515 research outputs found

    Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: an in-silico study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV and HCV infections have become the leading global public-health threats. Even more remarkable, HIV-HCV co-infection is rapidly emerging as a major cause of morbidity and mortality throughout the world, due to the common rapid mutation characteristics of the two viruses as well as their similar complex influence to immunology system. Although considerable progresses have been made on the study of the infection of HIV and HCV respectively, few researches have been conducted on the investigation of the molecular mechanism of their co-infection and designing of the multi-target co-inhibitors for the two viruses simultaneously.</p> <p>Results</p> <p>In our study, a multi-target Quantitative Structure-Activity Relationship (QSAR) study of the inhibitors for HIV-HCV co-infection were addressed with an in-silico machine learning technique, i.e. multi-task learning, to help to guide the co-inhibitor design. Firstly, an integrated dataset with 3 HIV inhibitor subsets targeted on protease, integrase and reverse transcriptase respectively, together with another 6 subsets of 2 HCV inhibitors targeted on NS3 serine protease and NS5B polymerase respectively were compiled. Secondly, an efficient multi-target QSAR modelling of HIV-HCV co-inhibitors was performed by applying an accelerated gradient method based multi-task learning on the whole 9 datasets. Furthermore, by solving the <it>L</it>-1-infinity regularized optimization, the Drug-like index features for compound description were ranked according to their joint importance in multi-target QSAR modelling of HIV and HCV. Finally, a drug structure-activity simulation for investigating the relationships between compound structures and binding affinities was presented based on our multiple target analysis, which is then providing several novel clues for the design of multi-target HIV-HCV co-inhibitors with increasing likelihood of successful therapies on HIV, HCV and HIV-HCV co-infection.</p> <p>Conclusions</p> <p>The framework presented in our study provided an efficient way to identify and design inhibitors that simultaneously and selectively bind to multiple targets from multiple viruses with high affinity, and will definitely shed new lights on the future work of inhibitor synthesis for multi-target HIV, HCV, and HIV-HCV co-infection treatments.</p

    QSAR model development for early stage screening of monoclonal antibody therapeutics to facilitate rapid developability

    Get PDF
    PhD ThesisMonoclonal antibodies (mAbs) and related therapeutics are highly desirable from a biopharmaceutical perspective as they are highly target specific and well tolerated within the human system. Nevertheless, several mAbs have been discontinued or withdrawn based either on their inability to demonstrate efficacy and/or due to adverse effects. With nearly 80% of drugs failing in clinical development mainly due to lack of efficacy and safety there arises an urgent need for better understanding of biological activity, affinity, pharmacology, toxicity, immunogenicity etc. thus leading to early prediction of success/failure. In this study a hybrid modelling framework was developed that enabled early stage screening of mAbs. The applicability of the experimental methods was first tested on chemical compounds to assess the assay quality following which they were used to assess potential off target adverse effects of mAbs. Furthermore, hypersensitivity reactions were assessed using Skimune™, a non-artificial human skin explants based assay for safety and efficacy assessment of novel compounds and drugs, developed by Alcyomics Ltd. The suitability of Skimune™ for assessing the immune related adverse effects of aggregated mAbs was studied where aggregation was induced using a heat stress protocol. The aggregates were characterised by protein analysis techniques such as analytical ultra-centrifugation following which the immunogenicity tested using Skimune™ assay. Numerical features (descriptors) of mAbs were identified and generated using ProtDCal, EMBOSS Pepstat software as well as amino acid scales for different. Five independent and novel X block datasets consisting of these descriptors were generated based on the physicochemical, electronic, thermodynamic, electronic and topological properties of amino acids: Domain, Window, Substructure, Single Amino Acid, and Running Sum. This study describes the development of a hybrid QSAR based model with a structured workflow and clear evaluation metrics, with several optimisation steps, that could be beneficial for broader and more generic PLS modelling. Based on the results and observation from this study, it was demonstrated incremental improvement via selection of datasets and variables help in further optimisation of these hybrid models. Furthermore, using hypersensitivity and cross reactivity as responses and physicochemical characteristics of mAbs as descriptors, the QSAR models generated for different applicability domains allow for rapid early stage screening and developability. These models were validated with external test set comprising of proprietary compounds from industrial partners, thus paving way for enhanced developability that tackles manufacturing failures as well as attrition rates.European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie actions grant agreemen

    APPLICATION OF MACHINE LEARNING APPROACHES TO EMPOWER DRUG DEVELOPMENT

    Get PDF
    Human health, one of the major topics in Life Science, is facing intensified challenges, including cancer, pandemic outbreaks, and antimicrobial resistance. Thus, new medicines with unique advantages, including peptide-based vaccines and permeable small molecule antimicrobials, are in urgent need. However, the drug development process is long, complex, and risky with no guarantee of success. Also, the improvements in techniques applied in genomics, proteomics, computational biology, and clinical trials significantly increase the data complexity and volume, which imposes higher requirements on the drug development pipeline. In recent years, machine learning (ML) methods were employed to support drug development in various aspects and were shown to be highly effective. Here, we explored the application of advanced ML approaches to empower the development of peptide-based vaccines and permeable antimicrobials. First, the peptide-based vaccines targeting pancreatic cancer and COVID-19 were predicted and screened via multiple approaches. Next, novel structure-based methods to improve the performance of peptide: MHC binding affinity prediction were developed, including an HLA modeling pipeline that provides structures for docking-based peptide binder validation, and hierarchical clustering of HLA I into supertypes and subtypes that have similar peptide binding specificity. Finally, the physicochemical properties governing the permeability of small molecules into multidrug-resistant Pseudomonas aeruginosa cells were selected using a random forest model. In conclusion, the use of machine learning methods could accelerate the drug development process at a lower cost and promote data-based decision-making if used properly

    Inverse Materials Design Employing Self-folding and Extended Ensembles

    Full text link
    The development of new technology is made possible by the discovery of novel materials. However, this discovery process is often tedious and largely consists of trial and error. In this thesis, I present methods to aid in the design of two distinct model systems. In the first case study, I model the 43,380 nets belonging to the five platonic solids to elucidate a universal folding mechanism. I then correlate geometric and topological features of the nets with folding propensity for simple shapes (i.e., tetrahedron, cube, and octahedron), in order to predict the folding propensity of nets belonging to more complex shapes (i.e., dodecahedron and icosahedron). In the second case study, I develop Monte Carlo techniques to sample the alchemical ensemble of hard polyhedra. In general, the anisotropy dimensions (e.g, faceting, branching, patchiness, etc.) of material building blocks are fixed attributes in experimental systems. In the alchemical ensemble, anisotropy dimensions are treated as thermodynamic variables and the free energy of the system in this ensemble is minimized to find the equilibrium particle shape for a given colloidal crystal at a given packing fraction. The method can sample millions of unique shapes within a single simulation, allowing for efficient particle design for crystal structures. Finally, I employ the method to explore how glasses formed from hard polyhedra, which are geometrically frustrated systems, can utilize extra dimensions to escape the glassy state in the extended ensemble.PHDChemical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146005/1/pdodd_1.pd

    Advances in Molecular Simulation

    Get PDF
    Molecular simulations are commonly used in physics, chemistry, biology, material science, engineering, and even medicine. This book provides a wide range of molecular simulation methods and their applications in various fields. It reflects the power of molecular simulation as an effective research tool. We hope that the presented results can provide an impetus for further fruitful studies

    Epitope and T-cell Reactivity Prediction Using Machine Learning Approaches

    Get PDF
    13301甲第3953号博士(工学)金沢大学博士論文本文Ful
    corecore