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HIGHLIGHTS: 

• ACO enhances machine assigning/sequencing constraints and dynamic visibility 

function 

• Statistical tests suggest the superiority of the ACO with systems in literature 

• ACO shows no significant difference to schedule sequence-dependent/independent setups 

• Tests suggest the system is no significantly influenced by low setup and feeding times 

• Experiments suggest that the CPU time slight increases with problem complexity 

 

Abstract 

This paper proposes a swarm intelligence approach based on a disjunctive graph model in order to 

schedule a manufacturing system with resource flexibility and separable setup times. Resource 

flexibility assigns each operation to one of the alternative resources (assigning sub-problem) and, 

consequently, arranges the operation in the right sequence of the assigned resource (sequencing sub-

problem) in order to minimize the makespan. Resource flexibility is mandatory for rescheduling a 

manufacturing system after unforeseen events which modify resource availability. The proposed 

method considers parallel (related) machines and enforces in a single step both the assigning and 

sequencing sub-problems. A neighboring function on the disjunctive graph is enhanced by means of 

a reinforced relation-learning model of pheromone involving more effective machine-sequence 

constraints and a dynamic visibility function. It also considers the overlap between the jobs feeding 

and the machine (anticipatory) setup times. It involves separable sequence-independent and 

dependent setup phases. The algorithm performance is evaluated by modifying the well-known 

benchmark problems for job shop scheduling. Comparison with other systems and lower bounds of 

benchmark problems has been performed. Statistical tests highlight how the approach is very 

promising. The performance achieved when the system addresses the complete problem is quite 

close to that obtained in the case of the classical job-shop problem. This fact makes the system 

effective in coping with the exponential complexity especially for sequence dependent setup times 

Keywords: parallel machines, metaheuristics, swarm systems, benchmark problems, computation time 



1. Introduction 

A common aim in the practical job shop environment is to improve resource flexibility and setup lag times. 

Resource flexibility deals with flexible (or hybrid) job shop scheduling (FJS) where alternative resources are 

present to increase performance, to manage preventive maintenance or to tackle breakdown and other 

unforeseen events which modifies resource availability. The FJS problem is thus to determine both an 

assignment of each operation to one of the alternative resources (assignment sub-problem) and an ordering of 

the operations on each assigned resource (sequencing sub-problem) with the aim of optimising an objective 

function.  

The FJS problem arises in at least two types of workshop. The first is a flexible manufacturing system 

where a small number of multi-purpose machines are equipped with different tools and a number of 

modes (multiple modes) are allowed to perform each operation. A FJS has a total flexibility if any 

operation can be processed by each machine present in the system. This method gives the required 

routing flexibility but the managing of machine capabilities to meet the tolerances of design (process 

planning) is a very difficult problem.  

In the great majority of practical industrial applications, however, resource flexibility is combined with 

scheduling operations on alternative (identical) machines. It consists of workshops with a partition of 

available machines into groups of parallel machines tools. The machines of the same group (e.g. lathes, 

milling machines, washing/sterilization machines, measuring machines, assembly robots, etc.) as related: 

they group the manufacturing capability in order to process a set of technologically similar operations and 

hence, for example, they include equal processing and setup times (Stecke and Raman, 1995). If the jobs 

have an identical routing among the groups, the problem is the hybrid (non-permutation) flow-shop 

scheduling. 

Job shop scheduling with the objective of makespan minimization Jm||Cmax, which only deals with the 

sequencing problem, is strongly NP-hard (Garey et al, 1976). An extensive and rapidly growing series of 

approaches are proposed; nevertheless, only a few special cases can be optimally solved with effective 

computing times (see Jain and Meeran, 1999; Blazewicz et al., 1996 for a review). As it is an extension of 

job shop scheduling, the flexible job shop scheduling FJm||Cmax  is NP-hard as well. Flexible job shop 

scheduling has only been treated in recent literature by a number of approaches where the routing 



flexibility is achieved by multiple modes with partial flexibility (Brucker and Schlie, 1990; Hurink et al., 

1994; Brucker and Thiele, 1996; Dauzère-Pérès et al., 1998; Mastrolilli and Gambardella, 2000; Kacem et 

al. 2002; Kumar et al. 2003; Chan et al. 2006). In addition, Kacem et al. (2002) and Chan et al. consider 

FJS with total flexibility. 

Compared with the extensive research on FJS where the routing flexibility is achieved by multiple modes, 

in the last years the systems and the applications to solve the parallel machine job shop scheduling 

problem has not received sufficient attention. Besides, the majority of FJS systems assume release date of 

jobs and resources, operation setup and job transportation (travel) times as negligible or part of the 

processing time. While these assumptions simplify the analysis in certain applications, they adversely 

affect the solution quality for many applications which require explicit treatment of these time lags. Such 

applications have motivated an increasing interest to include setup considerations, in order to reduce 

costs.  

According to the α|β|γ notation of Graham et al. (1979), the problem under consideration can be denoted 

by PJm(k)| sjk ,prec |Cmax, where the field α denotes a job shop with k parallel resource per group and m 

groups, the field β indicate the presence of sequence-dependent setup times and linear routings, i.e. the 

occurrence of simple precedence constraints in the job routing and, the field γ denotes the makespan as 

the adopted measure of performance. In such a system, an operation is subjected to the following lag 

times: i) sequence-dependent (SD) setup, the setup which depends on the previous operation processed on 

the resource; ii) sequence-independent (SI) setup, the setup which depends on the previous operation in 

the job routing (i.e job transportation) (Allahverdi et al., 2008). Overlapping among transportation and 

processing times and anticipatory setup, which causes the part not to be necessarily available on the 

resource during the setup period, involves separable SI and SD setup phases. 

A number of job shop scheduling approaches assume the material handling system as a further resource 

where travelling operations involve non-negligible transportation times. Thus, the material handling system 

can be scheduled together with the resources, in order to avoid transportation costs which could influence the 

makespan (Artigues and Roubellat, 2001; Hurink and Knust, 2005). In such approaches, the scheduling 

algorithm must schedule twice the number of operations and one (or more) further resource included in the 

material handling system. Among the minor considerations, resource setup and transportation times can be 



seen as related to a single operation setup phase which includes separable SD and SI times. This approach 

reduces the number of operations in the system because no additional resource is used to model 

transportation times. Ivens and Lambrecht (1996) consider separable sequence-independent setup and travel 

times in the case of multi-stage multiprocessor flow-shop scheduling and non-linear routing. They extend the 

disjunctive graph (digraph) representation for job shop scheduling, originally proposed by Roy and Sussman 

(1964). Blazewicz et al. (1996) state that the digraph model is becoming the standard model for scheduling 

applications because it is more efficient than Gantt diagrams to describe knowledge for optimisation search 

techniques. Rossi and Dini (2001) propose a PJm(k)| prec |Cmax where separable setup and transportation 

times are related to a single operation setup phase and the problem knowledge for an evolutionary approach 

is still modelled by a Gantt diagram. A digraph approach to a case of study of the parallel machine job shop 

scheduling with setup lag times is proposed by Rossi and Dini (2007). 

Artificial life methods have been developed in order to tackle the computational complexity of hard 

problems by means of a sort of implicit parallelism which offers a population-based iterative algorithm. This 

offers the possibility of obtaining a reactive, robust algorithm, which is basic for an industrial dynamic 

production process (De Jong and Spears, 1995). The Ant Colony Optimization (ACO: Bonebeau et al., 2000) 

is a promising metaheuristic and an emerging class of research, dealing with swarm intelligence, a set of 

artificial life methods which exploit the experience of an ant colony as a model of self-organisation in co-

operative food retrieval by means of a proper pheromone trail model. The pheromone trail is the basic 

mechanism of communication among real ants and it is mimicked by the ACO in order to find the shortest 

path connecting source and destination on a weighted graph which represents the optimization problem. As 

soon as a path is generated, the artificial ant deposits on the arc a further amount of pheromone proportional 

to the path length and a pheromone decay routine is performed to prevent stagnation. 

Jm||Cmax has been approached by an ant system (AS) proposed by Colorni et al. (1994). Kumar et al. 

(2003) propose an AS to approach the FJm| sjk ,prec| Cmax problem. Nevertheless, ant systems has been 

improved by Ant Colony Optimization (ACO). Two main classes of ACO systems are proposed in 

literature in order to improve intensification and diversification mechanisms of ant systems: the Ant 

Colony System (ACS: Dorigo and Gambardella, 1997) and the MinMax Ant System (MMAS: Stutzle and 

Hoos, 2000). A MinMax Ant System was proposed by Blum and Sampels (2004) for solving a kind of  



job shop scheduling in which some routing constraints are removed. This ACO hybridizes some 

components of the current state-of-the-art system for job shop scheduling, the tabu search proposed by 

Nowicki and Smutnicki (1996), in order to outperform the pure-MMAS. Besides, no ACO has been 

extended to approach resource flexibility. 

This paper describes an ACO approach to PJm(k)| sj =sjk ,prec |Cmax problem, where the reconfiguration tasks 

of the resources of the same group are standardized with a predetermined number of procedures. This 

standardization is very important in real manufacturing systems for the efficient planning of the clamping or 

the batching of the parts to be produced. It is based on the digraph model of the flexible job shop scheduling 

problem with separable transportation and sequence-dependent setup times. The proposed system uses an 

algorithm similar to the list scheduler (originally proposed by Giffler and Thompson, 1960, for classic 

Jm||Cmax ) to generate a feasible schedule on the digraph by visiting every operation once and only once. 

Here, the aim is to minimize the makespan, although an amount of results is independent of the selected 

objective function. 

 

2.   Job shop Scheduling with Resource Flexibility and Separable Setup Times  

In FJS, n jobs have to be scheduled on m resources in accordance with its linear routing represented by a 

sequence of li ≤ m operations, Oi j r; each of these has to be processed as the r
th
 operation on a single 

resource selected within a set of resources Mi j ( | M i j | ≤m), with a setup activity fi j, which takes the time 

t(fi j), and a processing time ti j r; st(Oi j r) and t(Oi j r) denote respectively the starting and the completion 

time of the operation.  

No resource can process more than one operation at a time; no operation Oi j r can start until Oi j r-1 is 

completed or can stop after it starts; finally, an operation must be processed by one, and only one, 

resource. 

In order to process the entire set of planned operations, the system includes F dedicated setup activities, 

grouped per resources, F1,..,Fm. A resource j includes all the equipment capable of performing the setup 

activity fi j of the set Fj. Each job i and each resource j are subjected to, respectively,  a release date, Di 

and a deadline dj. Finally, a material handling system is able to offer the required flexibility in order to 



move a part through the system. A transportation time matrix δ includes the times to move a job among 

the stations.  

The quantity k = mini j |Mij| represents the degree of parallelization capability of the system. Job shop 

scheduling is a particular case of FJS where k=1. The assignment of operations to a resource of a pool gives a 

sort of further flexibility, and hence an increase of complexity, in addition to the flexibility represented by 

the possibility of sequencing operations on the resources. In particular, the FJS has a total flexibility if k = m 

and has a partial flexibility if k<m. 

The PJm(k1,.., km)||Cmax, where kj is the number of resources of group j, is a restriction of the FJS in which 

the sets of related resources Mi j is a total grouping: 
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The degree of parallelization capability is represented by the quantity k = min j=1,..,m kj. The PJm(k)||Cmax 

has a degree k of parallelization; as a consequence, PJm(1,.., 1)||Cmax  is the classic job shop scheduling, 

Jm||Cmax, and reflects the fact that it has non-parallelization capability. 

The starting time of an operation is evaluated by considering: i) anticipatory (sequence-dependent) setup and 

overlapping of processing and transportation times; ii) the semi-active schedule, where operations are 

processed as early as possible. This necessarily means that the starting time of an operation depends on the 

longest time between the SI and SD setup. Hence, setting Oi’ j r’ the previous operation in the queue of 

resource h of pool j, the starting time of the current operation is evaluated by the following expression:  

st(Oi j r) = max{t(SD), t(SI)}= max{t(Oi’j r’)+t (fij), tA +δ (h, h1)}   (3) 

where tA is the instant of availability of the material handling system; t(fij) and δ (h, h1) are the lag times for, 

respectively, SD and SI setup. The first setup on every resource starts from the resource release date (i.e. 

t(Oi’j r’)=dh). By expression (1), SI setup depends on the availability and the time of the material handling 

system (i.e. tA ≥ t(Oi j r-1) if r>1, tA ≥ Dj, otherwise).  

 



3 Disjunctive graph representation 

Disjunctive graph representation is becoming the standard model for job shop scheduling; moreover, it offers 

a scheme for sequence-dependent setup times (Brucker and Thiele, 1996) and FJS (Dauzère-Pérès and Paulli, 

1997). A disjunctive graph is represented by: 

DG = (N, A, Ej )       (4) 

where N is the set of operations plus the dummy start and finishing operations 0 and *; A is the set of 

conjunctive arcs between every pair of operations on a job routing, between 0 and every first operation on a 

routing, and between every last operation on a routing and *; Ej is the set of disjunctive arcs between pairs of 

operations, O*j* , that have to be processed on the same resource j (j=1,..,m); it also includes disjunctive arcs 

between 0 and O*j*,  between O*j*  and * and between 0 and * for all Ej. Figure 1 shows an example of a FJS 

with parallel resources (Figure 1.a). In the former, each operation Oij* is connected with disjunctive arcs 

belonging to each alternative resource of the set Mij. In the latter case, each arc which connects a pair of 

operations O*j* to be processed on the same pool j, is replicated kj times (as many times as the number of 

resources of pool j). The disjunctive graph is modified by including the sets Ej h, i.e. DG = (N, A, Ej h); Ej h is 

the set of disjunctive arcs between pairs of operations, O*j* , that have to be processed on the same resource h 

(h=1,..,kj) of the same pool j (j=1,..,m). Thus all and only the kj disjunctive arcs of Ej h, are connected to every 

operation O*j*. In general, a PJm(k)||Cmax problem is represented by m pools of k kinds of arcs Ejh; as the arcs 

of Ejh connected with n nodes are n(n-1), the number of disjunctive arcs in the digraph is O(kmn
2
). As a 

consequence in the FJS with total flexibility, the number of disjunctive arcs is O((mn)
2
).  



 

 

 

 

 

 

 

 

 

Figure 1 – Example of FJS with replicates resources: a) disjunctive graph; b) acyclic conjunctive 

graph; in particular, a PJm(k)||Cmax with n=3 and m=2 is showed. 

 

A finite sequence of conjunctive (directed) arcs between two operations is called a path. The length of an arc 

is equal to the processing time of the operation at which it ends. The path length is equal to the sum of the 

lengths of its arcs. A path which starts from 0 and ends at * is the loading sequence on a resource. A cycle is 

a path which starts and ends at the same operation. If no cycle is present in a conjunctive graph achieved by 

directing some disjunctive arcs and including all the operations, the conjunctive graph is acyclic, and the 

related loading sequences on the resources are a feasible schedule. In an acyclic conjunctive graph, the 

makespan of the feasible schedule S is the length of the critical path, i.e. the longest path between the dummy 

start and finishing operations, and it is indicated as makespan(S). Finally, the length of the longest path 

between the dummy start operation 0 and a given operation is its completion time. Figure 1.b shows an 

acyclic conjunctive graph and a related critical path achieved by directing arcs of the DG. The weighted path 

is achieved by moving the weights from an operation to the two arcs which end at it.  

  

3.1     Integrating separable setup times  

The digraph used to approach the problem with a given number of lag times, includes different kinds of 

nodes and further weights on the operations. This graph is represented by: 

WDG=(NF, A, Eh j, WN)       (5) 
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where the new component WN is the weight on the nodes, represented by the four-dimensional array   

WN (Oi jr)=(ti j, t (fij), δ (h, h1), Di), which includes, respectively, processing time, lag times for SI and SD and 

release date of the related job; NF is the partitioning of the set of nodes into the subsets of setup activities, 

where the operations which have the same setup are included in the same subset (i.e. they are associated to 

the same kind of node as proposed by Brucker and Thiele, 1996).  

Figure 2 shows these aspects on the digraph of the example in Figure 1.a. The first and the second pools of 

resources perform two setup activities: F1 ={ f11,  f21= f31}, F2 ={ f12, f22 = f32}; they are represented by two 

kinds of nodes. The third pool has one setup activity for each job; this is represented by three kinds of nodes. 

The release date of the resources is represented by the further weight on the arcs connected to the dummy 

operation 0; the release date of the jobs is represented by the further weight on the first operation on the 

routing. For each operation the two setup activities SI and SD are also showed in this example. 

 

 

 

 

 

 

 

Figure 2 – Representation of flexible job-shop scheduling with separable transportation and 

sequence-dependent setup times. The operations which have the same setup activity are 

represented by the same kind of node. 

 

3.2 Finding a feasible schedule 

The proposed system uses a list scheduler (LS) algorithm to generate a feasible schedule on the digraph by 

visiting every operation once and only once. At every step, a node is connected to the acyclic conjunctive 
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graph which represents the partial schedule, by means of a feasible move. A feasible move is a disjunctive 

arc which can be directed in the partial conjunctive graph without creating a cycle. The following is a 

pseudo-code description of the proposed LS algorithm. It possesses the required skills to generate a feasible 

schedule S with completion times placed on the related nodes and weights on the conjunctive arcs in 

accordance with expression (3). 

LS algorithm for FJS with separate setup times 

Input: a weighted digraph WDG=(NF, A, Eh j, WN)  

O ← {Oi j r  i=1,..,n, j=1,..,m, r=1,..,m} // m operations for each job are considered 

for each w =1 to Σi=1,..,n li do  

1.1.1.1. Inizialization of Candidate Nodes: build the allowed list ALw for the current step w: 

ALw←{Oi j r ∈OOi j r-1 ∩O = ∅} 

2. Restriction: restriction of the allowed list by means of optimality criteria (i.e. active or non-

delay schedule); let the candidate list CLw be the restricted allowed list. 

3. Inizialization of Feasible Moves: mark as a feasible move each disjunctive arc (Oi’j r’, Oi j r) of 

Ej where Oi j r∈CLw and Oi’j r’ is the last operation of the loading sequence of resource j (it 

creates the possibility for the candidate operation to become the new last operation of that 

loading sequence); 

4. Move Selection: select a feasible move (Oi’j r’, Oi j r) of Ej by directing the related disjunctive 

arc (Oi’j r’ =‘dummy 0’,if r =1);  

5. Arcs Removal: remove all the remaining disjunctive arcs connected to Oi’j r’ (i.e. no other 

operation can be immediately subsequent to Oi’j r’ in the loading sequence); remove all the 

remaining disjunctive arcs of Eh connected to Oi j r, i.e. h∈Mij and h≠j (i.e. no other loading 

sequence can include the operation); 

6. Computing length: the length of the arc (Oi ’j r’, Oi j r) is evaluated as the sum of processing 

and lag times of node Oi j r by means of expression (1) where tA = t(Oi j r-1);  



7. Transferring length: this length is placed on the related arc and on the arc of the job routing 

(arc of A) which ends at Oi j r; also, the completion time t(Oi j r) = st(Oi j r) + ti j = max{t(SI), 

t(SD)} + ti j is placed as a mark of the node Oi j r; 

8. Updating Structures: update O by removing operation Oi j r : O ← O \ Oi j r; 

end for 

9. Directing the remaining disjunctive arcs: the arcs are connected to the dummy operation *;  

Output: the schedule S  (i.e. CG with the completion times of the operations) 

 

The LS algorithm generates in O(mn(m+n)) a complete selection of arcs of WDG i.e. is an acyclic 

conjunctive graph which includes all the nodes. This property results from the following considerations: 

 a) the achieved graph includes all the nodes: the main loop is performed |O| times and  

  initially the candidate list includes all the nodes; at each iteration one and only one node is 

  removed from candidate list (step 8);  

 b) the achieved graph is conjunctive: for each iteration, the selected feasible move is a    

  conjunctive arc which ends at the node removed from candidate list (step 4); all the  

  disjunctive arcs which starts from the first node of the conjunctive arc are removed (step 5); 

 c) the conjunctive graph is acyclic: each feasible move ends to a node which is in the candidate 

  list, i. e. is a not scheduled operation (steps 1 and 3). 

 In order to evaluate the computational complexity of the LS algorithm, it can be noted that the main loop is 

performed n⋅m times and the most time-consuming step is the Arcs Removal step. The selection of a feasible 

move (Oi’jr’, Oi jr) entails that the following alternative arcs are removed: 

i) alternative sequencing arcs:  all the disjunctive arcs connected to the last operation Oi’j r’ in the 

loading sequence of resource j; they are at most n-1, one for each alternative job in order to 

approach the sequencing problem; 



ii) alternative assigning arcs:  all the disjunctive arcs of Eh , h∈Mij and h≠j, connected to the 

candidate operation Oi jr; they are at most m-1, one for each alternative resource in order to 

approach the assigning problem; 

As a consequence of these computational complexity considerations, the LS algorithm finds a feasible 

schedule by means of an implicit visit of a large number of disjunctive arcs. Another consequence is that the 

two sequencing and assigning decisional points are considered at the same time in the selection of a feasible 

move because, at the same time, it is both an alternative sequencing arc and alternative assigning arc. 

Dauzère-Pérès and Paulli (1997) state that the neighbouring function that considers at the same time 

alternative sequencing arcs and alternative assigning arcs is more effective compared to the approaches 

where assigning and sequencing problems are considered separately. 

Finally, the completion time of an operation evaluated by expression (3) is the length of the longest path 

which starts from the dummy node 0. In fact, a selected operation Oi j r has as its predecessors the previous 

operation in the routing, Oi j,r-1, and the last operation in the loading sequence of resource j, Oi’j r’. From 

expression (3), the starting time of the operation is evaluated for the maximum time between t(SD) = t(Oi’j 

r’)+t(fij) and t(SI) = tA +δ (h, h1). Two cases have to be considered: i) t(SD) ≥ t(SI); ii) t(SD) < t(SI). In the first 

case the lag time is the sequence-dependent setup time t(fij); in the computing length step, this lag time is 

added to the processing time and this length is placed on the directed arc in the transferring length step. As a 

consequence, the longest path includes the directed arc and the predecessor node Oi’j r’. On the basis of the 

same considerations, in the latter case the longest path includes the arc of the job routing and the predecessor 

node Oi j r-1. 

 

3.3 Pheromone trail model 

The pheromone trail models for job shop scheduling applications are represented by a graph where the node 

represents the operations and the arc represents the possibility for the two nodes to be visited in some 

precedence order by the ant; examples of precedence order are: i) operations to be processed in sequence on 

a resource; ii) operations which have sub-sequential finishing times (i.e. no other operations are completed in 

the time interval which ranges between the first and the last operations considered). In particular, an 



emerging model of the pheromone trail, the relation-learning model, uses the precedence order i) and hence 

can be represented by the disjunctive graph DG  (Blum and Sampels, 2004). In this representation, only the 

operations which have to be processed on the same resource are connected; hence it tackles the complexity 

which arises in previous models of pheromone (Colorni et al., 1994; Kumar et al., 2003), in which every 

operation is connected to the others. In the relation-learning model, an amount of pheromone is deposited on 

the arcs of DG. In particular, two values of pheromone amount, related to the two possible directions in 

which the ant proceeds, are associated with a disjunctive arc of DG. As a consequence, in the relation-

learning model, each disjunctive arc (Oi ’j r’, Oi j r) of Ej supports: i) an amount of pheromone τ(Oi’j r’, Oi jr) 

which represents the desirability of including the feasible move (Oi’j r’, Oi jr) in the ant path (i.e. the 

desirability of assigning the loading sub-sequence Oi’j r’, Oi j r to resource  j); ii) an amount of pheromone τ(Oi 

j r , Oi’j r’) which represents the desirability of including the feasible move (Oi j r , Oi’j r’) in the ant path.  

 

3.4 Relation-learning Ant Colony Systems 

In the relation-learning model, an ant visits the disjunctive graph by means of the list scheduler algorithm, 

producing a path (path generation) which starts from dummy operation 0 and ends at dummy operation * for 

each set Ej. The ant path is represented by the acyclic conjunctive graph CG. The length of a critical path on 

CG produced by ant a is the makespan(Sa), which represents an index of desirability of the schedule Sa. 

A relation-learning ant colony system is an iterative population-based system where at each epoch. A 

colony of ps ants builds a step-by-step feasible schedule by selecting a feasible move with the transition 

probability rule which depends on the intensification and the diversification mechanisms of pheromone 

amount. The best ant so far Sb deposits on the ant path an amount of pheromone which is a function of the 

desirability of the schedule Sb (off-line pheromone rule). In this way the local search is strengthened with 

the colony stigmergy which enhances the effective move selection. 

The process ends when an optimality condition is verified represented by the reaching of:  

a) the optimal solution or  

b) a number of epochs without improvement of the best solution (stability condition). 

The following procedures allow path generation and off-line update rule: 



i) path generation - at each construction step w, an ant selects the next feasible move, Z, from the 

set of feasible moves, by means of the following transition probability rule which is a function of 

both the visibility function, η, and the amount of pheromone τ on the related arc: 
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where q is a random number which ranges in [0,1] and q0  is the cutting exploration parameter (0≤ 

q0 ≤1). If q is higher than q0, the feasible move J is selected in accordance with the random 

proportional rule of AS: 
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After selecting feasible move (Oi j r , Oi’j r’), the ant applies the local updating rule which imposes 

laying on the arc the following negative amount of pheromone: 

(Oi j r , Oi’j r’) = (1-ρ ) ⋅ τ(Oi j r , Oi’j r’) + ρ ⋅ τ0     (8) 

where the parameter ρ is the evaporation coefficient, 0 ≤ ρ ≤1, and τ0 is a small positive constant 

which is initially deposited on all the arc of the digraph. When an ant path is generated, the 

solution is taken to its local optimum by means of a neighbouring structure implemented by a 

steepest descent local search routine. 

ii) off-line pheromone update - the best ant Sb lays the following amount of pheromone at the end of 

each epoch: 

τ(Oi j r , Oi’j r’) = (1-ρ )⋅⋅⋅⋅ τ(Oi j r , Oi’j r’) + ρ ⋅ makespan(Sb) 
-1

, M∈Sb  (9) 

The transition probability rule allows an intensification mechanism in order to select a node in the vicinity 

of the current best path denoted by the complete selection S*. If makespan (Sb)<makespan (S
*
), the 

current best path is updated by the complete selection Sb.  

The role of cutting exploration is to find a compromise between the random proportional rule (7) and a 

mechanism of exploring near the best path so far. By tuning parameter q0 near 1, cutting exploration 



allows the activity of the system to concentrate on the best solutions (exploitation activity), whereas, 

when q0 is close to 0, all the solutions are examined in probability (exploration activity). The pheromone 

updating rules (8) and (9) are achieved by means of convex combinations between the point τ(Oi j r , Oi’j r’) 

and, respectively, the points τ0 and makespan(Sb)
-1

. Thus, the local updating rule involves a negative 

amount of pheromone deposited on the ant path, whilst the off-line updating rule entails that the closer the 

ant path is to the optimum path, the more positive the amount of pheromone which is laid. The first rule 

makes possible a diversification mechanism in order to produce promising alternative paths by the other 

ants of the colony, whilst the latter rule makes possible an intensification of the search in the vicinity of 

the best path. 

 

4. The proposed approach 

The proposed ant colony system is a Reinforced Relation-learning ACS (RR-ACS) where the relation-

learning model of pheromone is modified in order to consider a new component: the positioning 

constraints of a feasible move within the loading sequence of the assigned resource (described in section 

4.1). 

RR-ACS also adopted: i) the list scheduler algorithm for path generation, ii) the local search with the 

neighbourhood structure proposed by Nowicki and Smutnicki (1996) and iii) the adaptive parameter of 

cutting exploration q0 proposed by Kumar et. al. (2003). 

The Selection Move step is performed by means of the transition probability function (6) while the Local 

Updating rule of the pheromone makes possible an effective stigmergy with the other ants of the colony, 

which, obviously, is not obtained by the LS algorithm. Finally, a novel method for both generating the 

candidate list and achieving a more profitable visibility function is described. The following algorithm 

implements the proposed system. 



RR-ACS for flexible job shop scheduling with separable setup times 

Input: a weighted digraph WDG=(NF, A, Eh j, WN, WE) 

// Initialization  

for each edge of WDG, deposit a small constant amount of pheromone τ0  

for each ant a, a=1 to ps, place the ant on a randomly chosen operation Oi j 0 

epoch ← 1; best_so_far, best_epoch ← MAXINT 

// Main Loop 

while “optimality condition is not satisfied" do 

// Epoch Loop 

      for each ant a, a=1 to ps do 

                // Path Generation  

Sa ← ∅; 

O ← {Oi j r  i=1,..,n, j=1,..,m, r=1,..,li }; 

            for each w =1 to Σi=1,..,n li do  

1. Inizialization of Candidate Nodes (see algorithm LS) 

2. Restriction 

3. Inizialization of Feasible Moves 

4. Move Selection: select a feasible move (Oi’j r’, Oi j r) of Ej by means of the transition 

probability rules (6); directing the related disjunctive arc (Oi’j r’ =‘dummy 0’,if r =1);  

5. Arc Removing 

6. Computing length 

7. Transferring length 

8. Updating Structures 

9. Local Updating: Apply the local update rule (8) to the arcs (Oi’j’r’, Oi jr) of WDG; 

end for 

Directing the remaining disjunctive arcs 

           Local Search: Apply local search routine to Sa; 



            Best Evaluation: if (makespan(Sa)<makespan(Sbe))  

  then (makespan(Sbe)← makespan(Sa) and Sbe ←Sa ) 

                                                     end if 

      end for 

      Global Updating: Apply the global update rule (9);  

      Best Ant Evaluation: if (makespan(Sbe)<makespan(S*)) 

        then ((makespan(S*) ← makespan(Sbe) and S* ←Sbe and epoch←0); 

        else  epoch ++; 

        end if 

end while 

Output: S* 

 

4.1     Reinforced relation-learning Representational Model of Pheromone  

The Relation-learning model of pheromone trail is represented by the weighted disjunctive graph WDG ∪ 

WE,p, where WDG = (NF, A, Eh j, WN) (see section 3.1) and WE,p are the weights on the disjunctive arcs. The 

weight on the disjunctive arcs (Oi’j’r’, Oi jr) of Eh j is represented by the 2 x n x n matrix WE,p(Oi’j’r’,Oijr) 

=(τp[Oi’j’r’,  Oi jr], τp[Oi jr, Oi’j’r’]). The first component array τp[Oi’j’r’,  Oi jr] gives an index of desirability in 

order to insert the feasible move [Oi’j’r’, Oi jr] in the location p of the loading sequence of resource j (p=1,..,n), 

in addition to the standard desirability for assigning the sub-sequence [Oi’j’r’, Oi jr] to resource j of the 

standard relation-learning model. 

 

 4.2    Candidate List Restriction 

The candidate list restricts the choice of the next node to visit at the construction step w to a subset of the 

most promising operations in the allowed list, i.e. CLw ⊆ ALw. The allowed list includes all the operations 

that can be selected at a given construction step of the list scheduler algorithm in order to achieve a final 

feasible schedule. Nevertheless, it is well-known that the optimal schedule is always an active schedule, 



i.e. a feasible schedule in which no operation could be started earlier without delaying some other 

operations or breaking a precedence constraint. Thus the search space can be safely limited to the set of 

all active schedules. An important class of active schedules is the Non-Delay schedule: these feasible 

schedules are schedules in which no resource is kept idle when it could start processing some operation. 

As not all optimal schedules are non-delay, the concept of parameterized Non-Delay schedules is used. 

This type of schedule consists of schedules in which no resource is kept idle for more than a predefined 

value δ  if it could start processing some operations. As the minimum starting time of the operations in 

ALw is: 

)(min ijrrji
Ost

wALO ∈       (10) 

all the operations O* which can start if no resource is kept idle for more than a predefined value δ, verify the 

following condition: 

wALO ALOOstOst
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δ     (11) 

 In this paper the following parametric value δ (rf) is used: 

rf

OstOst
rf

ww ALOALO )(min)(max
)(

ijrijr rjirji ∈∈ −
=δ     (12) 

where rf is the restricted factor.  If the restriction is maximum, i.e. rf → +∞, the predefined value δ(rf) tends 

to zero and we obtain a non-delay schedule; on the contrary, if  rf is set to more than 0, the property of the 

non-delay schedule is relaxed; finally, if rf = 0, the candidate list does not differ from the allowed list, i.e. no 

restriction is achieved. To sum up, the following candidate list is used: 
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 4.3   Visibility Functions 

The visibility function represents the heuristic information that, together with the pheromone amount, 

guides the selection of the next operation in the partial schedule. It is a critical component that influences 

system performance. The Earliest Starting Time (EST) dispatching rule is the best function of visibility 



among a number of dispatching rules compared in reference (Blum and Sampels, 2004). However in this 

paper a novel heuristics are describes. 

The first is a static rule, evaluated one time only at the starting of RR-ACS, which drastically differs 

from a classic dispatching rule. It is represented by a loss function obtained by comparing the starting 

times of a candidate operation and its lower bound obtained with a heuristic reasoning upon the routing-

precedence based schedule. In the routing-precedence based schedule, all the operations which may be 

processed on the same resource are grouped (and processed in a sequence in a block of subsequent 

operations termed layer) on the basis of the related precedence constraint in the job-routing. A layer Lrj is 

the block of the r
th
 operations in the job routing which must be processed on a resource j; if the resources 

are related, the layer Lrj is the block which must be processed on a pool j. A lower bound for the starting 

time of the r
th
 operation in the job routing which must be processed on a resource of the pool j, can be 

evaluated by the maximum completion time of the layer Lr-1 h , h=1,..,m, plus half of the sum of the 

processing times of the layer Lr j: 
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If the resources are related, the average processing time on the resources of the pool replaces the sum of 

processing times. As a consequence of expression (12), the visibility function for an operation Oijr can be 

defined by means of the following loss function: 
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where lb is a lower bound for the minimum makespan. It is equal to the optimal makespan if 

makespan(S*) is known; otherwise lb can be evaluated, for example, by the maximum stj(m+1), j=1,..,m, 

the maximum starting time of the layer which has the precedence m+1. The loss function (15) ranges in 

[0,1]; it presents a maximum when an operation is selected such that the difference between the lower 

bound of the starting time and the starting time of the operation in the partial schedule is the lowest. It 

may be noted that in expression (15), the lower bounds for the starting times stj(r) (and in particular lb), 



do not depend on the starting time of the operations, and hence they are evaluated at the Initialization step 

of algorithm LS. The static visibility function is achieved by normalising function (15) with respect to the 

pheromone amount (which ranges in [τ0, makespan(S*)
-1

]). Thereby, the following static visibility 

function is adopted: 
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The second heuristic is a dynamic rule, evaluated for each candidate operation within the loop of RR-ACS. It 

is a more sophisticated version of the EST visibility, based on the normalized difference between the earliest 

starting time among the candidate operations and the starting times of each candidate operation. Thus, one 

values of visibility function is obtained for each candidate operation. The scale factor is the sum of the 

differences between the earliest starting time and the starting time of the single candidate operations. 

 

5. Computational experiments and results 

The performance of the proposed system is evaluated by benchmark problems appropriately designed for 

job shop scheduling with partial flexibility and separable setup times. They are obtained by modifying a 

set of 10 job shop scheduling problems, indicated as [PJm(1)| prec |Cmax], which includes some problems 

considered challenging by Balas and Vazacopoulos, (1998): LA02 and LA03 (10x5), LA15 (15x5), 

ORB1 and ORB4 (10x10), LA21 and LA25 (15x10), LA27 and LA29 (20x10) and the well-known FT10 

(10x10). 

The problem instances belong to the following datasets: 

i) [PJm(k)| prec |Cmax]k=2, 3 dataset: 10 problems achieved by duplicating and tripling the 10 job 

shop scheduling problems of the [PJm(1)| prec |Cmax] dataset; the paradigm to generate 

benchmark problems for job shop scheduling with parallel machines has been taken by Rossi 

and Dini (2001) where each problem involves k replications of each original resource and k 

replications of each original job. 

ii) [PJ5(2)| prec |Cmax] dataset: 10 problems LA01’-10’ which involves 2 replications (k=2) of 

each original five resources (m=5) and each original job of LA01-10. 



iii) [PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset - 108 instances of the considered (general) problem 

derived by the famous FT10 (n=10, m=10, k=1): including its duplicate and triplicate version 

(k=2 and 3). For each of these, 4 scenarios are proposed; they are related to the following 4 

setup activities for each resource j=1,..,10: Fj =z, z=1, 2, 5, 10 with fij = i mod z. They represent 

the problem with: a) z=1, only one resource setup at the starting of the plan, the other setup 

times are simply removed from processing times (no setup times); b) z=2, a low rate of 

sequence-dependent setup times; c) z=5, a high rate of sequence-dependent setup times; d) z= 

n, the setup times are sequence-independent; each setup can be run on the machine during the 

moving of the job on board the machine (in any case, before processing). The processing 

times are achieved by reducing by the same percentage the original times of FT10 within the 

range of lag_times_rate =10,..,40%; this reduction in time is applied to the lag times (SI and 

SD setup phases). SI activity includes maximum transportation times of 10%, 20% and 40% of 

the lag time (SI_rate).  

 

The following metaheuristics for flexible job shop scheduling are considered for comparison: 

• GT-BDDR: the list scheduling algorithm with the best dynamic dispatching rule used for 

move selection among the following: SPT, LPT, FIFO, LIFO, EST, EFT, MWR (Most Work 

Remaining) and Random; 

• RD-GA: the genetic algorithm for PJm(k)| prec |Cmax proposed by Rossi and Dini (2000); 

• IGA: the current best single component metaheuristics (GA-based) for PJm(k)| prec |Cmax, 

proposed by Chan et al. (2006); 

• RR-ACS
1
, RR-ACS

2
, RR-ACS

3
, RR-ACS

4
: 4 versions of the proposed ant colony system 

achieved by all the possible combinations of the following system components: a) standard 

relation-learning (RR-ACS
1
, RR-ACS

2 
) or reinforced relation-learning model of pheromone 

(RR-ACS
3
, RR-ACS

4
); b) dynamic (RR-ACS

1
, RR-ACS

3 
) or static visibility (RR-ACS

2
, RR-

ACS
4 
). Every other system parameter is configured by means of preliminary tests for each 

RR-ACS algorithm (i.e. β=0.3, ρ=0.12, rf=4 or 3 for, respectively, RR-ACS
3
 and RR-ACS

4
).  



Batch or k-decomposition is not allowed by the considered heuristics. 

The [PJm(k)| sj ,prec |Cmax]k=1,2,3 dataset is generated to compare the performance of the proposed system 

towards the general problem considered. The difficulty of optimally solving the general problem is 

progressively enhanced by instances with increasing number of parallel machines (k) and increasing rates of 

sequence-dependent setup times (z). 

All the algorithms are implemented in Visual C++ 5.0 and run on Intel


 Core™2 Duo, 3.1 GHz based PC. In 

all the experiments, except for the [PJ10(2)| prec |Cmax] dataset, 5 ants (i.e. ps = 5) and ne=4 10
4
 of allowed 

epochs without improvement of the best solution are adopted. Having benchmark problems, the optimality 

condition also includes the reaching of the optimal solution.  

All the metaheuristics has been run 5 times for each benchmark, except for the rule-based heuristic GT-

BDDR; a total of 620, 50 and 540 runs have been performed for the three considered datasets. 

.  

 5.1 Performance comparison by means dataset described at point i) 

Table 1 shows the following results obtained with the [PJm(k)| prec |Cmax]k=2, 3 dataset: 

a) the average makespan for each of the six (meta)heuristics, 

b) the minimum makespan for each of the six (meta)heuristics and  

c) the average computation time of the best heuristic. 

Also, the values are grouped according to the degree k of parallelization capability of the system giving an 

index of performance represented by the percent average relative error, ARE%, of the average makespan 

achieved by 5 runs on the single instance y (denoted by makespany), y=1,..,20 which is evaluated by: 
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where opty, is best known makespan of instance y. 

The makespany are showed in the same column in Table 1 (reported in normal font); y=(2·Inst no)-1 and 

y=(2·Inst no) are indices used to evaluate the percent average relative error obtained for the instance Inst no, 

respectively, k=2 and k=3. The same procedure is used to evaluate the percent average relative error, ARE%, 

of the minimum makespan (in italics). 



The dispatching rules-based approach, GT-BDDR, offers a real-time response but, in general, produces high 

errors (ARE% > 22). Generally, this approach offers a similar performance compared to the number of 

parallel resources, k=2 and 3. The genetic algorithm RD-GA shows a similar performance compared to GT-

BDDR for k=2 and the minimum makespan; slightly worse for the average makespan in the cases of k=3.  

The proposed ACOs significantly improve GT-BDDR and RD-GA. Its performance gives an ARE% which 

range (among its 4 versions) between 5.44 and 6.28, for k=2, and between 6.69 and 7.82, for k=3, which are 

about 3 times lower than that achieved by the compared systems. RR-ACS
1-4

 offer a quite stable performance 

during the different runs: ARE% for the minimum makespan differs from that one of the average makespan 

lesser than 0.7. 

On the other hand, the performance of four versions of the proposed ACO is quite different. For each row 

(instance), Table 1 shows in bold the minimum of the average makespan and the absolute minimum 

makespan obtained from six (meta) heuristics. RR-ACS
3
 offers the best results in 17 of 20 instances as 

minimum of the average makespan and in 12 of 20 instances as absolute minimum makespan. The remaining 

3 best minimums of the average makespan and the 8 absolute minimums are equally divided between RR-

ACS
1
 and RR-ACS

4
. 

Moreover, the following considerations can be supported by the results of Table 1: 

i) In the case of k=2, all the different versions give ARE% values up to 1.8% lower than those 

obtained in the case of k=3; 

ii) For k=2 the reinforced model of pheromone achieves the best performance; ARE% obtained 

by the dynamic visibility is less than about 0.5 (see at the bottom of Table 1 for both 

average and minimum makespan) compared to that one obtained by static visibility; 

iii) For k=3 the dynamic visibility achieves the best performance; the reinforced model of 

pheromone obtains an increase in performance compared to the standard model; also in this 

case, the AREs% differ of about half point. 



 

Instance 

no  

opt n m y k GT-BDDR RD-GA RR-ACS
1
 RR-ACS

2
 RR-ACS

3
 RR-ACS

4
 Time 

(10
2
s) 

742 759.4 686.2 687.0 678.6 680.2 10.1 
1 2 

742 748 682 684 672 674 7.1 

745 782.8 700.4 701.2 697.4 697.0 47.8 
1 LA02 655 10 5 

2 3 
745 768 696 699 693 692 32.8 

677 705.3 635.5 642.5 627.3 635.8 13.9 
3 2 

677 700 631 638 625 633 9.4 

677 746.3 652.0 662.0 645.5 653.5 43.9 
2 LA03 597 10 5 

4 3 
677 737 647 653 640 651 32.8 

1375 1390.3 1239.5 1239.8 1234.3 1235.8 93.1 
5 5 2 

1375 1384 1234 1235 1231 1230 64.6 

1411 1411.3 1253.8 1259.3 1251.3 1257.8 264.7 
3 LA15 1207 20 

 6 3 
1411 1384 1249 1255 1246 1246 251.3 

1115 1207.2 978.4 980.2 973.6 974.8 29.3 
7 2 

1115 1187 974 977 969 963 22.8 

1124 1228.2 981.2 988.6 975.2 988.4 120.4 
4 FT10 930 10 10 

8 3 
1124 1211 967 981 965 984 100.9 

1199 1416.0 1089.0 1086.0 1095.8 1096.0 105.5 
9 2 

1199 1393 1077 1082 1092 1091 77.2 

1177 1438.4 1085.0 1086.6 1098.5 1100.5 278.9 
5 ORB1 1059 10 10 

10 3 
1177 1421 1081 1084 1097 1094 258.7 

1272 1189.6 1043.3 1040.0 1034.0 1036.8 23.8 
11 2 

1272 1175 1041 1027 1030 1030 16.0 

1190 1214.6 1044.0 1049.8 1033.3 1043.3 109.8 
6 ORB4 1005 10 10 

12 3 
1190 1196 1034 1045 1023 1040 85.4 

1253 1345.0 1118.8 1118.8 1114.0 1117.4 142.7 
12 2 

1253 1325 1116 1111 1108 1112 107.8 

1332 1363.6 1129.8 1132.6 1126.4 1127.6 307.1 
7 LA21 1046 15 10 

14 3 
1332 1348 1124 1126 1118 1122 288.3 

1300 1223.4 1049.0 1056.8 1044.6 1051.8 164.1 
15 2 

1300 1187 1036 1053 1037 1041 95.1 

1329 1269.4 1068.6 1079.6 1058.8 1063.8 636.9 
8 LA25 977 15 10 

16 3 
1329 1255 1063 1077 1054 1060 552.6 

1608 1576.2 1324.8 1323.8 1317.8 1326.6 307.2 
17 2 

1608 1538 1316 1316 1302 1322 224.1 

1619 1628.8 1332.3 1338.7 1325.8 1327.7 575.8 
9 LA27 1235 20 10 

18 3 
1619 1602 1324 1335 1317 1327 566.9 

1653 1507.8 1301.8 1313.0 1294.5 1309.3 210.6 
19 2 

1653 1494 1295 1290 1280 1301 180.8 

1594 1507.8 1322.8 1330.5 1312.3 1331.0 558.1 
10 LA29 1153 20 10 

20 3 
1594 1520 1315 1327 1305 1327 426.8 

22.67 24.33 6.02 6.28 5.44 5.96 110.0 
 

22.67 22.45 5.37 5.55 4.76 5.26 80.5 

22.72 27.31 7.18 7.82 6.69 7.37 294.4 
ARE% 

 
22.72 25.76 6.46 7.30 6.00 6.88 259.7 

 



Table 1 – Results achieved by using [PJm(k)| prec |Cmax]k=2, 3 dataset. The average (minimum) 

makespan of 5 runs is showed in normal font (italics). Time is the computation time of RR-ACS
3
. 

ARE% is evaluated by the expression (17) and is showed in normal font (italics) for average 

(minimum) makespan. 

 

A more detailed investigation is faced by means of the non-parametric statistical Kruskall-Wallis H-test in 

order to determine if any algorithm performs significantly better than others. In general, the use of this test 

takes the place of a test for normal distribution, like Student’s T test, where the value returned by the 

algorithm are gathered into a lower bound (i.e. the differences between the optimum values of the 

benchmarks and the are gathered into 0+). The null hypothesis is that the samples returned of Table 1 are 

originate from the same distribution when they are grouped among the various categories of membership (k= 

2, 3 and ALL, where ALL merges the categories k= 2 and k= 3). 

Table 2 shows the main steps of the H test statistic for the category ALL. The null hypothesis must be 

rejected at the significance level of 0.05. A significant difference among the algorithms performance is very 

likely because for each the categories the H test values is higher than critical value at the alpha level. 

Having established that the null hypothesis of H test statistic should be rejected, a pair-wise comparison 

between the best and second best algorithm is able to explain which performs better. The Wilcoxon Signed 

Rank test for paired data in Table 1. The following considerations for the proposed algorithm can be 

supported by the results of Table 2 (bottom): 

1. for each category k= 2, 3 and ALL, the best average makespan algorithm, RR-ACS
3
, 

performs significantly better than its second best counterpart, RR-ACS
1
; 

2. considering both the performed test statistics, RR-ACS
3
 offers the best performance 

among all the compared algorithms. 

These features confirms that the proposed ACO which includes the reinforced relation-learning model of 

pheromone and early starting time-based visibility is superior. Without loss of generality, henceforth we will 

refer to RR-ACS
3
 in terms of RR-ACS. 

 



Test k GT-BDDR RD-GA RR-ACS
1
 RR-ACS

2
 RR-ACS

3
 RR-ACS

4
 

Average rank 

sum (ri/N), 

N=20 

ALL 

93.45 100.65 42.73 45.43 37.85 42.90 

(ri –[N+1]/2)
2
 ALL 1085.70 1612.02 315.95 227.26 513.02 309.76 

Ties ALL 6 2 4 3 2 4 

Factor of 

correction 
ALL 

0.99987 

ALL 67.18 

2 34.42 H 

3 35.75 

Kruskall–

Wallis H test 

statistic 

Critical value 

for α= 0.05 
11.07 

 

Table 2 – Non-parametric Kruskall–Wallis H test statistics for algorithms comparison and Wilcoxon 

Signed-Rank Test for paired data returned by the two best proposed ACO configurations. 

Analisys of data in Table 1 ([PJm(k)| prec |Cmax]k=2, 3 dataset) in the cases of: i) All data; ii) k=2 

only, iii) k=3 only. 

 

These features confirms that RR-ACS
3
 , the proposed ACO which includes the reinforced relation-learning 

model of pheromone and early starting time-based visibility, offers the best performance among all the 

compared systems. Without loss of generality, henceforth we will refer to RR-ACS
3
 in terms of RR-ACS. 

 

5.2 Performance comparison with literature method  

The large difference in performance with GT-BDDR and RD-GA does not allow to give an objective 

evaluation of the proposed system. Therefore, the performance of the proposed system is compared with the 

IGA, the algorithm proposed by Chan et al., 2006 which currently obtains the best results for PJm(k)| prec 

|Cmax. For this purpose the [PJ5(2)| prec |Cmax] dataset (described at point ii)) is adopted. 

 k RR-ACS
3
 RR-ACS

1
 

Rank sum 

(Ri) ALL 31 177 

W ALL 146 

σ ALL 53.57 

ALL 2.72 

2 2.22 
Z 

 

3 2.32 

Wilcoxon 

Signed-Rank 

Test for 

paired data 

Z critical for 

α= 0.05 
1.960 



As the data size of the [PJ5(2)| prec |Cmax] dataset is lower than the other datasets, RR-ACS has been run with 

a higher computation power (ps=12) and a stability condition less time consuming: the number of epochs 

allowed without obtaining an improvement of the best solution is reduced by an order of magnitude 

compared to the previous experiment (ne=10
3
).  

RR-ACS
 
 has been run 5 times. Table 3 shows the best makespan (RR-ACSmin), the average makespan (RR-

ACSave) and the average computation time achieved by IGA and RR-ACS. IGA solved to the optimality 3 of 

the 10 instances. The proposed ACO solves the optimality 6 instances, of which 4 of them (LA05', LA06 ', 

LA09 'and LA10') in all 5 executions. The others 2 instances (LA01’ and LA08’) are solved to the 

optimality, respectively, in 4 and 3 executions with an average relative error lower than 0.05%. 

Four cases are still open. However, in one of these open instances (LA07’) the percent relative gap, D2%, is 

widely lower than 1%. 

RR-ACS improves the performance obtained by IGA in 6 of 10 instances (LA01’, LA02’, LA03’, LA04’, 

LA05’ and LA09’), i.e. has been found a lower average makespan RR-ACSave. 

The percent relative gap D1%=(IGA-RR-ACSave)/IGA x 100, is also considered for algorithm comparison; the 

gap D2%=(opt-ACSave)/opt x 100, is used to compare RR-ACS with the optimal solution. 

RR-ACS achieves a significant percent relative improvement, D1%, which ranges from 1.16% and 2.16%, in 

3 instances (LA02’, LA03’ and LA04’) where D2% now ranges from 2.6 and 3.9%. In others 2 instances 

(LA06’ and LA10’) achieved the same performance in terms of average makespan (hence also the best 

makespan) considering that IGA was run only one time. Only one instance solved to the optimality by IGA 

(LA08’), RR-ACS fails 2 times on 5 executions. 

Finally, in one instance (LA07’) RR-ACS
 
is not able to outperform the competitor algorithm. However, the 

percent relative gap, D2%, is widely lower than 1%. 

The claims made are supported by the non-parametric statistical test for paired data of the two independent 

samples of Table 3, showed the bottom of same table. The Wilcoxon Signed Rank test statistic in the pair-

wise comparison with IGA shows that a significant difference between the algorithms performance is 

probable because the overall difference observed between the two samples is significant up to the alpha level 

of 0.1 and the Z test statistic is very close to 95% of the confidence interval. 

 



Inst. opt n m k IGA  RR-ACS D1% D2% 
IGA time 

(10
2
s) 

RR-ACS
3
 time 

(10
2
s) 

LA01 666 10 5 2 668 666 (666.2) 0,27 0 3,5 0,9 

LA02 655 10 5 2 692 672 (684.0) 1,16 -2,60 3,5 1,3 

LA03 597 10 5 2 637 619 (627.8) 1,44 -3,69 3,7 1,1 

LA04 590 10 5 2 629 613 (615.4) 2,16 -3,90 3,5 1,5 

LA05 593 10 5 2 595 593 (593.0) 0,34 0 3,6 0,0 

LA06 926 15 5 2 926 926 (926.0) 0 0 4,9 0,2 

LA07 890 15 5 2 891 895 (898.0) -0,79 -0,56 5,2 3,6 

LA08 863 15 5 2 863 863 (863.4) -0,05 0 4,8 1,5 

LA09 951 15 5 2 954 951 (951.0) 0,31 0 4,7 0,7 

LA10 958 15 5 2 958 958 (958.0) 0 0 5,0 0,2 

Rank sum (Ri) 10 44 

W 34 

σ 19.62 

Z 1.71 

Z critical for α= 0.05 1.960 

Z critical for α= 0.1 1.6448 

 

 

Table 3 – Metaheuristics comparison by using [PJ5(2)| prec |Cmax] dataset and and Wilcoxon Signed-

Rank Test for paired data. IGA stands for Iterative Genetic Algorithm (Chan et al., 2006). The 

column RR-ACS
 
shows the minimum (RR-ACSmin) and the average (RR-ACSave, in round 

brackets).   D1%=(IGA-RR-ACSave)/IGA x 100%; D2%=(opt - RR-ACSmin)/opt x 100%. 

 

The average computation time of RR-ACS
 
is lower than 100 s for each instance solved to the optimality 

(except for LA08’). In general, the average time spent is lower than 150 s (except for LA07’) making the 

algorithm stable. 

RR-ACS
 
considerable faster than IGA. In fact, despite the fact that RR-ACS has been tested on a faster 

computer, the time spent is lower than IGA of about 4 times. In particular, the time spent to solve to the 

optimality the four aforementioned instances in all the executions is at least 7 times lower than that one of 

IGA. 



In conclusion, for both the considered indices of performance (makespan and computation time) RR-ACS is 

superior to the competitor single component metaheuristics (ACO-based vs GA-based) also, for the sake of 

completion, the performance is similar to that one of the two-component metaheuristics (GA and ACO) 

proposed by the same authors (Rossi and Boschi, 2009). 

 

5.3 General problem: performance and discussion 

In the general problem, the performance of RR-ACS is compared with the lower bound for the minimum 

makespan, lb, achieved by means of the following expression: 
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   (18) 

 

Expression (18) considers the sum of the minimum setup times for each kind of setup Fj. As z is the number 

of different kind of setup, lb is evaluated considering exactly z setup changes, i.e. the operations whose have 

the same kind of setup activity are grouped in the machine sequence. 

As anticipated, has been used 108 instances of [PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset derived from FT10 

(instance no.7 in Table 1, where opt7 = 930). The results obtained are analyzed in detail by extending the sole 

value achieved from FT10  to a sample of 10 observations (independent) with different number of machines 

and jobs. The samples are obtained like for [PJ10(k)| sj ,prec |Cmax]k=2 dataset considering the instances of 

Table 1 (i.e. LA02, LA03, LA15, FT10, ORB1, ORB4, LA21, LA25, LA27 and LA29). Each sample of 10 

observations belongs to one of the 36 category of number of setup, lag time rate and SI rate, having limited 

samples at k=2. This restriction is no loss of generality because, as shown below, the characteristics of the 

curves for k=2 and k=3 are not dissimilar.  

The computational time to perform this extension has been strongly reduced. RR-ACS uses a stability 

condition about by one order of magnitude (i.e. ne=10
3
).” 

The performance are summarized in Table 4 and Figure 3. 

 

←  z   (=Fj, number of setup)  →  

1 2 5 10 

lag time rate ←   SI_rate  (rate of transportation time within lag time)  → 



10 20 40 10 20 40 10 20 40 10 20 40 

lb 841.1 840.7 839.8 846.6 845.2 843.2 857.7 855.4 850.8 886.3 880.8 869.9 

k=1 895.1 899.6 907.0 925.5 918.2 941.1 939.9 941.4 944.0 946.5 944.9 947.0 

k=2 909.5 907.2 917.7 928.0 927.6 919.8 931.6 940.9 941.9 953.9 952.1 952.8 
10 

k=3 932.0 932.1 929.8 945.8 944.7 955.6 958.3 952.6 967.8 963.8 962.8 966.7 

lb 752.3 751.4 749.5 762.5 760.5 756.4 785.4 780.8 771.6 842.6 831.7 809.8 

k=1 808.7 817.0 826.6 828.6 848.4 853.3 893.4 875.2 875.2 902.7 879.4 887.7 

k=2 818.2 828.4 841.2 850.1 865.4 870.6 886.7 894.5 900.7 907.4 916.5 909.3 
20 

k=3 827.2 848.2 859.5 866.4 877.2 893.3 909.9 908.5 899.8 914.4 923.6 907.0 

lb 574.6 572.7 569.0 595.1 591.0 582.7 640.8 631.6 613.2 755.3 733.4 689.5 

k=1 637.6 653.8 657.7 693.7 704.3 752.6 781.8 785.4 777.5 810.5 802.3 791.0 

k=2 631.6 649.3 681.2 719.3 729.5 748.1 796.0 798.9 800.2 833.6 818.8 813.5 
40 

k=3 646.4 663.0 706 746.2 753.2 766.2 816.2 819.8 825.6 832.9 815.1 812.2 

 

Table 4 – Minimum makespan of the proposed system in comparison with the lower bound (18) 

considering 108 benchmark problems of the [PJ10(k)| sjk ,prec |Cmax]k=1,2,3 dataset where different 

rates of resource flexibility, separable transportation and sequence-dependent setup times are 

considered. 

 

Table 4 shows lb and RR-ACSmin (the minimum makespan achieved by 5 runs) for each instance of the 

[PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset. The rows of the Table 4 are ordered for increasing values of the number 

of parallel machines. Increasing k and the rates of sequence-dependent setup times (z=1 vs z=5) the instances 

become more harder. 

A more comprehensive analysis of the proposed system considers the relative gap D2 as performance 

measure on the [PJ10(k)| sj ,prec |Cmax]k=1,2,3 dataset where the optimal solution opt is replaced with the lower 

bound lb. The average relative error versus lower bound obtained by a state-of-art metaheuristics gives also a 

sort of hardness of the problem instance to be solve. 

Figure 3 and 4 shows the results; they are stratified with respect the number of parallel machines (k=1,2 and 

3), the minimum number of setup changes (z=Fj =1, j=1,..,5,), the lag time rate removed by the processing 

time of the original instance FT10 (lag time rate=10, 20 and 40%), the transportation time rate removed by 

the lag time rate (SI rate=10, 20 and 40%) and the computation time (RR-ACS time) for increasing values of 

parallel machines in each group. 



Figure 3 shows the results related to the different number of setups (showed on X-axis) and lag time rates 

(showed with different colours) versus the number of parallel machines (showed with different line stiles); 

each value is the average of all the values with the same number of setup changes, lag time rate and parallel 

machines number. 
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Figure 3 –Average relative error of RR-ACS obtained varying the number of setups for each of the 9 

categories of k and lag time rate (k=1, 2 and 3. lag time rate =10, 20 and 40%), obtained by grouping the 3 

values of SI rate (10, 20 and 40%). The abscissa z=0 represents the classical-benchmark FT10 where setup 

and transportation time are not considered; it is associated to 3 values obtained for k=1, 2 and 3. 

 

For completeness, Figure 3 shows the value z=0 that represents the classical-benchmark  FT10 where setup 

and transportation time are not considered. The relative error obtained for z=0 is the minimum and differs 

only slightly for different values of k. 

When it is introduced a single initial setup for each machine, (z=1), the impact of only the transport time is 

assessed. For example, this is the case of the parts which are of the same family and that require a single 

machine setup. In this case, the makespan obtained is lower than that achieved for sequence-dependent setup 

times. This evidence is obtained for both high and low lag time rates as showed in Figure 4. The statistical 



test for paired data of the samples achieved by z=1 and z=2 for both the lag time rates of 10% and 40% (30 

observations each: three SI rates per each instance Inst no, Inst no=1,..,10) shows that a significant difference 

between the samples at the alpha level of 0.05. The same applies to the Z-test for the samples achieved by 

one and five setups. 

Figure 4 also shows that Z-test rejects the null hypothesis for the samples achieved by two and five setups, 

for both the lag time rates of 10% and 40%. The reason is that increasing the number of setups (z=1 vs z=2 

and z=2 vs z=5), the number of alternative sequences to be evaluated increases exponentially and the system 

fails to minimize the number of setups in some sequence of machine, so that the impact on the solution found 

is worse when setup times are greater. In other words, the problem with sequence-dependent setup times 

become much more difficult to solve. In particular, the maximum gap is obtained with high rate of sequence-

dependent setup times and it ranges from about 1%, for lag time rate of 10%, to 15% and over, for lag time 

rate of 40%. In fact, the impact of a wrong decision that occurs in the choice to perform or do not perform a 

setup in a machine sequence (cases z=2 and 5) is emphasized by having a high setup time.  

For the same causes, increase the lag time rate leads to worse solutions. In all the cases k=1, 2 and 3 of 

Figure 3, the proposed system obtains lower makespan when low rates of sequence-dependent setup times 

are introduced, i.e. the curves of blue, green and red that occupy increasing ranges of relative error. This fact 

is confirmed by a more detailed analysis which allows to reject the null hypothesis, i.e. the samples obtained 

for different lag time rates (within the same number of setups) belongs to the same distribution. Figure 5 

shows the Z test is significant at alpha level of 0.05, except for lower rate of setup times (z=1). The relative 

error linearly increases when the lag time rate increases and, on average, the maximum error is about 30%. 

To decrease the setup time introducing modular fixture elements which allows their (partial) reusability 

during setup changes is mandatory. 
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Figure 4. Wilcoxon Signed-Rank Test for paired number of setups (z1, z2) with z1, z2∈1, 2, 5 |, z1≠ z2, for 

both the lag time rates of 10% and 40%. All the Z test statistics (in bold) are higher than Z critical at the 

alpha level of 0.05. 

 

Z-test of Figure 4 makes evidence that increasing the number of setups, the scheduling problem become 

more difficult. However, by applying the same test statistic to the samples achieved by five and ten setups 

(for both the lag time rates of 10% and 40%) there is no significant difference in performance. The Z values 

are respectively, 1.58 and 1.94. The fact that the proposed system shows the same performance in order to 

solve the sequence-dependent compared to the sequence-independent setup times scheduling problem means 

that the proposed system is able to work to the best because the first is intrinsically more difficult to solve. A 

possible justification is that by introducing the transportation of jobs, a twice number of operations will be 

introduced. Therefore, the scheduling problem with sequence-independent setup and transportation times 

becomes more difficult than the one with no transportation times. 

 Finally, when sequence-independent setup times are considered (z=10), the system performance is not 

comparable with that one of the first case (z=1) because all jobs require setup before processing each 

operation.



 

 

  

 

 

Figure 5. Wilcoxon Signed-Rank Test for paired lag time rates (10%, 40%), for each of the three cases of the 

number of setups: z=1, 2 and 5. The Z critical value for α=0.05 is 1.960. Bold black (red): null hypothesis 

rejected (accepted). 
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Figure 6 – Average relative error of RR-ACS varying SI rate for each of the 9 categories of k and lag time 

rate (k=1, 2 and 3. lag time rate =10, 20 and 40%), obtained by grouping the 4 values of number of setup 

(z=1, 2, 5 and 10). The abscissa SI rate=0 represents the classical-benchmark FT10 where setup and 

transportation time are not considered. 
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Figure 6 shows the performance related to the different rates of time to move the jobs among the machines 

(i.e. SI rate, showed on X-axis) included in the overall rate of lag time (showed with different colours) versus 

the number of parallel machines (showed with different line stiles); each value is the average of all the values 

with the same SI rate, lag time rate and parallel machines number. Even here, the value 0 represents the 

classical benchmark FT10 where setup and transportation time are not considered. 

The proposed system offers the same performance for different values of SI rate, except when SI rate are 

high especially for high lag time rate. The H-test among the samples achieved for SI rate of 10%, 20% and 

40% (30 observations each) leads to accept the null hypothesis for each value of number of setups, z=1, 2, 5 

and 10 (Table 5). In contrast, the Z-test in Table 6 leads to reject the null hypothesis when the compared 

samples are achieved by SI rate of 10% and 40% for the maximum considered lag time rate (30 observation 

each, having merged z=1, 2 and 3).  

 

←  z   (=Fj, number of setup)  →  

1 2 3 4 

H 1.12 0.68 0.86 0.95 

H critical for α= 0.05 5.991 

Table 5. H test statistics for comparing different SI rates (SI rate=10%, 20% and 40%) for each number of 

setup, z = 1,2,5 and 10. 

Therefore substantially, the harder instances of the problem at hand are that ones which include high lag time 

rate and SI rate. Meanwhile, by Z-test of Figure 5 we observed that increasing the lag time rate leads to 

worse solutions. Now, the Z-test in Table 6 between the samples (lag time rate, SI rate)=(10%, 10%) and 

(40%, 40%), having merged all the considered lag time rates (30 observations) leads us to reject the null 

hypothesis. This means that the proposed system works to the best when transportation and sequence-

independent setup times are low. 



 

 

 

 

Table 6. Wilcoxon Signed-Rank Test for the following pairs of lag time rates and SI rate: (i) (10%, 40%) vs 

(40%, 40%); (ii) (10%, 10%) vs (40%, 40%). Both (i) and (ii) consider data achieved by merging all 

categories of number of setups (z=1, 2 and 3). 

It can be noticed that the impact of SI rate on the number of setups is lesser than that one of Figure 3, related 

to the overall rate of lag time. Figure 7 shows this behavior. In particular, the form of the relative error is the 

same, but the curves are shifted downwards and are all thinned in a smaller error range. Differently of the 

diagram of number of setup versus lag time rate (Figure 3), the relative error differs little when the SI rate 

increases and the maximum error is about 20%. This means that the marginal component of error due to SI 

rate is dominated by the other two: rate of sequence-dependent setup time and lag time. 
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Figure 7 –Average relative error of RR-ACS obtained varying the number of setups for each of the 9 

categories of k and SI rate (k=1, 2 and 3. SI rate=10, 20 and 40%), obtained by grouping the 3 values of lag 

(40%, 40%) 

versus 

Pairs of 

(lag time rates, SI rate) 

(40%, 10%) (10%, 10%) 

Z 2.21 2.83 

Z critical for α= 0.05 1.960 



time rate (10, 20 and 40%). The abscissa z=0 represents the classical-benchmark FT10 where setup and 

transportation time are not considered. 

The performed statistical tests confirm that obtained with the dataset derived from FT10. Similar tests can 

be used for k=3, and then verify that shown by Figures 3 and 4: i) all the 15 combinations of number of 

setup and lag time rate and ii) for all the 15 combinations of lag time rate and SI rate; the related error 

increases at most linearly with the number of parallel resources included in each group. The deviation among 

the diagrams for different values of k are very close because the maximum deviation does not exceed 5%. 

This fact makes the system very robust in order to approach both the assignment problem and the 

exponentially increasing of the setup sequences within a loading sequence. 

Another interesting feature of the system is the CPU time, showed in Figure 8. Considering the minimum 

number of parallel machines (k=2) in comparison with the case with no routing flexibility(k=1), the CPU 

time offers a sharp of increasing (of about 10 times). For k=2, CPU time is on average 10
3
 s (with a 

maximum of 1.23 10
3
 s) while for k=1 it is a constant of about 10

2
 s. This behaviour deals with the increase 

in complexity of the classical job-shop problem when the further degree of freedom related to the assignment 

problem has to be considered. Increasing the rate of routing flexibility, the system faces quite well the 

assignment to alternative resources. On average, for k=3, the CPU time is 2·10
3
 s, which increases up to 

2.53·10
3
 s in the worst case (z=10, lag time rate=10). The percentage increase is about 50% compared to k=2. 

In general, the CPU time shows an exponential increase of 1.38 to approach the problem for increasing rates 

of routing flexibility. 

The CPU time trend shows a growth trend for increasing rates of sequence-dependent setup times (z=1, 2 and 

5). Finally, the proposed ACO converges more slowly when the lag time rate increases (except for in one 

case for k=3). In fact, changes in machine sequences little impact on the structure of the optimal sequence 

where setup or transportation times are not comparable with processing time. This means that the proposed 

ACO is more robust in advanced manufacturing systems where material-handling system is immediately 

available when a job completes, the time to move parts in the system is minimized and modular fixture 

elements allow to decrease the setup times. 
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Figure 8 – CPU times (10
2
s) obtained varying the number of setups for each of the 9 categories of k and lag 

time rate (k=1, 2 and 3. lag time rate =10, 20 and 40%), obtained by grouping the 3 values of SI rate (10, 20 

and 40%). The abscissa z=0 represents the classical-benchmark FT10 where setup and transportation time are 

not considered. 

 

7. Conclusions 

The proposed ant colony optimization is a challenging approach to the job shop scheduling with a number of 

considered features: alternative resource, sequence-dependent setup and transportation problem. Some 

innovative skills are considered. The system is based on the disjunctive graph model and a list scheduler 

algorithm. They are able to support lag times and integrate them with the selection of alternative resources 

per operation. The ant colony optimization is based on a disjunctive graph where a reinforced relation-

learning model of the pheromone is implemented. New tools which combines heuristic desirability (routing-

precedence based and earliest starting time visibility) with a method to approximate non-delay schedules are 

introduced to improve the performance of the ant colony system. 

As particularly stressed, statistical tests show that the reinforced relation-learning model of pheromone 

performs better than all the alternative configurations where the relation-learning model is not reinforced 



with the constraint on the job position in the machine sequence. The best configuration also includes the 

function of dynamic visibility, obtained by modifying the earliest starting time rule. The system performs 

better than other tested dispatching rules-based and genetic algorithms as shown by non-parametric test 

statistics. In particular, the proposed system performs significantly better that the current state-of-art 

algorithm (for a problem more simplified of that one considered) up to the alpha level of 0.1; so the proposed 

system is superior to approach the problem at hand. 

In order to solve the assigning and sequencing sub-problems with a number of alternative (parallel) 

resources, the system performance seems quite close to that one obtained for the classic job shop scheduling 

and CPU time shows an exponential increase slightly higher than 1.  

Experimental results and statistical tests show that the proposed system is able to work to the best. The 

system faces quite well the job shop scheduling with sequence-dependent and sequence-independent setup 

times. It shows no significant difference in performance in order to schedule the sequence-independent 

compared to the sequence-dependent setup times with a medium rate of setups.  

The system is no significantly influenced by low setup times. At the other hand, his performance is not 

influenced by transportation times, except when this time is high especially for high lag time rate 

(considering transportation and setup). Therefore, the system is more robust and performs better in advanced 

manufacturing systems, where setup and transportation times have become very low by highly automated 

systems and tools for handling and moving parts. 

Future work will be directed to increasing computing speed for real-time response behavior in multi-mode 

dynamic scheduling applications where the routing flexibility is extended from parallel resources to 

alternative process plans. 
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