison and Wilcoxon

Signed-Rank Test for paired data returned by the two best proposed ACO configurations.

Analisys of data in Table 1 ([PJm(k)| prec |Cmax]k=2, 3 dataset) in the cases of: i) All data; ii) k=2

only, iii) k=3 only.

These features confirms that RR-ACS
3
 , the proposed ACO which includes the reinforced relation-learning

model of pheromone and early starting time-based visibility, offers the best performance among all the

compared systems. Without loss of generality, henceforth we will refer to RR-ACS
3
 in terms of RR-ACS.

5.2 Performance comparison with literature method

The large difference in performance with GT-BDDR and RD-GA does not allow to give an objective

evaluation of the proposed system. Therefore, the performance of the proposed system is compared with the

IGA, the algorithm proposed by Chan et al., 2006 which currently obtains the best results for PJm(k)| prec

|Cmax. For this purpose the [PJ5(2)| prec |Cmax] dataset (described at point ii)) is adopted.

 k RR-ACS
3
 RR-ACS

1

Rank sum

(Ri) ALL 31 177

W ALL 146

σ ALL 53.57

ALL 2.72

2 2.22
Z

3 2.32

Wilcoxon

Signed-Rank

Test for

paired data

Z critical for

α= 0.05
1.960

As the data size of the [PJ5(2)| prec |Cmax] dataset is lower than the other datasets, RR-ACS has been run with

a higher computation power (ps=12) and a stability condition less time consuming: the number of epochs

allowed without obtaining an improvement of the best solution is reduced by an order of magnitude

compared to the previous experiment (ne=10
3
).

RR-ACS

 has been run 5 times. Table 3 shows the best makespan (RR-ACSmin), the average makespan (RR-

ACSave) and the average computation time achieved by IGA and RR-ACS. IGA solved to the optimality 3 of

the 10 instances. The proposed ACO solves the optimality 6 instances, of which 4 of them (LA05', LA06 ',

LA09 'and LA10') in all 5 executions. The others 2 instances (LA01’ and LA08’) are solved to the

optimality, respectively, in 4 and 3 executions with an average relative error lower than 0.05%.

Four cases are still open. However, in one of these open instances (LA07’) the percent relative gap, D2%, is

widely lower than 1%.

RR-ACS improves the performance obtained by IGA in 6 of 10 instances (LA01’, LA02’, LA03’, LA04’,

LA05’ and LA09’), i.e. has been found a lower average makespan RR-ACSave.

The percent relative gap D1%=(IGA-RR-ACSave)/IGA x 100, is also considered for algorithm comparison; the

gap D2%=(opt-ACSave)/opt x 100, is used to compare RR-ACS with the optimal solution.

RR-ACS achieves a significant percent relative improvement, D1%, which ranges from 1.16% and 2.16%, in

3 instances (LA02’, LA03’ and LA04’) where D2% now ranges from 2.6 and 3.9%. In others 2 instances

(LA06’ and LA10’) achieved the same performance in terms of average makespan (hence also the best

makespan) considering that IGA was run only one time. Only one instance solved to the optimality by IGA

(LA08’), RR-ACS fails 2 times on 5 executions.

Finally, in one instance (LA07’) RR-ACS

is not able to outperform the competitor algorithm. However, the

percent relative gap, D2%, is widely lower than 1%.

The claims made are supported by the non-parametric statistical test for paired data of the two independent

samples of Table 3, showed the bottom of same table. The Wilcoxon Signed Rank test statistic in the pair-

wise comparison with IGA shows that a significant difference between the algorithms performance is

probable because the overall difference observed between the two samples is significant up to the alpha level

of 0.1 and the Z test statistic is very close to 95% of the confidence interval.

Inst. opt n m k IGA RR-ACS D1% D2%
IGA time

(10
2
s)

RR-ACS
3
 time

(10
2
s)

LA01 666 10 5 2 668 666 (666.2) 0,27 0 3,5 0,9

LA02 655 10 5 2 692 672 (684.0) 1,16 -2,60 3,5 1,3

LA03 597 10 5 2 637 619 (627.8) 1,44 -3,69 3,7 1,1

LA04 590 10 5 2 629 613 (615.4) 2,16 -3,90 3,5 1,5

LA05 593 10 5 2 595 593 (593.0) 0,34 0 3,6 0,0

LA06 926 15 5 2 926 926 (926.0) 0 0 4,9 0,2

LA07 890 15 5 2 891 895 (898.0) -0,79 -0,56 5,2 3,6

LA08 863 15 5 2 863 863 (863.4) -0,05 0 4,8 1,5

LA09 951 15 5 2 954 951 (951.0) 0,31 0 4,7 0,7

LA10 958 15 5 2 958 958 (958.0) 0 0 5,0 0,2

Rank sum (Ri) 10 44

W 34

σ 19.62

Z 1.71

Z critical for α= 0.05 1.960

Z critical for α= 0.1 1.6448

Table 3 – Metaheuristics comparison by using [PJ5(2)| prec |Cmax] dataset and and Wilcoxon Signed-

Rank Test for paired data. IGA stands for Iterative Genetic Algorithm (Chan et al., 2006). The

column RR-ACS

shows the minimum (RR-ACSmin) and the average (RR-ACSave, in round

brackets). D1%=(IGA-RR-ACSave)/IGA x 100%; D2%=(opt - RR-ACSmin)/opt x 100%.

The average computation time of RR-ACS

is lower than 100 s for each instance solved to the optimality

(except for LA08’). In general, the average time spent is lower than 150 s (except for LA07’) making the

algorithm stable.

RR-ACS

considerable faster than IGA. In fact, despite the fact that RR-ACS has been tested on a faster

computer, the time spent is lower than IGA of about 4 times. In particular, the time spent to solve to the

optimality the four aforementioned instances in all the executions is at least 7 times lower than that one of

IGA.

In conclusion, for both the considered indices of performance (makespan and computation time) RR-ACS is

superior to the competitor single component metaheuristics (ACO-based vs GA-based) also, for the sake of

completion, the performance is similar to that one of the two-component metaheuristics (GA and ACO)

proposed by the same authors (Rossi and Boschi, 2009).

5.3 General problem: performance and discussion

In the general problem, the performance of RR-ACS is compared with the lower bound for the minimum

makespan, lb, achieved by means of the following expression:

















+−= ∑
≠
=

==

j

IJIJIJIJ

F

zz
z

ijfzOijfzOyy ftftratetimelagoptlb

*
1

,*,)(min)(min)1(
00

 (18)

Expression (18) considers the sum of the minimum setup times for each kind of setup Fj. As z is the number

of different kind of setup, lb is evaluated considering exactly z setup changes, i.e. the operations whose have

the same kind of setup activity are grouped in the machine sequence.

As anticipated, has been used 108 instances of [PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset derived from FT10

(instance no.7 in Table 1, where opt7 = 930). The results obtained are analyzed in detail by extending the sole

value achieved from FT10 to a sample of 10 observations (independent) with different number of machines

and jobs. The samples are obtained like for [PJ10(k)| sj ,prec |Cmax]k=2 dataset considering the instances of

Table 1 (i.e. LA02, LA03, LA15, FT10, ORB1, ORB4, LA21, LA25, LA27 and LA29). Each sample of 10

observations belongs to one of the 36 category of number of setup, lag time rate and SI rate, having limited

samples at k=2. This restriction is no loss of generality because, as shown below, the characteristics of the

curves for k=2 and k=3 are not dissimilar.

The computational time to perform this extension has been strongly reduced. RR-ACS uses a stability

condition about by one order of magnitude (i.e. ne=10
3
).”

The performance are summarized in Table 4 and Figure 3.

← z (=Fj, number of setup) →

1 2 5 10

lag time rate ← SI_rate (rate of transportation time within lag time) →

10 20 40 10 20 40 10 20 40 10 20 40

lb 841.1 840.7 839.8 846.6 845.2 843.2 857.7 855.4 850.8 886.3 880.8 869.9

k=1 895.1 899.6 907.0 925.5 918.2 941.1 939.9 941.4 944.0 946.5 944.9 947.0

k=2 909.5 907.2 917.7 928.0 927.6 919.8 931.6 940.9 941.9 953.9 952.1 952.8
10

k=3 932.0 932.1 929.8 945.8 944.7 955.6 958.3 952.6 967.8 963.8 962.8 966.7

lb 752.3 751.4 749.5 762.5 760.5 756.4 785.4 780.8 771.6 842.6 831.7 809.8

k=1 808.7 817.0 826.6 828.6 848.4 853.3 893.4 875.2 875.2 902.7 879.4 887.7

k=2 818.2 828.4 841.2 850.1 865.4 870.6 886.7 894.5 900.7 907.4 916.5 909.3
20

k=3 827.2 848.2 859.5 866.4 877.2 893.3 909.9 908.5 899.8 914.4 923.6 907.0

lb 574.6 572.7 569.0 595.1 591.0 582.7 640.8 631.6 613.2 755.3 733.4 689.5

k=1 637.6 653.8 657.7 693.7 704.3 752.6 781.8 785.4 777.5 810.5 802.3 791.0

k=2 631.6 649.3 681.2 719.3 729.5 748.1 796.0 798.9 800.2 833.6 818.8 813.5
40

k=3 646.4 663.0 706 746.2 753.2 766.2 816.2 819.8 825.6 832.9 815.1 812.2

Table 4 – Minimum makespan of the proposed system in comparison with the lower bound (18)

considering 108 benchmark problems of the [PJ10(k)| sjk ,prec |Cmax]k=1,2,3 dataset where different

rates of resource flexibility, separable transportation and sequence-dependent setup times are

considered.

Table 4 shows lb and RR-ACSmin (the minimum makespan achieved by 5 runs) for each instance of the

[PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset. The rows of the Table 4 are ordered for increasing values of the number

of parallel machines. Increasing k and the rates of sequence-dependent setup times (z=1 vs z=5) the instances

become more harder.

A more comprehensive analysis of the proposed system considers the relative gap D2 as performance

measure on the [PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset where the optimal solution opt is replaced with the lower

bound lb. The average relative error versus lower bound obtained by a state-of-art metaheuristics gives also a

sort of hardness of the problem instance to be solve.

Figure 3 and 4 shows the results; they are stratified with respect the number of parallel machines (k=1,2 and

3), the minimum number of setup changes (z=Fj =1, j=1,..,5,), the lag time rate removed by the processing

time of the original instance FT10 (lag time rate=10, 20 and 40%), the transportation time rate removed by

the lag time rate (SI rate=10, 20 and 40%) and the computation time (RR-ACS time) for increasing values of

parallel machines in each group.

Figure 3 shows the results related to the different number of setups (showed on X-axis) and lag time rates

(showed with different colours) versus the number of parallel machines (showed with different line stiles);

each value is the average of all the values with the same number of setup changes, lag time rate and parallel

machines number.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 1 2 5 10

number of setup (z)

re
la

ti
v
e

er
ro

r
(D

2
)

k=1, lag time rate 10%

k=2, lag time rate 10%

k=3, lag time rate 10%

k=1, lag time rate 20%

k=2, lag time rate 20%

k=3, lag time rate 20%

k=1, lag time rate 40%

k=2, lag time rate 40%

k=3, lag time rate 40%

Figure 3 –Average relative error of RR-ACS obtained varying the number of setups for each of the 9

categories of k and lag time rate (k=1, 2 and 3. lag time rate =10, 20 and 40%), obtained by grouping the 3

values of SI rate (10, 20 and 40%). The abscissa z=0 represents the classical-benchmark FT10 where setup

and transportation time are not considered; it is associated to 3 values obtained for k=1, 2 and 3.

For completeness, Figure 3 shows the value z=0 that represents the classical-benchmark FT10 where setup

and transportation time are not considered. The relative error obtained for z=0 is the minimum and differs

only slightly for different values of k.

When it is introduced a single initial setup for each machine, (z=1), the impact of only the transport time is

assessed. For example, this is the case of the parts which are of the same family and that require a single

machine setup. In this case, the makespan obtained is lower than that achieved for sequence-dependent setup

times. This evidence is obtained for both high and low lag time rates as showed in Figure 4. The statistical

test for paired data of the samples achieved by z=1 and z=2 for both the lag time rates of 10% and 40% (30

observations each: three SI rates per each instance Inst no, Inst no=1,..,10) shows that a significant difference

between the samples at the alpha level of 0.05. The same applies to the Z-test for the samples achieved by

one and five setups.

Figure 4 also shows that Z-test rejects the null hypothesis for the samples achieved by two and five setups,

for both the lag time rates of 10% and 40%. The reason is that increasing the number of setups (z=1 vs z=2

and z=2 vs z=5), the number of alternative sequences to be evaluated increases exponentially and the system

fails to minimize the number of setups in some sequence of machine, so that the impact on the solution found

is worse when setup times are greater. In other words, the problem with sequence-dependent setup times

become much more difficult to solve. In particular, the maximum gap is obtained with high rate of sequence-

dependent setup times and it ranges from about 1%, for lag time rate of 10%, to 15% and over, for lag time

rate of 40%. In fact, the impact of a wrong decision that occurs in the choice to perform or do not perform a

setup in a machine sequence (cases z=2 and 5) is emphasized by having a high setup time.

For the same causes, increase the lag time rate leads to worse solutions. In all the cases k=1, 2 and 3 of

Figure 3, the proposed system obtains lower makespan when low rates of sequence-dependent setup times

are introduced, i.e. the curves of blue, green and red that occupy increasing ranges of relative error. This fact

is confirmed by a more detailed analysis which allows to reject the null hypothesis, i.e. the samples obtained

for different lag time rates (within the same number of setups) belongs to the same distribution. Figure 5

shows the Z test is significant at alpha level of 0.05, except for lower rate of setup times (z=1). The relative

error linearly increases when the lag time rate increases and, on average, the maximum error is about 30%.

To decrease the setup time introducing modular fixture elements which allows their (partial) reusability

during setup changes is mandatory.

.

number of

setups

1

2 5

4.76

4.78

4.43

 (lag time rate = 10%)

Z test statistic
(Z critical =1.960, α= 0.05)

number of

setups

1

2 5

4.72

4.67

4.65

 (lag time rate = 40%)

Figure 4. Wilcoxon Signed-Rank Test for paired number of setups (z1, z2) with z1, z2∈1, 2, 5 |, z1≠ z2, for

both the lag time rates of 10% and 40%. All the Z test statistics (in bold) are higher than Z critical at the

alpha level of 0.05.

Z-test of Figure 4 makes evidence that increasing the number of setups, the scheduling problem become

more difficult. However, by applying the same test statistic to the samples achieved by five and ten setups

(for both the lag time rates of 10% and 40%) there is no significant difference in performance. The Z values

are respectively, 1.58 and 1.94. The fact that the proposed system shows the same performance in order to

solve the sequence-dependent compared to the sequence-independent setup times scheduling problem means

that the proposed system is able to work to the best because the first is intrinsically more difficult to solve. A

possible justification is that by introducing the transportation of jobs, a twice number of operations will be

introduced. Therefore, the scheduling problem with sequence-independent setup and transportation times

becomes more difficult than the one with no transportation times.

 Finally, when sequence-independent setup times are considered (z=10), the system performance is not

comparable with that one of the first case (z=1) because all jobs require setup before processing each

operation.

Figure 5. Wilcoxon Signed-Rank Test for paired lag time rates (10%, 40%), for each of the three cases of the

number of setups: z=1, 2 and 5. The Z critical value for α=0.05 is 1.960. Bold black (red): null hypothesis

rejected (accepted).

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 10 20 40

SI rate

re
la

ti
v
e

er
ro

r
(D

2
)

k=1, lag time rate 10%

k=2, lag time rate 10%

k=3, lag time rate 10%

k=1, lag time rate 20%

k=2, lag time rate 20%

k=3, lag time rate 20%

k=1, lag time rate 40%

k=2, lag time rate 40%

k=3, lag time rate 40%

Figure 6 – Average relative error of RR-ACS varying SI rate for each of the 9 categories of k and lag time

rate (k=1, 2 and 3. lag time rate =10, 20 and 40%), obtained by grouping the 4 values of number of setup

(z=1, 2, 5 and 10). The abscissa SI rate=0 represents the classical-benchmark FT10 where setup and

transportation time are not considered.

lag time

rate

1

2 5

1.59

4.78

4.72

 number of

setups

40% 10%

Z test statistic
Z critical =1.960

Figure 6 shows the performance related to the different rates of time to move the jobs among the machines

(i.e. SI rate, showed on X-axis) included in the overall rate of lag time (showed with different colours) versus

the number of parallel machines (showed with different line stiles); each value is the average of all the values

with the same SI rate, lag time rate and parallel machines number. Even here, the value 0 represents the

classical benchmark FT10 where setup and transportation time are not considered.

The proposed system offers the same performance for different values of SI rate, except when SI rate are

high especially for high lag time rate. The H-test among the samples achieved for SI rate of 10%, 20% and

40% (30 observations each) leads to accept the null hypothesis for each value of number of setups, z=1, 2, 5

and 10 (Table 5). In contrast, the Z-test in Table 6 leads to reject the null hypothesis when the compared

samples are achieved by SI rate of 10% and 40% for the maximum considered lag time rate (30 observation

each, having merged z=1, 2 and 3).

← z (=Fj, number of setup) →

1 2 3 4

H 1.12 0.68 0.86 0.95

H critical for α= 0.05 5.991

Table 5. H test statistics for comparing different SI rates (SI rate=10%, 20% and 40%) for each number of

setup, z = 1,2,5 and 10.

Therefore substantially, the harder instances of the problem at hand are that ones which include high lag time

rate and SI rate. Meanwhile, by Z-test of Figure 5 we observed that increasing the lag time rate leads to

worse solutions. Now, the Z-test in Table 6 between the samples (lag time rate, SI rate)=(10%, 10%) and

(40%, 40%), having merged all the considered lag time rates (30 observations) leads us to reject the null

hypothesis. This means that the proposed system works to the best when transportation and sequence-

independent setup times are low.

Table 6. Wilcoxon Signed-Rank Test for the following pairs of lag time rates and SI rate: (i) (10%, 40%) vs

(40%, 40%); (ii) (10%, 10%) vs (40%, 40%). Both (i) and (ii) consider data achieved by merging all

categories of number of setups (z=1, 2 and 3).

It can be noticed that the impact of SI rate on the number of setups is lesser than that one of Figure 3, related

to the overall rate of lag time. Figure 7 shows this behavior. In particular, the form of the relative error is the

same, but the curves are shifted downwards and are all thinned in a smaller error range. Differently of the

diagram of number of setup versus lag time rate (Figure 3), the relative error differs little when the SI rate

increases and the maximum error is about 20%. This means that the marginal component of error due to SI

rate is dominated by the other two: rate of sequence-dependent setup time and lag time.

0,00

0,05

0,10

0,15

0,20

0,25

0 1 2 5 10

number of setup (z)

re
la

ti
v
e

er
ro

r
(D

2
)

k=1, SI rate 10%

k=2, SI rate 10%

k=3, SI rate 10%

k=1, SI rate 20%

k=2, SI rate 20%

k=3, SI rate 20%

k=1, SI rate 40%

k=2, SI rate 40%

k=3, SI rate 40%

Figure 7 –Average relative error of RR-ACS obtained varying the number of setups for each of the 9

categories of k and SI rate (k=1, 2 and 3. SI rate=10, 20 and 40%), obtained by grouping the 3 values of lag

(40%, 40%)

versus

Pairs of

(lag time rates, SI rate)

(40%, 10%) (10%, 10%)

Z 2.21 2.83

Z critical for α= 0.05 1.960

time rate (10, 20 and 40%). The abscissa z=0 represents the classical-benchmark FT10 where setup and

transportation time are not considered.

The performed statistical tests confirm that obtained with the dataset derived from FT10. Similar tests can

be used for k=3, and then verify that shown by Figures 3 and 4: i) all the 15 combinations of number of

setup and lag time rate and ii) for all the 15 combinations of lag time rate and SI rate; the related error

increases at most linearly with the number of parallel resources included in each group. The deviation among

the diagrams for different values of k are very close because the maximum deviation does not exceed 5%.

This fact makes the system very robust in order to approach both the assignment problem and the

exponentially increasing of the setup sequences within a loading sequence.

Another interesting feature of the system is the CPU time, showed in Figure 8. Considering the minimum

number of parallel machines (k=2) in comparison with the case with no routing flexibility(k=1), the CPU

time offers a sharp of increasing (of about 10 times). For k=2, CPU time is on average 10
3
 s (with a

maximum of 1.23 10
3
 s) while for k=1 it is a constant of about 10

2
 s. This behaviour deals with the increase

in complexity of the classical job-shop problem when the further degree of freedom related to the assignment

problem has to be considered. Increasing the rate of routing flexibility, the system faces quite well the

assignment to alternative resources. On average, for k=3, the CPU time is 2·10
3
 s, which increases up to

2.53·10
3
 s in the worst case (z=10, lag time rate=10). The percentage increase is about 50% compared to k=2.

In general, the CPU time shows an exponential increase of 1.38 to approach the problem for increasing rates

of routing flexibility.

The CPU time trend shows a growth trend for increasing rates of sequence-dependent setup times (z=1, 2 and

5). Finally, the proposed ACO converges more slowly when the lag time rate increases (except for in one

case for k=3). In fact, changes in machine sequences little impact on the structure of the optimal sequence

where setup or transportation times are not comparable with processing time. This means that the proposed

ACO is more robust in advanced manufacturing systems where material-handling system is immediately

available when a job completes, the time to move parts in the system is minimized and modular fixture

elements allow to decrease the setup times.

0

5

10

15

20

25

30

0 1 2 5 10

number of setup (z)

ti
m

e
(1

02
s)

k=1, lag time rate 10%

k=2, lag time rate 10%

k=3, lag time rate 10%

k=1, lag time rate 20%

k=2, lag time rate 20%

k=3, lag time rate 20%

k=1, lag time rate 40%

k=2, lag time rate 40%

k=3, lag time rate 40%

Figure 8 – CPU times (10
2
s) obtained varying the number of setups for each of the 9 categories of k and lag

time rate (k=1, 2 and 3. lag time rate =10, 20 and 40%), obtained by grouping the 3 values of SI rate (10, 20

and 40%). The abscissa z=0 represents the classical-benchmark FT10 where setup and transportation time are

not considered.

7. Conclusions

The proposed ant colony optimization is a challenging approach to the job shop scheduling with a number of

considered features: alternative resource, sequence-dependent setup and transportation problem. Some

innovative skills are considered. The system is based on the disjunctive graph model and a list scheduler

algorithm. They are able to support lag times and integrate them with the selection of alternative resources

per operation. The ant colony optimization is based on a disjunctive graph where a reinforced relation-

learning model of the pheromone is implemented. New tools which combines heuristic desirability (routing-

precedence based and earliest starting time visibility) with a method to approximate non-delay schedules are

introduced to improve the performance of the ant colony system.

As particularly stressed, statistical tests show that the reinforced relation-learning model of pheromone

performs better than all the alternative configurations where the relation-learning model is not reinforced

with the constraint on the job position in the machine sequence. The best configuration also includes the

function of dynamic visibility, obtained by modifying the earliest starting time rule. The system performs

better than other tested dispatching rules-based and genetic algorithms as shown by non-parametric test

statistics. In particular, the proposed system performs significantly better that the current state-of-art

algorithm (for a problem more simplified of that one considered) up to the alpha level of 0.1; so the proposed

system is superior to approach the problem at hand.

In order to solve the assigning and sequencing sub-problems with a number of alternative (parallel)

resources, the system performance seems quite close to that one obtained for the classic job shop scheduling

and CPU time shows an exponential increase slightly higher than 1.

Experimental results and statistical tests show that the proposed system is able to work to the best. The

system faces quite well the job shop scheduling with sequence-dependent and sequence-independent setup

times. It shows no significant difference in performance in order to schedule the sequence-independent

compared to the sequence-dependent setup times with a medium rate of setups.

The system is no significantly influenced by low setup times. At the other hand, his performance is not

influenced by transportation times, except when this time is high especially for high lag time rate

(considering transportation and setup). Therefore, the system is more robust and performs better in advanced

manufacturing systems, where setup and transportation times have become very low by highly automated

systems and tools for handling and moving parts.

Future work will be directed to increasing computing speed for real-time response behavior in multi-mode

dynamic scheduling applications where the routing flexibility is extended from parallel resources to

alternative process plans.

References

Allahverdi, A., J.N.D. Gupta & T. Aldowaisan, A survey of scheduling problems with setup times or costs.

European Journal of Operational Research 2008;187:985-1032.

Artigues, C. & F. Roubellat, A Petri net model and a general method for on and off-line multi- resource

shop floor scheduling with setup times. International Journal Production Economics 2001;7:63-75.

Balas, E. & A. Vazacopoulos, Guided Local Search with Shifting Bottleneck for Job Shop Scheduling.

Management Science 1998;44:262-275.

Blazewicz, J., W. Domschke & E. Pesch, The Job Shop Scheduling Problem: Conventional and New

Solution Techniques. European Journal of Operational Research 1996;93:1-33.

Blum, C. & M. Sampels, An Ant Colony Optimization Algorithm for Shop Scheduling Problem. Journal of

Mathematical Modelling and Algorithms 2004;3:285-308.

Bonabeau, E., M. Dorigo & G. Theraulaz, Inspiration for optimization from social insect behaviour. Nature

2000;406:39-42.

Brucker, P. & R. Schlie, Job-Shop Scheduling with Multi-Purpose Machines. Computing 1990;45:369 – 375.

Brucker, P. & O. Thiele, A branch & bound method for the general-shop problem with sequence dependent

setup-times. Operation Research Spektrum 1996;18:145-61.

Chan, F. T. S., T. C. Wong, & L. Y.Chan, Flexible job-shop scheduling problem under resource constraints.

International Journal of Production Research 2006, 44(11), 2071-2089.

Colorni, A., M. Dorigo, V. Maniezzo & M. Trubian, Ant system for job-shop scheduling. Belgian Journal of

Operation Research, Statistics and Computer Science 1994;34:39 – 53.

Dauzère-Pérès, S. & J. Paulli, An Integrated Approach for Modelling and Solving the General

Multiprocessor Job-Shop Scheduling Problem using Tabu Search. Annals of Operation Research

1997;70:281-306.

Dauzère-Pérès, S., W. Roux & J.B. Lasserre, Multi-Resource Shop Scheduling with Resource Flexibility.

European Journal of Operational Research 1998;107:289-305.

De Jong, K.A. & W.M. Spears, Using genetic algorithm to solve NP-complete problems. Proceedings of the

Third International Conference on Genetic Algorithms 1995:124–32. San Mateo, CA: Morgan Kaufmann.

Dorigo, M. & L.M. Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling

Salesman Problem. IEEE Transaction on Evolutionary Computation 1997;1:53-66.

Proceedings of the Third International Conference on Genetic Algorithms 1995:124–32. San Mateo, CA:

Morgan Kaufmann.

Garey, M.R., D.S. Johnson & R. Sethi, The complexity of the flowshop and jobshop scheduling.

Mathematics and Operation Research 1976;1:117-129.

Giffler, D. & G.L. Thompson, Algorithms for solving production scheduling problems. Operation Research

1960;8:487–503.

Graham, R.L., Lawler, E.R., Lenstra, J.K. and Rinnooy Kan, A.H.G. Optimization and approximation in

deterministic sequencing and scheduling: A Survey. Annals of discrete Mathematics, 1979, 5, 287-326.

Hurink, J., B. Jurisch & M. Thole, Tabu Search for the Job Shop Scheduling Problem with Multi-Purpose

Machine. Operation Research Spektrum 1994;15:205-215.

Hurink, J. & S. Knust, Tabu Search Algorithms for Job-Shop Problems with a Single Transport Robot.

European Journal of Operational Research 2005;162:99-111.

Ivens, P. & M. Lambrecht, Extending the shifting bottleneck procedure to real-life applications. European

Journal of Operational Research 1996;90:252-268.

Jain, A.S. & S. Meeran, Deterministic Job Shop Scheduling; Past, Present and Future. European Journal of

Operation Research 1999;113:390-434.

Kacem, I., S. Hammadi & P. Borne, Approach by Localization and Multiobjective Evolutionary

Optimization for Flexible Job-Shop Scheduling Problems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C 2002;32:1-13.

Kumar, R., M.K. Tiwari, & R. Shankar, Scheduling of Flexible Manufacturing System: An Ant Colony

Optimization Approach. Journal of Engineering Manufacture – Part B 2003;217:1443-1453.

Mastrolilli M. & L.M. Gambardella, Effective Neighbourhood Functions for the Flexible Job Shop

Problem. Journal of Scheduling 2000;3:3-20.

Nowicki, E. & C. Smutnicki, A Fast Taboo Search Algorithm for the Job Shop Problem. Management

Science 1996;42:797-813.

Rossi A. & G. Dini, Dynamic Scheduling of FMS Using a Real-time Genetic Algorithm. International

Journal of Production Research 2000;38:1-20.

Rossi A. & G. Dini, An evolutionary approach to complex job-shop scheduling and flexible manufacturing

system scheduling. Journal of Engineering Manufacture – Part B 2001;215:233-245.

Rossi A. & G. Dini, Flexible job-shop scheduling with routing flexibility and separable setup times using ant

colony optimisation method. Robotics and Computer-Integrated Manufacturing 2007;23:503-16.

Roy, B. & B. Sussmann, Les Problèmes d’Ordonnancement Avec Contraintes Disjonctives. Technical report,

DS No. 9 bis, 1964, SEMA, Montrouge.

Stecke, K.E. & N. Raman, FMS Planning Decision, Operating Flexibilities and System Performance. IEEE

Transaction on Engineering Management, 1995;42:82-90.

Stutzle, T. & H.H. Hoos, MAX-MIN Ant System. Future Generation Computer System 2000;16:889-914.

