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Abstract

The theory of probability is widely used in biomedical research for data analysis and
modelling. In previous work the probabilities of the research hypotheses have been
recorded as experimental metadata. The ontology HELO is designed to support
probabilistic reasoning, and provides semantic descriptors for reporting on research
that involves operations with probabilities. HELO explicitly links research statements
such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of
these statements being true. HELO enables the explicit semantic representation and
accurate recording of probabilities in hypotheses, as well as the inference methods
used to generate and update those hypotheses. We demonstrate the utility of HELO
on three worked examples: changes in the probability of the hypothesis that sirtuins
regulate human life span; changes in the probability of hypotheses about gene
functions in the S. cerevisiae aromatic amino acid pathway; and the use of active
learning in drug design (quantitative structure activity relation learning), where a
strategy for the selection of compounds with the highest probability of improving
on the best known compound was used. HELO is open source and available at
https://github.com/larisa-soldatova/HELO

Introduction
“All knowledge resolves itself into probability”.

David Hume, in a treatise of Human Nature (1888), 181-182.

Scientific knowledge is inherently uncertain: experimental observations may be cor-

rupted by noise, and no matter how many times a theory has been tested there is still

the possibility that new experimental observations will refute it — as famously hap-

pened to Newtonian mechanics. Probability theory has from its conception been

utilized to represent this uncertainty in scientific knowledge. However the role of prob-

ability theory has proved controversial, with for example the great philosopher of

science Karl Popper arguing that probabilities cannot be applied to scientific theories

on the grounds that an infinite number of theories can explain any scientific data,

therefore their a priori probabilities are zero. This view is now generally disregarded

and a Bayesian approach to the use of probabilities in science is widely accepted. In

Bayesian reasoning a priori probability estimates for hypotheses are updated through
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observation of additional evidence [1]. The Bayesian approach is arguably the only

rational method for updating beliefs [2,3].

Despite the undoubted importance of probabilities in science it is unfortunately the

case that conventional knowledge representations in bio-medicine are insufficient to

support probabilistic reasoning. The best available representation, in our view, is the

Evidence Code Ontology (ECO) [4]. ECO enables the recording of evidence that sup-

ports scientific statements, e.g. experimental evidence, sequence similarity, curator

inference; and also by what method the evidence was obtained, e.g. through computa-

tional combinatorial analysis, inference from background knowledge, non-traceable

author statement. This information enables researchers to qualitatively evaluate the

degree of uncertainty of scientific statements. However, such evaluations are rarely

recorded, not checked for consistency with other relevant evaluations, and therefore

are difficult to use for probabilistic reasoning. There is a need for a resource that

would enable the explicit quantitative recording of probabilities associated with

research statements. To address this need we propose the ontology HELO (HypothEsis

and Law Ontology) that supports probabilistic reasoning about bio-medical research

statements.

HELO aims
The HELO ontology was originally designed to support development of Robot Scientists,

these are physically implemented laboratory automation systems that exploit techniques

from the field of artificial intelligence to execute cycles of scientific experimentation.

A probability that a research statement is true may vary greatly depending on the

source of the statement. While experimental data from good laboratories are likely to

be true, even research statements extracted from very high impact journals are not

necessarily valid. C.G. Bengley and L.M. Ellis in their recent article in Nature report

that scientific findings have been confirmed only in 6 out of 53 “landmark” studies in

haematology and oncology [5]. This is consistent with results in other areas. For exam-

ple Prinz et. al report that only 25% of published pre-clinical studies could be validated

[6]. The authors stressed that validation attempts could fail for various reasons, includ-

ing technical differences. HELO aims to provide a framework for the recording of

probabilities that research statements are true, and for probabilistic reasoning with

such statements.

The key HELO classes
Research statements

The HELO representation of research statements is based on the representation of

research hypothesis as PREDICATE(entityi, entityj) defined in an ontology LABORS,

where predicate is a relation and entity is a class or instance defined in a domain

ontology [7]. HELO enables one to formulate complex research statements, where

basic (atomic) statements like PREDICATE(entityi, entityj) are combined by logical

operators ˄, ˅, ¬, ®, ↔. Entities that form research statements may be replaced by

more generic entities (parent classes) and/or be specialized by their properties: indivi-

dual gene names could be replaced with classes from Gene Ontology (GO) [8]; specific

environmental factors could be replaced with general terms such as increased/

decreased temperature, carbon source, addition of drugs, etc.; and measurable
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phenotypes could be replaced with general terms such as relate to growth, cell shape,

etc. The following complex statement about yeast strains could be then represented:

“If all genes with lactase activity are deleted from a yeast strain and if this strain is

grown in medium with lactose as the sole carbon source, then the phenotype will be no

growth.” This could be expressed in logic using terms defined in various ontologies as:

((( gene, yeast_strain, x

HAS-FUNCTION _a

   |

( ,gene lactase ctiviity

yeast strain gene

process deletion

)

( , )

( , )





HAS-PART _
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, )
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In combination with a logical model of metabolism these statements would enable

deduction of the fact:

(HAS-QUALITY( _ _ )).yeast strain no growth,

HELO defines a hierarchy of research statements: research hypothesis, hypotheses set

(a collection of hypotheses with a total probability 1, it usually combines research

hypotheses, negative hypotheses, and alternative hypotheses, see [7] for more detail),

assumption, conclusion, scientific law (models and generic rules, including Bayes rule),

theorem (including Bayes theorem). Research laws may be represented as production

rules (statementi ® statementj), where statements correspond to hypotheses, evidence,

conclusions. For example,

INTERACT-PHYSICALLY( )

INTERACT-

gene product gene producti j,

EEPISTATICALLY( ).gene genei j,

Research laws may be models that are produced for example by the Eureka system

that outputs laws of nature [9].

HELO is designed to consistently accommodate scientific hypotheses and laws col-

lected from different sources: interviews with scientists, web pages, research papers,

databases, program codes. Any research statement in HELO has an associated prob-

ability of being true.

Probability

Probabilistic reasoning is essential in biomedicine, e.g. the Ontology of Adverse Events

(OAE) models causal adverse event probability (an information content entity that

represents a probability that an adverse event is caused (induced) by a medical interven-

tion) [10], the Mass Spectrometry (MS) structured controlled vocabulary developed by

the HUPO Proteomics Standards Initiative models modification probability (a priori

probability of a modification) [11]. However, the concept of a probability is not modeled
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consistently in biomedical ontologies. MS models the class probability as a subclass of

the class modification parameters. The Parasite Experiment Ontology (PEO) defines the

concept as a subclass of the class statistical measure and data collection (a statistical

way of expressing knowledge or belief that an event will occur or has occurred) [12].

Computational Neuroscience Ontology (CNO) defines probability as the subclass of the

class model parameter [13]. CNO has the class mathematical concept (“a thing that

represents the different mathematical concepts used to represent models”), but for some

reason probability is not considered as a mathematical concept. The Semanticscience

Integrated Ontology (SIO) [14] defines the class probability as the subclass of the class

description. SIO has the class mathematical entity, but again probability is not consid-

ered as such.

HELO follows the theory of probability [15], [16] and defines the class probability as

a subclass of the class mathematical function to enable mathematical operations with

probabilities (a mathematical function expressing knowledge or belief that a research

statement is true). This definition covers frequentist probabilities (taken as a limiting

frequency of experimental observations), and also Bayesian “subjective” probabilities, or

beliefs.

Reliable statistical estimates of the probability of a statement being true are often

unavailable. In the subjective Bayesian framework human experts are expected to pro-

vide priors that capture scientific background knowledge and intuition. Obtaining such

probabilities is notoriously difficult and there is an extensive literature on the subject.

Once prior probabilities are given the probabilities of scientific statements may be then

iteratively updated (increased or decreased) with new evidence. It is important to

record these changes in value and how they were inferred.

HELO enables the recording of how probabilities were obtained. The class method of

probability estimation has subclasses Bayesian inference, expert estimation, statistical

calculation, deduction, abduction, induction, homological inference; and linked to the

class procedure that records a specific algorithm implementation for obtaining a prob-

ability of a research statement. The class probability has the subclasses prior probabil-

ity and posterior probability. A research statement is linked to an associated probability

via the functional relation HAS-PROBABILTY.

HELO imports from SIO the relations refutes, supports, disputes to link research

statements, and the relations HAS-DISPUTING-EVIDENCE, HAS-REFUTING-EVI-

DENCE, HAS-SUPPORTING-EVIDENCE to link research statements and evidence

(see Fig.1).

An ontology of the theory of probability

HELO defines the key entities of the theory of probability to enable logically consistent

recording of operations that involve probabilities. HELO includes such classes as vari-

able, probability distribution function, probability mass function, mean, variance, and

such qualities as independent, random (variable), joint (probability). In order to orga-

nize these classes into a hierarchical system, HELO imports the following top-level

classes: continuant (from BFO [17]), information content entity (from IAO [18]), plan

specification (from OBI [19]), procedure (from LABORS [20]), representation (from

LABORS and SIO [14]) (see Fig.2).
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Additionally, the class random event is defined as an upper class, because the con-

cept of an event ontologically differs from the notion of a process or any other notion.

It may involve a process and participants and it has an associated time point, e.g. the

end of the process. The theory of probability deals with random events defined on a

sample space of all possible outcomes of a random event.

HELO is expressed in OWL-DL. It has been checked for logical consistency with the

reasoners HermiT 1.3.6 and FaCT++. HELO is open source and available at https://

github.com/larisa-soldatova/HELO.

Figure 1 An example of the HELO representation of a research statement. The figure shows the
representation of the values of the prior and posterior probabilities of the research statement about
sirtuins, and also the supporting and refuting evidence.
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Worked examples
The S. cerevisiae aromatic amino acid pathway

This example demonstrates how a probability that a research hypothesis is true is used

for automated experimentation.

King et al. (2009) demonstrated the full automation of scientific discovery [20]. The

Robot Scientist “Adam” employed abductive inference to formulate a set of 8 hypoth-

eses based on its logical model of the S. cerevisiae aromatic amino acid (AAA) pathway

concerning which gene had been deleted (see Supplementary Information in [20] for

more detail). The prior probability of each hypothesis from the set of being correct,

(using a uniform distribution) was 1/8. Adam then planned and executed cycles of aux-

otrophic experiments to test these hypotheses. Each cycle resulted in the rejection of

one or more hypotheses, and the probabilities of the remaining hypotheses were

increased with each cycle. The experiments were executed until only one hypothesis

was left. The posterior probability of the remaining hypothesis was 1 and all of the

others - 0.

In making its decision about which experiment to execute in each cycle Adam used

the probabilities of the hypotheses being true, the cost of the compounds required in

the experiments to test those hypotheses, and the predicted information gain in testing

the hypotheses. Previously, probabilities of research hypotheses were represented and

recorded as associated with the experiment’s metadata [21]. HELO enables the direct

recording of prior and posterior probabilities as properties of research hypotheses. This

makes the representation of probabilistic knowledge explicit, and streamlines probabil-

istic reasoning, decision making, and automated experimentation.

Sirtuins

We use the example of sirtuins as an example of how to utilise HELO for probabilistic

representation of research statements. We are interested in recording and automating

the argumentation involved in the sirtuin case, both to direct our own research into

aging, but also as an exemplar of biological reasoning. This example is typical in how

Figure 2 An overview of the ontology HELO. The figure shows the top-level classes of HELO and some
of their extentions.
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the probability of scientific statements varies over time with the observation of new

experiments. The example also illustrates the use of homologous inference, which is

the basis of much biological reasoning, and which is essentially probabilistic.

Sirtuins are highly conserved NAD+ - dependent deacetylases that are believed to

play a role in regulating lifespan in many organisms. The potential role of sirtuins in

extending human lifespan has led to extensive research into the human gene SIRT1

and its orthologs. For example in 2001 Tissenbaum & Guarente showed that increased

dosage of the SIRT1 homolog extends lifespan in the nematode (Caenorhabditis ele-

gans) [22]. Increasing sirtuin level through genetic manipulation has been observed to

extend lifespan in C. elegans, the yeast (Saccharomyces cerevisiae), the fruitfly (Droso-

phila melanogaster), and the mouse (Mus musculus) [23,24]. This research sparked

commercial interest and in 2008 Sirtris Pharmaceuticals Inc., working on exploiting

sirtuin modulation for the treatment of human disease, was bought by GlaxoSmithK-

line for approximately USD 720 million.

This excitement about the potential of sirtuins suffered a major setback in 2011

when Burnett et al. reported that overexpressing the sirtuin gene in two model organ-

isms, C. elegans and D. melanogaster did not in fact boost longevity as had been pre-

viously reported [25]. The situation changed again in 2012 when Kanfi et al. reported

that the sirtuin SIRT6 regulates lifespan in male mice, but not in female ones [23].

Therefore the probability of the research hypothesis that sirtuins regulate organism

lifespan has increased and decreased over the last decade.

The primary research hypothesis h1 we are interested in is: “SIRT1 regulates human

life span” (SIRT1 is a sirtuin gene in humans). HELO enables the recording of this

research statement:

IS-A( )

HAS-QUALITY( - )

REGUL

human organism

organism life span

,

,

AATES( - ).SIRT life span1,

However, it is difficult to directly test this hypothesis, so most evidence relating to it

comes from laboratory experiments using model eukaryotes. For example a hypothesis

h2 is about C. elegans:

IS-A

HAS-QUALITY -

R

( . , )

( , )

C elegans organism

organism life span

EEGULATES( - ).SIRT life span2,

and a hypothesis h3 is about S. cereυisiae:

IS-A  

HAS-QUALITY -

( . , )

( ,

S cerevisiae organism

organism life spann

SIRT life span

)

,REGULATES( - ).2

The evidence about h2 and h3 is then related to h1 by probabilistic reasoning (homo-

logical inference):

HAS-PROBABILITY( ) HAS-PROBABILITY( )

HAS-PROBABIL

h p h p2 2 1 12, ,

IITY( ) HAS-PROBABILITY( ).h p h p3 3 1 13, ,
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SIR2 is the S. cereυisiae homolog of SIRT1. The research hypothesis h3 “SIR2 regu-

lates yeast life span” is very well supported by the scientific literature. The dataset

yeast70 is a subset of Gene Ways 7.0 database [26]. The Gene Ways 7.0 database was

produced through automated analysis of 368,331 full-text research articles and

8,039,972 article abstracts from the PubMed database, using the GeneWays system.

The database covers a wide spectrum of molecular interactions, such as bind, phos-

phorylate, glycosylate, and activate (nearly 500 relations in total). The dataset yeast70

has 1,135 sentences containing the keyword “aging” and yeast gene names, 492 of

them contain SIR2, the gene SIR1 is not mentioned, and SIR3 is mentioned 42 times.

Examining these papers suggests that the probability of h2 is close to 1.0.

The probability of scientific hypotheses changes with new evidence, and we wish to

use HELO to represent this. For example Burnett et al. results directly decreased the

probability of the hypotheses regarding the function of the SIRT1 homologs in Caenor-

habditis elegans and Drosophila melanogaster, and these indirectly decreased the prob-

ability of h1. The situation changed again in 2012 with Kanfi et al. where the evidence

directly increased the probability of the hypotheses regarding the function of the

SIRT1 homolog in Mus musculus, and this indirectly increased the probability of h1
(see Fig.1).

Of course the weight of the evidence in these papers on h1 depends on a host of fac-

tors other than simply the model species involved: the amount and variety of evidence,

its statistical confidence, the lab where the work was done, the publisher, etc. Taking

all these into account an expert estimate of the probability that h1 is held after the

publication of the paper [22] is 0.8 (see Fig.1). It should be noted that the exact prob-

ability of h1, say 0.8 or 0.82, is not that critical. What is important is the “ball-park”

figure, and the direction of change with new evidence. Our idea is that addition of

more and more evidence and inferences to the argument constrain the probabilities to

reasonable numbers. It is our contention that all human scientists make such implicit

inferences and much is to be gained by making them explicit. In addition these prob-

ability can be used for further automated inference and experimentation.

Experiments with a Sir2 deletant strain run within the Robot Scientists project

showed no difference between the wild type, while yeast strains with NAD+ grew to a

significantly higher biomass than the wild type. The experiments demonstrate that Sir2

functions differently from other NAD+ genes, and this indirectly supports the hypoth-

esis h1. It is clear that further experimentation is required to accept or reject the

hypothesis h1.

Active learning for drug discovery

This example demonstrates the recording of probabilities in drug discovery experi-

ments. The goal of these experiments was to find the best compound (with respect to

a biomedical assay, e.g. for treating cancer) without having to test all the compounds

against the assay. This involved learning quantitative structure activity relationships

(QSARs). These are functions that take as input the structure of a compound and out-

put an estimate of how well the compound will perform in a biomedical assay. The

investigation was computational and used existing assay results.

The task of finding the best instance (e.g. compounds, parameters) as evaluated on

an unknown target function (e.g. high biological activity, minimal costs) using limited
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resources (e.g. time) is important to many scientific disciplines. In drug discovery it is

not sufficient to find just a single best compound or “lead” as several leads improve

the chances of finding a compound that passes toxicology tests. The challenge there-

fore is to identify the k best performing instances (= compounds in this context) using

as few experiments as possible. We refer to this task as active k-optimization.

We applied machine learning to solve the active k-optimization task and to propose

the best candidates for screening [27]. We considered several selection strategies for

the best instances: Cox and John’s lower confidence bound criterion [28] (we refer to

it as the optimistic strategy), the most probable improvement (MPI) of the current

solution strategy [29], the maximum expected improvement (MEI) strategy, and also

the random choice (see [27] for more detail).

These strategies were evaluated on the US National Cancer Institute 60 anticancer

drug screen (NCI60) dataset [30]. This repository contains measurements of the inhibi-

tory power of tens of thousands of chemical compounds against 59 different cancer

cell lines (one of the originally 60 cell lines was evicted because it was essentially a

replicate of another one [31]). NCI reports the negative log-concentration required for

50% cancer cell growth inhibition (pGI50) as well as cytostatic and cytotoxic effect

measures, but we only used the pGI50.

The goal is to find compounds in a library that have a high pGI50, and to do so using

as few pGI50 measurements as possible. The program bootstraps by selecting 10 ran-

dom compounds and measuring their pGI50. In each subsequent step, a current QSAR

model is fitted to all available pGI50 values. The model is used to predict the pGI50 for

all remaining (untested) compounds in the library. The model is a Gaussian process,

which outputs a (Normal) distribution for the pGI50 value rather than only a point pre-

diction. This enables the implementation of the previously listed strategies. For exam-

ple, for the MPI strategy, one computes the probability that a compound has a pGI50
which is larger than the current k-th best one. The compound with the highest prob-

ability is selected for the next measurement of pGI50.

The table in Figure 3 illustrates MPI for a particular cell line 786-0, for a specific

bootstrap, and for k = 1. The first column of the table shows the number of known

pGI50 values at that time. P1 is the probability, given the current evidence, that a parti-

cular compound NSC 642567 will have a pGI50 better than the best bootstrap com-

pound. The subsequent column shows what is the probability P2 that NSC 642567 has

a better pGI50 than the current best value. The third column shows the highest such

probability P3 for any of the compounds remaining in the library.

Each computational experiment was repeated 20 times and the results were averaged.

Overall, on the NCI60 datasets, the optimistic strategy was most robust. In all situa-

tions considered, it performed either best or not significantly worse than the best strat-

egy (see [27] for detail and diagrams). The performance of MPI is competitive for

medium experimental budgets, but it may fail to find more than one good compound

when constrained to low budgets, and it does not optimally exploit high budgets. MEI

is a very good strategy when about 10 compounds are needed. The random selection

strategy performs worse than all other selection methods in all settings. Actively choos-

ing compounds substantially speeds up the finding of the compounds with high pGI50.

HELO enables the recording of these important results in a semantically defined way.

The following semantic descriptors are required for the reporting of this study:
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Gaussian distribution, zero mean, variance, prior belief, posterior probability, random

variable, likelihood, estimated probability. HELO contains exact matching terms or

equivalent synonyms of the required semantic descriptors, for example HAS-VALUE

(mean, 0) is equivalent to zero mean.

Conclusion
Scientific knowledge is inherently uncertain. There is therefore a need for a representa-

tion that focuses on the probabilistic features of research statements, and supports prob-

abilistic reasoning. In order to address this need we proposed the ontology HELO that

supports probabilistic reasoning over uncertain scientific statements. HELO defines a

hierarchy of typical research statements and links them to their associated probabilities,

and methods of obtaining those probabilities. We demonstrated HELO on the represen-

tation of scientific belief that sirtuins regulate organism life span, and regarding deleted

genes in the S. cereυisiae aromatic amino acid pathway. In both cases the probability of

research statements changed with new evidence, and it is clearly important to employ

the most updated probability estimate for making decisions about research involving

these genes. The active learning for drug discovery study is based on operations with

probabilities. The probabilities of having a high pGI50 were iteratively computed for all

compounds in the library, and the best compounds were chosen for further study.

HELO enables accurate recording of supporting and refuting evidence of research state-

ments, and how they participate in the process of updating probability values.

Figure 3 The probabilities that the selected compounds have high GI50
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HELO is specifically designed to support the cycles of automatic scientific discovery

that incorporate text mining, machine learning, robotic automation, and knowledge

representation, and may be of use for other of research that involve probabilistic

reasoning.
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