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Abstract

While deep learning (DL) architectures, like convolutional neural networks

(CNNs), have enabled effective solutions in image denoising, in general their

implementations overly rely on training data and require tuning of a large

parameter set. In this thesis, a hybrid design that combines graph signal

filtering with deep feature learning is proposed. It utilizes interpretable

analytical low-pass graph filters and employs 80% fewer network parameters

than a state-of-the-art DL denoising scheme called DnCNN. Specifically, to

construct a suitable graph for graph spectral filtering, a CNN is used to learn

feature representations per pixel first, then feature distances are computed

to establish edge weights. Given a constructed graph, a convex optimization

problem for denoising using a graph total variation (GTV) prior is formulated.

Via a `1 graph Laplacian reformulation, its solution is interpreted in an

iterative procedure as a graph low-pass filter with an analytical frequency

response. For fast filter implementation, this response is realized by a Lanczos

approximation. Experimental results show that in the case of statistical

mistmatch, this method outperformed DnCNN by up to 3dB in PSNR.
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Chapter 1

Introduction

Graph Signal Processing (GSP) studies the processing of data on irregular

kernels described by graphs [1, 2, 3]. Many modern data naturally reside

on graph structures, such as transportation networks, online social networks,

and networks of wireless temperature sensors. GSP has many potential

applications and has received significant interest over the last few years.

Digital images are discrete signals on regular data kernels (2D grids)

naturally but can nonetheless benefit from GSP. A neighborhood graph

(e.g ., 4-/8-connected graph) can capture pairwise inter-pixel similarity or

correlation of the two connected nodes, leading to improvements in many

image processing tasks, such as image compression [4, 5, 6], image denoising

[7, 8, 9] and image deblurring [10] etc.

Image denoising is a basic yet challenging problem in image processing,

where the main goal is to recover the original image x given a noise-corrupted
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CHAPTER 1. INTRODUCTION

observation y = x + n, where n is an additive noise. Currently, modern

image denoising methods can be loosely categorized into model-based and

learning-based. In the last few years, thanks to the vast learning capabilities

of Convolutional Neural Networks (CNN), learning-based approaches have

achieved state-of-the-art performance in image denoising [11, 12, 13]. However,

performance of these methods depends heavily on the training data, and

often optimizing these methods requires tuning of a large set of network

parameters, resulting in large memory requirements. This can be a significant

impediment to practical implementation on platforms like mobile phones that

require small memory footprints. Additionally, interpreting operations inside

a deep neural network is challenging. Specifically, what the convolutional

filters in a CNN-based architecture are actually doing remains hard to explain.

Unexpected behaviors can take place when using learning-based algorithms

as black boxes [14].

On the other hand, model-based approaches require prior assumptions

on the characteristics of the sought signal x for regularization, which lead to

more interpretable solutions. Model-based methods [15, 16, 17, 18] rely on

signal priors like total variation (TV) [15, 18] and sparse representation [16]

to regularize an inherently ill-posed problem. Graph-based prior assumptions

are also possible. Popular signal priors in GSP include graph total variation

(GTV) [10] and graph Laplacian regularizer (GLR) [8, 19]. The solutions of

these graph-based approaches are often interpreted as graph low-pass filters

of the noisy observations [8, 9, 19].

2



CHAPTER 1. INTRODUCTION

Since a digital image is a signal on a 2D grid, the key to good graph filtering

performance for imaging is the selection of an appropriate underlying graph.

The conventional choice for edge weight, wi,j, between pixels (nodes) i and j

in graph spectral image processing [8, 20, 10] is based on bilateral filtering [21]:

an exponential kernel, exp(·), of the negative inter-pixel distance, ‖li − lj‖2
2,

and pixel intensity difference, (xi−xj)2, resulting in a non-negative edge weight

0 ≤ wi,j ≤ 1. This choice of edge weights means that graph connectivity is

dependent on the signal, resulting in a signal-dependent signal prior like signal-

dependent GLR (SDGLR), x>L(x)x, which promotes piecewise smoothness

(PWS) in the reconstructed signal [8, 20]. However, this choice is handcrafted

and sub-optimal in general.

To learn a good similarity graph from data, Deep GLR (DGLR) [19]

proposed a hybrid framework to combine graph-based with learning-based

approaches. Specifically, the authors retained GLR’s analytical filter response,

f(λ), but learned suitable feature vector, fi, per pixel i via a CNN in an

end-to-end manner, leading to a robust denoising system that is less prone to

overfitting than a pure CNN-based method. Note that the feature vector fi is

of low dimension, and the network parameters required are relatively few.

However, GLR has a noticeable drawback. The convergence of iterative

GLR to reconstruct sharp object boundaries is slower than iterative GTV [10].

On the other hand, GTV is harder to optimize due to the non-differentiable

`1-norm and does not have a natural spectral interpretation. In [10], the

authors proposed a notion of frequency for GTV by approximating the GTV

3



CHAPTER 1. INTRODUCTION

using iterative GLR. Note that before this work, there was no frequency

interpretation of GTV. However, there was no tangible benefit of the spectral

interpretation of GTV.

This thesis proposes an image denoising algorithm using GTV as a signal

prior and CNN for graph construction, similar to DGLR [19]. In addition, the

runtime implementation is optimized for speed and memory via algorithm

unrolling [22], where filtering in each unrolled algorithm iteration is approxi-

mated using Lanczos-based accelerated graph filter [23]—feasible thanks to

the spectral interpretation of the GTV-based graph filter.

Compared to classical model-based methods like BM3D [17], the proposed

algorithm has better denoising performance thanks to DL architecture’s power

in feature representation learning. Compared to pure DL-based DnCNN [11],

it employs 80% fewer network parameters due to the deployment of analytical

graph filters that are also interpretable. Compared to DGLR [19], this

algorithm reconstructs more PWS images for the same network complexity.

Moreover, in case of statistical mismatch between training and test data,

DGTV outperformed DnCNN by up to 3dB in PSNR.

The thesis is structured as follows. Chapter 2 reviews necessary Graph

Signal Processing and Deep Learning definitions and concepts and related

works in the literature. The proposed image denoising algorithm is described

in Chapter 3. Chapter 4 describes fast graph filter implementation methods

for speeding up the algorithm. Experimental results and conclusion are

presented in Chapter 5 and 6, respectively.
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Chapter 2

Background

This chapter provides an introduction of important concepts in graph signal

processing (GSP) and deep learning. In addition, literature overviews on

image denoising and graph-based image restoration are provided.

2.1 Graph Signal Processing Concepts

Digital Signal Processing (DSP) studies discrete signals, where samples are

equally spaced in time (e.g ., audio) or space (e.g ., 2D image). For example,

in a speech or audio signal with N samples per second, the distance between

two consecutive samples is 1/N seconds for any pair of consecutive samples.

Similarly, for a digital image, two neighboring pixels have the same spatial

distance due to regular spacings in the image-capturing Bayer-patterned grid.

However, there are many practical scenarios where data resides in irregular
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CHAPTER 2. BACKGROUND

sampling kernels, e.g ., transportation networks, online social networks, and

networks of wireless temperature sensors. A graph is a flexible abstraction

that can elegantly describe these irregular kernels. GSP is the study of

computational tools for signals residing on irregular kernels described by

graphs [1, 2, 3].

2.1.1 Graph Definition

A graph is composed of sets of nodes and edges. An edge reflects pairwise

relation between the two connected nodes. Conventionally, an edge weight

represents pairwise similarity, correlation or feature distance.

Formally, a graph can be defined as G = (V , E ,W) with a set, V, of

nodes and a set, E , of edges. The edges can be weighted, i.e., a real value is

associated with an edge, or unweighted, i.e., all edges have the same weight.

Considering a weighted graph, denote by wi,j the weight of an edge (i, j) ∈ E

connecting nodes i and j. Edge weights in G form an adjacency matrix W,

where Wi,j = wi,j if (i, j) ∈ E , and Wi,j = 0 if (i, j) 6∈ E . For positive edge

weights, larger wi,j indicates stronger similarity between nodes i and j.

An undirected graph is a graph with edges that have no associated di-

rections, i.e., (i, j) ∈ E means one can traverse from node i to node j and

also from j to i. The associated adjacency matrix W of an undirected graph

is symmetric. On the other hand, in a directed graph, each edge (i, j) ∈ E

means only that one can traverse from node i to node j. The corresponding

adjacency matrix W is not symmetric, in general.

6



CHAPTER 2. BACKGROUND

In imaging, an N -pixel image (or image patch) can be interpreted as a

graph signal as follows. Each pixel i of the image is represented by a node

i ∈ V . An edge (i, j) ∈ E connecting nodes i and j with weight wi,j represents

the similarity between pixels i and j. There are multiple ways to compute

these edge weights, which will be covered later in Section 2.1.3. The collection

of N pixel values—a vector x ∈ RN of length N—is a graph signal on the

constructed graph.

2.1.2 Graph Frequencies

Given an adjacency matrix W that represents an undirected graph G, a

diagonal degree matrix D is defined as

Di,i =
∑
j

wi,j. (2.1)

A combinatorial graph Laplacian matrix L [2] is defined as

L = D−W. (2.2)

Assuming wi,j ≥ 0,∀(i, j) ∈ E , L is provably a positive semi-definite

(PSD) matrix, i.e., all eigenvalues of L are non-negative [3]. Given L is real

and symmetric, one can eigen-decompose L into

L = VΛV>, (2.3)
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CHAPTER 2. BACKGROUND

where columns of V are the eigenvectors, and Λ = diag(λ1, . . . , λN) is a

diagonal matrix with real non-negative eigenvalues (also known as graph

frequencies) λk along its diagonal. V> is called the graph Fourier transform

(GFT) [2] that transforms a graph signal x from the nodal domain to the

graph frequency domain via α = V>x, similar to well-known classical discrete

transforms such as discrete cosine transform (DCT). One can actually interpret

GFT as a generalization of known transforms such as DCT-II [24]. Specifically,

a 1D DCT is a GFT for a specific graph—a line graph with all weights equal

to 1.

Other variation operators can also be eigen-decomposed to obtain a set

of graph frequencies and frequency components. Popular variants of the

Laplacian operator L include the following. A normalized graph Laplacian,

Ln = D−1/2LD−1/2, is a symmetric normalized version of L. A random walk

graph Laplacian, Lr = D−1L, is an asymmetric normalized version of L. A

generalized graph Laplacian, Lg = L + diag(di,i), is a graph Laplacian that

has self-loops at node i. Each variant has its own unique spectral properties.

For example, Ln and Lr have the same eigenvalues between [0, 2] (they are

similarity transforms of each other). Ln does not have the constant vector as

an eigenvector like L although they are both symmetric.

2.1.3 Graph Construction

There are multiple ways to define edge weights of a graph G. From a machine

learning perspective, a suitable graph can be learned given multiple signal

8
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observations. This is called graph learning—a fundamental problem in GSP—

where a graph structure that best fits the observations is identified given a

criterion or model assumptions [25, 26, 27, 28, 29]. Graphical lasso [25] focuses

on learning a sparse inverse covariance matrix (precision matrix) assuming a

Gaussian Markov Random Field (GMRF) model and a sparse graph.

Another popular way to define G is to construct a similarity graph. In

a similarity graph, the edge weights represent pairwise similarities between

nodes; i.e., a larger weight wi,j indicates that samples at nodes i and j are

more similar. There are different ways to defined wi,j. A common method to

define the edge weights in images is using the bilateral filter [21, 30]:

wi,j = exp

(
−‖li − lj‖2

2

σ2
l

)
exp

(
−‖xi − xj‖

2

σ2
x

)
, (2.4)

where li is the location of pixel i on the 2D grid, σl and σx are two parameters.

Other works, e.g ., [8], use a simpler version of the above kernel; the weights

wi,j are computed directly from the pixel intensities using a single Gaussian

kernel, i.e.,

wi,j = exp

(
−‖xi − xj‖

2

σ2
x

)
. (2.5)

In some works that combine GSP with deep learning like [9] and [19], the

9
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edge weights are computed as

wi,j = exp

(
−dist(i, j)

ε2

)
, (2.6)

where dist(i, j) represents the feature distance between pixels i and j and are

computed from features learned by CNNs.

2.1.4 Graph Signal Priors

A signal prior is a mathematical description of a signal assumption. Signal

priors are needed to regularize ill-posed (i.e., under-determined) inverse

problems, such as denoising.

Traditionally, for an undirected graph G with positive edge weights, signal

x is considered smooth if it contains mostly low graph frequency components,

i.e., GFT coefficients αk ≈ 0 for high frequency components k.

A popular graph signal prior for signal x is graph Laplacian regularizer

(GLR) [8, 19]. It is a widely used graph signal prior to regularize ill-posed

inverse problems like image denoising. GLR is defined as

x>Lx =
∑

(i,j)∈E

wi,j(xj − xi)2 =
N∑
k=1

λkα
2
k, (2.7)

where λk’s are the eigenvalues of L, and αk’s are the GFT coefficients of signal

x. A signal x is smooth if its GLR is small [31, 32, 8]. In the nodal domain,

GLR of signal x is small when the nodes connected by large edge weights

10
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have similar signal intensities. In the graph frequency domain, GLR of x is

small when the energy of high graph frequencies is small. Thus, minimizing

(2.7) means low-pass filtering. Since L is PSD [33], GLR is lower-bound by 0,

∀x ∈ RN .

Another popular signal prior is Graph Total Variation (GTV) [10, 34],

defined as

‖x‖GTV =
∑

(i,j)∈E

wi,j|xj − xi|. (2.8)

Unlike GLR, GTV does not have a straightforward frequency interpretation.

Instead, [10] provided a frequency interpretation per iteration using a different

definition of graph Laplacian. Minimizing GTV is different from minimizing

GLR since GTV is a non-differentiable `1-norm. GTV can be minimized

using Proximal Gradient Descent, a general algorithm to optimize non-smooth

functions [34, 35]. GTV is also lower-bounded by 0 when wi,j ≥ 0, ∀(i, j) ∈ E .

Figure 2.1: Regularizer values (left) and regularizer derivatives (right) as
functions of one pair of inter-node sample difference d = |xi − xj|.
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The selection of an underlying graph is important in GSP. One can group

ways to define the edge weights between nodes i and j into two groups:

signal-independent and signal-dependent. If the underlying graph structure

and edge weights are selected independent of the signal, then it is signal-

independent. In contrast, in a signal-dependent graph, the edge weights are

computed dependent on the target signal. A conventional choice for computing

signal-dependent edge weights is based on bilateral filtering [21]. Thus, the

graph signal priors GTV and GLR can have two variants—signal-dependent

GLR/GTV and signal-independent GLR/GTV—based on the selection of

edge weights.

A brief comparison of GTV and GLR. In [10], the authors argued that

both signal-dependent GLR and GTV can promote piecewise smoothness

(PWS) in signal reconstruction, but signal-dependent GTV can promote PWS

faster than signal-dependent GLR. For simplicity, consider only one term

in a regularizer, for example, wi,j(xi − xj)2 in GLR. Figure 2.1(left) shows

regularizer values of this one term as functions of the inter-node difference

d = |xi− xj|. When d→ 0, clearly all regularizers also approach 0. Moreover,

for signal-dependent GLR and GTV, when d → ∞, signal-dependent edge

weight wi,j → 0 due to dependency such as (2.5), and thus the regularizers

also approach 0. We can make the following general observations from this

plot. First, signal-independent GLR and GTV are convex functions, while

signal-dependent GLR and GTV are non-convex. Second, to minimize signal-

dependent GLR and GTV, inter-sample difference d = |xi−xj| must be either

12
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very small or very large. This explains why signal-dependent GLR and GTV

promotes PWS in signal reconstruction.

Consider now the regularizer derivatives as functions of d in Figure 2.1(right).

In signal-independent GLR and GTV, the derivatives are linear and constant,

respectively, for fixed edge weight wi,j. For signal-dependent GLR and GTV,

we see that as d→ 0, the derivative of signal-dependent GLR approaches 0,

while the derivative of signal-dependent GTV approaches 1. This means that

signal-dependent GTV promotes PWS faster than signal-dependent GLR as

d→ 0. A more detailed comparison of GLR and GTV can be found in [10].

As previously discussed, note that there was no frequency interpretation

of GTV before [10].

2.2 Deep Learning Concepts

2.2.1 Neural Networks

Neural networks are machine learning algorithms that are inspired by human

brains. In imaging, two popular neural network types are Fully-connected

Neural Networks and Convolutional Neural Networks [36].

Fully-connected Neural Networks

This is the simplest type of neural network in terms of architecture design.

Figure 2.2 shows an example architecture of a fully-connected neural network.

It is composed of layers of connected nodes, where each node is called a

neuron. The output of a single neuron is computed as z = f(Wx + b), where

13
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Figure 2.2: A simple fully-connected neural network architecture with two
hidden layers.

z is the output of the neuron, x is the input (the input can be outputs of the

neurons in the previous layer), f(·) is a non-linear activation function, W is

a weight vector, and b is a bias term. W and b are parameters of the network

and are trained via learning. A fully-connected neural network means that

all nodes in adjacent layers are connected to each other.

Convolutional Neural Networks

A Convolutional Neural Networks (CNN) are a form of neural networks

that employ a basic operation in signal processing—convolution. CNNs are

used extensively in computer vision and image processing problems with great

success. Formal definitions of CNN can be found in [36]. An example of a

simple CNN is shown in Figure 2.3. It has convolutional layers, pooling layers

and fully-connected layers.

Convolutional Layer. Convolutional layer is the main layer type in

14



CHAPTER 2. BACKGROUND

Figure 2.3: A simple CNN architecture.

a CNN. This layer performs a convolution operation on an input, followed

by a non-linear activation function. The filter coefficients that are used for

convolution in this layer are learned via data training. Convolutional layer’s

hyperparameters include the filter size and the stride—the amount we slide

the filter on the input at a time.

Point-wise Activation Functions. Point-wise activation functions add

non-linearity to the network. The activation function is attached to each

node of the network and defines output of the node. Some of the popular

activation functions are Sigmoid, Tanh and Rectifier Linear Unit (ReLU) [37].

Sigmoid. The sigmoid function is defined as f(x) = 1
1+e−x . This function

is useful when one needs to predict the probability as an output, since its

value is in the range [0, 1]. The function is differentiable.

Tanh. The Tanh function is similar to the sigmoid function but the outputs

are in the range [−1, 1]. It is defined as f(x) = ex−e−1

ex+e−1 .

ReLU. Currently, this is one of the most used activation functions in the
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literature. Its formal definition is f(x) = max(0, x). In other words, f(x) is

zero for x < 0 and f(x) is x for x ≥ 0.

Pooling Layer. Typically, a pooling layer performs a downsampling

operation on the output of a convolutional layer. Average pooling and max

pooling are popular types of pooling, where the average and the maximum

value in a window is computed as output, respectively.

Fully-connected layer. This is similar to the fully-connected neural

networks. This layer is not always presented in a CNN.

LeNet [38], AlexNet [39], VGG [40], ResNet [41] are a few popular success-

ful CNN architectures. For detailed discussion of these various architectures,

see [42].

2.2.2 Loss Functions

A loss function is used to drive the learning of the network via minimization

of the loss with respect to the free parameters of the system, e.g ., individual

numerical values of the convolutional kernels. In image denoising, a popular

loss function is the mean square error (MSE). It is defined as follows:

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)2, (2.9)

where N is the number of samples, y and ŷ are the true output and the

predicted output of a model, respectively. MSE measures the average squared

difference between the expected and the predicted outputs.
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2.2.3 Gradient Descent

Gradient descent is a family of optimization algorithms. It is widely used to

minimize a chosen loss function by optimizing the choice of a parameter set

during data training. Using gradient information of a defined loss function,

gradient descent minimizes the loss function by iteratively moving in the

direction of steepest descent. Some well-known variations of gradient descent

are as follows.

Batch Gradient Descent. This is the most well-known variation. One

first calculates the gradient of the loss function to find the steepest descent

direction, then moves a small step toward that direction, and repeat. The

step size is controlled by a parameter called the learning rate. One must set

the step size carefully; if the step size is too large, the optimization algorithm

may not converge. On the other hand, if the step size is too small, it may take

a long time until convergence to a locally optimal point. In Batch Gradient

Descent (BGD), in each iteration one uses all training data in its calculations,

resulting in slow execution speed for large datasets.

Stochastic Gradient Descent. Instead of using all training data each

step, Stochastic Gradient Descent (SGD) computes its gradient using only

one data sample. Thus, SGD updates more frequently than BGD. Another

difference between BGD and SGD is that SGD updates have higher vari-

ance. This makes the loss function fluctuate heavily. On the one hand, the

fluctuation may enable SGD to jump over local minima if it gets stuck. On

the other hand, it also makes the convergence to the exact minimum more
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difficult since SGD may overshoot the minimum.

Mini-batch Gradient Descent. This variation is in between BGD and

SGD; i.e., it uses a fixed number of samples to compute a gradient.

Momentum. SGD usually oscillates in areas where the loss surface curves

much more steeply in one dimension than in others [43]. Momentum is a

method that helps accelerate SGD in the relevant direction and reduces the

oscillations. It does this by adding a fraction of the update vector of the

past time step to the current update vector. The momentum increases for

dimensions whose gradients point in the same directions and decreases for

dimensions whose gradients change directions. Thus, Momentum leads to

faster convergence and reduce oscillation.

Skip-connections. A skip connection connects components of different

layers directly. The direct connection helps reduce the vanishing gradient

problem during learning via back propagation. Thus, skip connections can

enable learning of very deep neural network architectures, e.g ., [41].

2.2.4 Regularization

Making an algorithm perform well on both training and test data is a main

problem in machine learning. Regularization is a strategy that helps address

the problem. Regularization is a mathematical technique for solution to

ill-posed problems and prevent overfitting during model estimation [44]. It

accomplishes these goals by introducing additional constraints on the problem

at hand. For machine learning, models that overfit the training data are
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unlikely to generalize. Popular regularization techniques in machine learning

include L1 regularization, L2 regularization, and more recently, Dropout [45].

L1 regularization and L2 regularization. A regularization term is

added to the loss function. In L1 regularization, an `1-norm term of the

parameter vector is added, and in L2 regularization, an `2-norm term of

the parameter vector is added. These two methods force the optimization

algorithm to choose a parameter set that does not have a large `1/`2-norm,

leading to less complex models.

Dropout. Dropout is a computationally inexpensive yet effective neu-

ral network regularization technique. While training, each neuron has a

probability 1 − p to be set to zero. One can view dropout as a method

that approximates training a large number of neural networks with different

architectures in parallel. This makes the training process noisy. Therefore,

each hidden node in neural networks must be able to perform well since other

hidden nodes can be swapped out probabilistically. Dropout reduces the

effective capacity of a model. The size of the model usually is increased to

offset this effect. Dropout is less effective when extremely few labeled training

examples are available [45].

2.2.5 Algorithm Unrolling

One of the biggest drawbacks of deep neural networks is the lack of in-

terpretability. Specifically, what the convolutional filters in a CNN-based

architecture are actually doing remains hard to explain. An emerging tech-
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nique called algorithm unrolling (or unfolding) [22] helps address this issue.

In general, given an iterative algorithm (e.g ., Iterative Shrinkage and

Thresholding Algorithm [46] (ISTA), Coordinate Descent method [47]), one

can represent each iteration of the algorithm as one layer of a neural network.

By concatenating these layers, an architecture similar to deep neural network

is formed. Executing the original iterative algorithm for a finite number of

iterations is equivalent to forward-passing through the network. The itera-

tive algorithm parameters (e.g ., regularizer trading-off parameter) translate

to parameters in the neural network, which can be trained from data via

back-propagation. Thus, with algorithm unrolling, the trained network is

naturally interpretable as a parametric algorithm, resulting in interpretability

in conventional deep neural networks. Each layer can now be understood as

an algorithm iteration.

Learned ISTA (LISTA) [48] is the earliest work on algorithm unrolling.

It unrolls the iterations of ISTA into a deep network and learns parameters

of ISTA end-to-end. ISTA is one of the most common method to solve a

sparse coding problem [22]. ISTA parameters include a weight parameter

and an over-complete dictionary. Each iteration of ISTA composes of one

linear operation followed by a non-linear soft-thresholding operation. Thus,

mapping each iteration to a network layer and stacking the layers can form a

deep network. Forward-passing this network is equivalent to executing ISTA

iterations multiple times.

The original motivation of LISTA was to improve the computational
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efficiency of ISTA through end-to-end training. However, it also led to benefits

of parameters savings and interpretability. Classical iterative algorithms often

had significantly fewer number of parameters, compared with deep neural

network approaches. Hence, the unrolled networks are efficient in terms of

number of parameters. Furthermore, classical iterative algorithms were built

analytically, resulting in more understandable algorithms in general.

2.3 Image Denoising

The literature in image denoising is vast, since the basic problem is fundamen-

tal and has been studied for decades [49]. Modern image denoising methods

can be roughly categorized into model-based and learning-based.

2.3.1 Model-based Image Denoising

Model-based methods [15, 50, 16, 17, 18, 51, 52, 53] rely on assumptions on

signal characteristics to regularize an inherently ill-posed problem. Notable

methods include the following. Non-linear filters [54] were used to preserve

edge information and suppress the noise. In [16], the authors leveraged

sparse and redundant representations over trained dictionaries to describe the

image content effectively, leading to a simple yet effective denoising algorithm.

Non-local methods, like non-local mean (NLM) [51], took global information

of an image into consideration instead of a group of pixels surrounding a

target pixel in local methods. For instance, NLM took weighted average of
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all pixels in an image, the weights are the similarities between pixels and the

target pixel. Signal priors like total variation (TV) simultaneously smoothed

away noise in flat regions while preserving edges via minimization of signal

variations in the `1-norm [15, 18, 50, 55].

Other competitive model-based denoising methods include the shrinkage

fields [52]—its regularization is provided through a Markov random field

model, [56] proposed simultaneous sparse coding as a framework to combine

sparse signal representations and non-local information. In [53], the authors

proposed Weighted Nuclear Norm Minimization (WNNM) to enforce a low-

rank prior and adopted it to image denoising.

Although these methods achieved reasonably good results in image de-

noising, they suffered from several drawbacks [57]. For example, parameters

are set manually, and the assumed priors are too simplistic, all of which lead

to sub-par performance in real-world scenarios.

2.3.2 Deep Learning-based Image Denoising

In contrast, learning-based methods leverage powerful learning abilities of

recent deep learning (DL) architectures such as convolutional neural networks

(CNN) to compute mappings directly from y to x, given a large training

dataset [11, 12, 13, 58, 59] to overcome the drawbacks of traditional model-

based methods [57].

Despite their powerful denoising capabilities, these methods depend heavily

on the training data and perform poorly when the statistics between the
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testing and training data differ noticeably [19]. Moreover, these methods

usually require tuning of a large set of network parameters, leading to large

memory footprints. Large memory requirement is a significant impediment to

practical implementation on platforms like mobile devices that have limited

memory.

2.4 Graph-based Image Restoration

To reduce network parameters, we turn to graph-based techniques. We review

graph-based image restoration works in this section. Image restoration is an

inverse problem. In image restoration, one seeks to recover the original signal,

x, given a noise corrupted and/or degraded (partial) observation, y. Image

denoising, interpolation, deblurring, super-resolution are example tasks of

image restoration. A widely used linear image formation model is

y = Hx + z, (2.10)

where H is a degradation matrix (e.g ., down-sampling, blurring), and z is an

additive noise.

2.4.1 Graph-based Image Denoising

In image denoising, H = I, and z is typically assumed to be Gaussian

distributed. Image denoising is the most basic image restoration problem.
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Graph Laplacian Regularizer. A GLR assumes that the original image x

is smooth with respect to a defined graph G, i.e., x should have a small value

x>Lx, where L is the graph Laplacian matrix of graph G. In [60], the authors

removed impulse noise by applying multi-scale GLR. [61] employed GLR for

joint denoising and super-resolution. Generally, to denoise a noisy image

or image patch y, one can formulate the following unconstrained quadratic

programming (QP) problem using GLR:

x∗ = min
x
‖y − x‖2

2 + µx>Lx, (2.11)

where µ is a trade-off parameter. For a fixed L, this problem has a closed-form

solution x∗ = (I + µL)−1y.

In OGLR [8], the authors derived “optimal” features from a continuous

signal model, using which an underlying graph G is constructed and used for

solving the problem (2.11).

Instead of manually chosen features, a subsequent work called Deep GLR

[19] (DGLR) learned appropriate features from data via a CNN to define a

notion of feature distance and construct G with edge weights computed from

those distances. Specifically, denote by fi ∈ RK the feature vector of pixel

i learned by a CNN. Then the edge weights wi,j’s of a positive undirected

graph are computed as

wi,j = exp

(
−dist(i, j)

ε2

)
, (2.12)
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where dist(i, j) is the Euclidean distance between pixels i and j in the K-

dimension feature space, i.e., dist(i, j) =
∑K

k=1

(
fki − fkj

)2
. The problem

(2.11) is then solved using the corresponding graph Laplacian L computed

from the constructed graph.

Note that DGLR [19] was the first in the literature to combine graph-

based regularization with deep neural networks (DNNs) into a hybrid image

denoising scheme. While DGLR [19] requires solving a system of linear

equations to denoise an image patch, Deep Analytical Graph Filter [9] (DAGF)

employed GraphBio [62] —a biorthogonal critically sampled graph wavelet

filter—as the analytical graph filter for image denoising. Specifically, DAGF

constructed an underlying graph for each target image patch using (2.12),

similarly done in DGLR. However, given a constructed graph, instead of

solving an unconstrained QP programming problem to reconstruct a patch,

DAGF filtered the observed patch using GraphBio—a critically sampled

biorthogonal graph wavelet that allowed perfect reconstruction during the

synthesis phase.

Recently, graph-convolutional layers were used in [63] to create layers

that exploit non-local self-similarity to denoise images. This method also

suffered from the lack of interpretability like traditional deep learning methods,

i.e. what the trained network actually filters out remains unclear. Other

recent works in algorithm unrolling [22] include also graph-signal denoising

[64]. However, the goal in [64] is to learn the most suitable prior for signal

denoising on a fixed given graph, while DGTV focuses on image denoising,
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where learning a good underlying graph is a key challenge.

2.4.2 Graph-based Image Deblurring

Image deblurring is more challenging than image denoising [3] since the

blurring operator H in (2.10) may not be known. For example, in [10], Graph

Total Variation—a well-known graph signal prior—was used for blind image

deblurring, where the blur kernel was not known. The deblurring problem in

[10] was formulated as

(x̂, k̂) = arg min
x,k

1

2
‖x⊗ k− b‖+ β‖x‖RGTV + µ‖k‖2

2, (2.13)

where k, x and b are respectively the blur kernel, the original signal and

the observed blurred signal, β and µ are weight parameters, and ⊗ is the

convolution operator. Different from the widely used formulation (2.11) of

image denoising, the formulation for image deblurring in [10] had another

regularization term for blur kernel k. The unknown blur kernel made the

problem more challenging. To find the solution of the optimization problem

(2.13), the authors alternately fixed either x or k and minimized the other

term.

Some other well-known graph based image deblurring methods are listed as

follows. In [65], the authors proposed a deconvolution algorithm based on the

regularized Stein’s unbiased risk estimate (SURE), which is a good estimate

of the mean squared error. Kernel regression was extended for deblurring
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applications [66]. Other graph-based deblurring methods include [67, 68].

In [67], a new cost function, which consists of a new fidelity term and a

normalized graph Laplacian regularization term was proposed. The proposed

cost function also allowed spectral analysis of their solutions. Inspired by the

multi-Wiener SURE-LET deconvolution, [68] proposed a deblurring algorithm

for point cloud attributes.

2.4.3 Other Graph-based Image Restorations

A few notable works using graph-based restoration techniques are briefly

discussed in this section. [69] proposed a joint demosaicking / rectification

framework that composed a 360-degree image from viewpoint images captured

multiple fisheye cameras, using GLR for interpolating pixels. The optimization

problem in [69] was posed as:

min
x
‖Hy − x‖2

2 + µx>Lxx, (2.14)

where H is an interpolation matrix and y is the corrupted observation y.

The problem (2.14) can be interpreted as follows. The reconstructed signal

x should be similar to the interpolation Hy and smooth with respect to a

graph specified by Lx [69].

[70] also used GLR for image demosaicking, where edge weights were

computed from interpolated color images. In [61], the authors formulated the
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joint denoising and super-resolution problem as:

min
x
‖DHx− y‖2

2 + λx>Lhx, (2.15)

where D is a down-sampling matrix, H is a Gaussian low-pass filtering

operator, and Lh is a suitably derived graph Laplacian matrix. Specifically,

Lh was computed from a high resolution graph, which was estimated from a

low resolution dual graph. In this case, H in (2.10) is a combination of two

operators, a down-sampling and a low-pass filter.
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Deep Graph Total Variation for

Image Denoising

In this chapter, the proposed algorithm, Deep Graph Total Variation (DGTV),

is described in detail. DGTV is an image denoising method that combines

classical graph signal filtering with convolutional neural networks feature

learning. First, a CNN is used to learn feature representation of an image.

Then, edge weights are computed from feature distances, from which an

8-connected graph is constructed. Finally, to denoise an image, a convex

optimization problem is formulated and solved with a closed-form solution.

The optimization problem has a weight parameter that is also learned by a

different CNN.

In Section 3.1, an overview of the DGTV architecture is given. Section 3.2

formulates an image denoising problem using GTV, and Section 3.3 describes

29



CHAPTER 3. DEEP GRAPH TOTAL VARIATION FOR IMAGE
DENOISING

how DGTV learns the features from data.

3.1 Architecture Overview

Figure 3.1: Overview of the proposed architecture. Top: Deep GTV composed
of multiple GTV-Layers; Bottom: architecture of a GTV-Layer.

The proposed algorithm is called Deep Graph Total Variation (DGTV).

It is a combination of convolutional neural networks and traditional graph

filtering for image denoising. The network architecture, as shown in Figure

3.1, is composed of T layers, each implementing an algorithm iteration.

Hence, it can be interpreted as an implementation of algorithm unrolling [22].

Particularly, T layers filter an input image or image patch T times.

Each layer is implemented as a cascade of B blocks. At runtime, each

block takes as input a noisy input image patch y and computes a denoised

patch x of the same dimension via graph low-pass filtering. To assist in the
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denoising process, in each layer two CNNs are used to compute feature vector

fi per pixel and a weight parameter µ. Parameters of the CNNs are trained

end-to-end offline using training data via stochastic gradient descent [71].

The next section describes the unrolling of a chosen denoising algorithm

into layers, then the two employed CNNs.

3.2 Denoising with Graph Total Variation

Consider a linear image formation model for an image patch corrupted by an

additive noise:

y = x + n, (3.1)

where y ∈ RN is the corrupted observation, x ∈ RN is the original image

patch, and n ∈ RN is a noise term. The goal of denoising is to estimate x

given only y.

Given a graph G with edge weights wi,j (to be discussed), an optimization

problem using GTV as a signal prior is formulated [10] to reconstruct x given

noisy observation y as

min
x
‖y − x‖2

2 + µ
∑

(i,j)∈E

wi,j|xi − xj|, (3.2)

where µ > 0 is a parameter trading off the fidelity term and the prior. The

optimization problem given in (3.2) is convex and can be solved using iterative
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methods, e.g ., proximal gradient (PG) [34, 35], but does not have a closed-

form solution. Moreover, there is no spectral interpretation of the obtained

solution.

Instead, as done in [10], the GTV `1-norm term in (3.2) is transformed

into a quadratic term as follows. First, given a signal estimate xo, a new

adjacency matrix Γ with edge weights Γi,j is defined as

Γi,j =
wi,j

max{|xoi − xoj |, ρ}
, (3.3)

where ρ > 0 is a chosen parameter to circumvent numerical instability when

|xoi − xoj | ≈ 0. Assuming |xoi − xoj | is sufficiently large (i.e., |xoi − xoj | > ρ) and

estimate xo sufficiently close to signal x, one can see that

Γi,j (xi − xj)2 =
wi,j

|xoi − xoj |
(xi − xj)2 ≈ wi,j |xi − xj| .

This means that using Γ, GTV can be expressed in a quadratic form. Specifi-

cally, an `1-Laplacian matrix LΓ can be defined as

LΓ = diag(Γ1)− Γ, (3.4)

where 1 ∈ RN is a length-N vector of all one’s. Then, (3.2) can be reformulated

using a quadratic regularization term given LΓ; i.e.,

x∗ = arg min
x
‖y − x‖2

2 + µ x>LΓx. (3.5)
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This new optimization problem (3.5) no longer has a non-smooth objective.

In particular, objective in (3.5) contains two quadratic terms. One can solve

it via different methods. A direct way to solve (3.5) is to take the partial

derivative with respect to x to find the solution. The partial derivative is

∂

∂x
= −2y + 2x + 2µLγx. (3.6)

The convex function is minimized when its derivative is zero. Thus, setting

(3.6) to 0 and solving for x yields

x∗ = (I + µ LΓ)−1y. (3.7)

Hence, for given estimate xo and subsequent Laplacian LΓ, (3.5) has a

closed-form solution. Note that (3.5) must be solved multiple times, where in

each iteration b+ 1, the solution x∗b from the previous iteration b is used to

update edge weights (3.3) in Γ. In this architecture, each block solves (3.5)

once, and a layer composing of B blocks solves (3.2). Cascading T layers

forms the DGTV architecture, shown in Figure. 3.1.

Computing the solution (3.7) is computationally expensive, since it requires

a matrix inversion operation. Instead, one can write an equivalent system of

33



CHAPTER 3. DEEP GRAPH TOTAL VARIATION FOR IMAGE
DENOISING

linear equations:

(I + µ LΓ)x∗ = y, (3.8)

and solve for x∗ efficiently without matrix inversion using conjugate gradient

(CG). CG requires the coefficient matrix I + µLΓ to be positive definite (PD),

sparse and symmetric. Clearly, I + µLΓ is symmetric and sparse, since graph

Laplacian LΓ is symmmetric and sparse. One can prove it is also PD as

follows. We know that the identity matrix I is PD, i.e. x>Ix > 0,∀x 6= 0.

Further, the combinatorial Laplacian matrix LΓ is PSD, i.e. x>LΓx ≥ 0,∀x.

Thus, ∀x 6= 0,

x>(I + µLΓ)x = x>Ix + x>LΓx

≥ x>x > 0. (3.9)

Thus, I + µLΓ is PD.

Although CG can solve the system of linear equations in (3.8) without

matrix inversion, it can still be slow. However, with frequency interpretation

of GTV [10], it is possible to achieve faster solution using accelerated graph

filter. Chapter 4 will describe these fast implementations in detail.
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3.3 Feature and Weight Parameter Learning

with Convolutional Neural Networks

In (3.2), a graph G with edge weights wi,j is assumed. As done in [19, 9], in

each layer, a CNNF is used to compute an appropriate feature vector fi ∈ RK

at runtime for each pixel i in an N -pixel patch, using which edge weights are

computed to construct a graph G. Specifically, given feature vectors fi and fj

of pixels (nodes) i and j, a non-negative edge weight wi,j between them is

computed using a Gaussian kernel, i.e.,

wi,j = exp

−
∑K

k=1

(
fki − fkj

)2

ε2

 , (3.10)

where ε > 0 is a parameter. To learn CNNF end-to-end, one can compute

the partial derivative of the mean square error (MSE) between the recovered

patch x∗ and the ground-truth patch x with respect to LΓ. This is feasible

since fi is used to construct LΓ and LΓ appears in (3.7). MSE is defined as

LMSE =
1

N

N∑
i=1

(x∗i − xi)2. (3.11)

Denote by δi ∈ RN the indication vector whose i-th entry is 1 and the
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Figure 3.2: Network architecture. Left: architecture of CNNF. Right: archi-
tecture of CNNµ.

rest are zeros, then the partial derivative of LMSE with respect to LΓ is

∂LMSE

∂LΓ

=
N∑
n=1

∂LMSE

∂xi
· ∂xi
∂LΓ

= −
N∑
n=1

µ (x∗i − xi) · (I + µLΓ)−> δiy
> (I + uLΓ)−> , (3.12)

where A−> = (A−1)>. This partial derivative is back-propagated to update

the parameters in CNNF. The computed edge weights wi,j compose the

adjacency matrix W of an image patch.

In each layer, another CNN—denoted by CNNµ— is used to compute

weight parameter µ that trades off the fidelity term and the prior in (3.2),

for a given noisy patch y. Similar to CNNF, µ appears in (3.7), and thus

one can learn CNNµ end-to-end via back-propagation. Figure 3.2 shows the

specific architecture of the described CNNs.

Each GTV-Layer in DGTV filters an image patch by solving (3.2), and

hence all CNNs in DGTV can be learned in an end-to-end manner by super-
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vising only the error between the final restored patch x∗T and the ground-truth

patch.
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Implementing The Graph Filter

Computing the solution (3.7) requires matrix inversion, which is computa-

tionally expensive. Computing the solution in the system of linear equations

in (3.8) via conjugate gradient (CG) is faster, but it can still be slow if the

dimension of the sought signal x∗ is large. Faster execution can be achieved

from the graph spectral filtering perspective. This chapter describes how

one can circumvent matrix inversion in (3.7) via different approximation

filter methods in the graph frequency domain. In particular, Chebyshev

polynomials approximation [72, 73] and Lanczos method [23] are investigated.
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4.1 Frequency interpretation of the solution

One can interpret (3.7) as a low pass graph spectral filter by eigen-decomposing

LΓ = UΛU>, with frequency response f(λ):

x∗ = Uf(Λ)U>y (4.1)

f(Λ) = diag
(
(1 + µλ1))−1, . . . , (1 + µλN)−1

)
. (4.2)

(4.1) states that an input signal y is transformed to the graph spectral domain

α = U>y via GFT U>, where each graph frequency coefficient αi of frequency

i is scaled by f(λi) = 1/(1 + µλi), before transforming back to the nodal

domain via inverse GFT U. The frequency response f(Λ) in (4.2) is low-pass,

because for large graph frequency λ, the frequency response f(λ) = 1/(1+µλ)

is smaller. Figure 4.1 shows the filter response f(Λ) for different weight

parameters µ.

Given frequency response f(Λ), one can avoid matrix inversion by using

accelerated graph filter implementations. Chebyshev polynomials approxima-

tion [72, 73] and Lanczos method [23] are notable existing filter approximation

methods in the literature. Note again that accelerated filter implementations

are possible in our framework because of the availability of a model-based,

analytical frequency response f(Λ) for the graph filter (4.1). A chosen accel-

erated graph filter implementation is applicable regardless of what underlying

graph is actually constructed during runtime.
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Figure 4.1: Graph filter responses f(Λ) for different weight parameters µ.

4.2 Accelerated graph filter via Chebyshev

polynomials approximation

As described in [73], one can compute Chebyshev coefficients cm and polyno-

mials T̃m(LΓ), m = 0, 1, . . . and use the following equation to approximate

the graph filter (4.1)

x∗ ≈ 1

2
c0Iy +

∞∑
m=1

cmT̃m(LΓ)y. (4.3)

Denote by λmax the largest eigenvalue of LΓ. Then T̃m(LΓ)y is generated

using recurrence relation

T̃m(LΓ)y = 2

(
2LΓ

λmax

− I

)
T̃m−1(LΓ)y − T̃m−2(LΓ)y, (4.4)
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where T0(LΓ)y = I and T1(LΓ)y = y. The fact that T̃m(LΓ)y can be computed

recursively is the main reason for fast execution time of the Chebyshev

polynomials approximation.

The sum is truncated at a defined order M when implemented, resulting

in M -th order Chebyshev polynomial approximation. The m-th polynomial

T̃m can be computed recursively from T̃m−1 and T̃m−2 with time complexity

of O(M |E|), leading to computational benefits of the Chebyshev polynomial

approximation.

4.3 Accelerated graph filter via Lanczos Ap-

proximation

While fast, the error of a Chebyshev approximation can be large if the order

M is small. This motivates a better filter approximation. Lanczos algorithm

originated from the numerical linear algebra literature, where a Hermitian

matrix A ∈ Rn×n is transformed to a tridiagonal matrix T = V∗AV ∈ Rm×m,

where m ≤ n is the pre-specified iteration number. The Lanczos algorithm

is conventionally used to compute eigen-pairs of a Hermitian matrix quickly.

In the case of filter implementation, Lanczos approximation leverages this

algorithm for filter approximation. Specifically, similar to [23], first, an

orthonormal basis VM = [v1, . . . ,vM ] of the Krylov subspace KM(LΓ,y) =

span(y,LΓy, . . . ,LM−1
Γ y) is computed using the Lanczos method described

in [23]. The following symmetric tridiagonal matrix HM relates VM and LΓ.

41



CHAPTER 4. IMPLEMENTING THE GRAPH FILTER

αm and βm are scalars computed by the Lanczos algorithm.

HM = V∗MLΓVM =



α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βM

βM αM


. (4.5)

The computational cost of the algorithm is O(M |E|). Then, the following

approximation to the graph filter in (3.7) was proposed in [74]:

f(L)y ≈ ‖y‖2VMf(HM)e1 := fM , (4.6)

where e1 is the first unit vector. Due to the eigenvalue interlacing property,

the eigenvalues of HM are inside the interval [λ1, λN ], and thus f(HM) is

well-defined. The evaluation of (4.6) is inexpensive since M � N , leading to

accelerated implementation of f(L)y.

The Lanczos method is adopted as the graph filter acceleration for im-

plementation since it has lower approximation error than the Chebyshev

alternative for a small order M . Figure 5.1 in Section 5 shows an example of

the approximation errors of the two methods.
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Experimental Results

First, experiments were conducted to compare the two graph filter approxi-

mation schemes. Then, the proposed denoising method was evaluated against

various state-of-the-art image denoising methods.

5.1 Comparison between the two approxima-

tion methods

The experiments in this section compare the Lanczos method with the Cheby-

shev method in approximating the graph filter frequency response in (4.2).

Specifically, the graph filter (4.2) was executed on 1000 image patches of

size 36 × 36 (randomly drawn from the RENOIR dataset [75]) using three

filter implementations: i) the original filter (4.2), ii) Lanczos approximation

with order M , and iii) Chebyshev approximation with order M .
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Figure 5.1: Sample frequency response of Lanczos and Chebyshev method at
various M .

The average MSE between the outputs of the original filter and the two

approximation methods were measured for comparison. The results are shown

in Figure 5.1 and 5.2. Figure 5.1 shows a sample frequency response of the

low pass filter for M = 5, 20, 50, and Figure 5.2 shows the approximation

errors as a function of M . Clearly from the plots, the Lanczos approximation

outperformed the Chebychev approximation by a large margin, especially for

small M . For M = 10, Lanczos can reduce MSE of Chebeyshev by about

33%, and for M = 50, the difference is about 10%. Since both methods

had the same time complexity O(M |E|), one can conclude that the Lanczos

method was superior in this experiment. Note again that these graph filter

approximations are possible thanks to the analytical frequency response

derived in (4.2).
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Figure 5.2: Average approximation errors with respect to M .

5.2 Denoising Performance Comparison

The experiments in this section compare the proposed DGTV algorithm

against several state-of-the-art image denoising schemes. The competing

schemes are: i) a well-known model-based method BM3D [17], ii) a state-of-

the-art deep learning method CDnCNN [11], and iii) DGLR [19]—a hybrid

of CNN and analytical graph filters derived from a convex optimization

formulation regularized using GLR.

These methods were evaluated under two noise types: 1) additive white

Gaussian noise, and 2) real low-light captured noise of images in the RENOIR

Dataset [75]. For each type of noise, two experiment settings were considered.

The first setting was a statistical match setting, where both the training and

test datasets were drawn from the same distribution. The second setting
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Figure 5.3: Sample results of AWGN denoising. Training and testing on
σ = 25.

was a statistical mismatch setting, where images of the training and test

set had different noise characteristics. Statistical mismatching mimics real

world image denoising situations. In practice, access to the actual noise

generation distribution is not possible. Thus, it is more realistic to assume

that the model is trained on a distribution that is different than the actual

distribution. Specifically, for type 1 noise, the training set was added with

Gaussian noise (standard deviation of σ = 25) and the test set was added

with Gaussian noise (standard deviation of σ = 40). Essentially, the images

of the two datasets were drawn from the same noise distribution but with

different parameters. For type 2 noise, the training set was also added with

Gaussian noise (standard deviation of σ = 25), while the test set was the real

low-light noise images of the RENOIR dataset. Noted that BM3D does not
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Figure 5.4: Examples of real low-light denoising. Training and testing on real
low-light noise.

require training.

It took the proposed DeepGTV about 10 seconds to denoise a 720× 720

image. Although the filter approximation helped speed up the executing time,

the bottle neck was at the graph construction module. It is possible to reduce

the execution time with further implementation optimization.

5.2.1 Dataset Description

A small subset of the RENOIR Dataset [75] was used for experiments. The

subset selection criterion is described in Section 4.2 of [19]. This subset

contained 10 pairs of high resolution images captured by a smartphone.

Each pair contained a clean image and a noisy image (caused by low-light
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capturing). Training bias is possible since this dataset contains only indoor

scenes. One can adopt DeepGTV to another dataset to avoid the bias. All

images were resized to 720× 720 pixels, and each was divided into patches

of size 36× 36. Each patch overlapped its previous patch by 18 pixels. The

images were randomly split into two sets, where each set contained five

images. The average of peak signal-to-noise ratios (PSNR) and the average

of structural similarity index measure (SSIM) [76] of five test images were

used for evaluation.

5.2.2 Network architecture and hyperparameters

The CNN architectures were as following. CNNF was a lightweight CNN with

four 2D-convolution layers. The first layer had 3 and 32 input and output

channels, respectively. The next two layers had 32 input and output channels.

The last layer had 32 input channels and K = 3 output channels. CNNµ also

had four 2D-convolution layers, where the first layer had 3 and 32 input and

output channels, respectively, and the rest had 32 input and output channels,

followed by a fully-connected (FC) layer with 32 input units and 1 output

unit. A max pooling operator was used between two convolution layers, and

a Rectified Linear Unit (ReLU) was used after every convolution layer and

FC layer.

The architecture was chosen by systematically trying different options. For

instance, to choose the number of features K, different K’s were tested. When

K was large, e.g ., K = 9, 12, 36, multiple features had similar appearances
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when viewed as images. Thus, K was reduced gradually until there was no

redundant features, resulting in K = 3. Similarly, when the number of layers

are too large, the gradient vanished.

Skip connections were not used to address the gradient vanishing problem,

since DeepGTV only learns the features for constructing a similarity graph.

This requires less learning capability than learning a function that maps from

a noisy to a clean image (e.g ., in pure DL methods). A shallow network is

sufficient and is used instead.

In each experiment, the proposed DGTV model was trained for 50 epochs

using stochastic gradient descent (SGD) with batch size of 16. The learning

rate was set to 10−4. Other parameters were set empirically as follows:

ε = 0.3, ρ = 0.01, B = 6 and M = 20.

5.2.3 Statistical Match Noise Removal

This experiment evaluated the noise removal performance of the competing

methods. Two noise types were experimented: 1) both training and test

datasets were added with Gaussian noise with standard deviation of σ = 25,

2) both training and test datasets contained real low-light captured noise. To

achieve comparable complexity between DGLR and DGTV, DGLR’s network

architectures were replaced with the same described architectures of DGTV.

The third column of Table 5.1 shows the results for Additive White

Gaussian Noise, and the third column of Table 5.2 shows the results for real

low-light noise. Generally, learning-based methods performed better than the
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Method # Parameters
(
σ = 25

) σtrain = 25

σtest = 40


BM3D N/A 30.19 | 0.802 N/A

CDnCNN 0.56M 30.39 | 0.826 24.77 | 0.482

DGLR (1 layer) 0.45M 30.24| 0.809 27.27| 0.742

DGLR-M (1 layer) 0.06M 29.66 | 0.774 26.75 | 0.666

DGTV (1 layer) 0.06M 30.29 | 0.818 27.68 | 0.766

DGLR (2 layers) 0.9M 30.36 | 0.820 27.47 | 0.763

DGLR-M (2 layers) 0.12M 30.29 | 0.817 27.19 | 0.731

DGTV (2 layers) 0.12M 30.35 | 0.820 27.82 | 0.772

Table 5.1: Number of trainable parameters, average PSNR (left) and SSIM
(right) in AWGN removal and statistical mismatch setting.

model-based method. Compared to CDnCNN, DGTV achieved comparable

performance (within 0.04dB in PSNR) while employing 80% fewer network

parameters. Compared to DGLR-M, DGTV performed better given the same

number of layers. Specifically, at 1 layer, DGTV outperformed DGLR-M

by 0.63 dB in PSNR when removing AWGN. When removing real low-light

noise, DGTV outperformed DGLR-M by 0.11dB in PSNR at 1 layer. Fig. 5.3

and Fig. 5.4 show sample results of this experiment. As expected, DGTV

reconstructed piecewise-smooth (PWS) image patches like English letters on

light background very well.
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Method # Parameters

train = Real noise

test = Real noise

  train = AWGN

test = Real noise


CDnCNN 0.56M 31.60 | 0.841 28.06 | 0.532

DGLR (1 layer) 0.45M 31.21 | 0.832 30.50 | 0.812

DGLR-M (1 layer) 0.06M 31.16 | 0.829 30.37 | 0.814

DGTV (1 layer) 0.06M 31.27 | 0.835 30.69 | 0.814

DGLR (2 layers) 0.9M 31.62 | 0.841 30.96 | 0.818

DGLR-M (2 layers) 0.12M 31.44 | 0.833 30.44 | 0.813

DGTV (2 layers) 0.12M 31.57 | 0.840 31.01 | 0.820

Table 5.2: Number of trainable parameters, average PSNR (left) and SSIM
(right) in Real Low-light noise removal and statistical mismatch setting. In
statistical mismatching, training data had AWGN (σ = 25).

5.2.4 Statistical Mismatch Noise Removal

To demonstrate robustness against statistical mismatch, i.e. the training and

test data have different statistics, all models were trained on artificial noise

with standard deviation of σ = 25 and tested on different statistic datasets:

1) tested with AWGN with σ = 40, and 2) tested with real low-light noise.

Note again that BM3D does not require training on data, and hence, it was

not evaluated in this experiment.

The final column of Table 5.1 and Table 5.2 shows the results of this

experiment. From the table, one can see that DGTV performed better than

DGLR-M consistently for the same number of layers, though the gap became

smaller as the number of layers increased. In particular, at 1 layer, DGTV

outperformed DGLR-M by 0.93dB in PSNR for AWGN removal, and by
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Figure 5.5: Sample result in statistical mismatch situations. Training on
σ = 25 and testing on σ = 40.

0.32dB for real noise removal. Compared to CDnCNN, DGTV outperformed

it by a large margin—approximately 3dB for both noise types. Because

DGTV employed 80% fewer network parameters than CDnCNN, one can

interpret this result on robustness against statistical mismatch to mean that

DGTV implementation is less likely to overfit training data than CDnCNN.

Fig. 5.5 and Fig. 5.6 show sample results of this experiment.
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Figure 5.6: Sample result in statistical mismatch situations. Training on
σ = 25 and testing on real low-light noise.
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Conclusion

Image denoising is a fundamental problem in the field of image processing and

has been studied for decades. Recently, deep neural network architectures

have shown great success in image denoising. However, these methods require

tuning of a large number of parameters. Further, they overly depend on

training data and tend to fail when the training and testing data have different

noise statistics.

In this thesis, a new image denoising algorithm called Deep Graph Total

Variation (DGTV) is proposed, combining graph signal processing with

deep neural networks, resulting in demonstrable advantages compared to

pure deep learning approaches. Specifically, a CNN is used to learn feature

representations per pixel first. Then, a suitable graph for graph spectral

filtering based on the distances of the learned features is constructed. Given a

constructed graph, a convex optimization problem for denoising using a graph
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total variation (GTV) prior is formulated. The optimization problem has a

convex but non-smooth objective originally. The objective is transformed into

a convex and smooth version via an `1 graph Laplacian reformulation. The

transformed problem has a closed-form solution per iteration and is interpreted

as a graph low-pass filter with an analytical frequency response. However,

the solution requires matrix inversion, which is computationally expensive.

Thanks to a graph spectral filter interpretation of GTV, matrix inversion can

be avoided by using fast filter approximation in the graph spectral domain.

Particularly, this solution is realized via Lanczos approximation.

The proposed approach performed as well as pure deep learning approaches

in ideal denoising settings, where both training and test data had the same

noise distribution. Notably, DGTV achieved the same performance level with

DnCNN—a state-of-the-art deep learning approach—while using 80% fewer

parameters. Moreover, when the test images had different noise statistics

than the training images, DGTV outperformed DnCNN by up to 3dB in

PSNR. This suggests that DGTV generalizes better than DnCNN in case of

statistical mismatch and is less likely to overfit.

Using a hybrid design of interpretable analytical graph filters and deep

feature learning, DeepGTV shows the potential of hybrid methods for solving

image processing tasks. DeepGTV can be extended to other image problems

beyond simple image denoising, e.g ., different data types (3D images, light-

field images), different degradation types (blur, low resolution).

For future work, the number of parameters of DGTV can be reduced even
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further. Specifically, the CNNµ can be replaced completely with a single

variable µ that can be learned from data offline a priori. The CNNF can also

be replaced with more frugal neural network implementations that can result

in even smaller parameter sets.
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