383 research outputs found

    Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging

    Get PDF
    In der angewandten Statistik können Regressionsmodelle mit hochdimensionalen Koeffizienten auftreten, die sich nicht mit gewöhnlichen Computersystemen schätzen lassen. Dies betrifft unter anderem die Analyse digitaler Bilder unter Berücksichtigung räumlich-zeitlicher Abhängigkeiten, wie sie innerhalb der medizinisch-biologischen Forschung häufig vorkommen. In der vorliegenden Arbeit wird ein Verfahren formuliert, das in der Lage ist, Regressionsmodelle mit hochdimensionalen Koeffizienten und nicht-normalverteilten Zielgrößen unter moderaten Anforderungen an die benötigte Hardware zu schätzen. Hierzu wird zunächst im Rahmen strukturiert additiver Regressionsmodelle aufgezeigt, worin die Limitationen aktueller Inferenzansätze bei der Anwendung auf hochdimensionale Problemstellungen liegen, sowie Möglichkeiten diskutiert, diese zu umgehen. Darauf basierend wird ein Algorithmus formuliert, dessen Stärken und Schwächen anhand von Simulationsstudien analysiert werden. Darüber hinaus findet das Verfahren Anwendung in drei verschiedenen Bereichen der medizinisch-biologischen Bildgebung und zeigt dadurch, dass es ein vielversprechender Kandidat für die Beantwortung hochdimensionaler Fragestellungen ist.In applied statistics regression models with high-dimensional coefficients can occur which cannot be estimated using ordinary computers. Amongst others, this applies to the analysis of digital images taking spatio-temporal dependencies into account as they commonly occur within bio-medical research. In this thesis a procedure is formulated which allows to fit regression models with high-dimensional coefficients and non-normal response values requiring only moderate computational equipment. To this end, limitations of different inference strategies for structured additive regression models are demonstrated when applied to high-dimensional problems and possible solutions are discussed. Based thereon an algorithm is formulated whose strengths and weaknesses are subsequently analyzed using simulation studies. Furthermore, the procedure is applied to three different fields of bio-medical imaging from which can be concluded that the algorithm is a promising candidate for answering high-dimensional problems

    A Spatio-Temporal Graph Convolutional Network for Gesture Recognition from High-Density Electromyography

    Full text link
    Accurate hand gesture prediction is crucial for effective upper-limb prosthetic limbs control. As the high flexibility and multiple degrees of freedom exhibited by human hands, there has been a growing interest in integrating deep networks with high-density surface electromyography (HD-sEMG) grids to enhance gesture recognition capabilities. However, many existing methods fall short in fully exploit the specific spatial topology and temporal dependencies present in HD-sEMG data. Additionally, these studies are often limited number of gestures and lack generality. Hence, this study introduces a novel gesture recognition method, named STGCN-GR, which leverages spatio-temporal graph convolution networks for HD-sEMG-based human-machine interfaces. Firstly, we construct muscle networks based on functional connectivity between channels, creating a graph representation of HD-sEMG recordings. Subsequently, a temporal convolution module is applied to capture the temporal dependences in the HD-sEMG series and a spatial graph convolution module is employed to effectively learn the intrinsic spatial topology information among distinct HD-sEMG channels. We evaluate our proposed model on a public HD-sEMG dataset comprising a substantial number of gestures (i.e., 65). Our results demonstrate the remarkable capability of the STGCN-GR method, achieving an impressive accuracy of 91.07% in predicting gestures, which surpasses state-of-the-art deep learning methods applied to the same dataset

    Intelligent Pattern Analysis of the Foetal Electrocardiogram

    Get PDF
    The aim of the project on which this thesis is based is to develop reliable techniques for foetal electrocardiogram (ECG) based monitoring, to reduce incidents of unnecessary medical intervention and foetal injury during labour. World-wide electronic foetal monitoring is based almost entirely on the cardiotocogram (CTG), which is a continuous display of the foetal heart rate (FHR) pattern together with the contraction of the womb. Despite the widespread use of the CTG, there is no significant improvement in foetal outcome. In the UK alone it is estimated that birth related negligence claims cost the health authorities over ÂŁ400M per-annum. An expert system, known as INFANT, has recently been developed to assist CTG interpretation. However, the CTG alone does not always provide all the information required to improve the outcome of labour. The widespread use of ECG analysis has been hindered by the difficulties with poor signal quality and the difficulties in applying the specialised knowledge required for interpreting ECG patterns, in association with other events in labour, in an objective way. A fundamental investigation and development of optimal signal enhancement techniques that maximise the available information in the ECG signal, along with different techniques for detecting individual waveforms from poor quality signals, has been carried out. To automate the visual interpretation of the ECG waveform, novel techniques have been developed that allow reliable extraction of key features and hence allow a detailed ECG waveform analysis. Fuzzy logic is used to automatically classify the ECG waveform shape using these features by using knowledge that was elicited from expert sources and derived from example data. This allows the subtle changes in the ECG waveform to be automatically detected in relation to other events in labour, and thus improve the clinicians position for making an accurate diagnosis. To ensure the interpretation is based on reliable information and takes place in the proper context, a new and sensitive index for assessing the quality of the ECG has been developed. New techniques to capture, for the first time in machine form, the clinical expertise / guidelines for electronic foetal monitoring have been developed based on fuzzy logic and finite state machines, The software model provides a flexible framework to further develop and optimise rules for ECG pattern analysis. The signal enhancement, QRS detection and pattern recognition of important ECG waveform shapes have had extensive testing and results are presented. Results show that no significant loss of information is incurred as a result of the signal enhancement and feature extraction techniques

    Unrolling of Graph Total Variation for Image Denoising

    Get PDF
    While deep learning have enabled effective solutions in image denoising, in general their implementations overly rely on training data and require tuning of a large parameter set. In this thesis, a hybrid design that combines graph signal filtering with feature learning is proposed. It utilizes interpretable analytical low-pass graph filters and employs 80\% fewer parameters than a state-of-the-art DL denoising scheme called DnCNN. Specifically, to construct a graph for graph spectral filtering, a CNN is used to learn features per pixel, then feature distances are computed to establish edge weights. Given a constructed graph, a convex optimization problem for denoising using a graph total variation prior is formulated. Its solution is interpreted in an iterative procedure as a graph low-pass filter with an analytical frequency response. For fast implementation, this response is realized by Lanczos approximation. This method outperformed DnCNN by up to 3dB in PSNR in statistical mistmatch case

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging

    Get PDF
    In der angewandten Statistik können Regressionsmodelle mit hochdimensionalen Koeffizienten auftreten, die sich nicht mit gewöhnlichen Computersystemen schätzen lassen. Dies betrifft unter anderem die Analyse digitaler Bilder unter Berücksichtigung räumlich-zeitlicher Abhängigkeiten, wie sie innerhalb der medizinisch-biologischen Forschung häufig vorkommen. In der vorliegenden Arbeit wird ein Verfahren formuliert, das in der Lage ist, Regressionsmodelle mit hochdimensionalen Koeffizienten und nicht-normalverteilten Zielgrößen unter moderaten Anforderungen an die benötigte Hardware zu schätzen. Hierzu wird zunächst im Rahmen strukturiert additiver Regressionsmodelle aufgezeigt, worin die Limitationen aktueller Inferenzansätze bei der Anwendung auf hochdimensionale Problemstellungen liegen, sowie Möglichkeiten diskutiert, diese zu umgehen. Darauf basierend wird ein Algorithmus formuliert, dessen Stärken und Schwächen anhand von Simulationsstudien analysiert werden. Darüber hinaus findet das Verfahren Anwendung in drei verschiedenen Bereichen der medizinisch-biologischen Bildgebung und zeigt dadurch, dass es ein vielversprechender Kandidat für die Beantwortung hochdimensionaler Fragestellungen ist.In applied statistics regression models with high-dimensional coefficients can occur which cannot be estimated using ordinary computers. Amongst others, this applies to the analysis of digital images taking spatio-temporal dependencies into account as they commonly occur within bio-medical research. In this thesis a procedure is formulated which allows to fit regression models with high-dimensional coefficients and non-normal response values requiring only moderate computational equipment. To this end, limitations of different inference strategies for structured additive regression models are demonstrated when applied to high-dimensional problems and possible solutions are discussed. Based thereon an algorithm is formulated whose strengths and weaknesses are subsequently analyzed using simulation studies. Furthermore, the procedure is applied to three different fields of bio-medical imaging from which can be concluded that the algorithm is a promising candidate for answering high-dimensional problems

    Modular quantum signal processing in many variables

    Full text link
    Despite significant advances in quantum algorithms, quantum programs in practice are often expressed at the circuit level, forgoing helpful structural abstractions common to their classical counterparts. Consequently, as many quantum algorithms have been unified with the advent of quantum signal processing (QSP) and quantum singular value transformation (QSVT), an opportunity has appeared to cast these algorithms as modules that can be combined to constitute complex programs. Complicating this, however, is that while QSP/QSVT are often described by the polynomial transforms they apply to the singular values of large linear operators, and the algebraic manipulation of polynomials is simple, the QSP/QSVT protocols realizing analogous manipulations of their embedded polynomials are non-obvious. Here we provide a theory of modular multi-input-output QSP-based superoperators, the basic unit of which we call a gadget, and show they can be snapped together with LEGO-like ease at the level of the functions they apply. To demonstrate this ease, we also provide a Python package for assembling gadgets and compiling them to circuits. Viewed alternately, gadgets both enable the efficient block encoding of large families of useful multivariable functions, and substantiate a functional-programming approach to quantum algorithm design in recasting QSP and QSVT as monadic types.Comment: 15 pages + 9 figures + 4 tables + 45 pages supplement. For codebase, see https://github.com/ichuang/pyqsp/tree/bet

    Nonlinear viscoelastic materials : bioinspired applications and new characterization measures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Vita.Includes bibliographical references (p. 297-313).Viscoelastic materials, such as biomaterials and non-Newtonian fluids, typically experience mechanical loading which evokes a nonlinear rheological response. Rheologically complex materials can provide novel functionality in biological and engineered systems. However, it is found that standard characterization techniques are insufficient to appropriately describe nonlinear viscoelasticity. The goal of this thesis is to transcend the limitations of current characterization methods as well as demonstrate applications of nonlinear viscoelastic materials, including reversible adhesion and snail-like wall climbing. PART ONE of this thesis introduces a complete language and framework (or ontology) for characterizing nonlinear viscoelasticity using large amplitude oscillatory shear (LAOS) deformation. The LAOS protocol spans the 2D parameter space of deformation amplitude and frequency, known as a Pipkin space. Physically meaningful material measures are proposed, corresponding to clearly defined language such as strain-stiffening/softening and shear-thickening/thinning. The new ontology is general enough to be applied to any viscoelastic material, mapping behaviors from purely elastic to purely viscous, and any complex response in-between. The framework has been packaged into a distributable data analysis program (MITlaos) to widen its use in both academic and industrial settings. PART TWO examines the nonlinear rheological response of various soft materials and constitutive models.(cont.) The new framework is illustrated by examining prototypical nonlinear constitutive models (Giesekus, pseudoplastic Carreau, and elastoplastic Bingham). Various soft materials are tested experimentally, including pedal mucus gel from terrestrial gastropods, a wormlike micelle solution, ultrasoft hagfish slime, and an oilfield drilling fluid. PART THREE describes the use of nonlinear rheological behavior to enable unique functionality, specifically for bioinspired snail-like wall climbing and tunable adhesion using magnetorheological fluids. Yield stress fluids are examined here to enable the bioinspired adhesive locomotion of a self-contained mechanical device (Robosnail, developed by Brian Chan, Ph.D. '09). Field-responsive magnetorheological fluids are analyzed in the context of providing fast-switching reversible adhesion for use with adhesive locomotion devices and shape-changing soft robots. In conclusion, interest in soft materials is increasing across many disciplines. The contributions presented here provide the means to a better understanding of biological and engineered systems which involve complex viscoelastic materials.by Randy H. Ewoldt.Ph.D
    • …
    corecore