167 research outputs found

    The Application of MsPSO in the Rockfill Parameter Inversion of CFRD

    Get PDF
    An intelligent algorithm that simultaneously analyzes multiple rockfill parameters is proposed. First, the paper introduces the operation and monitoring condition of the Shuibuya concrete-faced rockfill dam (CFRD). Then the constitutive rockfill models and the FEM analysis procedure are introduced in this paper. Third, the MsPSO intelligent algorithm was adopted to inverse the rockfill parameters. The recalculated displacement of Shuibuya CFRD using the inversed rockfill parameters is presented, and a satisfactory result was obtained, indicating that the inversion method is correct and effective. The method developed in this paper can be adopted in any geotechnical engineering parameter inversion

    Inverse Parametric Analysis of Seismic Permanent Deformation for Earth-Rockfill Dams Using Artificial Neural Networks

    Get PDF
    This paper investigates the potential application of artificial neural networks in permanent deformation parameter identification for rockfill dams. Two kinds of neural network models, multilayer feedforward network (BP) and radial basis function (RBF) networks, are adopted to identify the parameters of seismic permanent deformation for Zipingpu Dam in China. The dynamic analysis is carried out by three-dimensional finite element method, and earthquake-induced permanent deformation is calculated by an equivalent nodal force method. Based on the sensitivity analysis of permanent deformation parameters, an objective function for network training is established by considering parameter sensitivity, which can improve the accuracy of parameter identification. By comparison, it is found that RBF outperforms the BP network in this problem. The proposed inverse analysis model for earth-rockfill dams can identify the seismic deformation parameters with just a small amount of sample designs, and much calculation time can be saved by this method

    Aspectos técnico-científicos de barragens no Brasil: uma abordagem teórica

    Get PDF
    The safety of a dam is the result of a series of factors, including structural, geotechnical, hydraulic, operational and environmental aspects. In Brazil, Law No. 12.334 of September 2010 establishes the National Dam Safety Policy, which requires safety reports and monitoring inspections for existing dams. The inspection comprises a set of devices installed on the dam, which are used to assess the structural behavior based on performance parameters of the structure, such as displacements, flows, stresses, slopes and others. Dam auscultation procedures, historically, have been performed since the 1950s. Since then, there have been significant advances in instrumentation and dam auscultation methods. This work presents a theoretical approach on technical and scientific aspects of dams in Brazil, based on a state-of-the-art literature review, involving auscultation of dams in the context of design codes, concepts, instrumentation, safety, procedures and monitoring methods.A segurança de uma barragem é resultante de uma série de fatores, dentre os quais podem ser citados aspectos estruturais, geotécnicos, hidráulicos, operacionais e ambientais. No Brasil, a Lei nº 12.334 de setembro de 2010 estabelece a Política Nacional de Segurança de Barragens. A instrumentação compõe um conjunto de dispositivos instalados nas barragens, que são utilizados para avaliar o seu comportamento estrutural a partir de parâmetros de desempenho da estrutura, tais como deslocamentos, vazões, tensões, inclinações e outros. Procedimentos de auscultação de barragens, historicamente, tem sido realizado desde a década de 50, conforme a literatura. Desde então, houve avanços significativos na instrumentação e nos métodos de auscultação de barragens. Este trabalho tem como objetivo apresentar uma abordagem teórica sobre aspectos técnico-científicos de barragens no Brasil, fundamentada numa revisão de literatura no estado da arte, envolvendo auscultação de barragens no contexto de normas, conceitos, instrumentação, segurança, procedimentos e métodos de monitoramento.Uminho -Universidade do Minho(undefined

    Earthquake Engineering

    Get PDF
    The book Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures contains fifteen chapters written by researchers and experts in the fields of earthquake and structural engineering. This book provides the state-of-the-art on recent progress in the field of seimology, earthquake engineering and structural engineering. The book should be useful to graduate students, researchers and practicing structural engineers. It deals with seismicity, seismic hazard assessment and system oriented emergency response for abrupt earthquake disaster, the nature and the components of strong ground motions and several other interesting topics, such as dam-induced earthquakes, seismic stability of slopes and landslides. The book also tackles the dynamic response of underground pipes to blast loads, the optimal seismic design of RC multi-storey buildings, the finite-element analysis of cable-stayed bridges under strong ground motions and the acute psychiatric trauma intervention due to earthquakes

    ISGSR 2011 - Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk

    Get PDF
    Scientific standards applicable to publication of BAWProceedings: http://izw.baw.de/publikationen/vzb_dokumente_oeffentlich/0/2020_07_BAW_Scientific_standards_conference_proceedings.pd

    Fuzzy Sets Applications in Civil Engineering Basic Areas

    Get PDF
    Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings. This paper presents some Fuzzy Logic (FL) applications in civil engeering discipline and shows the potential of facilities of FL in this area. The potential role of fuzzy sets in analysing system and human uncertainty is investigated in the paper. The main finding of this inquiry is FL applications used in different areas of civil engeering discipline with success. Once developed, the fuzzy logic models can be used for further monitoring activities, as a management tool

    Seepage criteria based optimal design of water retaining structures with reliability quantification utilizing surrogate model linked simulation-optimization approach

    Get PDF
    The safety of hydraulic water retaining structures (HWRS) is an important issue as many instances of HWRS failure have been reported. Failure of HWRS may lead to catastrophic events, especially those associated with seepage failures. Therefore, seepage safety factors recommended for HWRS design are generally very conservative. These safety factors have been developed based on approximation calculations, unreliable assumptions, and ideal experimental conditions, which are rarely replicated in real field situations. However, with the development of the numerical methods, and high speed processors, more accurate seepage analysis has become possible, even for complex flow domains, different scenarios of boundary conditions, and varied hydraulic conductivity. On the other hand, because construction of HWRS requires a significant amount of construction material and engineering effort, the construction cost efficiency of HWRS is an issue that must be considered in design of HWRS. This study aims to determine the minimum cost design of HWRS constructed on permeable soils, incorporating numerical solutions of a seepage system related to HWRS, utilizing linked a simulation–optimization (S-O) model. Due to the complexity and inefficacy of directly linking a simulation model to the optimization model, the numerical simulation model was replaced by trained surrogate models. These surrogate models can be trained based on numerically simulated data sets. Therefore, trained surrogate models expeditiously and accurately provide predicted responses relating to seepage characteristics pertaining to HWRS. The optimization model based on the linked S-O technique incorporated different safety factors and hydraulic structure design requirements as constraints. The majority of these constraints and objective function(s) were affected by the responses of predicted seepage characteristics based on the developed surrogate models. To improve the safety of HWRS design, the effect of non-homogenous and anisotropic hydraulic conductivity were incorporated in the S-O model. Obtained solution results demonstrated that considering stratification of the flow domain due to different hydraulic conductivity values or anisotropic ratios can significantly change the optimum design of HWRS. Low hydraulic conductivity and anisotropic ratios resulted in more critical seepage characteristics. Consequently, the minimum construction cost increased due to an increase of dimensions of involved seepage protection design variables. Furthermore, uncertainty in estimating hydraulic conductivity is incorporated in the S-O model. The reliability based optimal design (RBOD) framework based on the multi-realization optimization technique was implemented using the S-O model. The uncertainty in seepage quantities due to uncertainty of hydraulic conductivity was represented using many stochastic ensemble surrogate models. Each ensemble model included many surrogate models trained in utilizing input– output data sets simulated with different scenarios of hydraulic conductivity drawn from diverse random fields based on different log-normal distributions. Obtained results of this approach demonstrated substantial consequences of considering uncertainty in hydraulic conductivity. Also, the deterministic safety factors, especially for those pertaining to the exit gradient, were insufficient to provide prescribed safety in the long term. Although surrogate models are utilized in S-O approaches, each run of the S-O model takes a long time as developed S-O models are applied to complex and large scale problems. Hence, efficiency of the S-O model was a key factor to successfully implement the methodology. Three main techniques were utilized to increase the efficiency of the S-O technique: using parallel computing, utilizing nested function technique, and using a vectorised formulation system. These strategies substantially boosted efficiency of implementing the S-O model. The S-O models were implemented for many hypothetical scenarios for different purposes. In general, results demonstrated that optimum design of the seepage protection system relating to HWRS design must include two end cut-offs with an apron between them. The dimensions of these components were augmented with an increase of upstream water head, and reduction of anisotropic ratios or hydraulic conductivity value. The main role of the downstream cut-off was to decrease the actual exit gradient value. This impact is more pronounced if the inclination angle of the cut-off is toward the downstream side (>90 degrees). The role of the upstream cut-off was to decrease uplift pressure values on the HWRS base. Consequently, this partially contributed to decreasing the exit gradient value. The effect of the upstream cut-off in reducing the uplift pressure was more when the inclination angle was toward the upstream side (<90 degrees). Moreover, the apron (floor) width helped to increase the stability of HWRS. This variable provided the required weight to improve HWRS resistance to external hydraulic forces and to uplift pressure. Incorporating the weight of water (hydrostatic pressure) at the upstream side in counterbalancing momentum and hydraulic forces showed improvement in the safety of the HWRS. Also, all conditions and safety factors pertaining to HWRS design were satisfied. The exit gradient safety factor was the most important critical factor affecting optimum design as obtained optimum solutions satisfied the minimum permissible values of the exit gradient safety factor, i.e., at the minimum permissible value. Also, the eccentric load condition played a crucial role in resulting optimum solutions. Finally, applying the S-O model to obtain reliable and safe design of HWRS at minimum cost was successfully implemented for performance evaluation purposes. This technique may be extended to incorporate more complex scenarios in HWRS design where the impact of dynamic and seismic load could be incorporated. The effect of unsteady state seepage system could be another interesting direction for future studies. Further, incorporating more sources of the uncertainty associated with design parameters could achieve a more accurate estimation of actual safety for the HWRS design

    Model order reduction methods for sensor data assimilation to support the monitoring of embankment dams

    Get PDF
    Tesi en modalitat de cotutela; Universitat Politècnica de Catalunya i Université libre de BruxellesThe latest monitoring and asset management technologies for large infrastructures involve digital representations that integrate information and physical models, exist in parallel to the real-life structures, and are continuously updated based on assimilated sensor data, in order to accurately represent the actual conditions in the structures. This type of technology is often referred to as Digital Twin. The implementation of such cutting-edge technology in monitoring assets like tailings dams, or embankment dams in general, and other large structures, implies the development of highly efficient numerical tools that, combined with sensor data, may support rapid, informed decision making. For the particular case of embankment dams, enabling this type of technology requires an efficient numerical model that describes the coupled hydro-mechanical phenomena, pertinent to a dam functioning and safety. This may for instance be a Finite Elements (FE) model, describing the groundwater flow through unsaturated porous geomaterials. The process of updating and calibrating a model, such as the above mentioned FE model, based on sensor data is typically referred to as data assimilation. Often, this is achieved via an optimization approach, where a specific problem is solved multiple times for various parametric values, in search for the values that best describe the sensor data. The bottleneck in this type of application is typically the cost of multiple evaluations of the model, that may become prohibitive when the underlying FE model is large. In order to enable such applications, the present work proposes Model Order Reduction (MOR) methods tailored to the hydro-mechanical nonlinear problem at hand. MOR aims at the creation of a surrogate model that seeks an approximation of the FE solution in a reduced-order space. This is achieved by applying an offline-online strategy. In the offline stage, the solution manifold of the full-order problem is sampled, in order to identify a low-order affine subspace, where an accurate approximation of the full-order solution can be captured. To tackle the nonlinearities related to partially saturated conditions in the soil, a similar strategy must be employed in order to define reduced-order spaces where an affine system approximation may be recovered. The resulting Reduced Order Model (ROM) may be used as an efficient surrogate to the FE model in any problem that requires fast and/or repetitive solutions. In this work, MOR techniques are implemented to solve the coupled nonlinear transient problem under consideration. ROMs are created to solve problems that pertain to tailings dams and embankment dams monitoring. The efficiency and the accuracy of these models are demonstrated by solving inverse problems for parametric identification. MOR is found to be a reliable tool, significantly accelerating the inverse identification process while resulting to accurate solutions.Las últimas tecnologías de monitorización y gestión de proyectos como grandes infraestructuras implican modelos digitales que integran información y modelos físicos, existen en paralelo a las estructuras reales y se actualizan continuamente en función de datos de sensores asimilados, con el fin de representar con precisión las condiciones reales de las estructuras. Este tipo de tecnología suele denominarse Digital Twin. La aplicación de esta tecnología de vanguardia en la gestión de grandes obras de infraestructura como las presas de residuos mineros, o las presas de tierra o de materiales sueltos en general, y otras estructuras de gran tamaño, implica el desarrollo de herramientas numéricas muy eficientes que, combinadas con los datos de los sensores, permiten una toma de decisiones rápida e informada. Para el caso particular de las presas de terraplén, habilitar este tipo de tecnología requiere un modelo numérico eficiente que describa los fenómenos hidromecánicos acoplados, pertinentes para el funcionamiento y la seguridad de una presa. Puede tratarse, por ejemplo, de un modelo de elementos finitos (EF) que describa el flujo de agua subterránea a través de geomateriales porosos no saturados. El proceso de actualización y calibración de un modelo, como el modelo de elementos finitos mencionado anteriormente, basado en los datos de los sensores se denomina normalmente asimilación de datos. A menudo, esto se consigue mediante un enfoque de optimización, en el que un problema específico se resuelve múltiples veces para varios valores paramétricos, en busca de los valores que mejor describen los datos de los sensores. El obstáculo en este tipo de aplicaciones suele ser el coste de las múltiples evaluaciones del modelo, que puede llegar a ser prohibitivo cuando el modelo de EF es grande. Para permitir este tipo de aplicaciones, el presente trabajo propone métodos de reducción del orden del modelo (MOR) adaptados al problema hidromecánico no lineal en cuestión. MOR tiene como objetivo la creación de un modelo sustituto que busca una aproximación de la solución de EF en un espacio de orden reducido. Esto se consigue aplicando una estrategia offline-online. En la etapa offline, se muestrea el colector de soluciones del problema de orden completo, con el fin de identificar un subespacio afín de orden reducido, en el que se pueda capturar una aproximación precisa de la solución de orden completo. Para abordar las no linealidades relacionadas con las condiciones de saturación parcial del suelo, debe emplearse una estrategia similar para definir espacios de orden reducido en los que pueda recuperarse una aproximación del sistema afín. El Modelo de Orden Reducido (MOR) resultante puede ser utilizado como un sustituto eficiente del modelo de EF en cualquier problema que requiera soluciones rápidas y/o repetitivas. En este trabajo, se implementan técnicas de MOR para resolver el problema transitorio no lineal acoplado que se está considerando. Los MOR se crean para resolver problemas relacionados con la monitorización de presas de relaves y presas de terraplén. La eficacia y la precisión de estos modelos se demuestran mediante la resolución de problemas inversos para la identificación paramétrica. El MOR resulta ser una herramienta fiable, que acelera significativamente el proceso de identificación inversa y da lugar a soluciones precisas.Enginyeria civi

    Model order reduction methods for sensor data assimilation to support the monitoring of embankment dams

    Get PDF
    Tesi en modalitat de cotutela; Universitat Politècnica de Catalunya i Université libre de BruxellesThe latest monitoring and asset management technologies for large infrastructures involve digital representations that integrate information and physical models, exist in parallel to the real-life structures, and are continuously updated based on assimilated sensor data, in order to accurately represent the actual conditions in the structures. This type of technology is often referred to as Digital Twin. The implementation of such cutting-edge technology in monitoring assets like tailings dams, or embankment dams in general, and other large structures, implies the development of highly efficient numerical tools that, combined with sensor data, may support rapid, informed decision making. For the particular case of embankment dams, enabling this type of technology requires an efficient numerical model that describes the coupled hydro-mechanical phenomena, pertinent to a dam functioning and safety. This may for instance be a Finite Elements (FE) model, describing the groundwater flow through unsaturated porous geomaterials. The process of updating and calibrating a model, such as the above mentioned FE model, based on sensor data is typically referred to as data assimilation. Often, this is achieved via an optimization approach, where a specific problem is solved multiple times for various parametric values, in search for the values that best describe the sensor data. The bottleneck in this type of application is typically the cost of multiple evaluations of the model, that may become prohibitive when the underlying FE model is large. In order to enable such applications, the present work proposes Model Order Reduction (MOR) methods tailored to the hydro-mechanical nonlinear problem at hand. MOR aims at the creation of a surrogate model that seeks an approximation of the FE solution in a reduced-order space. This is achieved by applying an offline-online strategy. In the offline stage, the solution manifold of the full-order problem is sampled, in order to identify a low-order affine subspace, where an accurate approximation of the full-order solution can be captured. To tackle the nonlinearities related to partially saturated conditions in the soil, a similar strategy must be employed in order to define reduced-order spaces where an affine system approximation may be recovered. The resulting Reduced Order Model (ROM) may be used as an efficient surrogate to the FE model in any problem that requires fast and/or repetitive solutions. In this work, MOR techniques are implemented to solve the coupled nonlinear transient problem under consideration. ROMs are created to solve problems that pertain to tailings dams and embankment dams monitoring. The efficiency and the accuracy of these models are demonstrated by solving inverse problems for parametric identification. MOR is found to be a reliable tool, significantly accelerating the inverse identification process while resulting to accurate solutions.Las últimas tecnologías de monitorización y gestión de proyectos como grandes infraestructuras implican modelos digitales que integran información y modelos físicos, existen en paralelo a las estructuras reales y se actualizan continuamente en función de datos de sensores asimilados, con el fin de representar con precisión las condiciones reales de las estructuras. Este tipo de tecnología suele denominarse Digital Twin. La aplicación de esta tecnología de vanguardia en la gestión de grandes obras de infraestructura como las presas de residuos mineros, o las presas de tierra o de materiales sueltos en general, y otras estructuras de gran tamaño, implica el desarrollo de herramientas numéricas muy eficientes que, combinadas con los datos de los sensores, permiten una toma de decisiones rápida e informada. Para el caso particular de las presas de terraplén, habilitar este tipo de tecnología requiere un modelo numérico eficiente que describa los fenómenos hidromecánicos acoplados, pertinentes para el funcionamiento y la seguridad de una presa. Puede tratarse, por ejemplo, de un modelo de elementos finitos (EF) que describa el flujo de agua subterránea a través de geomateriales porosos no saturados. El proceso de actualización y calibración de un modelo, como el modelo de elementos finitos mencionado anteriormente, basado en los datos de los sensores se denomina normalmente asimilación de datos. A menudo, esto se consigue mediante un enfoque de optimización, en el que un problema específico se resuelve múltiples veces para varios valores paramétricos, en busca de los valores que mejor describen los datos de los sensores. El obstáculo en este tipo de aplicaciones suele ser el coste de las múltiples evaluaciones del modelo, que puede llegar a ser prohibitivo cuando el modelo de EF es grande. Para permitir este tipo de aplicaciones, el presente trabajo propone métodos de reducción del orden del modelo (MOR) adaptados al problema hidromecánico no lineal en cuestión. MOR tiene como objetivo la creación de un modelo sustituto que busca una aproximación de la solución de EF en un espacio de orden reducido. Esto se consigue aplicando una estrategia offline-online. En la etapa offline, se muestrea el colector de soluciones del problema de orden completo, con el fin de identificar un subespacio afín de orden reducido, en el que se pueda capturar una aproximación precisa de la solución de orden completo. Para abordar las no linealidades relacionadas con las condiciones de saturación parcial del suelo, debe emplearse una estrategia similar para definir espacios de orden reducido en los que pueda recuperarse una aproximación del sistema afín. El Modelo de Orden Reducido (MOR) resultante puede ser utilizado como un sustituto eficiente del modelo de EF en cualquier problema que requiera soluciones rápidas y/o repetitivas. En este trabajo, se implementan técnicas de MOR para resolver el problema transitorio no lineal acoplado que se está considerando. Los MOR se crean para resolver problemas relacionados con la monitorización de presas de relaves y presas de terraplén. La eficacia y la precisión de estos modelos se demuestran mediante la resolución de problemas inversos para la identificación paramétrica. El MOR resulta ser una herramienta fiable, que acelera significativamente el proceso de identificación inversa y da lugar a soluciones precisas.Postprint (published version

    Green Low-Carbon Technology for Metalliferous Minerals

    Get PDF
    Metalliferous minerals play a central role in the global economy. They will continue to provide the raw materials we need for industrial processes. Significant challenges will likely emerge if the climate-driven green and low-carbon development transition of metalliferous mineral exploitation is not managed responsibly and sustainably. Green low-carbon technology is vital to promote the development of metalliferous mineral resources shifting from extensive and destructive mining to clean and energy-saving mining in future decades. Global mining scientists and engineers have conducted a lot of research in related fields, such as green mining, ecological mining, energy-saving mining, and mining solid waste recycling, and have achieved a great deal of innovative progress and achievements. This Special Issue intends to collect the latest developments in the green low-carbon mining field, written by well-known researchers who have contributed to the innovation of new technologies, process optimization methods, or energy-saving techniques in metalliferous minerals development
    • …
    corecore