20,762 research outputs found

    Using a logical model to predict the growth of yeast

    Get PDF
    BACKGROUND: A logical model of the known metabolic processes in S. cerevisiae was constructed from iFF708, an existing Flux Balance Analysis (FBA) model, and augmented with information from the KEGG online pathway database. The use of predicate logic as the knowledge representation for modelling enables an explicit representation of the structure of the metabolic network, and enables logical inference techniques to be used for model identification/improvement. RESULTS: Compared to the FBA model, the logical model has information on an additional 263 putative genes and 247 additional reactions. The correctness of this model was evaluated by comparison with iND750 (an updated FBA model closely related to iFF708) by evaluating the performance of both models on predicting empirical minimal medium growth data/essential gene listings. CONCLUSION: ROC analysis and other statistical studies revealed that use of the simpler logical form and larger coverage results in no significant degradation of performance compared to iND750

    Using a logical model to predict the growth of yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A logical model of the known metabolic processes in <it>S. cerevisiae </it>was constructed from iFF708, an existing Flux Balance Analysis (FBA) model, and augmented with information from the KEGG online pathway database. The use of predicate logic as the knowledge representation for modelling enables an explicit representation of the structure of the metabolic network, and enables logical inference techniques to be used for model identification/improvement.</p> <p>Results</p> <p>Compared to the FBA model, the logical model has information on an additional 263 putative genes and 247 additional reactions. The correctness of this model was evaluated by comparison with iND750 (an updated FBA model closely related to iFF708) by evaluating the performance of both models on predicting empirical minimal medium growth data/essential gene listings.</p> <p>Conclusion</p> <p>ROC analysis and other statistical studies revealed that use of the simpler logical form and larger coverage results in no significant degradation of performance compared to iND750.</p

    LGEM+^\text{+}: a first-order logic framework for automated improvement of metabolic network models through abduction

    Full text link
    Scientific discovery in biology is difficult due to the complexity of the systems involved and the expense of obtaining high quality experimental data. Automated techniques are a promising way to make scientific discoveries at the scale and pace required to model large biological systems. A key problem for 21st century biology is to build a computational model of the eukaryotic cell. The yeast Saccharomyces cerevisiae is the best understood eukaryote, and genome-scale metabolic models (GEMs) are rich sources of background knowledge that we can use as a basis for automated inference and investigation. We present LGEM+, a system for automated abductive improvement of GEMs consisting of: a compartmentalised first-order logic framework for describing biochemical pathways (using curated GEMs as the expert knowledge source); and a two-stage hypothesis abduction procedure. We demonstrate that deductive inference on logical theories created using LGEM+, using the automated theorem prover iProver, can predict growth/no-growth of S. cerevisiae strains in minimal media. LGEM+ proposed 2094 unique candidate hypotheses for model improvement. We assess the value of the generated hypotheses using two criteria: (a) genome-wide single-gene essentiality prediction, and (b) constraint of flux-balance analysis (FBA) simulations. For (b) we developed an algorithm to integrate FBA with the logic model. We rank and filter the hypotheses using these assessments. We intend to test these hypotheses using the robot scientist Genesis, which is based around chemostat cultivation and high-throughput metabolomics.Comment: 15 pages, one figure, two tables, two algorithm

    A Method to Identify and Analyze Biological Programs through Automated Reasoning.

    Get PDF
    Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function

    Representation of probabilistic scientific knowledge

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2013 Soldatova et al; licensee BioMed Central Ltd.The theory of probability is widely used in biomedical research for data analysis and modelling. In previous work the probabilities of the research hypotheses have been recorded as experimental metadata. The ontology HELO is designed to support probabilistic reasoning, and provides semantic descriptors for reporting on research that involves operations with probabilities. HELO explicitly links research statements such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of these statements being true. HELO enables the explicit semantic representation and accurate recording of probabilities in hypotheses, as well as the inference methods used to generate and update those hypotheses. We demonstrate the utility of HELO on three worked examples: changes in the probability of the hypothesis that sirtuins regulate human life span; changes in the probability of hypotheses about gene functions in the S. cerevisiae aromatic amino acid pathway; and the use of active learning in drug design (quantitative structure activity relation learning), where a strategy for the selection of compounds with the highest probability of improving on the best known compound was used. HELO is open source and available at https://github.com/larisa-soldatova/HELO.This work was partially supported by grant BB/F008228/1 from the UK Biotechnology & Biological Sciences Research Council, from the European Commission under the FP7 Collaborative Programme, UNICELLSYS, KU Leuven GOA/08/008 and ERC Starting Grant 240186

    Identification of the mRNA targets of tRNA-specific regulation using genome-wide simulation of translation

    Get PDF
    FUNDING Biotechnology and Biological Sciences Research Council (BBSRC) [BB/I020926/1 to I.S.]; BBSRC PhD studentship award [C103817D to I.S. and M.C.R.]; Scottish Universities Life Science Alliance PhD studentship award (to M.C.R. and I.S.]. Funding for open access charge: BBSRC. Conflict of interest statement. None declared.Peer reviewedPublisher PD

    Scaling theory of transport in complex networks

    Full text link
    Transport is an important function in many network systems and understanding its behavior on biological, social, and technological networks is crucial for a wide range of applications. However, it is a property that is not well-understood in these systems and this is probably due to the lack of a general theoretical framework. Here, based on the finding that renormalization can be applied to bio-networks, we develop a scaling theory of transport in self-similar networks. We demonstrate the networks invariance under length scale renormalization and we show that the problem of transport can be characterized in terms of a set of critical exponents. The scaling theory allows us to determine the influence of the modular structure on transport. We also generalize our theory by presenting and verifying scaling arguments for the dependence of transport on microscopic features, such as the degree of the nodes and the distance between them. Using transport concepts such as diffusion and resistance we exploit this invariance and we are able to explain, based on the topology of the network, recent experimental results on the broad flow distribution in metabolic networks.Comment: 8 pages, 6 figure
    corecore