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Abstract

The latest monitoring and asset management technologies for large infrastruc-
tures involve digital representations that integrate information and physical
models, exist in parallel to the real-life structures, and are continuously up-
dated based on assimilated sensor data, in order to accurately represent the
actual conditions in the structures. This type of technology is often referred
to as Digital Twin. The implementation of such cutting-edge technology in
monitoring assets like tailings dams, or embankment dams in general, and
other large structures, implies the development of highly efficient numerical
tools that, combined with sensor data, may support rapid, informed decision
making.

For the particular case of embankment dams, enabling this type of tech-
nology requires an efficient numerical model that describes the coupled
hydro-mechanical phenomena, pertinent to a dam functioning and safety. This
may for instance be a Finite Elements (FE)model, describing thde groundwater
flow through unsaturated porous geomaterials.

The process of updating and calibrating a model, such as the above
mentioned FE model, based on sensor data is typically referred to as data
assimilation. Often, this is achieved via an optimization approach, where a
specific problem is solved multiple times for various parametric values, in
search for the values that best describe the sensor data. The bottleneck in this
type of application is typically the cost of multiple evaluations of the model,
that may become prohibitive when the underlying FE model is large. In order
to enable such applications, the present work proposesModel Order Reduction
(MOR) methods tailored to the hydro-mechanical nonlinear problem at hand.

MOR aims at the creation of a surrogatemodel that seeks an approximation
of the FE solution in a reduced-order space. This is achieved by applying
an offline-online strategy. In the offline stage, the solution manifold of the
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full-order problem is sampled, in order to identify a low-order affine subspace,
where an accurate approximation of the full-order solution can be captured.
To tackle the nonlinearities related to partially saturated conditions in the
soil, a similar strategy must be employed in order to define reduced-order
spaces where an affine system approximation may be recovered. The resulting
Reduced Order Model (ROM) may be used as an efficient surrogate to the FE
model in any problem that requires fast and/or repetitive solutions.

In this work, MOR techniques are implemented to solve the coupled
nonlinear transient problem under consideration. ROMs are created to solve
problems that pertain to tailings dams and embankment dams monitoring.
The efficiency and the accuracy of these models are demonstrated by solving
inverse problems for parametric identification. MOR is found to be a reliable
tool, significantly accelerating the inverse identification process while resulting
to accurate solutions.
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2 Chapter 1. Introduction

1.1 Motivation and state of the art

Tailings are a commonby-product of the process of extracting valuableminerals
andmetals frommined ore. They usually take the form of a liquid slurry made
of mineral particles, created as mined ore is crushed, ground and processed.
The volume of tailings is normally far in excess of the liberated resource and
the tailings often contain potentially hazardous contaminants. It is usual
practice for tailings to be stored in isolated impoundments under water and
behind dams [60]. These are called tailings dams, and they are usually earthfill
embankment dams.

Tailings dams are some of the largest structures built by geotechnical
engineers [68].The current rate of major tailings dam failure is much higher
than that of major failures of water-retaining earthfill dams [26] [68]. The
amount and the toxic nature of materials held within tailings dams means
that their failure can have devastating consequences on the surrounding river
systems, water aquifers, aquatic and human life, for potentially hundreds of
kilometers downstream. One of the most catastrophic tailings dams collapses
that caused 270 deaths and the release of about 12 million m3 of tailings,
occurred in 2019 in Brazil. In Figure 1.1, the large volume of toxic material
that was released in the surrounding area in the form of liquid mud is shown.

Figure 1.1: Slurry released in Brumadinho dam collapse (25/1/2019, Brazil)

One of the reasons for the high failure rate of these structures may be the
fact that mine waste facilities do not represent a source of profit for mine
owners, which places constraints to the resources allocated to impoundment
monitoring and maintenance [54]. This also implies that all the failure modes
in tailings dams have not been as extensively investigated as in water-retaining
earthfill dams [58].
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The mining industry, along with many industrial sectors, is turning to
digital technologies to seek solutions that may upgrade the functioning and
monitoring of its facilities [13, 8]. This trend drives the exploration of new
technologies that make use of the increasing data availability to transform
mining practices. As part of this trend the Digital Twin approach has emerged
as a technology that may offer benefits in the optimization of a mining facility
functioning throughout its life-cycle.

A Digital Twin is a virtual counterpart of a real-life object or asset, such
as a tailings dam. It is a comprehensive digital representation, consisting of
information regarding the properties, materials, conditions of the asset, and
models that can simulate its real-life behaviors [44].

The physical asset and its digital representation exist in parallel and
influence each other in a reciprocal manner. All the changes that occur to
the physical asset and the information regarding its condition, that is, sensor
observations of important physical quantities, is broadcast and integrated into
its digital counterpart. The Digital Twin in turn, incorporates numerical tools
that permit simulating different scenarios, obtaining predictions of crucial
physical quantities that cannot directly be measured, and analyzing and
comparing incoming data to previously collected observations. Moreover,
the input parameters of the underlying model may be calibrated against the
incoming sensor data, in a process that is called data assimilation. The insight
obtained by the Digital Twin results into informed decision making about the
way the asset is managed, and eventually it leads to changes and interventions
carried out on the actual structure. This concept of mutual feedback that forms
the central idea of Digital Twins technology is illustrated in Figure 1.2.

This work is motivated by, and oriented toward, this type of integrated
technology. The essential goal of this work is not to design a Digital Twin
per se, but rather to develop numerical tools that aim to enable an integrated
safety monitoring system, that combines sensor data and a numerical model
of the monitored dam.

Tailings dams technical characteristics and failure modes

There are key differences between tailings dams and conventional water dams.
Tailings dams are usually constructed by readily available local materials
and they are often built of and/or on tailings material [101]. Compacted
tailingsmaterial is used to build the embankment, behindwhich, uncompacted
tailings may be stored. Tailings grain size is highly variable and dependent
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Figure 1.2: Digital Twin technology for tailings dams monitoring. A con-
tinuous feedback is implemented between the physical embankment and its
digital representation throughout the life cycle of the asset.

on the parent rock and the method of extraction. They tend however to be
largely gravel-free and clay-free, with sand being more common than silt [60].
Their chemical composition depends on the mineralogy of the ore body, the
degree of weathering during storage and the extraction process. Silica, iron
and oxygen display an almost universal presence and seem to be the most
abundant elements in tailings [60]. Tailings material is pumped from the mill
to the impoundment and is often size differentiated during deposition. The
coarser and more porous material settles close to the discharge point, near the
embankment, and may be used to extend the structure itself, while the finer
fraction (slimes) is carried further away forming an impermeable barrier. This
size-differentiated dispersal contributes to the integrity of the dam [60].

Rather than constructed at once, tailings dams are gradually raised, as the
mining activity results to larger capacity demands for the storing reservoir.
Three different methods are used for embankment level raise, namely the
upstream, downstream, and centerline method, as illustrated in Figure 1.3.
The brown-colored part in the Figure represents the part of the structure that
has to be constructed from coarse and compacted material, and therefore the
most expensive part to be built. The upstream method, requiring the smallest
volume of processed fill material, and therefore being the most cost effective,
is most widely chosen [68], but it is associated to many major failures. In
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Figure 1.3: Tailings dam construction method: conceptual illustration. Left to
right: Upstream, Downstream, Centreline level raise. Yellow color: Tailings.
Brown color: Fill material.

upstream dams, the additional layers of structure are placed on top of tailings
depositions, therefore the construction’s safety depends on the integrity of
tailings for stability [26]. This type of dam requires tighter ongoing scrutiny
[72].

Impoundment failure can be categorized into four basicmechanisms. These
main mechanisms are, overtopping, often occurring in inactive structures
after a flooding event; localized failure, caused by the presence of a shear
band; piping, caused by internal erosion due to seepage; and diffuse failure,
triggered by liquefaction of loose tailings material [45, 64]. The common
factors in most cases are the importance of the stress and seepage fields on the
dam. The seepage field might directly induce instability by erosion, or cause
the pore pressure to rise, leading to a reduction of effective stress and shear
strength.

Slope instability -that corresponds to the second failure mechanism local
failure - is one of the most common failure modes [74]. In upstream tailings
dams, the risk of instability of the downstream slope should be particularly
investigated during design and monitoring. The stability of upstream dams
may depend on the stability of the tailings depositions upstream, that support
the overlying layers of the embankment. In case the tailings deposited have a
high water content, a fast loading rate that allows no time for consolidation
may lead to excess pore pressure and loss of resistance to shear failure. This
may occur during the fast construction of new layers of compacted tailings, in
the stage of raising the dam level.The new layers of structure do not provide
a stabilizing force to the downstream slope, as is the case with centerline
and downstream raising methods. The timescales of loading, i.e. raising the
dam level and consolidation of the underlying material, are governing the
hydromechanical response of the system.
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Obviously, the stability problem in tailings dams should be treated as a
hydro-mechanical problem, as it is the excess of pore pressure that causes the
loss of shear strength of the material and consequently its local failure. High
pore pressures, and high hydraulic gradients in the case of erosive failures
(piping), are omnipresent elements in tailings dams failures. Pore pressure
monitoring is therefore crucial in the case of tailings dams.

Sensor data monitoring of embankment dams

The usual monitoring practice in tailings dams involves periodic visits to the
site and manual collection of instrument readings. These visits may occur as
rarely as once or twice per year, depending on site conditions and allocated
resources.

The most important monitoring instruments in tailings dams are those that
measure pore pressure and water level. Among different types of piezometers,
vibrating-wire ones are compatible with most remote sensing technologies.
They are typically placed in multiple locations in the structure and measure
positive pore pressure with an accuracy of ±0.1−0.5% FS. Pressure monitoring
is essential, as it can help spot potential risks while they are still developing
and manageable, that is, before deformation and damage occurs [116].

Displacements in tailings dams are measured on the surface with GPS type
systems, and in depth with inclinometers. Vertical inclinometers are installed
in boreholes and measure angle (tilt) with respect to initial placement, that
can be translated to horizontal displacement. A typical accuracy is limited to
0.01mm/m. In-place inclinometers might be combined with settlement sys-
tems that measure vertical displacement in the same position where horizontal
displacement is measured, with an accuracy of millimeters. Displacement
per se, may be non-conclusive for integrity assessment, and is often used to
calculate quantities such as displacement rate and shear strain [116].

The technology developments in remote sensor data acquisition have
introduced novel possibilities formonitoring [25]. The use of Internet of Things
(IoT) technologies is becoming apreferred solution for the assessment of tailings
dams safety. In the context of IoT, interconnected devices are used for the
continuous collection, sharing and visualization of data that are broadcasted
in real time from sensors that are installed in the monitored system -in this
case, the dam or mining installation. Real-time sensor monitoring proves
to be a key tool for reducing the risk related to these ever-evolving earthfill
structures, that exhibit a high rate of sudden and hazardous failures. However,
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even though data acquisition has now become easier, the interpretation of said
data in real time remains challenging [58, 54].

The context of this work is related to the employment of such a technology
in an integrated monitoring system, that would incorporate data analysis
and decision making tools. The models developed in this work, estimate as
elementary quantities the pore water pressure and displacement. These are
related to some of the most essential monitoring instruments in tailings dams
and embankment dams in general.

The need for modeling to support sensor data-based decision
making in tailings dams

Despite the increasing availability of sensor data, their interpretation remains
a challenging task. The health assessment of tailings dams based on data is a
particularly daunting task due to the ever-evolving nature of their design, an
element that is absent in conventional water dam engineering. In water dams,
sensor data can be evaluated by means of comparison with previous observed
trends. Alarms can easily be set up for observed pressures, deformations,
temperatures etc that differ drastically from previously recorded values that
are within the range of serviceability. In addition, in the case of water dams,
the geometry of the dam is usually stable and pre-decided. Therefore the
ranges of “safe” values of pressure, stress, deformation can be pre-decided
once and for good.

In tailings dams the following points render continuous integrated moni-
toring necessary:

• A common approach in embankment monitoring is to assess data by
comparing them to historical data. Expected behaviors are based on
previous trends [58, 116]. This is an appropriate method for monitoring
sudden changes that indicate potential trouble. However, it is not always
an appropriate option for non-static structures like tailings dams. During
periods when the dam crest level is raised, these structures undergo
significant changes, therefore the resulting stress and pressure states
cannot be compared to previous ones. Nonetheless, the induced pore
pressures and deformations must remain in the serviceability range.
This ever-evolving nature and geometry of these structures gives rise to
the need for constant redefinition of the acceptable values for a the stress
and pressure fields, and for the identification of existing conditions in
the dam.
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• It has been shown that failure is often initiated in the beach of depositions
rather than in the embankment structure itself [106, 101]. This can be the
case both for localized failure (slope instability) and for diffuse failure
(liquefaction) of loose and high water content tailings. This implies that
the constantly evolving beach of tailings depositions must be monitored,
alarm thresholds must be established and updated regularly [116, 64].
The existence of a numerical model that is constantly upgraded and
updated to represent the actual dam conditions would immensely
facilitate the monitoring [74].

• The material that is stored in tailings dams is newly formed soil material
that typically undergoes fast transformations once it is deposited, altering
its mechanical and hydraulic properties [116]. Moreover, changes in
stress and strain conditions can induce changes in soil properties, due to
physical processes that are often not described in numerical models. This
may lead to unexpected behavior of the dam. For example, a change in
permeability may lead to less favorable drainage conditions in the dam
and eventually to failure [68]. Considering these sources of uncertainty,
data assimilation, that is, regular calibration of the model based on data
becomes crucial.

• There are other sources of uncertainty featured in tailings dams, related
to loads and natural phenomena like rainfall, evaporation, and seismicity.
Combining sensor data and numerical modeling can help to understand
better the state of the structure, in the presence of these uncertainties.

Combining the sensor network with a numerical model that simulates
the physical processes that are pertinent to the safety of an earthfill dam,
can facilitate the interpretation of large volumes of sensor data [108]. In the
case of earthfill dams, a coupled hydro-mechanical problem that describes
the groundwater flow of water through soil governs the dam integrity. The
methods that are developed in this work, are related to the establishment of a
numerical model that can evaluate in quasi real time stress, strain and water
pressure states of the embankment dam. Moreover, this work is oriented
toward the development of data assimilation techniques that may allow the
combination of sensor data and numerical model for the continuous updating
of the model, so that the prediction accuracy increases through the life of the
structure, and manages to stay up to date with the evolving conditions in the
real-life dam.
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1.2 Model Order Reduction

One of the bottlenecks for sensor monitoring in a quasi real-time context is the
lack of a numerical model providing real-time or close to real-time responses.
A model would be required with a response that can be obtained faster than
the physical evolution of the phenomenon to be analyzed.

The need for high efficiency is even more relevant in the framework of
sensor data assimilation for model optimization. The reason for this is that
data assimilation implies the use of methods that involve repetitive model
evaluations, that is, they require the solution of many-query problems.

When the model evaluation is based on a Finite Element (FE) model that
requires the solution of a problem with a potentially very large number of
unknowns, the computational cost of these methods becomes prohibitive. This
is why methods that are aimed to significantly decrease the model response
time are often used in the solution of many-query problems [100, 88].

Model Order Reduction has been a fast developing scientific field over
the last decades, due to the increased need for computational efficiency in
numerical models. High dimensional problems in engineering and scientific
computing remain challenging despite the increase of computational resources.
The hardest scenarios to tackle involve problems that require repetitive direct
solutions, often referred to as many query problems (i.e. in optimization,
inverse parameter identification, uncertainty quantification), and large-scale
problems that require very fast solution (i.e. close to real-time simulations). The
former group of applications implies the definition of a parametric problem,
where a number of input parameters such as the geometric configuration of
the underlying domain, the material properties or the boundary conditions
can vary within a range of possible values.

The central idea in Model Order Reduction for mesh-dependent numerical
methods (Finite Elements (FE), Finite Differences etc) lies in the identification
of a low order spacewhere an accurate approximation of the full-order solution
of a parametric problem lives.

Considering a mesh discretization that yields N degrees of freedom,
by associating an approximation function to each degree of freedom, an
approximation space where the discrete solution of the problem lives is
defined. This is referred to as full-order or high-fidelity solution space. The
problem is solved by computing N values. If the set of equations is transient
and nonlinear, as it is in the case that is studied in this work, then a N-sized
system of equations must be solved at least once for every time step.

Model Order Reduction is an umbrella term for several techniques that
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acknowledge the fact that in many cases, the solution of a numerical model can
be approximated in a space of much smaller dimension than N. The objective
is then to identify this low order space and construct a Reduced Order Model
(ROM) that seeks for an approximation of the high-fidelity solution in that
low-order space. The low order approximation unavoidably features some
error with respect to the full-order solution, since the low-order space cannot
possibly capture all the information related to the full-order approximation
space.

For the construction of the ROM, the full-order solutions must be obtained
either for a small period of time in the case of a transient problem or for a
small number of parametric values. In any case, the constructed ROM should
then allow to solve similar problems (i.e. for parametric values that have not
been sampled) with high efficiency.

Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) based methods, that will be used in
this work, are an instance of Model Order Reduction methods that requires
the solution of the full-order problem at least once. The Reduced Order Model
(ROM) is extracted from this solution or set of solutions, that will eventually
allow the solution of many similar problems with a much smaller cost. Due
to the requirement of a number of full-order solutions to construct the ROM,
POD-based methods are often called a posteriori [24].

Approaching a problem with a POD-based ROM is performed in two
stages:

• Offline stage: An expensive pre-process, where the low-order approxi-
mation space is identified, by “sampling” the full-order solution space.

• Online stage: A much cheaper solving process, where approximate
solutions can be computed. This stage is repeated as many times as a
real-time response is required in the context of a many-query problem.

Specifically, in the present work, the Reduced Basis method (RB) [70, 93]
will be used. This is an instance of MOR that utilizes POD to identify a low
order space where an approximate solution can be sought for.

Discrete Empirical Interpolation

In the presence of nonlinearities in the system of PDEs at hand, the POD
technique reduces the problem dimension in the sense that far less unknowns
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are present in the system solving process. However, the cost of evaluating
nonlinear terms still requires a projection to the full order space, and is
therefore still related to the size of the original, high-fidelity problem [21]. In
the FE context, this limitation refers to the high computational complexity
related to the repetitive calculation of inner products required to evaluate
weak forms that contain general nonlinearities.

The Discrete Empirical Interpolation Method (DEIM) [21] follows a POD-
based strategy to reduce the cost of evaluating such nonlinearities. It defines
low-order approximation spaces for each nonlinear term, in addition to the
POD reduced space where the solution of the problem is approximated. The
nonlinear terms approximations are constructed by projection onto the POD
basis and interpolation based on selected grid points.

To further reduce the cost of assembly Localized Discrete Empirical In-
terpolation (LDEIM) [88] proposes the creation of multiple POD bases, each
corresponding to a particular set of system states. These bases are expected to
be of even smaller dimension than the global POD bases introduced in DEIM,
thus resulting in an even more significant dimension reduction, and an even
faster assembly.

There have been several model reduction methodologies applied to the
simulation of porous media flow, such as data-driven models [12, 40], Proper
Orthogonal Decomposition (POD) based methods [40, 114, 61, 11], as well as
POD paired with DEIM (Discrete Empirical Interpolation Method) where the
nonlinear terms are approximated by some form of interpolation, ensuring a
large reduction of computational cost [41, 39, 29]. The work in all the papers
mentioned above is motivated by reservoir and petroleum engineering and
often refers tomultiphase fluid flow. In the aforementionedpapers, POD-based
reduction is applied to the hydraulic problem alone, and does not concern
the hydro-mechanically coupled problem [40, 41, 114, 119]. A POD-DEIM
approach, has not been applied so far to the coupled flow/geomechanics
problem to the knowledge of the author of the present.

The selection of the RB and DEIM methods for the work in this thesis was
based on the identified gap in the related literature. The specific problem
that is described in this thesis, which is a coupled non-linear transient hydro-
mechanical problem (as is discussed in Chapter 2) had not been previously
approached with this combination of methods, to the knowledge of the author
of the present work. However, there are various Model Order Reduction
methods that may be employed for this problem.

One commonly used method is Proper Generalized Decomposition (PGD)
[23, 24, 133] that offers the advantage that it does not require an offline
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preprocessing stage in order to compute the approximate solution. It is
therefore referred to as an a priori method, because it does not require the
prior knowledge of any full-order solutions to the problem. Moreover, it is
possible in PGD to compute a general solution, once for life, that includes
all the approximate solutions for every possible value of the input, that is, a
sort of computational vademecum. After having computed the vademecum,
any approximate solution can be obtained in real-time. This is an important
advantage of the method in the context of many-query problems.

Another method that has been gaining popularity is the use of Artificial
Neural Networks (ANN) to replace the full-order FE model. In that case, the
cost of training the model can be large, but once it is trained, the model can
output real-time solutions. Themain disadvantage of this methodwith respect
to POD and PGD methods is that after the model is trained, the relationship
to the physical problem is lost.

1.3 Inverse problem solving and data assimilation

A common challenge in developing realistic models is related to highly
uncertain parameters, mainly representing material properties [49]. In the
application to tailings dams, the hydraulic and mechanical properties of the
structural and stored materials are often unknown and may vary over time
[120]. Real soil is a highly nonlinear, heterogeneous material, with many of
its mechanical and hydraulic properties depending on its strain, stress and
pressure state [17, 79]. In the context of modern technologies like digital twins
for monitoring and control of large infrastructures, this problem becomes
particularly important, since the value of these new technologies is dependent
on the degree of accuracy of prediction of the underlying models. The idea of
monitoring data assimilation to automatically update and calibrate a numerical
model is essential to the concept of digital twins [17]. In engineering practice,
the choice of appropriate parameters for geomechanical models is either based
on laboratory or in-situ experimental explorations, or left to the judgment
of experienced engineers. These methods have some obvious limitations, as
experimental campaigns may fail to provide realistic in-situ values. There is
often a lack of sampling, the effect of changes in the mechanical state of the
material is not accounted for, and the heterogeneity and temporal uncertainty
of material properties are neglected.

To treat such problems efficiently, data assimilation may prove useful.
In this context, field measurements are used for back-analyses in order to
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identify realistic values for the properties used in the model. Data assimilation,
implies the solution of an inverse problem, that is, a problem that examines
multiple solutions for different values of the parameters, and identifies the
most realistic parametric values by driving the model output as close to the
reality as possible.

Inverse problem solving for soil properties identification has been exten-
sively explored in the literature. In geotechnical engineering, the inferred
parameters are usually mechanical and strength properties, and the inver-
sion is based on displacement or deformation, field or experimental data
[102, 130, 97, 27, 111]. Hydraulic parameter identification using inverse mod-
eling has also been explored, mainly in the context of agricultural engineering.
The applications are based on either real [55, 96, 113, 28, 43] or synthetic
experimental data [59, 126, 110, 134, 65].

There is extensive discussion in the literature on the subject of the inherent
ill-posedness of the inverse problem for hydraulic parameter identification, that
may result in non-unique and/or unstable solutions [110, 59, 113, 43, 71, 134].
The work in these publications is not motivated by earthfill dam applications,
rather they generally treat the problem of water flow through soil. Specifically,
authors have investigated the uniqueness of the inverse problem solution,
when hydraulic soil properties must be identified simultaneously.

In this work, a deterministic approach is adopted for inverse problem
solving. Parameter identification is performed by minimizing a function
that measures the discrepancy between sensor data and model output. The
minimization process is a many-query problem, since solutions for various
parametric values must be computed until the values that yield minimum
discrepancy are identified. Therefore, the computational cost of this process
is very high, and depending on the complexity of the underlying problem,
may be prohibitive. To remedy this issue, one method that has been examined
by several authors is the use of artificial neural networks (ANN), trained to
approximate the relation between a permeability field and the pore water
pressure distribution of the domain for a specific problem [35, 112, 132].
Nonetheless, the use of ROMs as surrogates to full-order FE models in the
process of parameter identification may as well present a solution to the issue
of computational efficiency.

The research gap that this thesis aims to address, is a comprehensive study
of parameter identification via inverse problem solving based on sensor data
from actual earthfill dams. A study that addresses the various issues that
may arise in a real-life application based on actual sensor data, such as the
problem’s ill-posedness when solving for multiple parameters simultaneously,
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and the computational efficiency issue, remains to be done, to the knowledge
of the authors of the present.

1.4 Scope and objectives

In the scope of creating models of embankment dams with close to real-time
responses, the main objective pursued in this work is related to the application
of Model Order Reduction strategies for coupled nonlinear hydro-mechanical
problems. To achieve this, this thesis is oriented toward answering the
following research questions:

• Is it possible to obtain accurate ROMs using POD-based reduction
methods for solving transient nonlinear problems in geomechanics?

• What is the order of magnitude of the time speedup achieved with
POD-based reduction for hydro-mechanical problems?

• What is the additional gain that can be obtained by introducing hyper-
reduction with DEIM?

• Does the inverse problem for identification of mechanical and hydraulic
parameters via objective function minimization based on sensor data
have a unique and stable solution?

• Can the inverse problem be solved with ROMs with high accuracy?

• Are the developed methods applicable to inverse problems based on
actual pore water pressure data measured on existing embankments?

Creating a model to support decision making in real-time for embankment
dams is a complex task, some aspects of which are addressed in this work.
There is a wide range of issues that are open and require further examination.
Some are mentioned in the concluding chapter. The scope of this thesis is
limited to the study of certain areas, defined by the following assumptions
and simplifications:

• A coupled problem that considers mechanics and the hydraulic flow
of groundwater through soil is considered. These physical processes
were deemed most pertinent to the safety of an embankment dam.
Other possibly interesting processes, like thermal effects and transfer of
pollutants are neglected in this work.
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• The nonlinearity investigated here is related to the description of the
partially saturated soil. The author focuses on the investigation of Model
Order Reduction for this particular source of nonlinearity. For the me-
chanical constitutive modeling, linear elasticity is therefore considered.

• The reported results that pertain to the efficiency and accuracy of POD-
based ROMs are problem-specific. Even though they demonstrate an
expected behavior and showcase the capabilities of the studied methods,
different results may be recovered when different hydro-mechanical
problems are tackled.

• The above comment also applies for the results reported in inverse
problem solving.

It is worth mentioning that even though the engineering application that
motivates this work is related to the safety monitoring of tailings dams using
real-time remote sensing, the methodologies that have been developed can be
applied to earthfill embankment dams in general, and some of the problems
that are studied in the present work, are therefore related to conventional water
earthfill dams, for which experimental measurements are readily available.

1.5 Contributions and outline of the thesis
The main contributions of this thesis are related to achieving drastic reduction
in the computational costs in solving coupled hydro-mechanical problems
of groundwater flow through unsaturated soil. Furthermore, a parametric
identification method is developed based on inverse problem solving and
using a ROM.

In Chapter 2, the equations governing the coupled hydro-mechanical
groundwater flow through unsaturated soil are presented, and the Finite Ele-
ment model created for this problem is described. Moreover, the development
of the ReducedOrderModel is described and its performance is evaluated. The
reduction method is applied to a 2D and a 3D illustrative problems, designed
to simulate realistic critical conditions in the safety monitoring of tailings
dams. This example illustrates the reduction in time that is achieved by solving
the problem with a ROM instead of FEM. The novel element introduced in
this chapter is the implementation of the Reduced Basis Method for coupled
hydro-mechanical nonlinear problems.

In Chapter 3, the methodology is extended to the specific treatment of
nonlinear problems with DEIM and LDEIM methods. The methods are
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described and implemented and the resulting model performance is examined.
A 3D problem is used to illustrate the methods advantages in terms of
computational efficiency and accuracy of the resulting model. Several details
regarding the implementation of the method are discussed. The ROMs that
result from applying various combinations of the RB, DEIM and LDEIM
methods and varying the size of reduced approximation spaces are compared.
The methods are employed for the solution of parametric problems featuring
one, and three parameters, in order to illustrate the ROMs performance with
scaling of the parametric domain. Moreover, the one-parameter problem is
solved on a significantly denser mesh, in order to examine the methods scaling
capabilities with increasing full-order problem size. Similarly to Chapter
2, the novelty introduced here is related to the implementation of DEIM
and LDEIM in the coupled hydro-mechanical problem of groundwater flow
through unsaturated soil. A significant boost in computational is observed in
most cases, with no compromise in accuracy.

In Chapter 4, parameter identification based on sensor data for earthfill
dams is described and some results are presented. This chapter discusses
the feasibility of parametric identification with optimization algorithms and
a pressure-based objective function. A ROM is employed as a surrogate for
the commonly used FEM that proves to be impractical in the context of most
optimization algorithms, due to its high computational cost. The novel contri-
butions introduced in this chapter are firstly, the use of an objective function
that includes a normalization term based on the time derivative of the pore wa-
ter pressure, and the implementation of objective function optimization-based
parameter identification, for both mechanical and hydraulic soil properties, on
nonlinear coupled problems using ROMs. The method is employed to identify
soil properties based on actual measured pore pressure sensor data recorded
on an existing earthfill water dam during a rapid drawdown event.

Finally, in Chapter 5 the conclusions of this study are drawn and some
observations and comments related to the topics that have been studied are
discussed. The limitations of this work are summarized, and the topics that
remain to be explored in future works to address the limitations, and extend
the work that has been completed here, are outlined.
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2.1 Introduction

In this Chapter the adopted physical model, the full-order FE model and the
Model Order Reduction methodology are presented. A ROM is created and
employed in solving an illustrative problem that simulates critical conditions
in a tailings dam.

The original contribution proposed in this Chapter, lies in the implementa-
tion of POD-based reduction for the coupled nonlinear problem, considering
partial saturation of the porous medium. Coupling of the two equations that
govern the mechanical and hydraulic part of the problem, yields a nonlinear
transient system of equations, that is discretized using the Finite Element
Method. Nonlinearities are introduced in order to describe partially saturated
states for the soil. Partial saturation must be considered in the study of
earthdams, as it is a common occurrence in these structures that the water
table is located below the dam crest, and therefore only part of the material
is saturated. Solving the discretized system of equations, one can obtain the
full-order or high fidelity approximation of the solution to the PDEs. The
Reduced Basis method [31, 70, 69, 100] represents an instance of model order
reduction techniques in which the parametric dependence of the PDE solution
is explored by solving the high-fidelity problem a number of times. The
resulting set of solutions is explored in a POD framework, in order to find a
set of basis functions, hopefully fewer in number than the dimension of the
full-order problem, the linear combination of which can provide a satisfactory
approximation of the high-fidelity solution.

To adapt this technique to problems in partially saturated soils, this Chapter
is structured as follows. Sections 2.2 and 2.3 contain a detailed description
of the methodologies used for developing the forward FE model and the
low-order approximation model using RB. In Section 2.4 the accuracy and
computational efficiency achieved with ROM are demonstrated solving a
problem related to the construction of tailings dams. The results are discussed
and an outline of future developments that could add value to the present
work is given in section 2.5.

2.2 The physical model describing groundwater flow
through unsaturated porous media

In this Section, the equations that govern the hydro-mechanically coupled
problem of groundwater flow through an unsaturated soil are presented.
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The equations written here describe various geomechanical problems that
feature water flow through unsaturated porous media, and the methodologies
developed in this work can be used to solve these problems.

Constitutive relations and governing equations

The equation of mechanical equilibrium reads

∇̃ᵀσ + ρ(p)g � 0, (2.1)

where σ � [σx , σy , σz , τx y , τxz , τyz]ᵀ is the vector of total stresses, the
differential operator ∇̃ for the general 3D case is defined as,

∇̃ᵀ �


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x


, (2.2)

g � [0, 0,−g]ᵀ is the gravity acceleration vector, and ρ is the density of the
multiphase medium, comprised of soil particles and water, evaluated as a
function of pore water pressure p, and related to the density of soil particles
and water (ρs , ρw) according to the relation

ρ(p) � (1 − η)ρs + ηSe(p)ρw � (1 − η)ρs + Θ(p)ρw , (2.3)

where η denotes the soil porosity. The volume water content (VWC) Θ(p) and
effective degree of saturation, or dimensionless water content Se(p) [79] are
evaluated according to a hydraulic model detailed in Section 2.2

In this work the air pressure is considered equal to the atmospheric
pressure, as commonly assumed in geotechnics. The constitutive stress is
defined as

σ′ � σ − Se(p)pĨ, (2.4)

where σ′ � [σ′x , σ′y , σ′z , τ′x y , τ
′
xz , τ

′
yz]ᵀ is the vector of effective stresses, and

Ĩ � [1, 1, 1, 0, 0, 0]ᵀ is a column vector with 1 at normal stress entries and 0 at
shear stress entries.

Linear elasticity is assumed for the soil skeleton’s response. In that
framework, the constitutive stress-strain relation reads,

σ′ � Delε(u), (2.5)
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where u is the displacement vector, ε � [εx , εy , εz , γx y , γxz , γyz]ᵀ denotes
the infinitesimal strain vector, calculated as ε(u) � ∇u+∇ᵀu

2 ,E is the Young’s
modulus and ν the Poisson’s ratio. Del is the elastic stress-strain matrix, which
for the general 3D case is defined as,

Del �
E

(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


. (2.6)

Introducing the stress-strain relation, the mechanical equilibrium can be
written in the form

∇̃ᵀ
(
Delε(u) + Se(p)pĨ

)
+ ρ(p)g � 0. (2.7)

Let Γu
D, Γu

N and be two partitions of the boundary ∂Ω of the domain Ω on
which Dirichlet and Neumann boundary conditions are applied respectively.
The boundary conditions are,

u � û on Γu
D , (2.8)

σ · n � t̂ on Γu
N , (2.9)

where n is the outward pointing unit normal vector along ∂Ω, and t̂ is the
imposed surface traction.

Considering the mass balance of pore fluids leads to the continuity equa-
tion for flow, stating that the water outflow from a representative elementary
volume is equal to the changes in mass concentration. Neglecting the defor-
mations of solid particles due to effective stress and pore pressure, as well as
the density gradients of water, introducing the Darcian definition for fluid
velocity, the strong form of the continuity equation reads

∇ᵀ
[ k(p)
γw
(∇p + bw)

]
+

(
C(p) −

Θ(p)
Kw

)
Ûp � Θ(p)Ĩ∇ · Ûu, (2.10)

where γw is the specific weight of water, bw � ρwg are the body water forces
and Kw is the water bulk modulus. The hydraulic conductivity k(p), the
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specific moisture capacity C(p), and the volumetric water content (VWC) Θ(p)
are estimated using the soil water retention relations that are presented in
Section 2.2.

Typical boundary conditions that arise in the case of earthfill dams may be
either of Dirichlet, Newmann or Robin type. For the flow equation, Dirichlet
conditions may be used to prescribe a known hydraulic head, Neumann
conditions for a known outflow, inflow or a hydraulically closed (impervious)
boundary.

A particular case arises in the description of a seepage face, which occurs
when a water table touches an open downstream boundary [91, 37]. The
length of the seepage surface is pressure-dependent [3], and can be prescribed
as a non-linear Robin condition.

Let Γp
D, Γp

N and Γp
R be three partitions of the boundary ∂Ω of the domain

Ω on which Dirichlet, Neumann and Robin boundary conditions are applied
respectively, for the flow part of the problem. The boundary conditions are

p � p̂ on Γp
D , (2.11)

q · n � q̂ on Γp
N , (2.12)

q · n � 〈βp〉 on Γp
R (2.13)

where n is the outward pointing normal vector and q̂ is the fluid flux on
the boundary. Equation (2.13) refers to the seepage condition, where the
nonlinear function of p that is denoted with angular brackets prescribes a
flux that is equal to βp, when p > 0 and vanishes for negative pressure [37].
The coefficient β depends on the hydraulic conductivity and geometry of the
domain and defines the water runoff on a boundary in seepage conditions.
This is a nonlinear Robin type condition.

Soil water characteristics

The most commonly used hydraulic model for the water content - pore water
pressure relation in unsaturated soils is the one proposed by Van Genuchten
[115]. The effective saturation Se -or dimensionless water content- is given by

Se(p) �
{ 1
[1+(α | p

γw |)
1

1−m ]m
p < 0

1 p ≥ 0
, (2.14)

where α is a parameter related to the air entry value of the soil and m is a
curve fitting parameter. The upper branch of this equation describes a sigmoid
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curve which is called a water-retention curve. The VWC is then given by

Θ(p) � Se(p)(Θs −Θr) + Θr , (2.15)

where Θs ,Θr are soil characteristics: the VWC for fully saturated conditions,
and the residual VWC. Differentiation of equation (2.15) with respect to pore
water pressure gives

C(p) �
∂Θ(p)
∂p

�
−αm(Θs −Θr)

1 −m Se(p)1/m(1 − Se(p)1/m)m. (2.16)

The relation between the hydraulic conductivity of the soil-water system and
the pore water pressure as proposed by van Genuchten [115] reads,

k(p) � ks
√

Se(p)
[
1 −

(
1 − Se(p)1/m

)m]2
, (2.17)

where ks is the hydraulic conductivity for saturated conditions.
In some cases in the following, an alternative hydraulic conductivity-pore

water pressure relation is adopted. That is, a commonly used [91, 20] cubic
law that reads,

k(p) � ksSe(p)3. (2.18)

The reason for selecting this alternative relation, is that in one case in the
following, an illustrative problem is studied, that has been examined in a
previous publication by different authors [91]. In that case, all the details
concerning the modeling and physical assumptions were taken in accordance
to that work, so that comparison between results and validation may be
enabled.

2.3 Model reduction methodology

Finite Element Method for hydro-mechanical groundwater flow
problems in unsaturated conditions

A Taylor-Hood element is used to create a stable scheme that satisfies the
Ladyshenskaya-Babuska-Brezzi (LBB) condition [10, 16]. Given a domain Ω
with boundary ∂Ω the following function spaces are introduced,

L2(Ω) �
{
p :

∫
Ω
|p2 |dx < +∞

}
,

H1(Ω) �
{
p : p ∈ L2(Ω),Dp ∈ L2(Ω)

}
,
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H(div ,Ω) �
{
u : u ∈ L2(Ω)d ,∇ · u ∈ L2(Ω)

}
,

where d denotes space dimension. Water pressure p should be sought in
function space H1(Ω) and displacement u inH(div ,Ω). The following subset
spaces are also defined,

W �

{
w ∈ H1(Ω) : w

���Γp
D
� 0

}
,

V �

{
v ∈ H(div ,Ω) : v

���Γu
D
� 0

}
,

where Γp
D and Γu

D are partitions of the boundary ∂Ω where Dirichlet boundary
conditions are applied for pressure and displacement respectively.

Equation (2.7) is multiplied with a vector test function v ∈ V , integrated
over the domain Ω, and applying the Green-Gauss theorem is discretized
applying the Galerkin approach. The discretized equation reads

Ku −Qp � fu , (2.19)

where,

K �

∫
Ω

Bu
ᵀDelBudx,

Q �

∫
Ω

Bu
ᵀSeĨNpdx,

fu �

∫
Ω

Nubdx +

∫
Γu

N

Nut̂ds.

Nu ,Np are displacement and water pressure shape function matrices respec-
tively, and u and p are unknown nodal value vectors for displacement and
pressure, such that u ≈ Nuu and p ≈ Npp , Bu � ∇̃Nu is the gradient matrix
relating displacements to strains.

Similarly, multiplying equation (2.10) by scalar test function w ∈ W , the
variational form of the water flow equation is obtained, assuming no inflow or
outflow in the domain. It reads∫

Ω

k
γw

∇p ·∇wdx+
∫
Γ

p
R

〈βp〉wdx+
∫
Ω

ΘĨᵀ∇ · Ûuwdx−
∫
Ω

(
C− ΘKw

)
Ûpwdx �

�

∫
Ω

k
γw

bw ·∇wdx. (2.20)
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The space discretized form is written as

Hp + C Ûu − S Ûp � fp , (2.21)

where,

H �

∫
Ω
∇Nᵀp

k
γw

∇Npdx +

∫
Γp

R,p>0

Nᵀp βNpds,

C�

∫
Ω

Nᵀp ΘĨᵀBudx,

S�
∫

Ω
Nᵀp

(
C − Θ

Kw

)
Npdx,

fp�

∫
Ω
∇Np

k
γw

bwdx.

To solve equations (2.21) and (2.19), time stepping is implemented by a
generalized θ-scheme, which approximates Xᵀ � [u p]ᵀ at time i + θ as

ÛXi+θ ' Xi+1 − Xi

∆t , Xi+θ ' (1 − θ)Xi
+ θXi+1 , (2.22)

where ∆t is the time step and i + 1 denotes the current time step. Parameter
θ takes values in [0, 1]. It has been proven that an implicit time integration
scheme with θ ≥ 0.5 results in unconditionally stable solution and allows for
the use of large time increments [15]. In this work, the value θ � 0.75 was
selected in accordance to [103].

Operators Q, H, C, S, all depend on the pressure state, therefore they must
be re-evaluated at each time instance. The same applies for force vectors fu
and fp. Solving equations (2.21) and (2.19) at time i + θ, the system reads:

Kui+θ −Qi+θpi+θ
� fu

i+θ , (2.23)

Hi+θpi+θ
+ Ci+θui+1 − ui

∆t − Si+θpi+1 − pi

∆t � fi+θ
p . (2.24)

The time stepping scheme as presented in equation (2.22) is used for the
approximation of operators and vectors that depend on the pressure state.
Hence, the operator Q at time i + θ is approximated as,

Qi+θ ' (1 − θ)Qi
+ θQi+1. (2.25)
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Other operators, Qi+θ, Hi+θ, Ci+θ, Si+θ, fu
i+θ and fp

i+θ are approximated
similarly. Introducing these approximations to equations (2.23) and (2.24), the
fully coupled discretized system using a monolithic approach reads,

[
K̂ Q̂
Ĉ Ĥ

] [
u
p

] i+1

�

[
f̂u
f̂p

]
, (2.26)

where the components K̂, Q̂, Ĉ, Ĥ of the global stiffness matrix and the force
vector are evaluated as,

K̂ � θK, (2.27)
Q̂ � −θ(1 − θ)Qi − θ2Qi+1 , (2.28)
f̂u � −K(1 − θ)ui

+ [θ(1 − θ)Qi+1
+ (1 − θ)2Qi]pi

+ (1 − θ)fu
i
+ θfu

i+1 ,
(2.29)

Ĉ � θCi+1
+ (1 − θ)Ci , (2.30)

Ĥ � ∆t(1 − θ)θHi
+ ∆tθ2Hi+1 − (1 − θ)Si − θSi+1 , (2.31)

f̂p � −[∆t(1 − θ)2Hi
+ ∆t(1 − θ)θHi+1θ + (1 − θ)Si

+ θSi+1]pi
+

+ [θCi+1
+ (1 − θ)Ci]ui

+ ∆t(1 − θ)fi
p + θfi+1

p .

(2.32)

In this work, the nonlinear system of equations is solved using a Picard iterative
scheme, a method that is often used in this type of problem [19] [66]. The
method is considered to be more robust compared to the Newton-Raphson
method, though it has a slower convergence rate.

The model that is described above implies certain simplifying assumptions.
The constitutive equations that are incorporated may not be adequate to
realistically describe some problems that arise in earthfill dams. In particular,
the hydraulic and mechanical properties of the soil may vary in space and
time as a result of physical processes that are not described here. For example,
applying mechanical loads to the soil may lead to changes in its mechanical
properties [105], and straining the material modifying its porosity may have
an effect on hydraulic properties [81]. At a future stage of this study, more
involved constitutive relations may be considered.

The model was developed in FEniCS platform [1], a collection of free and
open-source software components with the common goal to enable automated
solutions of differential equations.
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Model Order Reduction: The Reduced Basis Method

In data assimilation problems, where the value of some parameters needs to
be determined based on the available information, many queries have to be
done to the numerical model. If it is based on a full-order approach (e.g. FE)
the computational cost might become prohibitive.

The Reduced Basis (RB) [93, 50, 31] method tries to create a small basis
that is able to represent the family of the solutions spanned by the parameters
variations. The simplest method to create the RB is to solve the full-order FE
problem at a set of parametric values that capture the overall behavior of the
solution. Each one of these samples is usually called a snapshot.

Once the parametric space has been sampled, the RB is constructed by
orthonormalizing the set of snapshots and discarding those with amplitudes
smaller than a certain threshold. This process is usually called off-line, as it is
done once, i.e. it can be seen as a pre-process of the data-assimilation.

Once the RB is ready, the solution of the problem for any point in the
parametric space can be obtained as a linear combination of the members of
the RB. Therefore, the computational cost is largely reduced as the number
of unknowns to determine (i.e. the coefficients of this linear combination) is
usually several orders of magnitude smaller than the size of the original FE
problem. The small problem size allows for a very fast solution that can be
done repetitively within the assimilation of data. This fast solution is usually
called the on-line phase of the RB method.

In the following, the parameter vector is denoted by µ ∈ P ⊂ RP where the
parameter space P represents a closed and bounded subset of the Euclidean
space RP , P ≥ 1. The field variable given by the Finite Element solution of
a parametrized PDE can be seen as a map x : P → V , that to any µ ∈ P
associates the solution x(µ) belonging to a suitable functional space V .

The full-order approximation of a PDE for a givenµ ∈ P can be represented
in the generic form

A(µ)x(µ) � f(µ), (2.33)

where A(µ) ∈ RNh×Nh and f(µ) ∈ RNh are a µ -dependent matrix and vector
respectively, representing the stiffness matrix and the force vector. The system
has Nh degrees of freedom.

The key idea of RB, is to replace this system with another one, of lower di-
mension Nr < Nh [93] . For any givenµ ∈ P, the solution field is approximated
as x(µ) ≈ Bα(µ) and the low-order system reads

BᵀA(µ)Bα(µ) � Bᵀf(µ), (2.34)
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where (BᵀA(µ)B) ∈ RNr×Nr , (Bᵀf(µ)) ∈ RNr and α(µ) is the reduced vector
of degrees of freedom. The form Bα(µ) represents the approximation of the
high-fidelity solution x(µ), in the low-order space RNr , where B ∈ RNh×Nr

is a µ-independent transformation matrix, the columns of which collect the
reduced basis vectors.

For time-dependent problems, like the one at hand, the full-order PDE
approximation is written in a general form as

M(t;µ)Ûx(t;µ) + A(t;µ)x(t;µ) � f(t;µ), (2.35)

where A(t;µ),M(t;µ) ∈ RNh×Nh are time and parameter-dependent matrices
and f(t;µ) ∈ RNh is a vector of µ and time-dependent data. Considering
the approximation of the time derivative Ûx(t;µ) ' xi+1−xi

∆t , the reduced-order
approximation of the PDE for any time level t i � i∆t, (∆t > 0 being the time
step) reads [50],

Bᵀ
(

1
∆t

M(t;µ) + A(t;µ)
)

Bαi+1(µ) � Bᵀ
(

1
∆t

M(t;µ)Bαi(µ) + f(t;µ)
)
.

(2.36)
The basis creation in the presence of non-homogeneous Dirichlet boundary

conditions is treated here by isolating the known boundary degrees of freedom
from the unknown values to determine [51]. Thus the reduced approximation
of the solution x(µ) reads,

x(µ) ≈
[
B
0

]
α(µ) +

[
0
x̂

]
(2.37)

and the reduced problem becomes homogeneous. This guarantees the exact
fulfillment of the Dirichlet boundary conditions. The reduced problem now
reads, [

B
0

]ᵀ
A(µ)

[
B
0

]
α(µ) �

[
B
0

]ᵀ
f(µ) −

[
B
0

]ᵀ
A(µ)

[
0
x̂

]
. (2.38)

Thus the final solution necessarily respects the Dirichlet boundary conditions.
For the problem at hand, two separate low-order bases are built to approxi-

mate each unknown field [94, 82]. Transformation matrices Bu ,Bp correspond
to the displacement and pressure fields respectively.

In the following, the indicator of dependence of operators on the parameter
vector (µ) has been omitted for clarity. The unknown vectors are approximated
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as,

U ≈ Buαu , (2.39)
P ≈ Bpαp , (2.40)

and the reduced dimensional system to be solved, at time step i + 1 reads,[
Bu
ᵀK̂Bu Bu

ᵀQ̂Bp
Bp
ᵀĈBu Bp

ᵀĤBp

] [
αu
αp

] i+1

�

[
Bu
ᵀ f̂u

Bp
ᵀ f̂p

]
. (2.41)

The unknowns in this new system are vectors αu and αp that contain the
coefficients for linearly combining the elements in the reduced bases, to
approximate the high-fidelity solution for any parametric value.

Constructing the Reduced Basis

We denote M the solution map, or solution manifold of the high-fidelity
problem. M represents the set of solutions x(µ) for all parametersµ ∈ P ⊂ RP ,
defining a map:

M � {x(µ) ∈ V : µ ∈ P ⊂ RP}. (2.42)

The idea behind RB is to sample the solution manifold by taking snapshots,
and use these snapshots to create the reduced space in which the reduced
solution is sought. To achieve this, we start from a set of Ns high-fidelity
solutions that are stored in a matrix M ∈ RNh×Ns , as

M � [x1 , ..., xNs]. (2.43)

That set of solutions, if well selected, contains the information necessary
to describe the parametric dependency of the solution with an acceptable
accuracy.

The Proper Orthogonal Decomposition (POD) will be used for the esti-
mation of the reduced basis functions. The singular value decomposition of
the matrix M ∈ RNh×Ns yields the product representation M � UΣVᵀ. The
columns of the matrix UNh×Nh are orthonormalized vectors that contain infor-
mation on the parametric dependency of the snapshots. The matrix Σ is a di-
agonal matrix that contains the singular values σ1 , σ2..., σL , L � min{Nh ,Ns}.
Extracting the Nr first columns of U will yield the transformation matrix
BNh×Nr . The number Nr of vectors that are kept may be evaluated based on
the singular value corresponding to each vector. The singular values provide
a measure of the information of the matrix M that is captured by each vector.
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Hence one might extract the first Nr columns of matrix U that correspond to
the Nr largest singular values, and carry the most essential information.

Two separate snapshot matrices, each containing the degrees of freedom
that correspond to each field are created. The problem is transient, so the
snapshots consist of solution vectors for each time step, saved serially in the
snapshot matrices as seen below,

Mu �


u1 u2 ... uNt

1

 u1 u2 ... uNt

2

...

 u1 u2 ... uNt

Ns


(2.44)

Mp �


p1 p2 ... pNt

1

 p1 p2 ... pNt

2

...

 p1 p2 ... pNt

Ns


.

(2.45)
Nt is the number of time steps that constitute the snapshots, and Ns is the
number of snapshots taken.

Singular value decomposition is applied to each matrix Mu � UuΣuV
ᵀ
u ,

Mp � UpΣpV
ᵀ
p , thus obtainingmatricesUu andUp. These contain orthonormal

basis vectors for the spaces spanned by the snapshots of each solution field.
These vectors are sorted in decreasing order of their corresponding singular
values. They are to be truncated based on singular values, as mentioned above,
keeping the vectors that define spaces where most of the information of the
snapshot sets is embedded. Thus, a low dimensional space, where one may
seek an approximation of the snapshot matrices is found as a result.

The essential assumption that is made, is that, if an accurate enough
approximation of the snapshot set can be found in this low order space, then,
given that the snapshot set is representative of the solution manifold, an
accurate approximation for any solution in the manifold may be found in that
very space.
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Figure 2.1: The online and offline stages of the Reduced Basis method in
the context of data assimilation. Only the steps in the boxes with thick blue
outlines are explained in this work.

The Reduced Basis method in a nutshell

In Figure 2.1 a clarifying summary of the Reduced Basis method stages
in the context of data assimilation is displayed. The Figure illustrates the
connection between the methodologies presented in this Chapter, and the
motivating application, which is data assimilation for parameter identification,
as mentioned in Section 4.1. It should be noted that the steps of the online
stage that are related to the optimization method are not described in this
work. The only part of the online stage that is examined here, is the solution
of the ROM. Moreover, the one step of the online stage that is examined in
this work, namely the solution of the ROM, may be part of other optimization
applications that require repetitive solutions, and are not shown in this graph.
The figure is only meant to encapsulate the RB method as part of the specific
motivation of this work.
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2.4 Reduced Order Model for predictive monitoring of
Tailings Dam

Problem Setup

In this Section, a ROM of a tailings dam is created to simulate a problem
that corresponds to the dam level raise. A complete study of the structure’s
integrity in such conditions, would imply modelling the tailings deposit, as
well as the embankment, and considering a possible spatial variation in the
mechanical and hydraulic properties. This would be necessary given that the
failure surface often appears partly in the impoundment.

In the present work, only a first approach to address the problem is
undertaken in order to demonstrate the high level of accuracy that can be
achieved usingModelOrder Reduction to solve a complex, hydro-mechanically
coupled, transient nonlinear problem, and discuss the contribution of such
technology to real-time predictive monitoring. In that line, some simplifying
modeling assumptions have been adopted. The impoundment is only treated as
a load applied to the embankment and the water table upstream is considered
stable even after the loading. The dam is considered to be founded on an
impervious layer.

The modeled domain corresponds to the original embankment, while the
deposited tailing material upstream, as well as the added material on top
are modeled as mechanical loads. Initial conditions represent a steady state
reached for a known water level imposed upstream, as shown in Fig. 2.2.

Loads pw and pe occur due to water and tailings deposit respectively. They
are evaluated as,

pw � γw × (WL − y) (2.46)

pex �

{
Ka

[
γt(H −WL) + (γt − γw)(WL − y)

]
if y ≤ WL

Kaγt(H − y) if WL < y < H , (2.47)

pey �

{ [
γt(H −WL) + (γt − γw)(WL − y)

]
if y ≤ WL

γt(H − y) if WL < y < H , (2.48)

pe �

√
pex2 + pey2 , (2.49)

where WL � 7m is the water level upstream of the dam and H � 10m the
dam’s height. Specific weights γw , γt correspond to water and tailingsmaterial
respectively, Ka �

1−sin(φ)
1+sin(φ) , is the active earth pressure coefficient, φ being the
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(a) Conceptual sketch

(b) Loads due to water and tailings as modeled

Figure 2.2: Initial conditions.

tailings angle of friction, and x, y denote the horizontal and vertical direc-
tions. The of use of Ka for the lateral earth pressure follows the simplifying
assumption that the retaining embankment has been allowed to yield suffi-
ciently for the full active earth pressure to be activated. With the modulus of
subreaction method [109], modeling the transition from the at-rest to the full
active earth pressure implies the introduction of a nonlinearity, since the earth
horizontal reaction coefficient depends on the displacement of the domain. Ka
was here considered to avoid that complexity, and given that the horizontal
displacement reached on the top of the dam when the surcharge load has
been applied, is large enough to be consistent with the mobilization of the
full active earth pressure based on empirical rules often used in geotechnics
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(a) Conceptual sketch

(b) Loads due to water and tailings as modeled

Figure 2.3: Final conditions.

[9]. The fill material is considered to be cohesion-less, as is often the case for
tailings dams [92, 120].

Next, a load that corresponds to a level raise by 1m is gradually applied
to the top of the structure. The load increases over a duration of 10 days and
is then kept constant for the rest of the simulation. This setup is meant to
simulate realistic conditions, that is, a small raise, no more than a meter per
year, that is preceded and followed by a period of approximately equal time,
during which no tailings are deposited, and the fill material is given some
time to consolidate. The water table upstream, remains stable throughout the
simulation. The final conditions are displayed in Figure 2.3.

The loads attributed to the 1 meter thick layer of added material are
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estimated as,

qx � Ka × qy , (2.50)
qy � γf × 1m, (2.51)

where γf is the added fill material specific weight.
Therefore the conditions that bound the problem are of type Dirich-

let, Newman and Robin. In Figure 2.4, 5 boundary parts are defined as
ΓUD , ΓUW , ΓB , ΓD , ΓT that denote Upstream Dry (above water table), Upstream
Wet, Bottom, Downstream and Top boundary parts respectively.

Figure 2.4: Boundary parts: Upstream Dry, Upstream Wet, Bottom, Down-
stream, Top

The boundary conditions introduced to the Finite Element model are
written as

ux � uy � 0 on ΓB , (2.52)
σ · n �

[
qx + pex qy + pey

]ᵀ on ΓUD , (2.53)
σ · n �

[
qx + pwx + pex qy + pwy + pey

]ᵀ on ΓUW , (2.54)
σ · n �

[
0 qy

]ᵀ on ΓT , (2.55)
p � γw × (WL − y) on ΓUW , (2.56)

q · n � 0 on ΓUD ∪ ΓB ∪ ΓT , (2.57)
q · n � 〈βp〉 on ΓD. (2.58)

The relations among the boundary parts definitions given here, to the ones
given in equations (2.8) - (2.9) and (2.11) - (2.13) may be written Γu

D � ΓB,
Γu

N � ΓUD ∪ ΓUW ∪ ΓT, Γp
D � ΓUW, Γp

N � ΓUD ∪ ΓB ∪ ΓT, Γp
R � ΓD.



2.4. Reduced Order Model for predictive monitoring of Tailings Dam 35

Parameter Symbol Units Value

Gravitational acceleration g m/s 10
Water bulk modulus Kw MPa 2.2 × 103

Specific weight of water γw kN/m3 10
Embankment fill soil material

Particle density ρs kg/m3 2.7 × 103

Young’s Modulus E MPa 40
Poisson’s ratio ν - 0.3
Porosity η - 0.38

Embankment fill material - Van Genuchten Model [115]
Saturated VWC Θs - 0.38
Residual VWC Θr - 0.038
Parameter (≈ inverse of air entry suction head) α m−1 0.1
Fitting Parameter m - 0.184
Saturated hydraulic conductivity ks m/s [10−9 , 10−7]

Tailings and added fill material
Added fill material specific weight γf kN/m3 21
Tailings specific weight γt kN/m3 21
Tailings friction angle φ ◦ 35

Table 2.1: Values of physical parameters used in the model

Implementation: Full and reduced order solvers

A FEM code for the problem stated above was developed in the FEniCS
open-source platform. Following, the Reduced Basis method was used to
create a low-order solver for the parametrized problem.

The values of the parameters used in the model are given in Tables 2.1 and
2.2. The values were chosen such that they fall into ranges that are usually
observed in tailings dams [14, 92].
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Discretization
Mesh 1382 elements, 774 nodes, unstructured
FE Displacement P2
FE Pressure P1

Time integration: θ-scheme
θ 0.75
Time step ∆t 0.1 days

Table 2.2: Numerical parameters used in the model in the 2D scheme

The parameter chosen to be examined is the material saturated hydraulic
conductivity ks. As mentioned above, hydraulic properties of the materials
that exist in tailings dams feature high uncertainty and may vary in time. The
parametric domain is taken such that the extreme values are realistic in the
framework of tailings dams. The saturated hydraulic conductivity of the fill
material takes values in [10−9 , 10−7](m/s).

Solving the loading problem with FE

In Figures 2.5a-2.5c the pore water pressure fields acquired by the FE model,
solving for ks � 10−9m/s, for 3 different time instances are shown. Figure 2.5a
corresponds to the initial state before the loading is applied.As mentioned
above, the loading period lasts 10 days, during which the overload is gradually
increased, simulating a layer of fill material that is gradually deposited on top
of the structure. Figure 2.5b represents the pore pressure state after 10 days of
loading. During the loading time, changes in the displacement field reflect
settlement in the dam due to overload.

The hydro-mechanical coupling induces an increase of pore pressure, as
the material is compressed, and the pore space reduced. At first, there is no
deformation in the saturated zone, and the load is carried by the pore water.
Hence, overpressure is built due to the weight of the added layer of material,
making the water table rise. The process of consolidation starts immediately
after loading. As water is expelled from the pores, there is a reduction in soil
volume and a transfer of pressure from water to soil particles. After 10 days,
the load ceases to increase and the process of consolidation continues as the
water table falls. The simulation stops when a steady state is reached. The
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pressure field is considered to be in steady conditions when the L2 norm of
the difference between the fields corresponding to two subsequent time steps,
is smaller than 10−2. For ks � 10−9m/s this occurs at t � 60, 6 days and the
final solution fields can be visualized in Figure 2.5c.

Setting up the ROM: Offline stage

As explained in section 2.3, the Reduced Basis is constructed by means of
sampling the high-fidelity solution manifold, that is, in this case, the set of
solutions obtained by the full-order Finite Element solver.

Specifically, the full order problem was solved for ks � [1, 3, 5, 7, 10, 30, 50,
70, 100]×10−9, and the solutions were stored in two separate snapshot matrices
as in equations (2.44) and (2.45). The snapshots were selected such that the
values are close to evenly spaced in the logarithmic scale of the parametric
domain. Each of the snapshots have a duration of 10 days, during which the
load is applied, plus the time that is needed for steady state conditions to be
reached. The time required for steady state conditions to be reached after
loading depends on the hydraulic conductivity of the material. The built-up
pressure requires longer time to dissipate in a less permeable material. Thus
the snapshots have different durations.

Singular value decomposition was applied to the two matrices resulting in
the left singular vectors, that were truncated to yield the Reduced Bases. The
truncation criterion is based on the singular values. In Figure 2.6 the singular
values that correspond to each of the left singular vectors for the two fields are
plotted. The y-axis is in logarithmic scale and it is normalized with respect
to the first -and largest- singular value. That is, the values of the y-axis are
calculated as,

log10(
σi
σ1
), (2.59)

where σi is a plotted singular value and σ1 is the largest singular value, and
corresponds to the first vector of each left matrix. The values drop rapidly
in both cases. The first vectors contribute significantly to the description of
the solution set, and must, therefore, be included into the Reduced Basis,
while as the singular value decreases, the corresponding vectors convey less
information about the data, that is, the snapshot matrix.
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(a) Initial conditions. The Steady state with fixed upstream water table at 7 m. Displacement is
considered null.

(b) At t � 10 days, after 10 days of loading. The maximal overpressure is reached. At this point,
the loading stops and pressure starts dissipating.

(c) At t � 60, 6 days, end of the simulation. The black line indicates the position of the phreatic
line.

Figure 2.5: Pore water pressure and displacement field at time instances. The
arrows point in the direction of the displacement and the sizes are proportional
to the displacement magnitude.
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(a) Displacement field (b) Pressure field

Figure 2.6: Truncation of the matrix of left singular vectors.

It is shown in Figure 2.6, that the singular values that correspond to
the displacement field decrease faster than the ones that correspond to the
pressure field. This is likely related to the selected parameter ks, a hydraulic
parameter that mostly affects pressure field in a more pronounced manner
than the displacement field. The red dashed line denotes the truncation
threshold. In this case, vectors that correspond to singular values that are
smaller than the first one by 4 orders of magnitude or more, are discarded.
Obtaining a ROM with an accuracy higher than that, would be beyond the
scope of the ROM, since the accuracy in the problem is limited by that of the
sensor measurements.

This truncation threshold yields a basis that is comprised of just 9 vectors
for displacement and 25 for pressure, thus 34 is the size of the reduced system
of equations. To put this number of reduced unknowns in perspective, the
high-fidelity problem dimension, related to mesh resolution and polynomial
degree is 6632 degrees of freedom.

The pressure basis is larger than the displacement one, even though
resulting from the same tolerance as illustrated in Figure 2.6. This is related to
the complexity of the solution manifold of the two fields andmay be attributed
to the fact that the chosen parameter is a hydraulic property that affects the
pressure field more, or with the fact that the nonlinear terms of the model
mostly appear in the flow balance equation.
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Online stage: Results and comparison

Having populated the transformation matrices Bu and Bp, the problem may
now be solved, for any parameter within the examined range, by assembling
the system of equations and projecting it to the reduced space in which the
approximation will be sought, as shown in equation (2.41). In Figure 2.7 the
relative error of the low order approximation with respect to the high-fidelity
solution, is plotted over time. The error is estimated as,

e �

��������XRB − XFEM
XFEM

��������
2
, (2.60)

whereXRB andXFEM represent the approximation and the high-fidelity solution
respectively.

Of the three values examined in Figure 2.7, one is a snapshot value, namely
ks � 10−8 m/s, and the other two are values that were not sampled.

(a) Displacement field (b) Pressure field

Figure 2.7: Relative error of low-order approximation of the pressure field
with respect to full order solution over time, estimated over the entire domain,
for 3 different parametric values.

The errors for both fields and for all parametric values remain quite low,
despite the small number of base vectors used. In fact, the error is much
lower than the typical accuracy of measurement of the instrumentation that
corresponds to the quantities evaluated. Note that the error does not seem
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to be significantly smaller for the case of the snapshot value ks � 10−8 m/s.
This indicates that the Reduced Basis sufficiently describes the solution states
that correspond to the entire spectrum of parametric values. Moreover, it is
worth mentioning that the reduced order model yields a small error even for
the parametric value that corresponds to a snapshot, which is an expected
behavior, considering that the snapshot matrix was truncated after the singular
value decomposition.

The ROM runs 3 times faster, by average, than the full-order model. That
is a significant boost of computational efficiency, especially considering the
relatively low mesh resolution.

In Figure 2.8, the mean approximation error obtained for different RB sizes
is shown. For each solution field, 3 parametric values were considered, namely
ks � [5.5 × 10−9 , 10−8 , 5.5 × 10−8]m/s. The mean approximation error was
computed over all the time steps of all 3 parametric values, as in the expression
of equation (2.60). For each field, the basis size is increased, while the size
of the basis for the other field is kept constant, and equal to the largest value
under consideration.

(a) The size of the pressure basis is kept at 25
modes, and the size of the displacement basis is
increased from 1 to 9.

(b) The size of the displacement basis is kept at
9 modes, and the size of the pressure basis is
increased from 1 to 25.

Figure 2.8: Mean relative approximation error over all the time steps of the
solutions obtained for 3 different values in the parametric domain, using
increasing number of basis vectors.

The Figure demonstrates the fast improvement of the approximation
accuracy, with the first few added vectors, reaching errors in the order of
magnitude of 10−3 rather fast. After the first few vectors have been included,
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the improvement in accuracy becomes slower, as vectors that correspond to
smaller singular values are added.

To test the effect of mesh resolution to the computational time reduction,
another scheme was run, for the same problem, using a denser mesh. In this
scheme the high-fidelity system of equations has 2975 degrees of freedom for
pressure and 23164 for displacement. The same number of snapshots were
taken and corresponded to the same parametric values. The reduced bases
that yield the same level of accuracy as the first scheme have 23 base vectors
for the pressure field and 9 for the displacement field. The number of vectors
needed is very close to the previous scheme, despite the large difference in
the size of the high-fidelity problem. In other words, the size of the reduced
scheme is decoupled from the size of the high-fidelity scheme [50]. This is an
essential advantage of the Reduced Basis method. It is worth noting that in
the case of nonlinear problems, like the present, the reduced scheme cannot
be fully decoupled from the FEM scheme. Due to the state-dependence of the
FEM operators in the linearized system, they have to be reassembled in every
iteration of the linearization scheme. The full order stiffness matrices and
force vectors must assembled and then transformed into the reduced order
ones. The assembly of these operators is related to the high-fidelity dimension.
Therefore the efficiency gains are bounded. This issue is often addressed by
the empirical interpolation methods [50, 93], the implementation of which,
will be discussed in the following Chapter.

Extension to 3D problems

Literature suggests that 2 dimensional models cannot reflect the complex and
variating seepage field [68]. Thus, 3 dimensional models have been proposed
for the stability study of tailings dams [67, 127]. In this section, a seepage
problem, similar to the 2 dimensional one above, will be solved in a 3D setting
and a ROM will be developed and evaluated with respect to its accuracy and
computational efficiency against the high-fidelity model.

The new geometry approximates an embankment constructed in a narrow,
steep sided valley. This is a generic, invented geometry, meant to simulate
common conditions in the construction of embankment dams.

In Figure 2.9 the Y axis indicates the third dimension, while axes X and
Z correspond to the dimensions that were considered in the plane strain
approximation of the previously solved problem. The domain has a variating
cross-section along the Y axis. The two-dimensional domain of the previous
setting corresponds to the middle section of the dam, ie the part that has its
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foundation on the valley (Figure 2.9d Bottom). The parts that are founded
on the lateral slopes, have smaller cross sections (Figure 2.9d Top). The side
slopes have been assumed excavated in two levels, creating two 5 m-high
slopes of inclination 1,5:1. The domain is a 50 m-long prism, has 2 axes of
symmetry, and an identical cross-section as the 2D domain shown in Figure
2.2.

(a) 3D Isometric view (b) Front view

(c) Top view (d) Cross sections Top: Section plane A Bottom:
Section plane B

Figure 2.9: Views and cross sections of the 3 dimensional domain. The
geometry assumes an embankment that has been constructed in a narrow
valley, and has its foundations on two side slopes at the two extremes in the
direction of Y axis. The side slopes are not displayed.

The 3D tetrahedralmeshwas created inGmshopen-sourcemeshgenerating
software [38]. The mesh is made out of 41477 tetrahedral and triangular cells
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and 9896 nodes. Using the Taylor-Hood (P2-P1) element for the description
of the displacement and pressure fields as before, the resulting system is
comprised of 202179 and 9896 degrees of freedom for the twofields respectively.

As for the problem setup, it remains similar to the 2D case with some
alterations. The initial condition is evaluated by solving the steady state
problem for an upstream water level at 7 m. The added material is now placed
in two layers of 50 cm each. The first layer is deposited in the first 5 days,
gradually, across the Y axis. Then the second 50 cm layer is added on top,
during days 5-10, again, gradually across the Y axis. After the period of 10
days, the full load that represents the 1m-thick layer remains constant. The
bottom boundary is mechanically constrained. The parameters used have the
values listed in Table 3.1. During the level raise phase in a tailings dam life,
thin layers of fill material are deposited along the length of the structure. The
load increases gradually along the 3rd axis of the dam, i.e. the dimension that
is not considered in a 2D plane strain approximation. The problem simulates
conditions that may occur in the context of an actual tailings dam and cannot
be sufficiently approximated in a 2D plane strain setup.

In Figures 2.10a and 2.10b the loading is illustrated for clarity. Two layers
of soil are placed on top of the dam, in order to raise the level of the dam by 1
meter in the upstream manner, as shown in Figure 1.3.
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(a) After 2,5 days.

(b) After 7,5 days

Figure 2.10: Deposition of the two 50 cm - thick layers of fill material on the
top and upstream side of the structure. The first layer is shown in dark green
color and the second in light green color. After 2,5 days of loading half of the
first layer has been deposited. After 7,5 days the first layer and half of the
second layer have been deposited. Upstream is in the direction of the x axis.
Unsaturated tailings are depicted in orange, saturated tailings in gray. The
lateral foundation slopes are not depicted.

In Figure 2.11, the effect of the gradual load application on the pore
pressure field is illustrated. As the load is applied from one extreme to the
other in the y direction, the water table in the area rises to be then lowered
after pressure is dissipated through consolidation. By the time the loading
procedure is finished after 10 days, in some parts of the dam the water table
has almost reached its final position after consolidation.
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(a) t=0

(b) t = 1 day

(c) t = 10 days

Figure 2.11: Pore water pressure distribution on different time instances (a)
Initial conditions. Steady state condition with an upstream level at 7m. (b)
After 1 day of loading. In some part of the domain overpressure has built
up. (c) After 10 days of loading the top of the dam and impoundment. The
reservoir is considered to be located on the left side of the figures, i.e. upstream
is opposite to the x axis direction.
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The Reduced order scheme was created following the same steps as in
the 2D case. Snapshots of the high-fidelity solution manifold were taken
for parametric values ks � [1, 3, 5, 7, 10, 30, 50, 70, 100] × 10−9. As above, each
snapshot has a duration of 10 days of loading, plus the amount of time
needed for steady state to be reached in each case. The two solution fields
- displacement and pressure- were stored in snapshot matrices Mu and Mp,
arranged as before, i.e. snapshots comprised of all time steps stored in a serial
manner in the columns of the matrices. Singular value decomposition was
applied to each matrix separately.

Much like in the 2D case, the matrix of left singular vectors was truncated
with a criterion related to the singular values, admitting only vectors that
correspond to singular values up to 4 orders of magnitude smaller than the
largest one. The truncation yielded reduced bases comprised of 80 base vectors
for displacement and 174 for pressure. Therefore the system of equations to
be solved now is of dimensionality 214, instead of the full order problem with
212075 degrees of freedom.

The same parametric values as before were examined in order to estimate
the accuracy and computational efficiency gain of the RB approximation. In
Figure 2.12 the L2 norms of the relative error -estimated as the difference
between full order and reduced order solutions- have been plotted for the two
fields.
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(a) Displacement field (b) Pressure field

Figure 2.12: Relative error of low-order approximation of the pressure field
with respect to full order solution over time, estimated over the entire 3D
domain, for 3 different parametric values.

In comparison to the 2D scheme, it seems that the ROM yields slightly
lower accuracy, which remains however in the same order of magnitude. The
accuracy can easily be improved by choosing a smaller truncation tolerance
for the reduced basis. In Figure 2.12, it seems that for the first time steps, up
to day 10, the error is noisy/presents some oscillations. This part of the graph
corresponds to the timesteps where the load is increased. In the following
time steps the load remains fixed, and the error between the low-order and the
full-order solutions seems to fluctuate in a smoother way, or stabilize around
a value.

For various parametric values that were tested, the ROM was found to run
8 - 15 times faster than the full-order model. This is a significant increase of
gain in computational efficiency compared to the 2D case, which indicates
that the time gain scales along with the size of the problem at hand.

2.5 Conclusions and discussion

In this Chapter, a lowordermodel for the hydro-mechanically coupled problem
has been developed, using the Reduced Basis technique. The POD-based
method has been successfully applied. A first attempt to treat the parametrized
system of PDEs and confirming a high level of accuracy has been demonstrated.
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The computational time needed is reduced in this simplified problem, while
the accuracy of the solution is not compromised, in comparison to the full-order
Finite Element solution. The method is promising, considering that the time
reduction increases with increasing problem size.

It is worth noting that in the framework of tailings dams the usual practice
is to model the retaining structure as well as the stored material, due to the
fact that failure may originate in the impoundment. Sufficiently describing
the pressure and displacement field -or other fields of interest- in such a
large inhomogeneous domain can result in large systems, in which case the
advantages of a reduced order model would be most prominent.
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3.1 Introduction

In a transient nonlinear problem, a low-order system of equations must be
solved multiple times within each time step, as the linearization scheme
converges to a solution. This implies the repetitive assembly of FE operators
and force/residual vectors that result from nonlinear terms of the PDE. The
cost of every FE iteration is related to two expensive processes: the assembly
of said operators and the solving procedure. POD-based ROMs decrease the
cost associated to the latter, but do not affect the cost of the former. The cost of
assembling the operators scales with the dimension of the full-order problem
(Nh), and by consequence the efficiency gains that can be achieved with
ROMs are limited. This drawback is often referred to as the lifting bottleneck,
reflecting the fact that the evaluation of the nonlinear terms implied a lift back
to the original dimension of the full-order problem and then a projection to
the reduced order [57].

To remedy this issue several techniques have been developed, attempting
to decouple the ROM size from the full-order size. Rather common methods
among them include Missing Point Estimation [7], that extracts certain system
equations that correspond to specially selected grid points where the non-
linearity is computed, and the Trajectory Piecewise-Linear method (TPWL)
[98, 99] which represents a nonlinear system as a piecewise-linear one, and
approximating it as a weighted sum of a small set linearizedmodels at selected
points along a state trajectory.

In this work, the Discrete Empirical Interpolation Method (DEIM) is used.
DEIM was originally developed in [21] to treat nonlinear problems in a POD
context. DEIM is somewhat related to Missing Point Estimation in the sense
that bothmethods avoid the costly evaluation of inner products that correspond
to nonlinear terms, by selecting a few grid points, and merely evaluating
the nonlinearities on these points. However, the DEIM method involves the
construction of a POD basis for each nonlinear term, in addition to the POD
basis related to the state variables. That is, in DEIM a system approximation is
defined, in addition to the solution space approximation. The approximation
is constructed by projection onto the POD basis and interpolation based on
the selected grid points.

The central idea of DEIM is similar to that of the Reduced Basis (RB)
method. Assembling and solving the system at very reduced computational
cost is feasible if the RO operators are independent of the FE order Nh. This can
be done by obtaining an affine approximation of the nonlinear or non-affinely
parametrized FE operators in the offline stage, therefore constructing a linear
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system approximation. Similarly to the construction of the solution space
approximation, the system approximation is based on the recovery of Nd
arrays that are stored during the offline stage, and can be linearly combined in
the online stage in order to quickly obtain an approximation of the matrix or
vector operator. This set of arrays is a POD basis for the space that is spanned
by a set of snapshots of the approximated function, and it will referred to as a
DEIM basis in the following.

The size of the DEIM basis depends on the complexity of the problem,
that is, it depends on the type of underlying nonlinearity, and the range of
different states, or behaviors, that the system undergoes. The DEIM basis
must be appropriate for accurately approximating any of the possible states of
the system. If that range is too wide, the resulting size of the approximation is
large, and the efficiency gains obtained by the method remain limited.

One of the developedmethods that aims to tackle this issue is the Localized
Discrete Empirical Interpolation (LDEIM), a variation of DEIM that was
introduced in [88]. This approach aims to the construction of even more
efficient ROMs, by minimizing the size of the DEIM basis that is used for
system approximation. LDEIM uses machine learning-based methods in
order to identify not one, but several local subspaces where the approximation
of a nonlinear function can be sought for. Each of the resulting subspaces
correspond to a particular region of system behavior. Two approaches to
LDEIM were proposed in [88], one which associates the different local DEIM
bases to parametric sub-domains, and one that associates subspaces to sets of
characteristic system states. The second one is used in this work. The resulting
subspaces may be smaller in size compared to the global approximation space
that is obtained with conventional DEIM. Therefore, the size of the resulting
system approximation problem that is solved online in every iteration is
smaller and the assembly of the approximated operator can be performed
faster.

In geomechanics, the use of POD-based reduction has been mostly mo-
tivated by subsurface flow applications. The authors of [119] appear to be
the first to implement POD-based solution space reduction, without the in-
tegration of a hyper-reduction technique, to geomechanical problems. The
most commonly used hyper-reduction method is TPWL in the context of pure
two-phase flow (oil/water or oil/gas) analysis [18, 48, 46, 47] for reservoir
simulation. In [56] the coupled hydro-mechanical problem with two-phase
oil/water flow is treated in a POD-TPWL approach, again in the context
of subsurface flows. In all cases, the motivating applications are related to
production optimization, uncertainty quantification, history matching and
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many-query problems in general.
The authors of [29] developed a method that is similar to a POD-DEIM

approach in the context of Finite Volume method for the two-phase (water,oil)
pure fluid flow through a porous media. Similarly the authors of [41] used a
POD-DEIM approach for Finite Volumes in the uncoupled flow problem, and
additionally performed a comparison of POD-based and TPWL methods. The
LDEIM method was examined in a similar context of two-phase fluid flow
analysis in [39]. A POD-DEIM approach, has not been applied so far to the
coupled flow/geomechanics problem to the knowledge of the author of the
present.

The novel contribution presented in this Chapter lies in the implementation
of a POD-DEIMandPOD-LDEIMROMs to the fully coupled hydro-mechanical
problem is examined in the context of FE analysis for embankment dams.
The adopted physical model assumes linear elasticity for the porous media
and describes the behavior of partially saturated soils. Nonlinearities are
introduced to the problem due to the dependence of certain hydraulic and
mechanical properties on pressure for the case of unsaturated soil. The
resulting system of PDEs is transient and nonlinear.

This Chapter is structured as follows. In Section 3.2 the applied Model
Order Reduction methodologies, DEIM and LDEIM, are detailed and some
precisions are reported regarding their implementation to the treated problem.
In Section 3.3, ROMs are created to solve a hydro-mechanical problem featuring
the mechanical loading of a 3D embankment dam. The problem is described,
and results pertaining to the computational efficiency and the accuracy of the
ROMs solution are reported, and compared to the FEmodel. Finally, in Section
3.4 the results of this Chapter are summarized, some important conclusions
regarding the examined methods are discussed, and comments are made
regarding the limitations of the method.

3.2 Methodology

Hyper-reduction of the right-hand side vector with the Discrete
Empirical Interpolation Method

The key objective of DEIM is the efficient evaluation of the reduced vector
Bᵀf(x,µ) found on the right-hand side of the reduced problem in equation
(2.34). Without the use of a hyper-reduction technique, the evaluation of right-
hand side vector f(x,µ) necessarily implies access to the full order problem
and projection to the reduced space after assembly.
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The DEIM method follows a similar strategy to that of the Reduced Basis
method. The idea is to identify a low-order space where a nonlinear function
may be approximated with acceptable accuracy. In the present case the
nonlinear function is the right-hand side vector. Nd denotes the dimension of
that low-order space. This space is different from the solution approximation
space with basis vectors B, but it is determined in the same manner, that is, in
an offline stage where POD is applied to snapshots of the nonlinear function.

Similarly to the RB method previously described, a snapshot matrix
containing actualizations of the full-order vector f is populated as,

Md �
[
f1...fNs

]
, (3.1)

where Ns is the number of snapshots taken, as in, the number of full-order
vectors evaluated and saved in the snapshot matrix. In the context of a time-
dependent problem, f refers to matrices, in the columns of which correspond
to snapshots for each time step.

In the context of an RB/DEIM approach where the objective is to construct
both a solution approximation and an approximation of the system, the
snapshotmatrixMd can be populated in the offline stage, either simultaneously
or sequentially to the collection of solution snapshots. In this work, both
offline processes are performed simultaneously with the solution of the full
FE problem for different parametric values.

SVD is applied to the snapshot matrix to obtain orthonormal singular vec-
tors for the space that is spanned by the snapshots. The matrix decomposition
reads,

Md � V̂SWᵀ , (3.2)

where V̂ ∈ RNh×Ns a matrix whose columns are the singular basis vectors and
S contains the singular values that correspond to each vector. Similarly to
the procedure described in Section 2.3, the first Nd columns of V̂ are selected
based on the relative magnitude of their respective singular value as,

V � first Nd columns of V̂, (3.3)

where the reduced dimension Nd is determined given that the subsequent
singular values are negligible,

log10(
σ1
σNd

) ≤ tol (3.4)

in which σ1 is the first and largest singular values found in S and σNd
the singular value corresponding to the last selected vector. tol is a tolerance
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selected based on the level of accuracy required in the system approximation.
Based on the experience obtained in this work, the DEIM tolerance has to be
equal to, or smaller than the one selected in the solution approximation.

The right-hand side vector approximation in the Nd sized linear space is
defined,

f(x,µ) ≈ Vc(x,µ) � v1c1 + v2c2 + . . . + vNdcNd , (3.5)

where c(x,µ) ∈ RNd is a vector of coefficients used for the linear combination
of basis vectors contained in V. In the following, the dependence of f and c on
(x,µ) is suppressed for clarity.

In the online stage, at each iteration of the solution procedure applied to
the transient nonlinear problem, the evaluation of the combination coefficients
c(x,µ) ∈ RNd is required in order to fully determine the approximation
(3.5). To achieve that, an Nd sized problem must be solved in every iteration.
DEIM proposes to identify the coefficients by imposing exact equality of the
approximation and the full-order function on Nd points. In other words, DEIM
allows the construction of an approximation of f, given the precise value of
Nd entries of the full-order operator f. That is, Nd components of f that allow
computing the Nd values c1 , c2 , . . . , cNd . The assembly of the vector at only
Nd points is expected to be faster than full assembly.

What is left is to determine those Nd entries of f which, for the case of
a right-hand side vector, correspond to degrees of freedom of the full-order
system. This is another task that is completed in the offline stage. In a
DEIM context, in all iterations the evaluated entries are the same. The indices
corresponding to these entries are written ℘ � [℘1 , ..., ℘Nd]ᵀ ∈ RNd .

P ∈ RNh×Nd is a selectionmatrix, the columns ofwhich are selected columns
of Nd-sized identity matrix. If the i-th column of V corresponds to selected
index ℘i , then the i-th column of P is the ℘i-th column of the identity matrix.
In other words,

P � [e℘1 , ..., e℘Nd
] ∈ RNh×Nd , (3.6)

where e℘i � [0, ..., 0, 1, 0, ..., 0]ᵀ ∈ RNh is the ℘i-th column of the identity
matrix. In other words,

Pᵀf � PᵀVc. (3.7)

Therefore, the coefficient vector that must be identified at each iteration of the
online stage becomes,

c(x,µ) � (PᵀV)−1Pᵀf, (3.8)



3.2. Methodology 57

and introducing this expression to equation (3.5) we obtain,

f ≈ Vc � V(PᵀV)−1Pᵀf, (3.9)

where the product V(PᵀV)−1 can be pre-computed and stored in the offline
stage. In the online stage, only the product Pᵀf must be evaluated, that is, the
Nd selected components of f. The operator Pᵀ sets zeros to all the entries of f
except for the Nd selected ones, so that, in order to compute the product, it is
enough to evaluate f in the selected entries.

To identify the selected indices and the matrix P a routine that requires as
input the vectors of V has been proposed by the authors of [21]. The steps are
described in Algorithm 3.1.

Algorithm 3.1 DEIM algorithm
Input: {v`}Nd

`�1 ∈ RNh linearly independent
Output: ℘ � [℘1 , ..., ℘Nd]ᵀ ∈ RNd

1: ℘1 � max{|v1 |}
2: P � [e℘1], ℘ � [℘1]
3: for ` � 2 to Nd do
4: Ṽ � first ` − 1 columns of V
4: Solve (PᵀṼ)c � Pᵀv`
5: r � v` − Ṽc
6: ℘` � max{|r|}
7: P← [P e℘` ], ℘←

[
℘
℘`

]
8: end for

Algorithm 3.1 constructs a set of indices based on the provided POD
basis V . The procedure assumes that the input basis vectors {v`}Nd

`�1 are in
decreasing order of their corresponding singular value. The first index is
selected based on the first basis vector. It is the index that corresponds to the
largest in magnitude entry of v1. This selection is justified by considering the
approximation error in the first direction of the POD basis. If one must pick
only one component in which to sample, or, precisely evaluate the function,
then it is only logical to pick the largest in magnitude, so that the resulting
approximation error is as small as possible [76].

Then, sequentially, the algorithm selects for each vector v` the entry where
the residual between v` and its approximation using the previously selected
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interpolants is largest (Line 5 of Algorithm 3.1). In other words, the algorithm
greedily seeks to reduce the approximation error by selecting for precise
evaluation the point that is worse approximated by interpolating the basis
{v1 , . . . , v`−1} at interpolation points {℘1 , . . . , ℘l−1} [21].

It is worth noting that the DEIM interpolation is uniquely determined by
the POD basis V, as the selected interpolation indices depend on the basis.

Based on the described steps so far, the V(PᵀV)−1 is fully defined and
stored. The system of equations to be solved in the online phase, as defined
in (2.34), after introducing the DEIM approximation of the right-hand side
vector, becomes,

BᵀA(x,µ)Bα(µ) � BᵀV(PᵀV)−1Pᵀf(x,µ), (3.10)

where the only term of the right-hand side that must be evaluated online is
f ∈ RNh with Nd non-zero entries.

DEIM for matrix operators (MDEIM)

The nonlinear matrix Finite Element operator A(x,µ) in equation (2.33) can
be approximated using a combination of projection to a low-order space and
interpolation, in a similar way as shown for the vector function f(x,µ).

A convenient way to implement the method for matrix operators is to
express the matrices as vectors, by vertically stacking their columns one on
top of the other. In the following, the vectorized matrix operator is written,
a(x,µ) � vec(A(x,µ)) ∈ RN2

h and the dependence on (x,µ)) is suppressed for
clarity. The approximation of the operator then reads,

a ≈ VA(PᵀAVA)−1PᵀAa, (3.11)

where VA ∈ RN2
h×Nd contains the POD basis adopted for the approximation of

the operator. Its vectors are vectorizedmatrix elements to be linearly combined
to approximate the matrix operator in an Nd sized space. To identify the
basis VA we follow the same steps as described above, after collecting matrix
snapshots and storing them in vector format as,

MA � [vec(A1)...vec(ANs)] � [a1...aNs]. (3.12)

The POD basis VA is constructed by applying SVD to the snapshot matrix MA
and selecting the Nd singular vectorized matrices with the largest correspond-
ing singular values.
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PA ∈ RNh×Nd is the selection matrix that defines the interpolation points
selected by the DEIM algorithm. The vectorized operator a ∈ RN2

h features the
precisely estimated values that correspond to the selected interpolation points,
and must be populated in the online phase.

The matrix approximation reads,

A ≈ vec−1
(
VA

(
PᵀAVA

)−1
)
vec−1 (

PᵀAa
)
, (3.13)

where vec−1 denotes the process of reverting the vectorized operators to matrix
ones, by horizontally stacking the vertically stacked columns. The product
vec−1(VA(PᵀAVA)−1) is pre-computed and stored in the offline stage. Finally, by
introducing the stiffness matrix approximation to equation (3.10), the problem
becomes,

Bᵀvec−1
(
VA

(
PᵀAVA

)−1
)
vec−1 (

PᵀAa (x,µ)
)

Bα(µ) � BᵀV (PᵀV)−1 Pᵀf (x,µ) ,
(3.14)

where B is the POD basis constructed for the solution state approximation.

DEIM for the reduction for hydro-mechanical groundwater flow
problems

In the following, the vectorization of matrices by stacking columns is implied,
as explained above, but is not always explicitly indicated for clarity of notation.

To apply the DEIMmethod to all the nonlinear terms in the coupled system
at hand, each component in equation (2.41) must be approximated separately.
The system becomes,

[
Bu
ᵀK̂Bu Bu

ᵀVQ(PᵀQVQ)−1PᵀQQ̂(p)Bp

Bp
ᵀVC(PᵀCVC)−1PᵀCĈ(p)Bu Bp

ᵀVH(PᵀHVH)−1PᵀHĤ(p, ks)Bp

] [
αu
αp

] i+1

�[
Bu
ᵀVu(Pu

ᵀVu)−1Pu
ᵀ f̂u (p)

Bp
ᵀVp(Pᵀp Vp)−1f̂p (p, ks)

]
, (3.15)

where the matrices VQ ,VC ,VH contain POD bases for the 3 components of
the global matrix that contain nonlinearities, and PQ , PC , PH are the respective
selection operators that determine the selected entries to be evaluated online
for the construction of each submatrix approximation. In equation (3.15), the
notation for matrices Q̂, Ĉ, Ĥ does not explicitly indicate that in the online
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computations, vectorized versions containing the exact values of only the
selected entries are to be computed, but it is implied.

To elaborate on the implementation of DEIM for matrices (MDEIM) the
focus is brought to the approximation for one of the submatrices, Q̂(p) ∈
RNu×Np , where Nu is the number of degrees of freedom of the high-fidelity
(FE) problem that are related to the description of the displacement, and Np
the ones that are related to pressure. Then the POD basis VQ ∈ R(Nu·Np)×NdQ

has NdQ columns and Nu ·Np rows, as it is a basis for the vectorized operator.
The product (PᵀQVQ)−1 ∈ RNdQ×NdQ is a square matrix of the size of the DEIM
approximation. Therefore, the quantity

Bu
ᵀVQ(PᵀQVQ)−1 ,

cannot be computed and stored at this stage where the DEIM interpolants
are vectorized, due to dimension mismatch. That is, in equation (3.15) the
operators are in matrix un-vectorized form as in,

vec−1(VQ(PᵀQVQ)−1) ∈ RNu ×Np×NdQ .

This is not explicitly indicated in equation (3.15), and will be implied in the
following, to avoid overwhelming notation.

Then, the dimensions of the following product satisfy,

Bu
ᵀVQ(PᵀQVQ)−1 ∈ RNru×Np×NdQ ,

where Nru is the size of the Reduced Basis for the displacement field. This
product may be stored in the form of a 3-dimensional matrix, that has a depth
of the DEIM approximation size NdQ. In that sense, and with the goal of
eventually evaluating the term,

Bu
ᵀVQ(PᵀQVQ)−1︸               ︷︷               ︸
Nru×Np×NdQ

PᵀQQ̂(p)︸   ︷︷   ︸
NdQ×1

Bp︸︷︷︸
1×Np×Nrp

one may evaluate each component of the 3D matrix in the sense of NdQ
separately. Then, for every component of the term in theNdQ sense, the product
PᵀQQ̂(p) is a scalar and can be permuted with the matrix Bp ∈ RNp×Nrp . So
finally, for each direction i of the NdQ directions of the MDEIM approximation
space, the product,

Bu
ᵀ
(
VQ(PᵀQVQ)−1

)
i︸                    ︷︷                    ︸

Nru×Np

Bp︸︷︷︸
Np×Nrp

� Bu
ᵀVQ(PᵀQVQ)−1Bp︸                   ︷︷                   ︸

Nru×NRp

(3.16)
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can be precomputed and stored. Thus, NdQ matrices of size Nru ×NRp

must be stored, as opposed to NdQ matrices of size Nru ×Np and NdQ matrices
of size Np ×Nrp , resulting in a less memory intensive algorithm, and a more
efficient one, since the tasks performed online for the reconstruction of the
approximation do not depend on the original problem size Nrp .

Notes on the implementation of vector and matrix DEIM

Algorithm 3.1 results in a selection of Nd entries of the nonlinear function
f(x, µ) or a(x, µ) that must be precisely evaluated in the online stage, that is,
the functions fd and ad that are computed online must be equal to f or a on
the selected entries. To precisely evaluate these entries, some of the elements
of the FE must be accessed. The less the elements that need be accessed
online, the higher the computational gains of the method. This implies certain
interventions to the FE assembly routines that ensure that the loop over all
finite elements is restricted to the few necessary ones, or in other words, to the
reduced mesh. In Figure 3.1 the concept of the reduced mesh is illustrated for
the case of a matrix operator. Depending on the selected matrix entry, one or
two nodes may have non-zero contributions to the value of the function there,
and all the adjacent elements of these nodes must be included in the loop over
the reduced mesh.

Since a selected entrymight correspond tomultiple elements in the reduced
mesh, the size of the mesh increases faster than the number of selected entries
needed to approximate a nonlinear function. This has a computational cost
that may counteract the benefits of the DEIM and MDEIM. To remedy this
issue an unassembled variant of DEIM (UDEIM) has been developed in [6],
that aims to approximate the unassembled nonlinear quantities. The main
advantage of this method is that it results in more sparse reduced meshes, as
for every selected entry, only one element is related. However, this method is
more memory-intensive than the conventional DEIM as it requires the storage
of each element contribution to every node separately. In the offline stage,
where multiple snapshots must be stored and SVD must be applied to large
snapshot matrices, this can prove to be a significant issue, especially for large
problems. Moreover it requires modifications to the assembly routine of the
FE code. In this case, in order to reap the benefits of the FEniCs platform and
its fast, automatic assembly routine, the conventional DEIM is preferred.

One of the major challenges in implementing DEIM is the fact that the
offline stage of the method can be particularly memory intensive. For the
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Figure 3.1: Illustration of the concept of the reduced mesh in a FE-MDEIM
context. On the left, a sparse matrix FE. Two selected entries of the function by
the DEIM algorithm are in red circles. To precisely evaluate these entries, all
the adjacent elements of the involved nodes that have a non-zero contribution
to the selected matrix entry must be accessed. For each dof, several elements,
illustrated on the right with pink color must be accessed.

approximation of a matrix operator Q̂ ∈ RNu×Np , the method requires the
evaluation and storage of snapshot matrices sized (Nu ·Np) ×Ns. If sparse
matrix structures are used, the size of the stored matrices is the number of
non-zero elements, Nnz. However, depending on the software that is used,
performing some of the required operations on sparse matrices can be very
inefficient. The implementation of SVD, DEIM algorithm, or other tasks that
require changing the structure of the involved matrices are very demanding
when performed on sparse structures. However, as suggested in [78], auxiliary
densematrices that contain only the non-zero elements of the original snapshot
matrices can be used. This is done by eliminating all the zero rows of the
snapshot matrix. Since the columns of the matrix contain vectorized snapshots
of the same operator, the sparsity structure of each row is bound to be the
same. Therefore, all the tasks are now performed on Nnz sized dense matrices.

State-based Localized Discrete Empirical Interpolation (LDEIM)
for a generic nonlinear function f

An important limitation of DEIM is that for some nonlinear systems, particu-
larly when the system exhibits a wide range of behaviors, a large number of
DEIM basis vectors is needed for an accurate approximation of the function.
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This limits the efficiency of the resulting ROM. In the Localized Discrete
Interpolation Method a nonlinear function approximation is constructed by
creating not one, but several reduced spaces. Each sub-space is appropriate for
the approximation of a certain region of states. Hence, the subspace dimension
becomes smaller than the global DEIM approximation space, which translates
to a smaller reduced mesh and higher ROM efficiency.

To accomplish that, LDEIM utilizes machine learning techniques both
in the offline and the online space. In the offline space, clustering methods
are used to identify these state sub-regions among all possible system states.
Essentially, similar snapshots are grouped together based on unsupervised
learning. In the online stage classification algorithms are used to identify
which subspace is most suitable for the approximation of the current system
state as the computation proceeds.

Themethod can handle a large number of large-sized snapshots and a large
number of local approximation spaces, thanks to the use of a DEIM-based
feature extraction that results to a low-dimensional representation of the
snapshots that is used for the clustering and the classification processes.

It is worth noting that the idea of localized DEIM and localized POD has
been explored in various settings. Two versions of LDEIM are presented in
[88], a parameter-based and a state-based one. In the parameter-based LDEIM
the local spaces are defined based on sub-regions of parametric values and the
online selection of an appropriate sub-space is also based on the parameters.
Moreover, groups of snapshots can be created based on time for a transient
problem [83]. In the problem of groundwater-flow through porous media
however, the studied parameters result in similar solutions and system states,
making the parameters an unfit criterion for clustering and classification.
Furthermore, the authors found that for this problem, a time-based division
of the snapshots does not result in smaller approximation spaces. Hence, the
state-based version of LDEIM is selected and presented here.

The implementation of the state-based localizedDEIMmethod as proposed
in [88] implies the pre-construction of a global DEIM scheme as described
in Section 3.2. In the offline stage, a snapshot matrix Md of fully assembled
functions must be populated as in equation (3.1)) and the global Nd-sized
DEIM interpolants V and P must be computed.

Offline stage: snapshot clustering and sub-spaces identification

Once the global DEIM scheme is constructed, the sub-spaces that correspond
to sub-regions of system states must be identified by clustering the snapshots
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of Md into groups based on their similarity. The measure of similarity is in
this case based on the Euclidean distance of a DEIM-based representation of
the snapshots, as opposed to a Euclidean distance of the full snapshots. To
create the low-order representation of the snapshots, the interpolation points
of the global-DEIM scheme are selected as,

Mld �
[
Pᵀf1...PᵀfNs

]
∈ RNd×Ns . (3.17)

This selection of entries is called feature extraction in the context ofmachine
learning.

Subsequently, a clustering algorithm is used to group the elements of Mld.
In this work, the K-means algorithm is used, and more particularly the python
implementation of the scikit-learn package is used [87]. The basic steps in
K-means algorithm are summarized in Algorithm 3.2.

The method requires as input the number k of groups of snapshots, or
clusters of snapshots to be created. Initially k centroids Fj are selected from
the dataset Mld such that they are distant from each other. This technique
typically yields better results than random initialization [87]. The method
iteratively optimizes the clusters by assigning each snapshot to the cluster
with the nearest centroid. Then the centroids are updated taking the mean
value of all elements of their respective cluster. The difference between the
old centroids and the new centroids is computed and the process is repeated
until this value is smaller than a threshold.

Algorithm 3.2 K-means algorithm
Input: Number of clusters k, dataset [Pᵀf1...PᵀfNs] ∈ RNd×Ns , stopping toler-
ance tol
Output: Clusters of snapshots Mj

ld, centroids Fj
1: Initialize clusters with centroids Fj distant from each other
2: Assign each element Pᵀfz to nearest centroid cluster: minimize

j∈[1,k]
|Pᵀfz −Fj |L2

3: Compute new centroids Fj as mean of all elements of cluster j
4: Repeat steps 2-3 until |F old

j − F new
j | ≤ tol

The result of the clustering technique is a partition M1
ld]M2

ld] . . .]Mk
ld of

the snapshot matrix Mld and the corresponding centroids. The clusters contain
low-order approximations of the originally collected snapshots. Snapshot
subsets M1

d ]M2
d ] . . . ]Mk

d � Md are obtained from the associated full-order
snapshots.
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POD bases and interpolation points are identified for each subset of
snapshots Mi

d, implementing SVD and the DEIM algorithm as described in
section 3.2. The resulting approximations spaces and selection matrices read
(V1 , P1), . . . , (Vk , Pk).

This process must be performed for all vector and matrix operations
that need be approximated with DEIM. Eventually, the interpolants that
correspond to all subspaces must be stored. Re-examining the approximation
of the component Q̂ of the global matrix, equation (3.16) now becomes,

Bu
ᵀ
(
Vj

Q(P
j
Q
ᵀ

Vj
Q)
−1

)
j︸                      ︷︷                      ︸

Nru×Np

Bp︸︷︷︸
Np×Nrp

� Bu
ᵀVj

Q(P
i
Q
ᵀVj

Q)
−1Bp︸                     ︷︷                     ︸

Nru×Nrp

, j ∈ [1, k], (3.18)

where Vj
Q and Pj

Q correspond to the j-th local DEIM approximation space.
That is, k matrices of size Nru ×Nrp ×NdQ must be pre-stored.

Online stage: identification of appropriate approximation space

To efficiently assemble nonlinear operators in the online phase, the appropriate
cluster must be identified in every time-step or iteration. To identify the cluster,
the lastly evaluated function must be classified and assigned to one of the k
clusters. This can be done using a classification algorithm. In this case the
Nearest Neighbor Search was used, more particularly the implementation found
in the scikit-learn python package [87]. This is a simple algorithm that assigns
an element to a cluster based on its proximity to the pre-computed centroids
F1 , . . . , Fk, in a Euclidean context. It is very similar to step 2 of the K-means
Algorithm 3.2.

Note that the computed centroids are in the form of low-order DEIM-based
representations. Therefore for the classification a similar representation of the
new element must be evaluated, based on the global DEIM approximation.
In this work, the classification process occurs once in every time step and not
within the time steps. This is because it has been observed that repeating the
classification process after each iteration of the Picard scheme results in the
same cluster selection, that is, the cluster does not change within a time step,
but rather it typically changes from time step to time step.

Therefore, to assemble the function fi+1, where i + 1 denotes the current
time-step, one must classify the element Pᵀfi, where fi is the lastly evaluated
function. The function actualization fi is approximated using the previously
selected DEIM sub-space, that may or may not be different than the one
selected in the current time step i + 1.



66 Chapter 3. Hyper-reduction with Discrete Empirical Interpolation

3.3 Application

In this section a ROM is created based on the methodologies that are discussed
in Section 3.2. A parametric problem is setup and solved using FEM and ROM,
for the purpose of comparing and evaluating the ROM performance in terms
of efficiency and accuracy.

Problem setup

The examined problem is relevant in the context of tailings dams [77]. This is
a type of earthfill embankment dam designed for the permanent storage of
mining waste. Those dams are typically constructed near mining facilities, and
it is usual practice that their crest level is raised by adding layers of fill-material
on top of the existing embankment, in order to increase the reservoir capacity,
to accommodate increased waste production. Hence, the problem that is
studied here is one in which a distributed load is applied on the top boundary
of a 3-dimensional domain that represents a dam. The added load simulates
the deposition of a fill material layer in the process of raising the dam level.
Literature suggests that 2 dimensional models cannot reflect the complex and
variating seepage field [68]. Thus, 3 dimensional models have been proposed
for the stability study of tailings dams [67, 127].

This illustrative problem has been examined in a previous publication by
the authors of [77]. All the details of the problem setup mentioned in the
present work are identical to the ones used in the previous publication.

The geometry shown in Figure 3.2 approximates an embankment con-
structed in a narrow, steep sided valley. It is a generic, invented geometry,
meant to simulate common conditions in the construction of embankment
dams.

The domain is a 50 m-long prism, with 2 axes of symmetry and a variating
cross-section along the Y axis. The parts that are founded on the lateral slopes
have smaller cross sections (Figure 3.2d Top). The side slopes have been
assumed excavated in two levels, creating two 5 m-high slopes of inclination
1,5:1.
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(a) 3D Isometric view (b) Front view

(c) Top view (d) Cross sections Top: Section plane A Bottom:
Section plane B

Figure 3.2: Views and cross sections of the 3 dimensional domain. The
geometry assumes an embankment that has been constructed in a narrow
valley, and has its foundations on two side slopes at the two extremes in the
direction of Y axis. The side slopes are not displayed.

A 3D tetrahedral mesh was created in Gmsh open-source mesh generating
software [38]. The mesh is made out of 41477 tetrahedral and triangular cells
and 9896 nodes. Using the Taylor-Hood (P2-P1) element for the description of
the displacement and pressure fields, the resulting system consists of 202179
and 9896 degrees of freedom for the two fields respectively.

The initial condition is evaluated by solving the steady state problem for
an upstreamwater level at 7 m. In the upstream side, the deposition of tailings
material, with specific weight γt reaches the level of the dam’s crest. The
material is saturated up to the level of 7m. The added material, of specific
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(a) After 2,5 days (b) After 7,5 days

Figure 3.3: Deposition of the two 50 cm - thick layers of fill material on the
top and upstream side of the structure. The first layer is shown in dark green
color and the second in light green color. After 2,5 days of loading half of the
first layer has been deposited. After 7,5 days the first layer and half of the
second layer have been deposited. Upstream is in the direction of the x axis.
Unsaturated tailings are depicted in orange, saturated tailings in gray. The
lateral foundation slopes are not depicted.

weight γf, is placed in two layers of 50 cm each. The first layer is deposited
in the first 5 days, gradually, across the Y axis. Then the second 50 cm layer
is added on top, during days 5-10, again, gradually across the Y axis. The
bottom boundary is mechanically constrained and hydraulically impermeable.
A fixed water pressure head of 7 meters is imposed in the upstream boundary,
which remains fixed throughout the simulation. Moreover, a mechanical load
is imposed as a Neumann condition in the upstream boundary (Equation
(2.9)), resulting from the lateral earth pressure due to the tailings material in
the impoundment. A seepage condition (Equation (2.13)) is imposed on the
downstream boundary. During the level raise phase in a tailings dam life, thin
layers of fill material are deposited along the length of the structure. The load
increases gradually along the Y axis. In Figures 3.3a and 3.3b this loading
sequence is illustrated for clarity. Two layers of soil are placed on top of the
dam, in order to raise the level of the dam by 1 meter.

The values of the physical properties and numerical parameters used in
the model are given in Tables 3.1 and 3.2. The values were chosen such that
they fall into ranges that are usually observed in tailings dams [14, 92].

The parameters that are considered to vary in this work are both hydraulic
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Parameter Symbol Units Value
Gravitational acceleration g m/s 10
Water bulk modulus Kw MPa 2.2 × 103

Specific weight of water γw kN/m3 10
Embankment fill soil material

Particle density ρs kg/m3 2.7 × 103

Young’s Modulus E MPa [50, 150]
Poisson’s ratio ν - 0.3
Porosity η - 0.38
Saturated VWC Θs - 0.38
Residual VWC Θr - 0.038
Parameter (≈ inverse of air entry suction head) α m−1 [0.01, 1]
Fitting Parameter m - 0.184
Saturated hydraulic conductivity ks m/s [10−9 , 10−7]

Tailings and added fill material
Added fill material specific weight γf kN/m3 21
Tailings specific weight γt kN/m3 21
Tailings friction angle φ ◦ 35

Table 3.1: Values of physical soil properties used in the model. Value ranges
of properties that are considered as parameters in the following reduced order
models are given in [ ]

Discretization
Mesh 41477 elements, 9896 nodes, unstructured
FE Displacement P2
FE Pressure P1

Time integration: θ-scheme
θ 0.75
Time step ∆t 0.25 days

Table 3.2: Numerical parameters used in the model
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soil properties. Namely, the saturated hydraulic conductivity ks, the parameter
α, which is related to the air entry value of the soil, and the Young’s modulus
E are considered as variating parameters. These 3 properties are chosen due
to the high level of uncertainty they often feature in geotechnical applications,
that renders them appropriate objects of examination using data assimilation
methods. As explained in Section 4.1 Model Order Reduction is particularly
advantageous in the context of data assimilation or othermany-queryproblems,
it therefore seems fitting to study uncertain parameters using a ROM.

The parametric domain is taken such that the extreme values of ranges are
realistic in the framework of earthfill dams [14] .

In the following, 3 setups will be examined. The first parametric problem
that is presented, considers only one parameter, namely ks, the second
considers all 3 parameters, ks , E, α and the final setup considers one parameter
but a denser FE mesh. For every setup, both a global DEIM and a local DEIM
approach are used. The goal of the study is to examine how the computational
efficiency achieved with a ROM scales with increasing number of parameters
and an increasing size of the original problem.

ROMs created using different reduction methods are referenced with the
abbreviations RB, RB-DEIM, RB-LDEIM. The first one refers to a ROMwith
low-order solution space approximation using the Reduced Basis method and
no hyper-reduction. The other two refer to ROMs with hyper-reduction using
the global and localized versions of DEIM respectively.

ROM for a problem with 1 parameter: saturated hydraulic
conductivity

In this section, only the saturated hydraulic conductivity is considered as a
parameter. The other 2 mentioned properties remain fixed at E � 80 MPa and
α � 0.1 m−1.

The solution space reduction is performed as explained in Section 2.3 using
the Reduced Basis method. In this case, to create the Reduced Basis, snapshots
were taken for ks � [10−9 , 5 × 10−9 , 10−8 , 5 × 10−8 , 10−7]m/s. These 5 values
are enough to create an accurate basis. For this and all the following cases, the
truncation tolerance for the solution space basis is −4. Based on this tolerance,
the most relevant orthonormal vectors are selected to form a low-order space
basis, as indicated in equation (3.4). In Figure 3.4, the fast decay of the singular
values that correspond to the vectors the result from applying SVD to the
snapshot matrices for both fields is illustrated.
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Figure 3.4: Snapshot truncation based on singular values. The y axis is a log
plot of the normalized singular values that correspond to the first singular
vectors. The red line represents the truncation tolerance −4.

The author’s experience using DEIM has led to the conclusion that for this
type of problem, more snapshots are required for the identification of a low-
order space for system approximation than for solution space approximation.
Therefore, more snapshots were taken after the Reduced Basis was identified,
this time using a ROM. Snapshots of the fully assembled submatrices Q̂, Ĉ, Ĥ
and the right-hand side vector [f̂u , f̂p]ᵀ were taken for 10 parametric values.
The assembled operators that correspond to every iteration of every time-step
were saved in snapshot matrices.

In Figure 3.5 the singular values that correspond to each approximated
function are plotted. The final number of othronormal vectors in the POD
basis for each function depends on the selected truncation tolerance and the
rate at which the singular values decrease. Figure 3.5 shows how the singular
values that correspond to coupling matrices Q̂ and Ĉ decrease much faster
than those that correspond to matrix Ĥ and the right-hand side vector [f̂u , f̂p]ᵀ.
The experience of the author shows that a tolerance as large as −4 yields
sufficient accuracy for the coupling matrices, and very few vectors are selected
to approximate them. Specifically, for the tested cases that are presented in
the following, the POD bases for matrices Q̂ and Ĉ were of size as small as 2
vectors.

For the approximation of matrix Ĥ and the right-hand side vector, the
singular values drop slower. This may be related to the fact that these functions
result fromparametrically dependent variational forms. The number of vectors
needed in a POD basis generally depends on how complex the manifold of all
possible values of the underlying function is. It appears that Ĥ and the vector
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Figure 3.5: Singular values for the functions that are approximated using
DEIM. Truncation tolerances that are used for the different functions and
range from −8 to −4 are illustrated with dashed lines.

[f̂u , f̂p]ᵀ can take a wide range of values in the examined parametric problem.
Therefore, the size of the reduced mesh used to solve the problem, depends
on the truncation tolerance applied for these two terms.

In Figure 3.6 the numbers of elements that are selected by the DEIM
procedure (Algorithm 3.1) are shown. This example corresponds to the case
where the first singular vectors of the snapshot matrix that corresponds to the
Ĥ component and the right-hand side vector are retained, based on a tolerance
of −8. The tolerance used for the other matrices, Q̂ and Ĉ, is larger, namely −4.

In the following, ROMs that result from different tolerances are presented.
All refer to a variation of the tolerance for component Ĥ and right-hand side
vector [f̂u , f̂p]ᵀ.

It isworthnoting that the elements selected as a result of the implementation
of Algorithm 3.1 to the POD bases that correspond to all components are
similar. They are mostly located in the unsaturated part of the domain, and
close to the phreatic line. Given the fact that the nonlinearities examined
are activated only in the unsaturated part, this result is reasonable and in
accordance to expectations.
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Figure 3.6: Illustration of the reduced mesh that is yielded using a truncation
tolerance of −8 for singular values that correspond to the Ĥ global matrix
component. The elements that must be accessed online are highlighted with
red color.

In Table 3.3, several different models are compared in terms of efficiency
for the solution of the problem introduced in Section 3.3. The problem is
solved for a parametric value that was not sampled in the offline stage, namely
ks � 5.5 × 10−8 m/s.

In the first column the truncation tolerance for the DEIM bases for terms
Ĥ and f is listed. In the second column the number of finite elements that
are visited online for the assembly of matrix and vector operators are listed.
The total number of elements in the full mesh is listed in the last two rows.
The problem has 54 unknowns that result from the Reduced Basis method,
except for the case where the problem is solved with plain FE. Of these 54
unknowns, 30 are related to the description of the pressure field, and 24 to the
displacement field.

The total iterations needed for the problem to be solved (note that there
are 40 time steps, with a fixed time step over 10 days), are usually less when
the problem is solved with the Reduced Basis method. When DEIM is used,
in some cases in which a larger truncation tolerance is used, more iterations
are needed for convergence. Similar results have been reported in [6] for a
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Truncation

tolerance

Elements for

assembly

Problem

unknowns

(H+M)

Total

iterations

Total

duration (s)

Time gain

TRO/TFO

Assembly

duration (s)

Solving

duration (s)

Global
DEIM
+RB

-8 10269 30+24 114 418.28 1/20.27 1.67 0.0003

-7 10115 30+24 114 419.03 1/20.23 1.48 0.0003

-6 8417 30+24 280 887.31 1/9.56 1.30 0.0003

-5 4725 30+24 456 Loss of convergence

Local
DEIM 5
clusters
+RB

-8 7797 30+24 126 405.53 1/20,91 1.25 0.0003

-7 7696 30+24 121 450.30 1/18.83 1.07 0,0003

-6 6329 30+24 128 365.63 1/23.19 1.07 0,0003

-5 4717 30+24 859 Loss of convergence

Local
DEIM 10
clusters
+RB

-8 8078 30+24 151 757.58 1/11.19 1.56 0.0003

-7 6525 30+24 174 801.87 1/10.57 1.35 0.0003

-6 5971 30+24 117 306.15 1/27.70 0.92 0.0004

-5 4480 30+24 Loss of convergence

RB 41477 30+24 112 1411.54 1/6.01 10.86 0.0003

FEM 41477 212075 383 8479.53 1 3.988 9.6730

Table 3.3: Results for solving a hydro-mechanical parametric problem with
one parameter, ks, using different Model Order Reduction schemes (described
in Section 3.2). A FE model is compared to a ROMwhere merely solution state
reduction has been performed with the Reduced Basis method (written RB),
ROMs using DEIM or Localized DEIM with different truncation tolerances for
functions Ĥ and f.

Newton-Raphson scheme. The fact that the RB-DEIM model may require
more iterations can be an issue for the resulting efficiency of the model, as it
counteracts the gains that are related to fast assembly. This is possibly related
to the accuracy of the approximated functions. Nevertheless, it seems that
when an appropriate tolerance is selected for hyper-reduction, the number
of additional iterations required is small enough and the final computational
gain is still significant.

The column titled “Time gain TRO/TFO” shows the ratio between the
durations of each ROM and the FEM - subscript RO stands for Reduced Order
and FO for Full Order.

The column titled “Assembly duration” features the time it takes for the
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reduced operators to be assembled, which in the case of the RBmodel, includes
the full assembly of thematrices and vectors and their projection to the reduced
space, and in the case of RB-DEIMmodels, it includes assembly in the reduced
mesh and projection to the system approximation spaces, and the solution
approximation space. This column, and the next one, titled “Solving duration”
refers to per iteration times and the values are calculated as the average of all
needed iterations.

A review of the results shows that for this case with one parameter, both
the RB-DEIM and the RB-LDEIM models yield significant efficiency gains.
The fastest case is achieved using a tolerance of −6 to construct a model with
LDEIM.

The error in most cases remains within acceptable levels, in the order of
magnitude of 10−4, as is shown in Figure 3.7. This is not the case for schemes
with a too large truncation tolerance for hyper-reduction (all schemes with −5,
global DEIM scheme with −6 tolerance). There, the approximation error is too
large and eventually the convergence is lost. The error at a given timestep is
estimated as,

e �

��������XRB − XFEM
XFEM

��������
2
, (3.19)

whereXRB andXFEM represent the approximation and the high-fidelity solution
respectively.

ROM for a problem with 3 parameters

In this Section a similar parametric problem is solved, this time considering 3
parameters, the saturated hydraulic conductivity ks, the coefficient α, which is
related to the air entry value of the soil and appears in Equation (2.15), and the
soil’s Young’s modulus E. The examined value ranges for these parameters
are given in Table 3.1.

The offline stage, collecting snapshots of solution vectors to create the
solution space approximation is run all over again, this time sampling values
in the 3-dimensional parametric space. Specifically, to build the POD basis
for solution space approximation, 3 values were sampled for each parameter,
resulting in a total of 27 parametric value combinations, selected such that
they are evenly spaced along the log scale of each parametric domain.

For the construction of the system approximation spaces (hyper-reduction)
more values were sampled. Specifically 5 values for each parameter were
selected in a similar way, resulting in 125 sampled values. In this case, the
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(a) Displacement field (b) Pressure field

Figure 3.7: Relative error ROM-FEM for pressure and displacement fields.

calculations were performed using the RB model that had been previously
constructed. It is worth noting, that the offline stage for this case that examines
a multi-dimensional parametric space, is significantly longer than in the
previous case. However, as can be sheen in Table 3.4, the resulting ROMs do
not drastically differ in size from the ones created in Section 3.3.

The RBmethod results in a PODbasiswith 75 vectors, which is, as expected,
larger than the 54-vector basis used in Section 3.3, but remains in the same
order of magnitude. The same holds true for the reduced mesh used in
each scheme that is presented in Table 3.4. The resulting number of visited
elements is in some cases larger but not in a different order of magnitude than
in the 1-parameter case. This indicates that even though more parameters are
examined, the solution manifold and the system state manifold do not feature
much larger variation, allowing for the costs of ROMs to remain low.

Reviewing Table 3.4, it seems that LDEIM has a more pronounced compar-
ative advantage compared to the global DEIM in this case, where 3 parameters
are considered. In some cases, using a localized POD basis for system approx-
imation results in faster convergence. This observation is in accordance to
previous studies that report more accurate and robust results using localized
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Truncation

tolerance

Elements for

assembly

Problem

unknowns

(H+M)

Total

iterations

Total

duration (s)

Time gain

TRO/TFO

Assembly

duration (s)

Solving

duration (s)

Global
DEIM
+RB

-8 12379 51+24 250 917.28 1/9.24 1.67 0.0004

-7 11966 51+24 244 896.88 1/9.45 1.60 0.0004

-6 10474 51+24 Loss of convergence

-5 6616 51+24 Loss of convergence

Local
DEIM 5
clusters
+RB

-8 10216 51+24 132 554.57 1/15.29 1.58 0.0004

-7 9672 51+24 121 372.70 1/22.75 1.61 0.0004

-6 9418 51+24 121 385.42 1/22.00 1.08 0.0004

-5 7884 51+24 Loss of convergence

Local
DEIM 10
clusters
+RB

-8 10823 51+24 152 657.29 1/12.90 1.31 0.0004

-7 10741 51+24 117 367.03 1/23.10 1.33 0.0004

-6 9219 51+24 123 389.19 1/21.79 1.36 0.0004

-5 8047 51+24 Loss of convergence

RB 41477 51+24 102 1385.40 1/6.12 11.24 0.0004

FEM 41477 212075 383 8479.53 1 3.988 9.6730

Table 3.4: Results for solving a hydro-mechanical problem with different
Model Order Reduction schemes (described in Section 3.2). In this problem 3
parameters are considered ks, α and E. This table contains data about the the
problem solution for values ks � 7e − 8 m/s, α � 0.1 m−1 and E � 80 MPa. A
FE model is compared to a ROMwhere merely solution state reduction has
been performed with the Reduced Basis method (written RB), ROMs using
DEIM or Localized DEIM with different truncation tolerances for functions Ĥ
and f.

bases reduced order schemes, instead of global ones, for systems with large
parameter variation [5, 39].

Scaling with full-order model size

In this Section the problem is solvedwith amuch denser FEMmesh, in order to
examine how the efficiency gain scales with the size of the full-order problem.
One parameter, ks is considered, and aside from the mesh, every other aspect
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(a) Displacement field (b) Pressure field

Figure 3.8: Relative error ROM-FEM for pressure and displacement fields.

in the setup of the problem remains the same. The most notable conclusion
to be drawn from Table 3.5, relates to the gain in computational efficiency
achieved in this scheme. A comparison of the time gain columns in Table
3.5 and Table 3.3, shows clearly that DEIM results to a significantly higher
speedup factor when applied to FE problems with a larger size.

Moreover, as shown in Figure 3.9, the gain in computational efficiency
does not entail a loss of accuracy with respect to the RB model. Again, the
method yields accurate results provided a small enough truncation is used for
the creation of POD bases in the hyper-reduction process.

Finally, it seems once again that raising the number of clusters does not
result to notably more efficient models.

3.4 Conclusions and discussion

In this Chapter, Model Order Reduction was implemented for the coupled
system of hydro-mechanical equations that governs the water flow through
partially saturated soil. Combinations of the Reduced Basis method with
the DEIM and LDEIM methods were implemented, and their benefits were
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Truncation

tolerance

Elements for

assembly

Problem

unknowns

(H+M)

Total

iterations

Total

duration (s)

Time gain

TRO/TFO

Assembly

duration (s)

Solving

duration (s)

Global
DEIM
+RB

-8 12419 30+25 108 498.95 1/66.88 2.21 0.0003

-7 12213 30+25 111 494.59 1/67.47 1.99 0.0003

-6 8579 30+25 163 576.53 1/57.88 1,67 0,0003

-5 3667 30+25 Loss of convergence

Local
DEIM 5
clusters
+RB

-8 9629 30+25 120 604.07 1/55.24 2.21 0.0004

-7 9477 30+25 126 572.58 1/58.28 2.02 0.0004

-6 6885 30+25 105 486.81 1/68.55 1.61 0.0004

-5 3904 30+25 Loss of convergence

Local
DEIM 10
clusters
+RB

-8 7985 30+25 118 539.41 1/61.86 1.81 0.0004

-7 7646 30+25 99 464.00 1/71.92 1.69 0.0004

-6 6398 30+25 110 466.17 1/71.58 1.56 0.0004

-5 3904 30+25 Loss of convergence

RB 117088 30+25 106 3863,55 1/8.64 31,87 0,0002

FEM 117088 568850 526 33369,55 1 10,70 53,1154

Table 3.5: Results for solving a hydro-mechanical parametric problem with
one parameter, ks, using different Model Order Reduction schemes (described
in Section 3.2). A FE model is compared to a ROMwhere merely solution state
reduction has been performed with the Reduced Basis method (written RB),
ROMs using DEIM or Localized DEIM with different truncation tolerances for
functions Ĥ and f.

examined and compared. A 3D parametric illustrative problem was solved
with the ROMs that results form implementing RB, DEIM and LDEIM, in
order to compare their performances. The problem consists of mechanically
loading the top boundary of an embankment dam. Three variations of this
problem was considered: one considering a single parameter; another with 3
parameters and a third were the single parameter problem was solved with a
denser FE mesh.

It was found that POD-based ROMs particularly when combined with
hyper-reduction via DEIM and LDEIM result in a significant increase of the
computational efficiency in solving the examined problem. Specifically, it was
shown that for the single-parameter case the solution was up to 27 times faster
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(a) Displacement field (b) Pressure field

Figure 3.9: Relative error ROM-FEM for pressure and displacement fields.

than when solved with FEM. For the original problem with 3 parameters it
was up to 23 times faster, while for the single parameter case with a denser
mesh it was up to 72 times faster. These results imply that the method yields a
speedup that scales with increasing size of the full-order problem. However, it
is worth noting here the coarsest FEmesh that yields convergent results should
be the finest FE mesh considered, as there is no need for further refining. This
sets an upper bound to the tendency for increasing gains with increasing size
of the full-order model. In this work, a finer mesh than the coarsest acceptable
has been used in Section 3.3, in order to demonstrate the effect.

It was shown that the size of POD-basis chosen for nonlinear function
approximation affects the accuracy and the efficiency of the resulting model.
An approximation space of lower order may result in a smaller number of
visited elements by DEIM, and consequently to faster assembly. However,
selecting a smaller basis may also lead to slower convergence and thereby, to a
slower solver overall.

Finally it was shown that LDEIM yields in all cases the fastest solution
among the examined ROMs, and is particularly advantageous with respect to
DEIM for cases in which a higher parametric space is considered. Increasing
the number of clusters from 5 to 10 does not particularly speedup the solution.

All things considered, the combination of RB and DEIM is an appropriate
method for problems of hydro-mechanically coupled flow through porous
media. The choice of truncation tolerance and, in the case of localized DEIM,
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the choice of number of clusters, is not straightforward. Moreover, there is
no specific criterion to select these numbers a priori. The experience that was
acquired through the present work is that the truncation tolerance should be
chosen smaller than what is used in the solution approximation POD basis.

It is worth noting here, that the performance of ROMs in terms of efficiency,
are highly dependent on the specific problem under investigation. Depending
on the specific setup, the method may result to faster or slower ROMs. This
remains to be explored in future implementations of the method for other
types of hydro-mechanical coupled problems.
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4.1 Introduction

ThisChapter focuses on the simultaneous identificationof theYoung’smodulus
E of the soil, as well as two hydraulic soil parameters, namely the saturated
hydraulic conductivity ks, and the parameter α, that characterizes the soil
retention. The method is here applied to earthfill dams, but may be extended
to any type of soil structure. Several applications of inversion techniques in
earth dams using field data can be found in the literature. In those cases the
authors use measurements of hydraulic pore pressures as well as outflow rate
data from weirs or flowmeters installed in the structures, in order to remedy
issues with the uniqueness and reliability of the inverse modeling results. The
authors of [22, 132] and [52] used pore pressure and water discharge field
measurements taken during a reservoir impounding process, to back-calculate
the permeability of fractured rocks in existing dams foundations. The authors
of [112] used the same method to back-calculate the permeability of different
parts (foundation, core, filters, shell) of an existing earthfill dam based on
actual pressure measurements.

There are different ways to formulate and solve an inverse problem. The
method that will be examined in this paper involves the minimization of an
objective function measuring the distance between observed and numerically
computed data. Other methods include the reformulation of the forward
problem to one that seeks for the unknown parameters [42, 102]. This
method was developed in the early stages of studying inverse problems in
geomechanics, and implies several simplifying physical assumptions that are
not valid inmost real problems. Another commonly usedmethod is the class of
probabilistic methods of combining prior knowledge and field measurements
to estimate parameters using Bayesian techniques [89, 84, 118, 124, 125].

Asmentioned inChapter 1, the issue of ill-posedness, inherent in the inverse
problem for hydraulic parameter identification, that may result in non-unique
and/orunstable solutionshas been studied extensively [110, 59, 113, 43, 71, 134].
Specifically, authors have investigated the uniqueness of the inverse problem
solution, when hydraulic soil properties, like ks and α must be identified
simultaneously. The studies were initially based on data from laboratory
transient flow experiments aiming to characterize the relations between
pressures, conductivity and water content. The parameter inference was
initially based on cumulative outflowdata, fromdifferent types of experimental
data. In these studies, authors identified a non-uniqueness problem, which
they attributed to the insensitivity of the objective function to the parameters.
Attempts to resolve the problem involved using additional pressure head
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or water content data. Eventually, the author of [43] argued that in some
experimental setups, the use of outflow data did not improve the sensitivity of
the objective function, and that a pore water pressure-based objective function
was best. The authors of [71] argue that the uniqueness and the stability of the
solution to the inverse problem in groundwater flow depends on many factors,
like the number of available measurements, sensor positioning, availability of
variation measurements both in pressure and in suction.

Authors who attempted to identify hydraulic soil properties using field
monitoring sensor measurements have resorted to combining water pressure
and discharge rate data in order to overcome the problem of non-uniqueness
that they identified [22, 52, 132, 112]. In the present work the issue of ill-
posedness is examined and a novel regularized objective function, exclusively
based on pore water data, is proposed to improve the characteristics of the
problem.

There are various algorithms designed for optimization -in this case, mini-
mization. The two fundamental categories are gradient-based and gradient-
free methods. The former requires the computation of the objective function
derivatives, rendering its implementation an arduous procedure. These algo-
rithms usually lead to fast convergence but are often ’trapped’ in local minima
and their outcome depends on the initial guess. Gradient-free methods, that
will be used here, do not require differentiability of the objective function
and therefore can be used to optimize objective functions that are discrete,
discontinuous, or noisy. Among the most common algorithms of this kind are
Genetic Algorithms, like Differential Evolution Genetic Algorithm (DEGA)
[107] that is used in this work. When properly implemented, these algorithms
perform a search of the entire parametric domain, thus providing better
chances at finding the global minimum, providing one exists.

The major disadvantage of such algorithms is their high computational
cost, since their strategy is based on repetitive objective function evaluations,
and their slower convergence with respect to gradient-based solvers. A similar
problem is faced when using bayesian techniques for parameter identification.
When the objective function evaluation requires a Finite ElementMethod (FEM)
computation, the cost may become prohibitive. It is therefore common practice
to use surrogate models that can yield repetitive evaluations with a much
lower computational cost. A common method in groundwater flow problems
is the use of artificial neural networks (ANN), trained to approximate the
relation between a permeability field and the pore water pressure distribution
of the domain for a specific problem [35, 112, 132].

Here, a different approach is explored, employing a Reduced Order Model
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(ROM) [94, 77, 62] instead of the computationally expensive FE model, to
speed up the iterative calculation of pressure and deformation fields in the
embankment, that is required in an optimization scheme. A ROM of a
fully-coupled, hydro-mechanical (HM) model is used to describe the water
flow through a partially saturated soil. The developed ROM will be shown
to significantly enhance the computational efficiency of the method, while
yielding accurate results, and leading to parametric predictions that are
equivalent to those obtained using a FE model.

The novelty of the work that is presented in this Chapter lies in the use of
ROM for back analysis of both mechanical and hydraulic soil parameters based
on field pressure data from embankment dams. The method is validated
with examples based on synthetic and real data from piezometers installed in
the dam. The illustrative examples are based on the Glen Shira Lower Dam,
which is part of a pumping storage scheme in Northern Scotland [91]. Another
contribution of the work refers to the study of the effect of a regularized
objective function to overcome the issue of non-uniqueness in the inverse
groundwater flow problem.

To this end, the present Chapter is structured as follows. Section 4.2
contains the description of the Reduced Order Modeling methodology as well
as an introduction to the employed back-analysis strategy via objective function
minimization. In Section 4.3, the method is applied to a rapid drawdown
problem using synthetically generated data for the inverse problem. In Section
4.4, the hydraulic properties of the Glen Shira lower dam are back-analyzed
based on the real pressure head data that were observed on site during a rapid
drawdown. Finally, in Section 4.5 the conclusions of the study are listed, and
some comments are made on some remaining limitations of the methodology,
outlining future works required to address them.

4.2 Methodology

Constitutive relations and governing equations

The governing and constitutive relations adopted in the developments of this
Chapter are detailed in Chapter 2.

In this Chapter, the adopted relation between the hydraulic conductivity
the soil-water system and the pore water pressure is the cubic law mentioned
in Equation 2.18. This relation is is selected in accordance to [91].
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A Reduced Order Model for coupled hydro-mechanical problems

In the context of parameter identification based on field sensor data, the
unknown parameter must be identified by solving an inverse problem. In
this case, if the forward problem is one where the unknown is the pore
water pressure field, the inverse problem implies that some information about
the pore pressure is known, and the unknown is now a set of one or more
uncertain parameters in the model. In order to solve an inverse problem
using a gradient-free optimization strategy, the parametric space must be
explored by solving the forward problem for different parametric values. If
this procedure is based on a full order approach (e.g. FE), the computational
cost may be prohibitive. Hence, in this Chapter, a ROM will be employed to
efficiently solve the inverse problem.

The Reduced Basis method is used to obtain a ROM for the coupled
hydro-mechanical system of equations, as detailed in Section 2.3 of Chapter 2.

Inverse problem solving for parameter identification

Data/Sensor measurements

The problem is based on sensor observations of a measurable quantity related
to the monitored structure or system. In this case, the available sensor
data are measurements of water pressure obtained over a period of time on
different parts of the body of the dam. If N sensors are installed and pressure
measurements are obtained at Nt time instances, then the dataset at hand is
written, 

p̄ᵀ1
p̄ᵀ2
...

p̄ᵀN

 ∈ R
N×Nt , (4.1)

where the overbar and the index indicate that each row corresponds to all
the time history of pressure in one given sensor i ∈ RN and reads, p̄ᵀi �

[p̄1
i , · · · , p̄

Nt
i ] ∈ RNt . We point out for clarity that the previously mentioned

p ∈ RNp
h denotes the solution vector of nodal pressures, while p̄i ∈ RNt denotes

a vector of pressures in time.
Similarly, the pore water pressure as computed numerically by the adopted

model at the point s(i) of the numerical domainΩwhich corresponds to sensor
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i, at Nt time instances reads,

p̂ᵀs(i) � [p̂
1
s(i) , · · · , p̂

Nt
s(i)] ∈ R

Nt . (4.2)

Objective function

As mentioned in Section 4.1, in the past literature, authors who examined the
hydraulic inverse problem, have resorted to objective functions that combine
pressure head data and flow rate data to obtain a unique and stable solution of
the inverse problem [52, 22, 132, 112]. Other authors have concluded that an
objective function based onflow rate andporewater pressures does not provide
better parameter sensitivity than one based on pore water pressure alone [43].
In this work, we argue that the simultaneous identification of parameters ks
and α using pore water pressure data alone is possible, and we propose a
regularized version of the objective function, which takes into account the
physical meaning of the parameters under consideration, and seems to reduce
the effect of multiple local minima that exist in the non-regularized objective
function.

The choice made in this work, to adopt an objective function that is based
solely on water pressure data, is related to the fact that only pressure head data
is available to the author of the present, for the case of a actual embankment
dam (Section 4.4). Besides, pore pressure data is commonly available in the
context of earth-fill dam monitoring.

Both parameters ks and α are related to the conductivity of the 2-phase
medium, that is, they are related to the "ease" with which a particular fluid,
in this case water, is allowed to move through the pores of the particular soil
at hand. In a transient problem, these parameters are related to the pace at
which the phenomenon evolves, meaning, the pace at which a disturbance in
the upstream boundary, such as a change in the upstream water level, reaches
a sensor that is located at a certain distance downstream of the boundary.
With that information in mind, a regularized objective function based on pore
water pressure data is proposed, which reads,

Fobj �

N∑
i�1

©«
Nt∑
j�1

(
p̄j

i − p̂j
s(i)

)2
+ w

Nt∑
j�1

(
Û̄pj

i − Û̂p
j
s(i)

)2ª®¬ , (4.3)

where Û̄pj
i and Û̂p

j
s(i) are the time derivative of the measured pore water pressure

at sensor i and time instance j, and the time derivative of the numerically
computed pressure at point s(i) and time instance j respectively. The weighting
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coefficient w accounts for the differences in magnitude between the two terms.
The time derivative of the measured water pressure at sampling time j is
approximated as,

Û̄pj �
p̄j

i − p̄j−1
i

∆t , (4.4)

where ∆t � tj − tj−1, is the time increment between two subsequent sampling
times. The time derivative of the numerically computed pressure is similarly
evaluated.

The minimization strategy

The minimization algorithm used in the present work is the Differential
Evolution Genetic Algorithm (DEGA), and particularly the SciPy Python
package implementation of the algorithm [107]. Differential Evolution is
a global search technique that does not require a derivative evaluation of
the error function. The optimized function therefore does not need to be
differentiable and it can be evaluated in a black-box procedure, in this case a
FEM or ROM. However, this method often requires a large number of objective
function evaluations, and as a result, in this case, a large number of model
queries.

DEGA is a population-based evolutionary computation, which iteratively
seeks to optimize aproblembymaintaining apopulation of candidate solutions,
while creatingnewcandidate solutions by combining existing ones andkeeping
whichever solution has the best fitness score. The best fitness score is in this case
expressed as the lowest objective function value. The new candidate solutions,
similar to other evolutionary algorithms, are created bymutation and crossover.
The algorithm parameters, like the population size, themutation and crossover
constant must be adjusted to the problem at hand, in order to ensure that the
search covers the entire parametric domain, is not trapped in local minima
and converges as fast as possible. DEGA, similarly to other global search
algorithms, does not guarantee convergence towards the global minimum, but
can generate good quality solutions when implemented properly. DEGA has
been used for back-analysis in geomechanical problems ans is proven to be an
appropriate method for this type of problem [117, 131].
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4.3 Inverse problem based on synthetic sensor data for
a rapid drawdown case

Setup of the problem: Rapid drawdown in the Glen Shira dam

To validate the parameter identification method described in the previous
sections, an application that is based on an existingwater dam is examined. The
inverse problem is solved first using synthetic data, and then using real pore
pressure data from piezometers that were installed in the actual dam. Both
applications, with the synthetic data and the real data, are related to a rapid
drawdown problem. The case has been extensively studied in [91], in which
the authors compare the performance of 4 different models in the description
of the piezometric measurements. The models assume physical hypotheses of
increasing complexity. A pure flow uncoupled model, a coupled elastic model
considering instantaneous drawdown of maximum intensity, followed by pore
water pressure dissipation, a coupled elastic model with gradual drawdown,
and a coupled non-elastic analysis considering a gradual drawdown were
all considered. The term gradual drawdown here indicates that the change
in water level is applied as a time-dependent hydraulic boundary condition
in the upstream slope. The authors found that the data are best described
using a coupled hydro-mechanical analysis and considering a gradual drop of
the upstream water level. The approach that considers an elastic constitutive
model captures well the observed pore water pressures, since it seems that no
plastification occurred during the rapid drawdown.

TheGlen Shira LowerDam is part of a pumping storage scheme inNorthern
Scotland. Themaximumcross sectionof thedamand thepositionof the sensors
that were installed in the dam and recorded the pore pressure measurements
used in Section 4.4 are presented in Figure 4.1. The embankment is made of
a compacted moraine soil and is reinforced with a rockfill shell that covers
the upstream slope. The mechanical and hydraulic parameters used in this
work are the same as the ones in [91] and are listed in Table 4.1. Other details
regarding the construction of the dam and the selection of material properties
are mentioned in [91].

The total water level drawdown that was applied to the Glen Shira Dam
over 4 days was 9.1 m. It was imposed over 4 stages of rapid water lowering,
followed by short stages of constant upstream water level. The changing
water level is shown in Figures 4.3a, 4.3b. The initial condition is obtained
by instantaneously filling up the reservoir up to the initial upstream water
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Figure 4.1: Maximumcross-section of ShiraDam. The positions of piezometers
1 to 5 are indicated. Re-sketched after [91]

level, keeping it stable, and running the transient simulation until right before
steady state conditions have been reached and the computed pore pressures
in the positions of the 5 sensors are as close as possible to the initial registered
sensor measurements.

In this work, only the upstream half of the domain has been modeled, since
the concrete core wall that is shown in Figure 4.1 is practically impervious and
very stiff, such that the displacement and pressure field in the downstream
part can be neglected in the context of the inverse problem. The graded filter
is neglected, as it does not influence the pressure-displacement states of the
dam. Instead, the parts of the mesh that correspond to the graded filter are
assigned the same rockfill material that is considered in the upstream shell.
This assumption is also adopted in [91]. The mesh was created in Gmsh
open-source mesh generating software [38] and is shown in Figure 4.2. Two
subdomains are considered, one representing the rockfill shell and one the
compacted Morainic fill.

The displacement and the water flow are set to zero at the bottom, and at
the right-side boundary, where the concrete wall is assumed. The material
bellow the dam is considered impermeable. The upstreamwater is modeled as
a Dirichlet pressure boundary condition applied on a time dependent part of
the upstream boundary. In the mechanical equilibrium equation a Neumann
condition is introduced accounting for the weight of the water. It is likewise
applied on a time dependent part of the upstream boundary domain. Finally,
a seepage Robin-type condition (Equation (2.13)) is applied in the upstream
boundary.
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Figure 4.2: Finite Element mesh of the upstream part of the 2D cross section
of Shira Dam. The blue part of the domain is assigned rockfill material and
the red part, Morainic fill material.

Problem parametrization

The saturated hydraulic conductivity ks, parameter α, which is related to the
air entry suction of the soil, and the Young’s modulus E are thus chosen for
identification. The hydraulic soil properties ks and α appear in Equations
(2.14) and (2.18). Understanding the hydraulic properties of an unsaturated
soil is an essential requirement for the prediction of pore pressure in a
transient groundwater problem. The use of optimization techniques for the
identification of hydraulic properties is common in the literature, particularly in
the context of agricultural engineering andmainlywith respect to experimental
data [110, 134, 126, 59, 113, 28, 55, 43, 96]. The choice of ks as a parameter
to be identified is rather straightforward, as the uncertainty on hydraulic
conductivity in geotechnical problems and its dependence on the compaction
state of the material is well documented [30, 122, 75].

Often in geotechnics the assumption is made that the water retention curve
is unique for a soil, though it has been shown that it depends on themechanical
state of the soil [80] [79]. The differences are mostly reflected on the parameter
α that is related to the air entry suction of the soil. This parameter has been
shown to feature variability that may stem from physical processes that are
not explicitly described in the model [80, 79, 32, 73]. It is therefore expected to
feature high uncertainty in the context of an earthfill dam, depending on the
initial soil compaction during the construction phase, as well as the loading,
and wetting/drying history during the functioning phase.

Finally, regarding the selection of parameter E, the notion that the me-
chanical coupling affects the rate of pressure diffusion in a rapid drawdown
problem, that has been elaborated in [91], motivated the exploration of inverse
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Property Symbol Units Morraine soil Rockfill

Young’s Modulus E MPa [30, 300] 100

Posson ratio ν - 0.3 0.3

Particle density ρs kg/m3 2.7 × 103 2.7 × 103

Saturated VWC Θs - 0.282 0.4

Residual VWC Θr - 0 0

Parameter α m−1 [0.01, 1] 1

Fitting Parameter m - 0.2 0.4

Saturated hydraulic conductivity ks m/s [10−9 , 10−7] 10−4

Table 4.1: Mechanical and hydraulic parameters used for the analysis of the
Shira Dam. For properties treated as parameters in the inverse analysis, ranges
considered are given in [ ]

identification of a mechanical property based on pressure sensor data. Besides,
E is a parameter worth exploring in the context of earthfill dams. Even though
its influence in a seepage problem such as the one treated, is expected to
be small, it is shown that in certain problems in geomechanics, significant
uncertainties may stem from the mechanical properties [129, 95, 84].

The ranges in which parameters ks, α and E take values are selected such
that they represent realistic orders of magnitude for the respective properties
for a relatively impervious soil material used in the body of an earthfill dam.
The values resulted form a review of various references studying earthfill
dams [36, 91, 97, 27, 121, 131].

Synthetic data generation

Studying the synthetic problem allows the assessment of the minimization
strategy, as well as the minimized objective function, without the complexity
introduced by uncertainties that exist in a real-life problem. In geotechnical
problems uncertainty may be related to various sources: inherent variability of
the soil mass due to unpredictable geomechanical processes that continuously
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modify the soil in situ [84]; measurement errors; insufficient site investigation;
poor capacity of the selected physical models to describe real processes; and
transformation uncertainty, often introduced when laboratory measurements
are transformed to the sought-after parameter using empirical models [89].

In this section, an application based on synthetic data is first developed.
The goals of this section are to show that the ROM is an appropriate surrogate
for FEM for inverse problem solving (Section 4.3), and that the proposed
objective function is a good choice for tackling the problem (Section 4.3). The
pore pressure data is computed with the ROM that is described in Section 2.3,
or using the full order FE model, without any numerical noise introduced to
the data. In Figure 4.3a the synthetically computed pressure heads in the 5
virtual sensors are shown, as well as the upstream water level as it fluctuates
during the water drawdown event. The data that is plotted, is computed with
the ROM described in Section 2.3. However, in some cases in the following,
in order to examine the ROM’s accuracy, the objective function evaluation is
performed with ROM, but the synthetic sensor data are computed with the FE
model. These are not shown here, but since the error between the results of
the two models is very small, as will be shown in Section 4.3, the difference
between that data is not clearly visible in a plot. The data is computed using
the parametric values mentioned in Table 4.1, and ks � 1.6 × 10−8m/s, and
α � 0.2m−1, which are the values used in the coupled analysis run for the
Shira dam in [91].

In Figure 4.3b the water pressure head data as registered in the actual
sensors of the Shira dam are shown. This data will be used in Section 4.4.

Implementation

The mesh that is shown in Figure 4.2 yields a problem with 286 degrees of
freedom for the description of the pressure field and 2160 for the description
of the displacement field. As explained in Section 2.3, setting up a ROM
that seeks an approximate solution of a system of equations, requires a pre-
process stage, or an offline stage, where snapshots that correspond to various
parametric values in the feasible space, are collected and processed. In this
case the transient pressure and displacement fields were evaluated for 125 sets
of ks, α and E parameters, that correspond to the combinations of 5 ks values,
equidistantly spaced in a 10-logarithmic scale, 5 similarly selected values of α
and 5 for E.

As explained in Section 2.3, SVD is applied to the snapshot matrices in
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(a)

(b)

Figure 4.3: Water level during the drawdown event, and sensor data used
in the parameter identification problems of this work. 4.3a. Synthetic data
computed by a ROM, during a rapid water drawdown event, on points that
correspond to the 5 Piezometers shown in Figure 4.1. 4.3b. Real data registered
in Shira Dam during a rapid water drawdown event, in 5 the Piezometers,
and upstream water level during the event. The y-axis represents pressure
head for the 5 curves labeled as Piezometer 1,2,3,4,5 and water level for the
last curve. The reference level is specified in Figure 4.1.
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order to obtain orthonormalized basis vectors for the space that is spanned
by the snapshots and their corresponding singular values σi. The few vectors
that correspond to the largest singular values are kept, according to,

log10(
σi
σ1
) > tol, (4.5)

where σ1 is the largest singular value and tol is a tolerance decided based on
the level of accuracy that is required in the investigated problem. In this case,
tol � −4 was selected, since a relative error between the approximate solution
of ROM and the high-fidelity FEM solution smaller than 10−4 is not necessary
when dealing with quantities such as water pressure and displacement. This
process lead to two Reduced Bases of 40 and 59 basis vectors for displacement
and water pressure respectively. To examine the accuracy of the created ROM,
some simulations were conducted for parametric values that were not sampled
in the offline stage (i.e. that were not in the snapshots). The relative error in
the displacement and pressure fields, as seen in Figure 4.4, is in the order of
magnitude of 10−3, which is considered an acceptable level of accuracy for this
application. The error is estimated as in Equation (3.19).

It appears that an offline stage with only 125 problem solutions yields a
Reduced Basis in which an adequately accurate approximation can be sought
for, for any value in the entire multidimensional parametric domain. This
cost is very small compared to the multiple hundreds, or even thousands
of objective function evaluations - where each evaluation translates into a
transient problem solution - that can be required for parameter identification
with back analysis.

Many simulations of this problem have been conducted, in the context of
the validation of the ROM accuracy, inverse problem solving, and visualization
of the objective function for different parametric values. Overall, the ROM
is 3-4 times faster than the FE model. This is a significant efficiency boost
even though the problem at hand is 2D and remains rather small since the
FEM discretization used yields a rather small number of unknowns even
for the full-order case. In engineering practice, such small problems are not
common. As shown by the authors in [77], the efficiency gains of a ROM for
the hydro-mechanical problem become even more prominent for problems
with more unknowns of the full-order problem.
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Figure 4.4: 4.4a Relative error ROM-FEM in the displacement field for various
parameter values. 4.4b Relative error ROM-FEM in the pressure field for
various parameter values
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Study of the objective function and its sensitivity to the parameters

In order to study the performance of the regularized objective function some
3D surface plots of the function in the parametric search space are now
shown. In the following, the two terms of the objective function (4.3) are
referenced as terms A and B, and their contributions to the objective function
are plotted separately as well as combined in order to visualize the effect of
the regularization. Both terms therefore read,

A �

N∑
i�1

Nt∑
j�1

(
p̄j

i − p̂j
s(i)

)2
, (4.6)

B � w
N∑

i�1

Nt∑
j�1

(
Û̄pj

i − Û̂p
j
s(i)

)2
, (4.7)

Fobj � A + B. (4.8)

It is difficult to visualize the objective function with respect to all three
parameters under consideration at once. In order to study the sensitivity of the
objective function two problems were studied separately -the simultaneous
variation of the two hydraulic parameters ks and α while E is kept fixed, and
the variation of ks and E while α is kept fixed. In this Section, the weighting
factor is set to w � 50.

Parameters ks and α

In the following, parameter E is fixed to 100 MPa which is the value that was
used in [91]. Parameters ks and α take values within the ranges mentioned in
Table 4.1.

In Figure 4.5, the shape of an exclusively pressure-based objective function
canbevisualized. It is clear that even though this problemhas aunique solution
that minimizes the squared differences between observed and calculated data,
there are many local minima in the function. These minima do not appear in
Figure 4.6, where the contribution of the B term has been plotted. In Figure
4.7, where the regularized objective function is plotted, the local minima are
noticeable, though they are much weaker than in Figure 4.5. In Figure 4.8, both
contributions and their sum are plotted in the same graph for comparison.
The surface representing the objective function, that is, the summation of both
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(a) View: Term A vs. ks

(b) View: Term A vs. α

Figure 4.5: Response surface of term A for different values of ks and α
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(a) View: Term B vs. ks

(b) View: Term B vs. α

Figure 4.6: Response surface of term B for different values of ks and α
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terms A and B, displays, as expected a sharper drop around the minimum
value compared to the function accounting only for pressure differences.

These surface plots indicate that both terms A, B and their summation Fobj,
are more sensitive to variations in ks and less so to variations in α. This can be
deduced by observing the steep slope of the function around the optimum ks
and the flat "valley" around the true value of α. Another observation relates to
the fact that the objective function seems to have a steeper increase toward the
smaller conductivity values than in the direction of larger ks values. Those
results are in accordance with [59].

The existence of local optima in an objective function can lead to a con-
vergence to a false solution, or delay the convergence to the global minimum,
even if a global search algorithm is used, such as a evolutionary algorithm. By
adjusting the weighting factor w, the influence of the regularizing term can be
tuned, depending on the chosen optimization strategy. For example, when
using an evolutionary algorithm, such as the widely used Genetic Algorithms
and the DEGA which is used in this work, an objective function with less
local minima, allows the use of a smaller mutation rate, which can speed up
the convergence process. In this work, the factor w was selected such that
the values of the two terms of the objective function are of the same order
of magnitude. This value differs depending on the specific problem under
scrutiny, the sensing frequency, and the number of sensors used.

In order to validate the adequacy of the ROM in terms of accuracy when
it is used in an inverse problem some response surface plots are shown, that
illustrate the magnitude of the error introduced by the ROMwith respect to
an FE model. This is critical in the problem that is under investigation, in
which the evaluation of an objective function formulated as in (4.8) implies the
computation of a norm of differences over time, and thus, the time integration
of the pressure solutions that feature some error with respect to FEM. In Figure
4.9 the response surfaces of the objective function (4.8) for the cases where
both the model response and the data were computed with ROM, the model
response and the data were computed with a FE model, and the data was
generated with a FE model while the model response was computed using a
ROM.

The three surfaces are practically identical, with discrepancies that are
smaller than the order of magnitude of the objective function values. This is an
indication that the accuracy obtained with a ROM is adequate for a parameter
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(a) View: Fobj vs. ks

(b) View: Fobj vs. α

Figure 4.7: Response surface of the regularized objective function Fobj for
different values of ks and α
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Figure 4.8: Values of the contributions A and B and the total Fobj for different
values of the parameters ks and α

Figure 4.9: Response surface of the objective function (4.8) for synthetic data
generated with ROM or FEM and model responses computed with ROM or
FEM
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identification problem.

Parameters ks and E

In the following, parameter α is fixed to 0.2 m−1, which is the value that was
used in [91]. Parameters ks and E take values within the ranges mentioned in
Table 4.1.

It is not uncommon in geotechnics to consider the mechanical and the
hydraulic problems separately, and ignore the coupling effect, though the
availability of commercial numerical tools that consider the HM coupling
tends to eliminate this practice in recent years. In the case of rapid drawdown,
using an uncoupled pure flow analysis is equivalent to the assumption of
an incompressible soil skeleton. As argued in [91], this is not a realistic
assumption for the Shira Dam. Changes in the stress state of the dam, due
to the mechanical un-loading of the upstream boundary as the water level
drops, are expected to affect the consolidation process, that is, the rate at
which the pore pressure diffuses. Hence, the soil stiffness is expected to have
an effect on the pressure drop recorded by piezometers 1-5, or, in other words,
the inference of the Young’s Modulus E, based on the pressure sensor data,
may be possible, provided that the soil is not stiff enough to be considered
incompressible.

To test this effect, the response surface of the objective function for varying
parameters ks and E is visualized in Figures 4.10 - 4.12. For this study, the
synthetic data was computed using the ROM described in Section 2.3 for
values ks � 1.6 × 10−8 m/s and E � 100 MPa.

The sensitivity of the objective function is once again significantly larger
for ks than for the other parameter E. The pressure-based term of the function
is rather flat around the target value (Figure 4.10). The regularizing pressure
derivative term seems to be steeper around the target value (Figure 4.11) which
implies higher sensitivity. The contribution of Term B leads to a steeper Fobj
(Figure 4.12b) and this effect can be magnified by adjusting the weighting
factor in Equation (4.8), so as to enhance the influence of Term B. Overall, this
problem does not seem to suffer from multiple local minima.
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(a) View: Term A vs. ks

(b) View: Term A vs. α

Figure 4.10: Response surface of term A for different values of ks and E



106 Chapter 4. Parametric inference via inverse problem solving

(a) View: Term B vs. ks

(b) View: Term B vs. E

Figure 4.11: Response surface of term B for different values of ks and E
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(a) View: Fobj vs. ks

(b) View: Fobj vs. E

Figure 4.12: Response surface of the regularized objective function Fobj for
different values of ks and E
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ks (m/s) α (m−1) E (MPa)
Minimization

time (days)

Number of

evaluations
Final Fobj

Inv. ks , α 1.6 × 10−8 0.2 100 1.33 1722 0.10

Inv. ks , E 1.6 × 10−8 0.2 100 1.22 1593 0.043

Inv. ks , α, E 1.6 × 10−8 0.2 100 2.84 2572 0.49

Table 4.2: Identified parametric values based on synthetic sensor data for
Shira Dam generated by the full-order FE model. The model response was
estimated using ROM

Parameters ks and α and E

Finally, DEGA was used to infer the target values ks � 1.6 × 10−8 m/s,
α − 0.2 m−1 and E � 100 MPa. For the cases in which two of the three
parameters are sought for, the third is fixed to the corresponding target value.
The model response is calculated with ROM and the synthetic data is created
with FEM. In Table 4.2, the results of the objective function minimization
procedure are presented. In the last column the final value of the minimized
objective function is given when the process is stopped.

The minimization procedure was stopped after 50 generations. In all 3
cases, the target values were obtained. The results do not correspond to the
precise parametric values that were used for the generation of the data, but
rounding off the resulting values log10(ks), log10(α), E to the second decimal
place, the values presented in Table 4.2 are obtained, that are virtually identical
to the target values.

4.4 Inverse problem based on actual sensor data

In Section 4.3 the inverse identification problem was examined without
considering the effect of measurement noise and ignoring the modeling error,
that is, the error that is attributed to physical processes that affect the real-
life problem, but are not considered in the physical model used. In this
Section, a problem based on real data is solved to verify the feasibility of



4.4. Inverse problem based on actual sensor data 109

soil hydraulic and mechanical characterization by the regularized objective
function optimization based on pressure sensor data.

Sensor measurements from drawdown in the Glen Shira dam

Five porous stone piezometer disks, previously calibrated against mercury
columns, were located in the places shown in Figure 4.1. The authors conclude
in their paper [91] that the possibility of instrumental error is of minor order
and can be neglected. The observations are shown in Figure 4.3b.

Results

In this Section the inverse problemof simultaneous identification of parameters
ks, α and E, and the problems of identification of parameter pairs ks-α, and
ks-E that were studied in Section 4.3 are solved, and the results are listed and
commented. The inversions are based on the actual sensor pressure data that
were recorded in Shira Dam during a drawdown incident.

The problem is solved multiple times to verify the capacity of the method
to provide a stable solution. The procedure is repeated 3 times for each
combination of parameters, using the regularized objective function Fobj �
A + B that accounts for squared differences between computed and evaluated
pressures and pressure derivatives, using a weighting factor w � 1. For all
inversions, the ROM is used to evaluate the model response.

The outcomes of all inversions are reported in Tables 4.3 - 4.5. The
number of objective function evaluations and the total time required for the
optimization algorithm to converge are also reported. Finally, in the last
column of Tables 4.3 - 4.5, the final value of the minimized objective function
is listed. The final value of Fobj gives an insight on the quality of the achieved
fit, as a smaller final objective function value indicates a better fit.

For the inversions listed in Table 4.4, the Young’s modulus E is fixed to the
value of 100 MPa. For the inversions listed in Table 4.5, the Young’s modulus
α is fixed to the value of 0.2 m−1 .

The results seem to indicate that the three real data-based problems have
unique solutions. The optimization method does not converge to identical
values all 3 times that a problem is solved, but provides sets of realistic
solutions that adequately characterize the soil, and feature small discrepancies
among them. Moreover, the final fit obtained by the 4 repetitions of each
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ks (m/s) α (m−1) E (MPa)
Minimization

time (days)

Number of

evaluations
Final Fobj

Inv. with ROM 2.01 × 10−8 0.294 33.30 0.89 971 39.19

Inv. with ROM 1.99 × 10−8 0.313 38.22 0.78 891 39.22

Inv. with ROM 2.00 × 10−8 0.315 30.71 0.97 1150 39.22

Inv. with FEM 1.99 × 10−8 0.245 31.60 1.74 1002 39.19

Table 4.3: Identified parametric values for all 3 parameters ks, α and E based
on actual sensor data recorded during a drawdown in Shira Dam. Results
are obtained implementing the inversion methodology 4 times; 3 times using
ROM to compute the model response and 1 time using FEM.

ks (m/s) α (m−1)
Minimization

time (days)

Number of

evaluations
Final Fobj

Inv. with ROM 6.95 × 10−9 0.083 0.37 366 40.10

Inv. with ROM 6.79 × 10−9 0.081 0.40 396 40.09

Inv. with ROM 6.69 × 10−9 0.078 0.23 243 40.10

Inversion with FEM 2.88 × 10−9 0.033 1.47 390 42.72

Table 4.4: Identified parametric values for parameters ks and α based on
actual sensor data recorded during a drawdown in Shira Dam. Results are
obtained implementing the inversion methodology 4 times; 3 times using
ROM to compute the model response and 1 time using FEM.

problem, expressed by the value of the minimized objective function, is stable
for each problem.

Among the 3 different problems, the inferred parameters feature notable
discrepancies but small differences in terms of how well they fit the data.
The obtained values are also different to the ones that are used in [91],
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ks (m/s) E (MPa)
Minimization

time (days)

Number of

evaluations
Final Fobj

Inv. with ROM 1.70 × 10−8 38.27 0.56 528 39.37

Inv. with ROM 1.57 × 10−8 39.91 0.67 636 39.33

Inv. with ROM 1.57 × 10−8 41.38 0.40 378 39.33

Inv. with FEM 1.57 × 10−8 43.28 0.55 354 39.37

Table 4.5: Identified parametric values for parameters ks and E based on
actual sensor data recorded during a drawdown in Shira Dam. Results are
obtained implementing the inversion methodology 4 times; 3 times using
ROM to compute the model response and 1 time using FEM.

ks � 1.6 ∗ 10−8 m/s, α � 0.2 m−1 and E � 100 MPa. It is worth noting here
that the values used in [91] were determined based on a combination of
information given by [86] and the use of empirical methods for characterizing
the water-retention curve of a soil. Regarding ks, the value used in [91] is
based on values that were given in [86], and were obtained by laboratory
experiments on compacted specimens. Two values were mentioned by [86],
1.6× 10−8 m/s when the specimen is compacted at optimumwater content and
1.6 × 10−7 m/s when compacted wet of optimum. The first value was selected
for the numerical analysis in [91], as the dry density reached in the field
(19.8 kN/m3) is higher than the optimum laboratory compaction (19.3 kN/m3),
which leads to a reduction in permeability.

The evaluation of parameter α was based on a simplified empirical proce-
dure that makes use of the grain size distribution, that were published in [86],
to derive a water retention curve for the Moraine soil. Parameters α and m
are then inferred by fitting the van Genuchten expression (2.14) to the derived
water retention curve. Finally the Young’s modulus E value, was selected
by the authors of [91] as a realistic value for this type of soil. It is therefore
not unjustified to expect some uncertainty in the selected values, that was,
however, not relevant to the scope of [91].

The pressure heads as computed using the ROM and the identified para-
metric values are plotted in Figures 4.13a-4.11e. The solutions that correspond
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ks (m/s) α (m−1)
Minimization

time (days)

Number of

evaluations
Final Fobj

Inv. with FEM 4.89 × 10−10 0.010 0.51 705 40.48

Table 4.6: Identified parametric values for hydraulic parameters based on
actual sensor data recorded during a drawdown in Shira Dam. Results are
obtained using a pure hydraulic analysis and an FE model to compute the
model response.

to each problem are plotted with a different color. The observed sensor
pressure heads are also shown in the plots. It seems that the pressure head
values predicted at each sensor are similar for any set of solutions among the
ones obtained by the inversion.

It seems that in the case where all 3 parameters are solved for, a better
fit is obtained, that is, the final value of the objective function is smaller for
these inversions. This indicates that even in a problem like rapid water level
drawdown, where the changes are mostly expected to affect the pressure field,
the value of the mechanical parameter E is reflected on the water pressure
measurements. Even in problems that are often treated as purely hydraulic,
the effect of the mechanical coupling in soil should not be neglected.This
idea is also was argued in [91], where the coupled analysis is shown to better
describe the pressure head measurements, even though a rather stiff soil is
assumed.

To explore this issue further, the hydraulic parameters ks and α were
identified using pure hydraulic flow analysis. The motivation for this study
is to determine whether a good fit and realistic parametric values can be
obtained with a mere hydraulic analysis. The search was performed initially
in the parametric domains that were used before, that is, ks ∈ [10−9 , 10−7]m/s,
α ∈ [0.01, 1]m−1. With this search range, the obtained value for ks was 10−9, so
the smallest acceptable value. Eventually the search range for ks was extended
to [10−10 , 10−7]m/s and the minimization was run again. The result is given in
Table 4.6 and shown in Figures 4.13a-4.11e. It turns out that the resulting fit is
similar to the results of previous problems using coupled analysis. However
the obtained parameters are orders of magnitude apart from the ones reported



4.4. Inverse problem based on actual sensor data 113

by [86] and [91]. Particularly, regarding ks, the obtained value by hydraulic
inverse modeling is more than one order of magnitude smaller than the
smallest hydraulic conductivity value measured experimentally.

Despite the fact that the method was shown to be effective in a synthetic
problem in Section 4.3, the results obtained for the real-data problem, even
though realistic in terms of soil characterization, lead to pressure head solutions
that are different to the pressure head sensor observations to a notable degree.
There is a discrepancy between the computed and the measured data that
does not seem to decrease significantly for any combination of parameters,
especially for sensors 1 and 4.

This discrepancymay be related to uncertainties in other parametric values,
that are not being identified, or it could be related to the insufficiency of the
model in describing all relevant physical phenomena to the problem. For
example, in this model, single values are given to the properties of theMoraine
soil and the rockfill material. Soil is a highly heterogeneous material, and
neglecting this heterogeneity could lead to false results. Moreover, the elastic
model employed for the constitutive modeling of soil may be unrealistic.
As explained in [71], the exiestence of a unique and stable solution to an
inverse problem of soil characterization does not guarantee the accuracy of
the obtained parametric values.

Regardless of the proximity of the identified values to the "true" values of
the soil properties, the use of ROM in coupled hydro-mechanical problems
is shown to be a valuable tool for exploring groundwater flow problems
with back-analysis. The use of ROM significantly reduces the duration of
the optimization process, even for a relatively small high-fidelity problem,
while yielding accurate results and has a relatively small pre-processing offline
cost. Particularly, the ROM seems to yield a more pronounced speedup of
the precess in the case where parameters ks and α are sought for, while E is
kept fixed to 100 MPa. This might be related to slower convergence of the
linearization iterative scheme (Picard scheme) for higher values of the Young’s
modulus combined with small values for ks and α when the FE problem is
solved. In the other two problems, where E is inferred, less solutions are
computed for high E values, as these yield a large objective function value, that
is, a low fitness. By consequence, as the optimization algorithm progresses,
the individuals that correspond to high E values comprise a smaller part of the
population. The efficiency gains are expected to be even higher when applied
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(a) Pressure heads measured and computed on Piezometer 1

(b) Pressure heads measured and computed on Piezometer 2
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(c) Pressure heads measured and computed on Piezometer 3

(d) Pressure heads measured and computed on Piezometer 4
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(e) Pressure heads measured and computed on Piezometer 5

Figure 4.11: Pressure heads measured by the piezometers in the Glen
Shira dam, and numerically evaluated using the parametric values obtained
by the inverse process. Green color: Simultaneous identification of all 3
parameters. Black color: Simultaneous identification of ks and α. Magenta
color: Simultaneous identification of ks and α. Blue color: Simultaneous
identification of ks and α based on pure hydraulic analysis.

to larger problems [77].

4.5 Conclusions and discussion

In this study the Reduced Basis method was used to obtain approximate solu-
tions to the parametrized coupled hydro-mechanical problem of groundwater
flow through soil, with enhanced computational efficiency. The obtained ROM
was used in inverse problem solving for mechanical and hydraulic parameter
identification by objective function minimization. It is shown that the ROM
yields an adequate level of accuracy for use in inverse problem solving and
that it speeds up the process significantly. The uniqueness of the problems
solution is also examined, especially regarding the simultaneous identification
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of hydraulic parameters ks and α, as the literature indicates that the problem
may suffer from ill-posedness. The study of an example based on synthetically
generated data, for a problem of rapid drawdown there is in fact a unique
solution in the simultaneous identification of both parameters ks and α. An
objective function based on pore water pressure features multiple local minima
but one single global minimum. A regularization is proposed using the norm
of the time derivatives of the pressure. This method seems to reduce the
effect of local minima in the synthetic problem. When the objective function is
tested for the problem of ks and E inference, the regularizing term seems to
increase the objective functions sensitivity with respect to the parameters. It is
worth noting though, that the weighting factor must be tuned to each solved
problem, so that the two terms of the objective function are of comparable
magnitude.

Identification of parameters ks, α and E is also attempted based on actual
pressure head sensor data recorded during a rapid drawdown event in Shira
dam. The identification yields realistic values for the parameters that seem to
result to pressure head predictions that adequately describe the recorded data.
The discrepancy between the data and the prediction is thought to be related
to the adopted physical model rather than the inversion method.

It is worth mentioning here that in this Chapter, no hyper-reduction
methods were used. The DEIM and LDEIM methods described in Chapter
3 were not employed in this case, because as the author of this work noted,
they do not yield increased efficiency but do result to reduced accuracy.
That is, in this case, where a rapid drawdown problem is studied, the pore
pressure states of the dam vary significantly and rapidly, as the phreatic line
fluctuates. Therefore, the FE operators take highly variable values. A POD
basis containing information that corresponds to this large range of pressure
states is rather large, and consequently, results to a ROM that requires visiting a
large number of elements in order to be assembled online. In this case however,
as seen in Figure 4.2 the full FE mesh is not particularly dense and results to
a relatively small number of degrees of freedom. Therefore, employing the
DEIM and/or LDEIM methods result to a model with smaller accuracy, that
is not significantly faster to solve than a ROM based merely on the Reduced
Basis method. This is a limitation of the hyper-reduction methods, that is
however strongly related to the particular problem that is treated.

There is a very wide range of topics related to pressure-based parameter
identification in groundwater flow through unsaturated soil that may be
studied in the future. Regarding Model Order Reduction, other methods,
besides the ones studied in this thesis, may be explored to tackle the nonlinear
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problem.
Regarding the issue of inverse problem solving, the effect of number and

location of the sensors on the quality of the solution may be examined, as well
as the quantification of the requirements for a problem to be well-defined, in
terms of number and duration of observations, and the type and magnitude
of the variation in pressure and suction registered.
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5.1 Summary of conclusions

This thesis has dealt with developing Model Order Reduction strategies for
parametric hydro-mechanical problems in poroelastic materials with partial
saturation. The objective here is to create highly efficient ROMs, that can serve
as surrogatemodels to the expensive FEmodels, andprovide accurate solutions
fast enough such that many-query applications like parameter identification
through data assimilation are enabled. Moreover, it is also within the scope
of the thesis to test the developed ROMs in applications of inverse problem
solving. The research questions and objectives that are stated in Chapter
1 have been sufficiently answered, and the findings of this work have been
demonstrated in numerical examples. Themain results and conclusions drawn
from this work are summarized below.

The adopted strategy for Model Order Reduction employs POD-based
methods for solution space reduction and system space reduction (or hyper-
reduction). The Reduced Basis method was used for the former, solving a
parametric problem featuring the mechanical loading of an embankment dam
in 2D and 3D. At this stage, no hyper-reduction was applied. The problem
was solved with ROM up to 15 times faster than with FEM. It was shown that
the gain in efficiency using ROM was higher in the 3D case than in the 2D
case, that is, the speedup scales with increasing problem size. Meanwhile, the
accuracy of the results with respect to FE results was always kept high, with a
relative error in the order of magnitude of 10−4.

The POD-based reduction methodology was then further extended to
techniques that specifically aim at treating the nonlinear terms in the prob-
lem, like DEIM, and its localized version LDEIM. Introducing system space
reduction significantly enhanced the computational efficiency achieved with
ROMs. DEIM and LDEIM, in combination with RB were implemented and
the resulting models were compared. It was shown that the 3D parametric
problem of mechanically coupled water flow through soil can be solved ap-
proximately 10 to 70 times faster than with FEM. Again, the computational
savings were shown to scale with initial problem size. The method was tested
on parametric problems with one and three parameters, and its performance
remained similar. The global and the localized DEIMwere shown to result into
similarly performing models, with LDEIM yielding somewhat faster solvers.
The created ROMs accuracy remained within acceptable levels in the order
of magnitude of 10−4, unless the selected POD bases for nonlinear function
approximation were too small, in which case a large error was produced, and
the convergence was lost.
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The final contribution of this thesis is an approach to parameter identifi-
cation based on pore pressure sensor data from embankment dams. Inverse
problem solving via objective function minimization was explored, for the
simultaneous identification of 3 parameters, hydraulic and mechanical soil
properties. A rapid upstream water level drawdown problem was examined,
and the inverse problem was solved both with synthetically generated sensor
data, and with real observed data from a water dam. A ROM was used for
model evaluation in the function minimization process. The objective function
that was adopted is based on the squared differences between measured
and observed water pressures, and includes a regularization term based
on the time derivative of the pressures. The objective function without a
regularization term features multiple local minima and is rather flat around
the global minimum. Adding the regularization term results to a sharper
function around the global minimum and reduces the number of local minima.
Moreover, it was shown that using a ROM for model evaluation significantly
accelerates the minimization process, and does not affect the inverse problem
solution. Overall, POD-based surrogates are found to be an appropriate tool
for performing parameter identification via objective function optimization.

A synthesis of the conclusions drawn from all three contributions in this
study may be summarized in the following points answering the identified
research questions

• The Reduced Basis method for model order reduction yields accurate
results. The cost of the offline stage is marginal compared to the
computational savings that can be achieved in the context of many query
problems, due to the fact that only a few snapshots are required to obtain
an accurate basis. This holds true even when the parametric domain is
of higher dimension.

• Hyper-reduction with DEIM or LDEIM for hydro-mechanical problems
with nonlinearities related to the partially saturated state of the soil can
significantly enhance the computational efficiency of the model by reduc-
ing the cost of assembling FE operators affected by nonlinearity. If large
enough POD bases are used for the nonlinear function approximation,
the scheme yields results that are as accurate as the ones achieved by
assembling the full operators.

• Introducing DEIM or LDEIM to the problem implies a more expensive
offline stage. A denser sampling is required to obtain DEIM approxima-
tions that result into accurate results. However, depending on the type
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of application for which the ROM might be used, the computational
savings achieved by the implementation of DEIM in the online stage
render it an advantageous strategy despite the expensive offline stage.

• The computational savings obtained by applying RB, DEIM and LDEIM
all scale with the size of the treated full-order problem.

• POD-based ROMs are a suitable option for inverse problem solving for
parameter identification. Using a ROM as a surrogate to FEM yields
accurate results and accelerates the process.

It is worth noting here, that all results that have been reported in this thesis
may be highly-problem dependent. Even though the implementation of the
presented methods on illustrative examples indicate the order of magnitude
of the possible computational savings, those results depend on the complexity
of a particular problem and may be more or less favorable when applied to
different cases. The same holds true in parameter identification via inverse
problem solving, as it has been mentioned in Chapter 4

5.2 Future Developments

The work presented in this thesis, has fulfilled the project objectives and
provided an answer to the main research questions posed. In the course of the
thesis, various possibilities for future work and extensions of the examined
material have become clear. Some of the issues that may be investigated as a
continuation of this work are listed below:

• Physical model: In this study the soil is considered to behave according
to a linear elastic constitutive law. This assumption was adopted in an
effort to approach a simpler version of the problem. The intention was to
develop a ROM that efficiently treats the nonlinearities that arise due to
partial saturation of the soil, ignoring at this stage the nonlinearities that
may arise due to a non-elastic constitutive model for the soil. However,
thismayquickly become anunrealistic assumption for soil in geotechnical
applications. There is extensive literature on the mechanical behavior of
soils, and non-elastic models have been proposed, that consider many of
the complex physical phenomena that govern the behavior of this highly
heterogeneous, multiphase material [33, 2, 34, 105]. Studying Model
Order Reduction for the coupled hydro-mechanical problem considering
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a more involved constitutive model remains an interesting topic to be
studied.

• Hyper-reduction: As explained in Chapter 1 and 3, various methods
have beendeveloped in order to efficiently treat nonlinear problems in the
context of Model Order Reduction. In this work DEIM was examined,
and found to yield significant computational savings. Studying the
advantages of other methods, like TPWL, and comparing the results in
terms of accuracy and efficiency may be an interesting field for future
investigation.

• Inverse problem solving is a wide topic that was only partially treated
in this work. The main goal of the work was to identify whether
POD-based ROMs can be used as surrogates for this type of problem.
However, many aspects of inverse problem solving remain open for
investigation. Possible topics to be explored are the conditions required
for the inverse problem to be well posed, like the number of spatial and
temporal observations required, the type of measurement that is most
informative (pressure, suction, displacement, variability in the measured
quantity), and the optimal placement of the sensors. Similar tasks have
been undertaken by the authors of [71] regarding water flow problems
through soil in general, by the authors of [128, 124], for hydro-mechanical
inverse problems in a probabilistic context. Exploring the issue in the
specific context of deterministic model calibration via optimization in
embankment dams, may yield interesting results.

• Artificial Neural Networks for efficient objective function evaluation:
POD-based Model Order Reduction was found to yield significant
computational savings in the context of parameter identification via
objective function minimization. However, the ROMs that have been
studied in the present have achieved significant speedup, but not a
real-time response. In the context of Digital Twins and IoT technologies,
solving a many-query problem in real-time is essential, as it enables
fast decision-making, informed by quickly obtained what-if scenarios
and optimization applications. To achieve an efficient model response,
various authors have used Neural Network technologies to replace the
forward FE model [27, 90, 112]. The training of an Artificial Neural
Network (ANN) however, is in itself a computationally expensive process
that requires a large number of forward-model evaluations. It may
be worth investigating in the future, the possibility to use a ROM
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as a surrogate model in the training of ANNs to reduce the overall
computational effort. Besides, it was shown in this work that a rather
small offline stage is required to create an accurate ROM, at least as
far as the solution space approximation is concerned. Moreover, the
full-order function evaluations that are required for the offline stage
in the creation of a ROM can serve as training data sets for the ANN.
After the completion of the offline stage, more training data sets can
be generated using a ROM. It may be worth exploring if a combination
of ROM and ANN technologies can yield a computationally optimal
scheme for real-time model evaluation.

• Probabilistic approach to data assimilation: As discussed in Chap-
ter 4, the problem of parameter identification in water flow through
porous material, is often approached in a probabilistic manner in the
literature. These methods allow for more flexibility in accounting
for the spatial variability in soil properties [95, 84, 118, 85]. It would
be interesting to approach parameter identification in the context of
embankment dam monitoring using stochastic methods (Maximum like-
lihood [63], Bayesian updating [53, 84, 128, 125], Kalman filter [123, 118])
and POD-based surrogate models, in order to compare the advantages
and disadvantages that the two approaches involve for geotechnical
applications.

• Using ROM in other many-query applications in embankment dam
optimization and monitoring: In this work ROMwas investigated for
parameter identification, but in the context of Digital Twins, other many-
query problems related to the optimization of an embankment dam
design and functioning may be pertinent. Specifically for tailings dams,
determining maximum allowed level raise rate, or impounding rate
within safety-imposed limitations are examples of problems that can be
solved with optimization approaches and require high computational
efficiency. Moreover, ROM may be employed to efficiently treat geo-
metrical uncertainty [133, 4, 104] in tailings dams. Parametric problems
with geometric parameters may be defined to describe the uncertainty
in the location of zones of different materials in the impoundment of the
dam, or the uncertainty that relates to deformations in parts of the struc-
ture where sensor observations are not available. Besides, approaching
problems that involve geometric parameters with ROMmay enable the
solution of design optimization problems, at all stages of the life cycle of
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these ever-evolving structures.
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