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Abstract
Background: A logical model of the known metabolic processes in S. cerevisiae was constructed
from iFF708, an existing Flux Balance Analysis (FBA) model, and augmented with information from
the KEGG online pathway database. The use of predicate logic as the knowledge representation
for modelling enables an explicit representation of the structure of the metabolic network, and
enables logical inference techniques to be used for model identification/improvement.

Results: Compared to the FBA model, the logical model has information on an additional 263
putative genes and 247 additional reactions. The correctness of this model was evaluated by
comparison with iND750 (an updated FBA model closely related to iFF708) by evaluating the
performance of both models on predicting empirical minimal medium growth data/essential gene
listings.

Conclusion: ROC analysis and other statistical studies revealed that use of the simpler logical
form and larger coverage results in no significant degradation of performance compared to
iND750.

Background
In Silico modelling of cellular processes
This paper describes the construction and application of a
logical model of known metabolic processes in bakers'
yeast (Saccharomyces cerevisiae). The model outlines the
relationships between Open Reading Frames (ORFs),
enzymes and reactions comprising the metabolic path-
ways in yeast, presenting the knowledge as facts in a
restricted form of First Order Logic (FOL). This represen-
tation allows the model to behave as a deductive (or rela-
tional) database, as well as a model for the study of
metabolic behaviour.

A focus of our previous research has been the develop-
ment and implementation of an automated system for the
design, execution and interpretation of wet lab auxo-

trophic experiments: the Robot Scientist [1,2]. In its first
incarnation the scope of the Robot Scientist was limited to
rediscovery of knowledge from a single metabolic path-
way in yeast (the Aromatic Amino Acid (AAA) biosynthe-
sis pathway), where a logical model of this pathway [3]
acted as background knowledge from which the Robot
Scientist was able to generate hypotheses. The logical
model presented here, "aber", is an updated and
expanded version of this limited model (the name is
derived from "Aberystwyth" – where the model was con-
structed). The model has been expanded to include most
of what is known about yeast metabolism. The model has
also been updated to a more explicitly relational data
structure; replacing the single relation that included
enzyme and metabolite details with separate relations,
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enabling a more natural and versatile knowledge repre-
sentation.

To evaluate the correctness of the model we have used it
to predict the results of empirical growth experiments of
knockout mutants growing on defined minimal medium
[4]. Although our model has been designed to be able to
generate growth predictions on defined growth media, the
model contains many essential genes, therefore a list of
essential genes generated by the same gene-deletion study
was used in conjunction with the minimal medium
growth results to more accurately reflect the predictions of
the model. An assessment of the ability of the model to
correctly predict gene essentiality was also performed; in
this case the predictions of growth were compared to the
list of essential genes alone, with no reference to the min-
imal medium experimental data. ROC analysis was used
to compare this logical model to iND750 [5], a state-of-
the-art Flux Balance Analysis (FBA) model [5,6] (iND750
reflects a naming scheme for systems biology models, i
refers to a in silico model, ND reflects the creators of the
model (Natalie Duarte) and 750 represents the number of
genes included in the model). Both models have also
been compared with the predicted growth outcomes gen-
erated by a simple majority class classifier, as well as the
probability that prediction success was purely random.

Systems biology and the modelling of biochemical 
networks
Systems Biology [7-10] represents a shift towards a syner-
gistic approach to whole cell modelling, with the concen-
tration on the interactions of many inter-related
components rather than the behaviour of the individual
components. Advances in mathematics and computer sci-
ence have led to the development of diverse techniques
and formalisms allowing the in silico modelling of these
cell systems. All computer models represent varying
degrees of abstraction from the observable phenomena
they represent, from coarse large scale models that capture
only essential interactions and components of the system
e.g. KEGG [11,12] and EcoCyc [13], to higher fidelity rep-
resentations of detailed functioning and interactions of a
smaller set of components [14].

There are two main groups of modelling techniques used
to represent metabolic networks:

1) Quantitative methods that aim to capture the changes
in the quantities of metabolites and enzymes etc. by rep-
resenting cellular processes, e.g. reaction kinetics, in detail

2) Qualitative methods that aim simply model the pres-
ence of interactions, e.g. reactions are modelled as chemi-
cal transformations, with no representation of reaction
kinetics

The two most important quantitative methods are ODE
(Ordinary Differential Equations) and FBA (Metabolic
Flux Balance Analysis). ODEs are the most established
modelling representation in science. In using ODEs to
model metabolism the concentration of each metabolite
is calculated by a single ODE encapsulating all the reac-
tions where the metabolite is synthesised or consumed,
with fluxes determining the transformations to and from
other metabolites in the network. The use of ODE models
is the main technique of the quantitative sciences. There
are also now a number of specialised ODE modelling
packages for metabolism, e.g. Gepasi/Copasi [15-17] and
e-Cell [18]. Despite this, the current application of ODEs
to modelling large-scale metabolism has a number of seri-
ous problems: we do not know, nor are likely to know
soon, all the necessary parameters that such models
demand; and there can be numerical analysis problems in
solving ODE metabolic models, resulting in quantitative
and qualitative differences between simulators.

Flux Balance Analysis (FBA) [5,6,19-21] is currently the
most common approach to quantitatively modelling
metabolism. Standard FBA assumes a steady state model
of cell metabolism; although more recent developments
in FBA [20] have extended this to dynamic flux balance
analysis that is capable of modelling cells with some state
change. Cell reactions are modelled by two matrices: one
corresponding to the stoichiometry of the reactions, the
other containing the fluxes for the reactions. Typically
many of these fluxes remain unknown and experimental
measurement of the ranges for a small number of "con-
trol" fluxes and linear/nonlinear programming is used to
determine the values of the unknown fluxes, based on an
assumption of optimality. FBA models of the metabolism
of a number of organisms exist, e.g. S. cerevisiae [5,6] and
E. coli [19,20] and recently the human metabolic network
[21]. The steady state assumption (relaxed for dynamic
FBA however) and the inaccuracies of the unknown fluxes
can lead to inaccuracies in the overall simulation [22].
However, increased experimental evidence can decrease
these inaccuracies.

A number of flux based alternatives to FBA have been
developed that address the changes in fluxes that occur
after major environmental or other perturbations such as
gene knockouts: MOMA (Minimisation of Metabolic
Adjustment) [23] and ROOM (Regulatory on/off minimi-
sation) [24]. Both make use of distance measures to deter-
mine a point in flux space that is closest to the wild type
flux distribution, in keeping with a homeostasis hypothe-
sis. MOMA minimises the changes to each individual flux,
thereby the overall network is as similar as possible to the
wild type. In contrast, ROOM minimises the number of
significant flux changes, thereby better approximating
how short alternative pathways allow redundancy in met-
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abolic networks. In a predictive study using lethal/non-
lethal knockouts in E. coli, ROOM had an accuracy of
85%, which is comparable to the standard FBA approach.
Elementary mode analysis [25] determines the set of
smallest sub-networks of a larger metabolic network that
still allow a metabolic steady state to be reached. Each ele-
mentary mode represents an alternative that the organism
may use in conditions of perturbation. Stelling et al [25]
use elementary-mode analysis to determine lethal/non-
lethal gene deletions in the central carbon metabolism of
E. coli, where lethal mutants mostly have an empty set of
elementary modes, and non-lethal mutants have at least
one elementary mode with an overall positive growth
rate. Stelling et al [25] observed a 90% correct prediction
rate for the 90 knockouts they studied. However there can
be a large number of elementary modes for even a moder-
ately large metabolic network, indicating that there may
be problems scaling this approach to whole metabolism
networks.

Logical and Graph (LG) based models [1,11-13] are the
commonest qualitative representations for modelling
metabolism. Graph based models are used in metabolic
databases e.g. KEGG [11,12], EcoCyc/MetaCyc [13]. Met-
abolic pathways are represented explicitly, each metabo-
lite is a node in the graph and edges represent the
chemical transformations found in the reactions compris-
ing the pathway. Edges are further annotated by the
enzyme(s) that catalyse the reactions, and these are in turn
are related to the gene(s) that encode the enzymes. Lemke
et al [26,27] have developed a graph-based model of the
metabolic network of E. coli and have used it to analyse
how much damage the absence of each enzyme causes to
the metabolic network. Metabolic damage is defined as
the number of metabolites that can no longer be pro-
duced by the organism. They show that only 9% of
enzymes prevent production of 5 or more metabolites,
but that more than 50% of essential enzymes are to be
found in this group.

Logical models may use computationally efficient forms
of both propositional and FOL (Prolog) as their represen-
tation language [28]. As in graph models, the reaction net-
work is represented by a series of metabolite nodes and
chemical transformation arcs, however the increased
expressive power of logic can allow more accurate repre-
sentations of the relationships between the genes,
enzymes and gene products used as annotations to the
reactions, as well as various cellular compartments. For
example, only enzyme names are used to annotate the
reaction arcs in Lemke et al [6,27], unlike ORF and EC
number for the aber model. Metabolic modelling is done
by keeping a tally of the metabolites added to the cell by
each reaction (see section 5 for more detail).

The BIOCHAM system [29] is a dedicated biochemical
reasoning engine that uses a rule based temporal logic lan-
guage to model and query all of the possible behaviours
of a given biochemical model, and the MAPK signal trans-
duction cascades have been used as an example. Random
Boolean networks [30,31] have also been used to model
106 of the genes comprising the yeast transcriptional net-
work. Random Boolean are useful for modelling systems
where interactions are not known beforehand. Kauffman
et al [31] used this process to identify those networks that
were most stable, thereby representing rules of biological
relevance to the regulation of gene transcription. In gen-
eral the graph models are equivalent to propositional
logic models and can adequately represent metabolic
reactions as nodes and arcs. However this representation
is not expressive enough to adequately represent the rela-
tionships between ORF/enzymes etc. that control the reac-
tions. The increased expressivity of FOL is required for this
additional complexity.

The use of qualitative reasoning (QR) [32] is an interme-
diate representation between quantitative and logical
models, e.g. King et al used QR to model the Glycolysis
pathway [33]. Rather than presence/absence of a metabo-
lite in the cell as in the coarse representation of logical/
graph models, or the quantitative concentration as in
ODE models, QR models record the qualitative state of
each metabolite, e.g. whether the concentration is increas-
ing, decreasing or constant. Qualitative differential equa-
tions [33] are used to calculate the change in quantity of
the metabolites and enzymes, with a FOL representation
of the metabolite and enzyme components of the system.
A common task in QR is to generate the complete envi-
sionment of the system, i.e. all of the possible qualitative
states that can be derived from an initial starting state.
This can be a computationally expensive task, King et al
found 27,254 possible states for the Glycolysis model.

Results
To test the utility of our "aber" model we compared it with
the iND750 FBA model, and a majority classifier that
assigns each prediction to the most commonly occurring
classification (in this case continued growth of the
strains). Although iND750 and the aber model have both
been constructed from iFF708 [6], subsequent develop-
ment has led to a divergence of the number of ORFs for
which there are experimental results in Giaever et al [4]:
iND750 makes predictions for 681 ORFs, while the aber
model makes predictions for 940, with 641 predictions
shared by both models. Evaluation of the performance of
the models examined the shared genes as well as the total
number of genes in each model, so that the effect of add-
ing newly categorised ORFs to the original set can also be
examined.
Page 3 of 16
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Two different cases of gene knockout sensitivity on
MMD+ura+hist+leu were considered, 1) genes found to
be significantly sensitive after 5 generations and 2) genes
found to be significantly sensitive after 5 generations that
remain significantly sensitive after 15 generations. As for
iND750, the metabolic network and the starting media
definitions used by the aber model were altered to reflect
the additional requirements for uracil, histidine and leu-
cine. An additional comparison was also made with the
iND750 results where a preprocessing step was used to
identify borderline cases of retarded growth in the sensi-
tive/refractory data. This preprocessing step used all of the
sensitivity results for each ORF, ignoring any refractory
scores for ORFs, therefore all of the sensitivity data is used
rather than focusing only on ORFs found to be sensitive
in both Giaever experiment sets (The iND750 results may
include ORFs not found to be sensitive in both sets). The
imbalance of prediction counts also results in a shortfall
of experiment results from the iND750 preprocessing step
(comparison set C in Table 1). In cases where no experi-
mental results from comparison set C were available,
results from set B were used. Definitions of the 3 sets of
experimentally derived growth and no growth outcomes
are given in Table 1.

Although the logical model uses MMD+ura+hist+leu as its
set of starting compounds, comparison with the essential
gene list is valid because knockouts that do not grow on
rich YPD will also almost certainly not grow on a simple
defined medium. Analysis of the model comparisons
made use of performance metrics and statistical tests that
evaluated the significance of any observed difference in
model performance. These are described below, followed
by a discussion of the gene essentiality findings and the
results of the minimal medium growth study

Skewed performance metrics and significance tests
In an analysis of the use of ROC space Flach [34] defines
a number of metrics that use a skew ratio (c in Table 2) to
allow for bias introduced by classes of dissimilar size (as
is the case for the model predictions and the experimental
results.) These metrics can be used to both measure a clas-
sifier's performance and as conditions for evaluation of
rules/tree nodes etc. as classifiers are constructed. The met-

rics are skewed accuracy and skewed precision. Table 2 shows
the formulas for these two metrics as well as formulas for
metrics representing intermediate steps. In this table TP
represents the number of true positive predictions, TN the
number of true negatives, and FP and FN the number of
true and false positives and negatives respectively. POS
corresponds to the total number of positive predictions
and NEG, the total number of negative predictions.

A McNemar χ2 test was used to compare the performance
of the aber model, iND750 and the majority classifier on
each of the 3 comparison sets. All three sets of ORF
sources (aber, iND750 and shared) were used for compar-
ison of the aber model and iND750. The shared ORFs and
aber ORF sources were used for the comparison of the
aber model and the majority classifier. The iND750 ORFs
and shared ORFs sources were used for the comparison of
iND750 and the majority classifier. The McNemar test
analyses the proportions of mistakes for predictions com-
mon to both models. To enable comparison of equivalent
numbers the majority class was used to obtain predictions
for ORFs not found in either model (i.e. the 40 ORFs from
iND750 not found in the aber model and the 299 ORFs in

Table 1: Comparison set definitions for comparing model predictions to experimental results using MMD defined growth medium

Prediction/Experiment Comparison Set Growth Outcome No Growth Outcome

A NOT essential AND NOT significantly sensitive 
after 5 generations in both experimental repeats

essential OR significantly sensitive after 5 
generations in both experimental repeats

B NOT essential AND NOT significantly sensitive 
after both 5 and 15 generations in both 
experimental repeats

essential OR significantly sensitive after both 5 
and 15 generations in both experimental 
repeats

C NOT essential AND NOT sensitive by iND750 
preprocessing

essential OR sensitive by iND750 preprocessing

Table 2: Formulas used to calculate Model Validation metrics

Metric Formula

tpr (true positive rate)

fpr (false positive rate)

rfp (relative frequency of positives)

C (class ratio or skew ratio)

sk_acc (accuracy)

sk_prec (precision)

tpr = TP
POS

fpr = FP
NEG

rfp = POS
POS+NEG( )

c = NEG
POS

sk_acc = tpr + c + c
fpr1

1
−( )

sk_prec = tpr
tpr+c fpr⋅
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the aber model not found in iND750). Significance for
the McNemar tests was determined for p > 0.05 and the
direction of the test result was collected (i.e. which model
outperforms the other if a significant difference is
observed). The following equation defines the McNemar
test used, where b is the number of predictions found to
be correct by model 1 and incorrect by model 2 and c is
the converse (incorrect by model 2 and correct by model
1). A Cumulative binomial test was also used to deter-
mine the probability of generating the predictions of the
aber model by chance.

Predicting gene essentiality
We use the ability of a metabolic network models to pre-
dict the essentiality of a gene as a measure of model qual-
ity. Gene essentiality results have been presented for
iFF708, the prime source of knowledge for the aber model
and the precursor to iND750, to which the aber model is
compared. Förster et al [35] report a predictive accuracy of
85% for gene essentiality for iFF708. A model's prediction
can be tested by comparison with the empirical "wet"
experiment of growing the knockout strain. The growth
(phenotype) of a knockout strain depends on both its gen-
otype (what gene(s) have been removed) and the environ-
ment. To use a model of metabolism to predict gene
essentiality, it is therefore necessary to know the composi-
tion of the growth medium (the environment). This
makes the use of "wet" results using the most common
growth medium for yeast, YPD, problematic because its
exact composition is undefined. This is why we have
focused on using the Giaever et al data [4] for growth on a
defined minimal medium.

Table 3 shows the skewed accuracy and skewed precision
results for the aber model, iND750 and the majority clas-
sifier (maj) for the 3 sets of genes described above and
Table 4 presents the results of McNemar tests to determine
the significance of any difference in the three models.
These results show very little variation in performance,
with iND750 scoring slightly higher in terms of accuracy
on the ORFs corresponding to its own source set. The

McNemar tests also show no significant difference in per-
formance between all three models, for all three sets of
ORFs. This is a reflection of the small number of essential
vs non-essential ORFs (18.4 % of the shared ORFs and
those from the aber model are essential; 17.5% of the
iND750 ORFs are essential). Indeed the slightly smaller
proportion of essential ORFs in the iND750 set may
account for the apparent increase in accuracy for IND750.
The accuracy results for the aber model and iND750 are
slightly poorer than the results for iFF708, indicating that
expansion of both models has slightly decreased the abil-
ity to predict essential genes.

Comparing predicted experiment outcomes to growth 
outcomes obtained by a whole genome gene-deletion 
study and performance of iND750
Table 5, containing results for growth predictions on the
defined medium, shows that all three classifiers have sim-
ilar values for the performance statistics indicating similar
performance for the logical model, iND750 and the
majority classifier on all of the comparison sets; however
there is a slight decrease in performance on comparison
sets B and C. The McNemar test results (Tables 6, 7 and 8)
indicate that there is no significant difference in the pre-
dictive accuracy of the aber model and iND750 for all
ORF sources and all comparison sets, and that both mod-
els perform significantly better than the majority classifier
on all but the most stringent definitions of growth/no
growth. This is the case where the majority class is at its
largest (82% or 83%) and where neither predictive model
performs better. This indicates that use of the more compli-
cated formalism of FBA does not improve the prediction of
healthy/retarded growth compared to logical modelling. How-
ever this observation must be tempered by the fact that a
fully direct comparison between the FBA prediction tech-
nique and the logical model prediction technique has not
been possible, because the network corresponding to the
shared ORFs is incomplete. The results from the McNemar
tests also indicate that expanding the coverage of the
model by adding information from KEGG has not signif-
icantly compromised the performance of the component
of the model originating from iFF708. Indeed, it has been
possible to increase the coverage of the metabolic network
by around 30% without a significant degradation of per-
formance. There was also no significant difference
between both the aber model and iND750 on comparison

c 2 abs 1
2

=
b c

b+c

−( )−( )

Table 3: Performance results for gene essentiality predictions

ORF Source Aber Shared iND750 Shared Aber iND750 Shared

Model Aber Aber iND750 iND750 maj maj maj
Num ORFs 940 641 681 641 940 681 641
Skewed Accuracy 0.81 0.80 0.82 0.80 0.82 0.83 0.82
Skewed Precision 0.83 0.86 0.84 0.85 0.82 0.83 0.82
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set B – the more stringent definition of sensitive growth.
This is partly because of the skewed nature of the experi-
mental results (the skew ratio C varies between 0.22 and
0.34 for all result sets and ORF source combinations) and
partly because of the generally high false positive rates
(variation from 0.55 to 0.86), therefore both iND750 and
the aber model make more incorrect predictions for
growth.

Estimating the probability of chance occurrence of model 
predictions
A cumulative binomial test was used to evaluate the prob-
ability that the predictions made by the logical model
could have been made by chance. This test calculates the
significance of deviations from the binomial distribution
of observations falling into two categories (predictions of
growth and no growth), assuming a random binomial
model that assigns genes to essential/retarded growth and
non essential/healthy growth categories by chance. The
probability is calculated for the range r..n, where r = 889:
the number of predictions for growth and n is the total
number of predictions made (growth + no growth: 940):

where p = 0.82, the proportion of ORFs that result in
experimental growth and q = 1 - p (the proportion of

essential/retarded growth genes). This test resulted in a
probability, P(X ≥ 889)bin = 8.81 × 10-32: a very low prob-
ability that the predictions were generated by chance.

Discussion
Comparison of our logical model with iND750 demon-
strated that there is no significant difference in the per-
formance of any of the models on the prediction of gene
essentiality. A significant increase in performance was
observed for both the aber model and iND750 w.r.t the
majority classifier on predicting growth outcome on
defined growth medium, for all except the most stringent
definition of growth from Giaever et al [4]. There was also
no significant difference between the aber model and
iND750 in the defined growth medium study. The gene
essentiality study indicates that both models are equally
poor at predicting essential genes, indeed neither is an
improvement on the simple majority classifier. As is the
case for the minimal medium experimental data, the
essential gene data is highly skewed, reflecting the amount
of redundancy in the yeast genome. The improvement in
performance of both models w.r.t the defined medium
study is a result of the precise definition of the medium
components (only approximations to undefined media
are possible). The similarity of results for the aber model
and iND750 indicate that the additional complexity of
FBA is not required for the prediction of essential genes or
the determination of growth/retarded growth on defined

P X r =
n!

n i ! i!
p q

bin
i q i

i=r

n

≥( )
−( ) ⋅

⋅ ⋅
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−∑

Table 4: Results of McNemar significance tests for gene essentiality

Comparison Aber ORFs (940) iND750 ORFs (681) Shared ORFs (641)

Aber Model vs iND750 result 1.19 2.93 2.64
significance no no no
direction

Aber Model vs Majority Classifier result 0.31 NA 0
significance no no
direction

iND750 vs Majority Classifier result NA 2.56 2.31
significance no no
direction

Table 5: Values for metrics used to validate models for all experimental comparisons using defined medium

ORF Source Aber Shared iND750 Shared Aber iND750 Shared

Model Aber Aber iND750 iNd750 maj maj maj

No ORFs 940 641 681 641 940 681 641

Skewed Accuracy Exp A 0.79 0.79 0.80 0.80 0.77 0.77 0.76
Skewed Precision Exp A 0.80 0.80 0.83 0.82 0.77 0.77 0.76
Skewed Accuracy Exp B 0.81 0.82 0.80 0.79 0.82 0.83 0.82
Skewed Precision Exp B 0.83 0.84 0.86 0.85 0.82 0.83 0.82
Skewed Accuracy Exp C 0.83 0.85 0.84 0.83 0.82 0.83 0.82
Skewed Precision Exp C 0.83 0.85 0.85 0.84 0.82 0.83 0.82
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media. However the logical model is currently restricted
to binary growth/no growth predictions and has no capa-
bility to predict growth rates unlike FBA based techniques.
It is a case of horses for courses. The logical model pre-
sented here is a useful addition to the currently existing
models with an appropriate mix of expressive representa-
tion of metabolic concepts and a simple mechanism for
determining predictive outcomes.

The high number of inaccuracies in the prediction of
growth for all models indicates that much important
information remains to be discovered about yeast metab-
olism.

Using the logical model as background knowledge for 
active learning of hypotheses
A major motivation for our use of a logical formalism is
that it enables the exploitation of techniques from the
large research area of Inductive Logic Programming (ILP)
and related first-order learning methods [36]. This is not
possible with other formalisms such as FBA. In Previous
work [1], a precursor of the aber logical model was used
as a background theory in a (re)discovery task involving
the function of ORFs from a single pathway (AAA Biosyn-
thesis) in Yeast. The task was implemented as an active
learning loop, a machine learning technique based on
abductive logic programming that mirrors the hypo-
thetico-deductive process of hypothesis formation in sci-
entific discovery. In active learning a classifier is given a set

of training examples incrementally, so that the most
informative example (given a current hypothesis set) can
be chosen at each iteration of the loop. In scientific dis-
covery training examples correspond to the outcome of
experiments carried out automatically by a lab robot, and
the active selection of a training example corresponds to
choosing the experiment most likely to refute the largest
number of hypotheses, given the outcome of the experi-
ment (growth or no growth). Figure 1 illustrates the how
the active learning loop was applied to the functional
genomics discovery task.

The formation of hypotheses from the outcomes of the
selected experiments was performed by a limited form of
abductive theory completion [3], performed by PROGOL,
an ILP [36] program that performs both abductive and
inductive machine learning in a restricted form of FOL. In
this task the logical model formed the incomplete back-
ground knowledge theory, to which the final hypothesis is
added to "complete" or improve the theory, therefore
adding to the current biological knowledge of yeast func-
tional genomics. The completion of the theory is analo-
gous to identifying a new edge to be added to the
metabolic network, as well as a new ORF annotation for
that edge. This is described in Figure 2.

The use of this restricted form of FOL allows all compo-
nents of the scientific discovery task to be described using
the same knowledge representation, indeed the complex-

Table 6: McNemar test results for the aber model vs iND750

Comparison Set Aber ORFs (940) iND750 ORFs (681) Shared ORFs (641)

A result 0.72 0.60 0.14
significance no no no
direction

B result 1.19 2.93 2.64
significance no no no
direction

C result 0.25 1.05 1.09
significance no no no
direction

Table 7: McNemar tests results for the aber model vs the majority classifier

Comparsion Set Aber ORFs (940) Shared ORFs (641)

A result 5.02 8.51
significance yes yes
direction Aber Aber

B result 0.31 0
significance no no
direction

C result 5.94 11.17
significance yes yes
direction Aber Aber
Page 7 of 16
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ity of the entities and relationships required for accurate
description of enzymes, reactions, experiments, and
hypotheses etc can only be expressed by FOL or an equiv-
alently expressive knowledge representation (e.g descrip-
tion logics, OWL). Abduction of hypotheses relating
ORFs, enzymes and reactions also requires that the
machine learning program has FOL as it's representation
language, hence the use of programs from ILP. The Robot
Scientist concept therefore represents a close integration
of logical inference techniques used for scientific discov-
ery and an automated laboratory that can perform experi-
ments. The previous work on the AAA Biosynthesis
pathway was a proof of principle study. Recently the orig-
inal robot hardware has been replaced by a state-of-the-art
automated laboratory that substantially increases the
throughput of the Robot Scientist [37]

Conclusion
This paper presents a logic based model of the metabolic
processes in S. cerevisiae: "aber". The core of the aber
model is the FBA model iFF708 [6]. Added to this core are
an additional 263 ORFs, and also includes an additional
247 reactions taken from KEGG [11,12]. The aber model

has been designed to enable automated reasoning about
yeast metabolism. Use of the model to predict the essenti-
ality of genes in knockout studies provides a mechanism
which can be used to validate the model with respect to
experimental evidence. ROC analysis and other statistical
tests were carried out to evaluate the predictive ability of
the model and to compare the performance with a state of
the art FBA model (iND750); and to evaluate the effect of
increasing the coverage of the model from iFF708. The
results show that using a logical model rather that a FBA
based one results in no significant loss of performance,
nor is any loss found by enlarging the coverage of the
model to include information from KEGG; and that both
iND750 and our logical model represent an improvement
over random predictions.

Methods
Sources for the logical model
The Logical model of Yeast metabolism has been con-
structed from two main sources:

1) iFF708 – the Genome Scale Metabolic Network pro-
duced by Forster et al [6]

Table 8: McNemar results for iND750 vs the majority classifier

Comparison Set iND750 ORFs (681) Shared ORFs (641)

A result 5.01 5.69
significance yes yes
direction iND750 iND750

B result 2.56 2.64
significance no no
direction

C result 34.38 134.31
significance yes yes
direction iND750 iND750

Active Learning for Scientific DiscoveryFigure 1
Active Learning for Scientific Discovery.
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2) The Kyoto Encyclopaedia of Genes and Genomes
(KEGG) [11,12]

iFF708 consists of a set of reactions for which there exists
biochemical evidence in S. cerevisiae and a set of open
reading frames (ORFs) that encode the gene products that
catalyse the reactions. The gene products also belong to
enzyme classes, defined by the Enzyme Commission. For-
ster et al used online database sources (MIPS [38], KEGG
[11,12], SGD [39], Expasy [40] etc) and literature sources
to construct the network. Forster et al [35] estimate that 1
man year of research activity is required to identify the
reactions corresponding to the metabolic network of a
single organism. In constructing the network considera-
tion was given to the presence, stoichiometry, co-factors,
reversibility and localisation of reactions in S. cerevisiae.
The model building phase therefore required many itera-
tions and improvements. ORFs and reactions in iFF708
are localised into various compartments corresponding to
(some of) the organelles in the yeast cell. There are 2 com-
partments – 3 if the immediate external environment (e.g.
growth medium) is thought of as another compartment.
The internal compartments are the cytosol and the mito-
chondrion. The resulting reaction list included reactions
confined to each of the cell compartments and transport
reactions across membranes between the external envi-
ronment and the cytosol and the cytosol and mitochon-
drion.

Forster et al used the flux balance analysis to simulate var-
ious phenotypic and metabolic behaviours. These
included the models capability to manufacture key pre-
cursor metabolites such as the amino acids, and the ATP
related costs of synthesising macromolecules and ulti-
mately biomass from precursors. The latter method was
used to validate the model: by comparing the predicted
results to previous experimental results from aerobic and
anaerobic chemostat cultivation, and investigation of the

flux distributions and shadow price calculations allowed
the reaction list to be corrected (by hand) – so the predic-
tions from the final model were in agreement with the
experimental results. iFF708 has also been validated by
comparing growth to a list of essential genes (see section
2).

Components and structure of the logical model
The logical model and iFF708 both include ORFs,
enzymes and reactions found to be part of yeast metabo-
lism. An ORF corresponds to the DNA sequence that is
removed or replaced to create each knockout mutant.
Enzymes types are the Enzyme Commission number used
to classify gene products corresponding to a particular
enzyme function, and the reactions are the individual
chemical transformation steps that, when taken together
represent yeast metabolism. In its original form iFF708
treats the relationships between these components as if
they corresponded to a single relational database table,
resulting in much duplication of components. For exam-
ple, with isoenzymes, where the gene products from two
or more unique ORFs catalyse the same reaction, the reac-
tion will be repeated in the table as many times as there
are isoenzymes. This can lead to confusion when defining
the various unique entities or components. Adapting
iFF708 to a logical model enables the separation of enti-
ties and components into many linked database tables,
which is a more natural way to represent the components
and their relationships. The current logical model repre-
sents a first step – the reactions have been placed in a sep-
arate table allowing each reaction to be defined uniquely,
with links to the ORF/enzyme components that code/cat-
alyse the reaction. However, there remains much work to
be done to extend this representation to allow for addi-
tional complexities such as multimeric reactions and pro-
tein complexes [5]. Table 9 is a catalogue of the various
components and relations found in the logical model. The
ORF/Enzyme/Reaction relation is the logical equivalent of

Abductive Inference for Graph CompletionFigure 2
Abductive Inference for Graph Completion.
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the single table of iFF708. It can be seen that adding the
information from KEGG has added an additional 688
such relationships. The 1,166 ORFs in the logical model
include 226 "unknown" ORFs, where reactions for which
there are biochemical evidence have been included in
iFF708, but the ORF/enzyme information is not yet com-
plete (this explains the total ORF count of 940 used in
model validation – section 2).

Representation of ORFs, enzymes and reactions
Two sets of relations lie at the core of the logical represen-
tation of the metabolic network:

1. orf_fact(ORF,ECNumber,EnzymeClass,GeneName,

GeneDescription,ReactionNumber).

This relation corresponds to a single mapping between
one ORF, its Enzyme Commission number (also pre-
sented as a relation for traversing the hierarchy of EC
numbers); the corresponding Gene name; a (brief)
description of the function of the gene; and the reaction
catalysed by the gene product. The second relation defines
the reactions in the logical model:

2. reaction(ReactionNumber,Substrate,Direction,Prod-
uct).

where ReactionNumber is a unique number by which the
reaction is identified, Direction is either "forwards" (->) or
"reversible" (<->) and Substrate and Product are lists of
metabolites together with the cell compartment where the
metabolite is found or added to. The stoichiometry of the
reaction is also recorded, although the reaction mecha-
nism used to predict the outcome of experiments does not
currently make use of this information. Figure 3 uses a
simple example from Glycolysis to illustrate the relation-
ships in the logical model. Each Metabolite is stored as a
"reactant":

reactant(Compartment,Stiochiometry,CompoundID)

where the CompoundID is the unique ID from the KEGG
database – where conversion from the notation used in
the iFF708 was possible (>90% of metabolites). Compart-

ment is one of {external, cytosol, mitochondrion}. The
Orf/Enzyme/Reaction relations corresponding to the aber
logical model are available as Additional file 1 in the sup-
plementary information to this paper. The reactions are
available as Additional file 2.

The reaction mechanism
The Reaction Mechanism model used to predict the out-
come of knockout mutant experiments is essentially the
same mechanism as that used in [3]. To relate this model
to an observable phenotype we associate the existence of
paths through the graph to growth, i.e. if and only if (iff)
we can find (deduce) a path from input metabolites in the
growth medium to each of a set of essential metabolites
(amino acids, the nucleic acid precursors, polysaccharide
precursors, lipids, etc.) then the model predicts that the
yeast cell will grow indistinguishably from the wild type
(observable phenotype). The logical modelling approach
is simpler than that of FBA, as it involves the concept of
connection (true/false) rather than flux – which removes
the requirement to estimate fluxes.

Reactions are processed by checking whether the metabo-
lites on one side of the reaction were present in the cell
and adding the metabolites on the other side. Each reac-
tion was processed until no further reactions could be exe-
cuted and the final complement of cell compounds was
used to evaluate the growth outcome for that particular
growth experiment. This basic approach has now been
altered to incorporate the cell compartments used by the
iFF708. KEGG does not specify cell compartments, hence
the network components added from KEGG are assumed
to be located in the cytosol. Figure 4 illustrates how the
reaction mechanism can be used to predict the outcome
of the knockout experiments. The inputs to the model
points are:

1) The metabolites comprising the minimal growth
medium MMD+ura+hist+leu. These are the minimum set
of compounds required by the wild yeast for continued
growth – as well as the additional nutritional require-
ments of Uracil, L-Histidine and L-Leucine

2) The ORF(s) knocked out to form the mutant strain

3) Any additional nutrients added to identify possible
reactions removed from the metabolic network by knock-
ing out the ORF.

4) Metabolites deemed "ubiquitous" – deemed to be
always present in the cell. These include co-factors such as
NADPH, NADH, ATP, ADP etc. The full list of ubiquitous
compounds is given in Table 10. Ubiquitous compounds
are present in very many reactions and the growth simula-
tion algorithm requires their presence in the cell at the

Table 9: Components of the Logical Model

Component Size

ORF/Enzyme/Reaction relations 2303
ORFs 1166
EC Classes 541
Reactions 1087
Metabolites 821
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start to guarantee the connectivity of the wild-type meta-
bolic network. In biological terms these compounds are
present when the yeast cell first separates from the
"mother" cell.

5) The reactions and ORFs/enzymes defined above

Lists corresponding to the three compartments defined in
the iFF708 are created: the lists corresponding to the
cytosol and mitochondrion compartments are initially set
to contain the minimal medium compounds, and the
ubiquitous compounds. The first task of the reaction
mechanism is to identify all reactions that can no longer
proceed because they are uniquely catalysed by the gene
products produced by the ORF(s) removed to create the
knockout strain. These reactions are removed from the
network before processing by the reaction mechanism
proper. The remaining reactions are analysed in turn to
see whether the following conditions allowing the reac-
tion to proceed have been met:

1) Irreversible reactions can proceed iff (if and only if) all
reactants in the substrate are present in the correct cell
compartments. When the reaction runs, all reactants

found in the product list are added to the compartment
specified.

2) Reversible reactions are processed similarly to irrevers-
ible reactions, but can also be processed in the reverse
direction i.e. iff all reactants in the products list are found
in the correct compartments, the reactants in the substrate
list are added to the specified compartments.

Each reaction is processed in turn and is processed at most
once. Currently the logical model simply records the pres-
ence or absence of a metabolite and no calculation of the
quantities produced is undertaken. This approach is suffi-
cient for the simple continued/arrested growth predic-
tions currently generated, but it will be revised when the
model is modified to generate quantitative growth predic-
tions. The mechanism processes all reactions in a cyclical
manner as long as 1 or more reactions in the previous
cycle have executed. This process ensures that all possible
reactions can be processed and as many metabolites as
possible are added to each cell compartment.

After processing by the reaction mechanism, determina-
tion of continued or arrested growth is made by compar-
ing the final complement of metabolites with a list of

Representation of Metabolic Information: An Example from GlycolysisFigure 3
Representation of Metabolic Information: An Example from Glycolysis. A: reactions from Glycolysis, B: representations in pro-
log.
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compounds deemed essential for healthy cell growth:
these include amino acids, nucleic acids, compounds such
as D-Glucose 1-phosphate that are essential to the forma-
tion of polysaccharides, compounds such as choline that
are essential to the formation of membranes, and impor-
tant intermediary compounds such as pyruvate. The com-
plete list of essential compounds is given in Table 11. The
growth status of the simulated experiment is determined
as follows:

1) Continued growth is predicted iff ∀(essential com-
pounds are present in the Cytosol compartment of the
model)

2) Arrested growth is predicted if ∃(essential compound
missing from the Cytosol compartment)

Growth of the wild variant with no additional nutrients
can be predicted by giving a knockout value of "none" and
an empty list for the additional nutrients. To create a usa-
ble logical model it was crucial that simulation of the wild

variant resulted in continued growth, i.e. the logical
model must contain all the reactions required for all of the
essential compounds to be added to the cell, and the ubiq-
uitous compounds to contain all the co-factors required
by the reactions. However, including components only found
in the iFF708 was not sufficient to predict growth as the net-
work did not include enough reactions to enable synthesis of all
the compounds deemed to be essential. However, this is
because the aber model is focussed on modelling the via-
bility of metabolism. This means that our end-points are
metabolites considered to be essential for life. The end-
points of a flux balance analysis model are metabolites
that are important in cell biomass. The two sets of end-
point metabolite are therefore not necessarily the same.
For example, it would seem clear that a cell must be able
to synthesise the immediate nucleotide precursors of RNA
and DNA, but these are not all end-points in the iFF708
model. Inclusion of the knowledge representing additions
to yeast biology in the KEGG database and added subse-
quent to the completion of iFF708; as well as an addi-
tional reaction, also from KEGG, not yet documented in
yeast, but essential for the production of Palmitate,
allowed the graph traversal algorithm to reach all essential
compounds. (Note – the "palmitate reaction" has now
been found to occur in yeast, KEGG [11,12]). Construc-
tion of the model was complete when all reactions neces-
sary to simulate continued growth for the wild variant had
been added to the model.

Description of KEGG components used to augment IFF708
Table 12 shows the numbers of ORFs and reactions
belonging to KEGG pathways for those ORF/enzyme/
reaction relations used to augment the IFF708 model, as

Table 10: Compounds deemed to be Ubiquitous in S. cerevisiae

Kegg Compound ID Compound Name

C00005 NADPH
C00004 NADH
C00016 FAD
C00006 NADP+
C00003 NAD+
C00061 FMN
C00575 3'5'-Cyclic AMP
C00399 ubiquinone
C00137 myo-inositol
C00194 coenzyme B12
C00032 protoheme
C00255 riboflavin
C00346 phosphoethanolamine
C00641 1 2-Diacyglycerol
C00448 farnesyl pyrophosphate
C00002 ATP
C00008 ADP
C00342 Thioredoxin
C00007 O2

Using The Logical Model to Predict the Outcome of Auxo-trophic Experiments In S. cerevisiaeFigure 4
Using The Logical Model to Predict the Outcome of Auxo-
trophic Experiments In S. cerevisiae.
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Table 11: Compounds deemed to be essential for healthy growth of S. cerevisiae

Kegg Compound ID Compound Name Compound type/function

C00041 L-Alanine amino acid
C00037 Glycine amino acid
C00079 L-Phenylalanine amino acid
C00078 L-Tryptophan amino acid
C00082 L-Tyrosine amino acid
C00407 L-Isoleucine amino acid
C00073 L-Methionine amino acid
C00062 L-Arginine amino acid
C00049 L-Aspartate amino acid
C00135 L-Histidine amino acid
C00097 L-Cysteine amino acid
C00025 L-Glutamate amino acid
C00064 L-Glutamine amino acid
C00047 L-Lysine amino acid
C00148 L-Proline amino acid
C00065 L-Serine amino acid
C00188 L-Threonine amino acid
C00183 L-Valine amino acid
C00152 L-Asparagine amino acid
C00123 L-Leucine amino acid
C00242 Guanine base
C00106 Uracil base
C00147 Adenine base
C00262 Hypoxanthine base
C00178 Thymine base
C00380 Cytosine base
C00212 Adenosine nucleoside
C00387 Guanosine nucleoside
C00294 Inosine nucleoside
C00214 Thymidine nucleoside
C00299 Uridine nucleoside
C00475 Cytidine nucleoside
C00020 AMP nucleotide
C00144 GMP nucleotide
C00130 IMP nucleotide
C00105 UMP nucleotide
C00055 CMP nucleotide
C00002 ATP energy transfer
C00044 GTP energy transfer
C00075 UTP enery transfer
C00005 NADPH coenzyme
C00004 NADH coenzyme
C00016 FAD coenzyme
C00008 ADP energy transfer
C00035 GDP energy transfer
C00015 UDP energy transfer
C00068 Thiamin diphosphate coenzyme
C03028 Thiamin triphosphate coenzyme
C00006 NADP+ coenzyme
C00003 NAD+ coenzyme
C00061 FMN coenzyme
C00575 3' 5'-Cyclic AMP energy transfer
C00002 ATP nucleic acid
C00044 GTP nucleic acid
C00063 CTP nucleic acid
C00075 UTP nucleic acid
C00131 dATP nucleic acid
C00286 dGTP nucleic acid
C00458 dCTP nucleic acid
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well as those reactions and relations found in KEGG that
have no pathway assigned. The reactions and relations
added from KEGG were inferred from a translation of the
LIGAND component of KEGG, where reactions corre-
sponding to ORF/Enzyme relationships not found in
IFF708 were collected. (These are the 247 reactions dis-
cussed in section 4). This augmentation of iFF708 was
undertaken when it was found that the reactions in iFF708
were insufficient to synthesise all of the essential com-
pounds listed in Table 11. There are 318 ORFs involved in
the 688 additional ORF/enzyme/reaction relations; of
these 55 are also part of iFF708. 37 ORFs have reactions
added from KEGG that have no reactions defined in
iFF708, i.e. the ORFs had a known EC number but the
reaction corresponding to the EC number became part of
biological knowledge subsequent to the completion of
IFF708.

The relations corresponding to the 247 additional reac-
tions belong to 47 pathways described in KEGG, however
the largest proportion of these relations correspond to
reactions that are not included in KEGG pathways. Purine
metabolism (33 reactions), Fatty acid biosynthesis (path
1) (32 reactions) and Pyrimidine metabolism (29 reac-
tions) have the largest numbers of reaction assignments;
Purine metabolism (71 ORFs), Pyrimidine metabolism
(68 ORFs) and RNA polymerase (31 ORFs) have the larg-
est numbers of ORF assignments. There is no simple rela-
tionship between the numbers of ORFs in a pathway and
the number of reactions, e.g. the 32 new reactions added
to the Fatty acid biosynthesis (path 1) pathway are all
coded for by a single ORF.

Model validation
Model validation [41] is a vital stage in the construction
of any model. This can be done either by 1) direct experi-
mentation where the model also determines the most rel-
evant experiments (preferably), or 2) by comparison with

existing datasets. The former method is intrinsic to meth-
ods of system identification, where models are either gen-
erated or improved by machine learning/statistics
techniques e.g. equation discovery and computational sci-
entific discovery.

It is possible to use the second method to obtain some
measurements of the validity of metabolic models of yeast
by comparing the predicted outcomes of auxotrophy
experiments to the results of a whole genome gene-dele-
tion study undertaken by Giaever et al [4]. This study
involved two repeats of competitive batch experiments
where all knockout strains were grown on an agar base
supplemented by a number of both defined and unde-
fined growth media. Measurements of growth were
obtained after 5 and 15 generations and are presented as
fitness comparisons against the growth of the average
strain on rich undefined medium (YPD – Yeast Extract,
Peptone and Dextrose), where strains growing slower
than average are defined as sensitive and those growing
faster as refractory. Growth data for each particular strain
corresponds to the relative abundance of strain-specific
DNA tags found by hybridisation to a custom high density
oligonucleotide array, and take the form of continuously
valued relative fitness scores, which are expressed as "units
of deleterious growth" [4]. There are 4 sensitive/refractory
measurements for each strain/growth medium combina-
tion. Giaever et al used a sensitivity score cut off of >20
units of deleterious growth to identify strains with a sig-
nificant deleterious phenotype after 5 generations, rising
to >100 for 15 generations, reflecting the observation that
strains found to be sensitive earlier would represent genes
that are more important for cell growth. Giaever et al [4]
also compiled a list of essential strains that did not grow on
YPD. Model validation therefore assessed the models' per-
formance on predictions of gene essentiality as well as on
a more comprehensive analysis of growth predictions
which combine the essential gene listings with the results

C00459 dTTP nucleic acid
C00103 D-Glucose 1-phosphate polysaccharide
C00043 UDP-N-acetyl-D-glucosamine polysaccharide
C00096 GDPmannose polysaccharide
C00114 choline membrane
C00157 lecithin membrane
C00416 phosphatidate membrane
C00422 triacylglycerol membrane
C01694 ergosterol membrane
C00189 ethanolamine membrane
C00116 glycerol membrane
C00137 inositol membrane
C01120 sphinganine 1-phosphate membrane
C00668 alphaD-glucose 6-phosphate intermediate
C00022 pyruvate intermediate
C00024 acetyl-CoA intermediate
C00356 3-Hydroxy-3-methyl-glutaryl CoA intermediate

Table 11: Compounds deemed to be essential for healthy growth of S. cerevisiae (Continued)
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from the most relevant defined medium. This was a min-
imal medium (MMD+ura+hist+leu), which contains the
minimum sets of compounds required for wild type
growth as well as additional nutritional requirements for
uracil, histidine and leucine.

Authors' contributions
RDK initiated the logical modelling concept and con-
structed the prototype model. KW constructed the logical
model and carried out the validation experiments and the
statistical tests. RDK and KW wrote and revised the manu-
script.

Table 12: KEGG Pathways and total numbers of ORFs and reactions added to the aber model from KEGG and not included in IFF708

Kegg Pathway Number of Reactions Number of ORFs

Citrate cycle (TCA cycle) 8 12
Tryptophan metabolism 5 2
Bile acid biosynthesis 1 2
Fatty acid biosynthesis (path 1) 32 1
One carbon pool by folate 1 1
Biotin metabolism 5 1
Selenoamino acid metabolism 10 3
Folate biosynthesis 2 1
Purine metabolism 33 71
Pentose phosphate pathway 1 1
Nicotinate and nicotinamide metabolism 2 1
Fatty acid metabolism 4 1
Lysine degradation 7 2
Propanoate metabolism 1 1
Glycine, serine and threonine metabolism 17 12
C5-Branched dibasic acid metabolism 6 2
Pyruvate metabolism 8 5
Methionine metabolism 10 3
Alanine and aspartate metabolism 4 4
Ubiquitin mediated proteolysis 1 14
Sulfur metabolism 8 1
Nitrogen metabolism 2 2
Glutamate metabolism 4 4
Aminosugars metabolism 2 1
N-Glycans biosynthesis 8 14
Starch and sucrose metabolism 3 4
Pentose and glucuronate interconversions 2 1
Glycerolipid metabolism 10 3
gamma-Hexachlorocyclohexane degradation 7 7
Phenylalanine, tyrosine and tryptophan biosynthesis 2 5
No Pathway Annotation 50 153
RNA polymerase 5 31
Lysine biosynthesis 5 1
Oxidative phosphorylation 3 26
Butanoate metabolism 10 5
Fructose and mannose metabolism 1 1
Pyrimidine metabolism 29 68
1,4-Dichlorobenzene degradation 3 1
Phosphatidylinositol signaling system 1 10
DNA polymerase 5 18
Porphyrin and chlorophyll metabolism 2 1
Arginine and proline metabolism 1 2
Cysteine metabolism 11 3
Galactose metabolism 1 1
Pantothenate and CoA biosynthesis 6 2
Aminoacyl-tRNA biosynthesis 18 27
Glycolysis / Gluconeogenesis 12 8
Valine, leucine and isoleucine biosynthesis 13 10
Riboflavin metabolism 5 7
Page 15 of 16
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:97 http://www.biomedcentral.com/1471-2105/9/97
Additional material
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ORF, Enzyme and Reaction Relations. This file contains Prolog facts cor-
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Product information for Reactions in the Logical Model of Yeast Metabo-
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