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Abstract 

Human health, one of the major topics in Life Science, is facing intensified challenges, including 

cancer, pandemic outbreaks, and antimicrobial resistance. Thus, new medicines with unique 

advantages, including peptide-based vaccines and permeable small molecule antimicrobials, are 

in urgent need. However, the drug development process is long, complex, and risky with no 

guarantee of success. Also, the improvements in techniques applied in genomics, proteomics, 

computational biology, and clinical trials significantly increase the data complexity and volume, 

which imposes higher requirements on the drug development pipeline. In recent years, machine 

learning (ML) methods were employed to support drug development in various aspects and were 

shown to be highly effective. Here, we explored the application of advanced ML approaches to 

empower the development of peptide-based vaccines and permeable antimicrobials. First, the 

peptide-based vaccines targeting pancreatic cancer and COVID-19 were predicted and screened 

via multiple approaches. Next, novel structure-based methods to improve the performance of 

peptide: MHC binding affinity prediction were developed, including an HLA modeling pipeline 

that provides structures for docking-based peptide binder validation, and hierarchical clustering of 

HLA I into supertypes and subtypes that have similar peptide binding specificity. Finally, the 

physicochemical properties governing the permeability of small molecules into multidrug-resistant 

Pseudomonas aeruginosa cells were selected using a random forest model. In conclusion, the use 

of machine learning methods could accelerate the drug development process at a lower cost and 

promote data-based decision-making if used properly.  
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1.1 Introduction 

Improving human health is one of the major contributions of Life Science innovations. However, 

scientists are facing new threats, including, but not limited to, cancer, pandemic outbreak, and 

antimicrobial resistance. Cancer surveillance studies have shown that there were 23.6 million new 

global cancer cases and 10.0 million cancer deaths in 2019, the rate of diagnosis and death have 

raised 26.3% and 20.9%, respectively, compared to 2010 [1, 2]. The recent coronavirus disease-

2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-CoV-2), outbroke in late 2019 and propagated globally, led to over 611 million confirmed 

cases, 6.5 million deaths, and huge impact on economy [3]. Antimicrobial resistance has caused at 

least 1.27 million deaths worldwide and associated with nearly 5 million deaths in 2019, 

constituting an urgent threat to public health. As existing medicines start to show weakness in 

fighting against the rapidly increasing threat, new therapies are needed to address these challenges. 

In order to achieve such goal, efforts should be made in two aspects, discovery of new medicines 

as well as upgrade in drug development pipeline. 

Two new medicines, peptide-based vaccines and permeable antimicrobials were demonstrated to 

have potential in resolving these challenges. The peptide-based vaccines elicit adaptive immune 

response using short peptides that bind to major histocompatibility complex (MHC) molecules. 

Compared to other vaccine strategies, the peptide-based vaccine prevails in safety, development 

swiftness, and production easiness [4], hence is suitable for personalized cancer vaccines and rapid 

vaccines against pandemic [5, 6]. As for the multidrug resistance, most antimicrobials were 

hindered by the outer membrane (OM) and active efflux pumps of Gram-negative bacteria [7, 8]. 

Thus, efforts have been made to select or modify drug molecules that could penetrate the OM and 

evade efflux activity as a straightforward solution [9]. 

Conventional drug development strategy was successfully employed in the past and produced 

numerous drugs. However, it requires massive time and effort, on average takes more than 12 years 

and 1.8 billion US dollars to develop one new drug. During the preclinical and clinical trials, 96% 

of drug candidates failed by showing low efficacy [10]. As a result, in response to the urgent need 

of new drugs, the drug discovery projects have to be carried out in even larger scale, resulting in 

higher demand in time and effort. The advancements of in silico approaches provide viable 

alternatives to conventional experiments, which significantly accelerating the development of new 
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drugs and therapies [11]. For example, molecular dynamics (MD) and docking methods were 

applied to virtually screen large chemical libraries for candidates that bind to target molecules. The 

increased drug screening scale and wide application of in silico methods in combination produce 

huge amount of data available for detailed analysis but also boost the demand to data mining 

strategies, which facilitates the rapid development of machine learning (ML) methods [12]. In 

modern drug development processes, ML methods are vigorously applied to improve the accuracy 

and throughput of the pipeline, which has been demonstrated to be highly effective. For example, 

the properties of drug candidates, including, but not limited to, toxicity, efficacy, and permeability, 

could be predicted using QSAR methods to refine the drug screening result. Also, even if the 

experimentally determined structure of target molecule is not available, the advanced structural 

modeling methods could accurately predict it for virtual drug screening. It is foreseeable that ML 

methods will take more important roles in drug development. 

1.2 Major Histocompatibility Complex 

Histocompatibility Complex (MHC) is a vital component in adaptive immune system by binding 

and presenting peptide antigens towards T lymphocytes [13-15]. Studies show that the malfunction 

of MHC molecules are related to infectious diseases [16], cancer [17], and autoimmunity [18]. A 

better understanding of the structure and function of the MHC molecules could further facilitate 

the development of therapies targeting MHC. 

1.2.1 MHC genes and structures 

There are two major classes of classical MHC, class I and II. Class I molecules are composed of 

two imbalanced chains: the α chain is larger in size and functionally more important, while the β 

chain (β macroglobulin, B2M), encoded by non-MHC gene, is almost invariant. Class II molecules 

also contain α and β chains, while they are balanced in size and functional importance [19]. 

Molecules of both classes have similar folding (Fig. 1-1A, Fig. 1-2A). From outreached to 

intracellular, MHC molecules could be divided into several domains, including peptide binding 

domain, surface proximal domain, transmembrane domain (TM), and cytoplasmic tails. In MHC 

I molecule, the peptide binding domain is formed by α1 and α2 subunits, the membrane proximal 

domain is formed by α3 subunit and β chain, while only α chain processes TM domain and 

cytoplasmic tail. The MHC II molecules are roughly symmetric, the α1 and β1 subunits form the 
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peptide binding domain, the α2 and β2 subunits form the membrane proximal domain, and both 

chains have TM domains as well as cytoplasmic tails [20]. 

The human version of MHC is also known as Human Leukocyte Antigen (HLA). HLA genes are 

located on the short arm of chromosome 6, spanning approximately 3.6 mega base pairs. Classical 

class I regions consist of A, B, and C loci that encode the α chains of HLA molecules, while 

classical class II regions consist of DP, DQ, and DR genes, each containing A and B loci encoding 

α and β chains, respectively [13]. 

1.2.2 Function of MHC in adaptive immune system 

The MHC is first known as transplantation antigen [21]. Its major biological function is regulation 

of immune response, including, but not limit to, antigen presentation and T cell activation. MHC 

class I molecules appears on the surface of almost all nucleated cells and present endogenous 

peptides towards CD8+ T cells (cytotoxic T cells) (Fig. 1-3A). Class II molecules are mainly 

expressed by antigen presenting cells (APCs), such as dendritic cells, macrophages, Langerhans 

cells and B cells, and present exogenous peptides towards CD4+ Tells (helper T cells) (Fig 1-3B) 

[13]. 

The peptide-MHC complex (pMHC) elicits activation of T cells carrying certain T cell receptors 

(TCR) that can recognize such pMHC.  The phenomenon that T cells can only respond to antigens 

that presented by self MHC molecules is referred to as MHC-restricted antigen recognition, or 

MHC restriction [19]. 

1.2.3 Peptide MHC interaction 

Peptide antigen fit into the binding groove on top of the peptide binding domain, which is formed 

by two roughly parallel α helices above a floor of β plate, one helix and half of the plate come 

from each of the two subunits, α1 and α2 for class I, and α1 and β1 for class II [19]. 

Peptides that bind to MHC class I usually have 8-10 residues, since both ends of the binding groove 

are closed. Peptide residues occupy 6 binding pockets along the binding groove, namely A to F, 

among which two deep pockets B and F correspond to anchor residues on peptide, usually P2 and 

PΩ, and contribute most to peptide MHC interaction (Fig. 1-1B). In peptide-MHC I complex 

(pMHC I), the position of both ends of peptides are conserved, while the middle section show 

flexibility, as it often bulges from the groove [19]. 
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Class II molecules have open binding groove thus can hold longer peptides, usually 13-25 residues 

long, with both ends of peptides extruding from the groove. There are 9 pockets (P1-P9) assigned 

along the binding groove, accommodating 9-mer core region of consecutive residues on the 

peptide. Four deep pockets, 1, 4, 6, and 9, correspond to anchor residues of peptide (Fig. 1-2B). 

Compared to pMHC I, peptides that bind to MHC II adopt more linear conformation, and residues 

flanking the core region also contribute to the interaction with MHC II [19]. 

1.2.4 HLA polymorphism 

HLA is highly polymorphic in order to interact with diverse antigens. As the most polymorphic 

region in human genome, there are huge number of HLA alleles recorded in IPD-IMGT/HLA 

Database, including 24,075 classical HLA I and 9,515 classical HLA II genes, encoding 13,970 

and 5,907 unique proteins, respectively [22]. It should be noted that class II molecules are 

composed of two chains, thus the number of unique HLA II molecules is as large as 613,013. In 

addition, human beings are diploid, making the HLA haplotype extremely complex. 

It is discovered that although peptide binding specificity of each HLA allele is unique, some alleles 

have largely overlapped specificities. To reduce the complexity in discriminating huge number of 

alleles, supertypes were defined to include alleles with similar functions, hence alleles in a 

supertype could be represented by a few representatives. 

1.2.5 HLA nomenclature 

To maintain data integrity, HLA alleles are given unique names according to the nomenclature 

adopted by the WHO Nomenclature Committee for Factors of the HLA System. The allele name 

starts with the HLA prefix and gene name, followed by up to four sets of digits that identify the 

allotype group, specific protein, synonymous DNA variations within the coding region, and DNA 

variations in non-coding regions, respectively. For example, alleles HLA-A*01:01:01:01 and 

HLA-A*01:01:01:02 belong to the same gene locus and allotype group, encode the same proteins, 

and have the same DNA sequences in the coding regions, but differ in the non-coding regions. For 

convenience, all alleles are referred to as unique proteins by the gene name and first two sets of 

digits, and the full names are used only when necessary. 
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1.3 Peptide-based vaccine targeting MHC class I molecules 

Vaccines have been applied for several decades and are effective to reduce morbidity and mortality 

of infectious disease and cancer. Peptide-based vaccines use short peptide to elicit adaptive 

immune response (Fig. 1-4). According to the mechanism, peptide-based vaccines could be 

concluded into three types. The MHC class I epitopes, usually composed of 9-11 residues, activate 

cytotoxic (CD8+) T cells. The MHC class II epitopes, usually 15-mers, activate helper (CD4+) T 

cells. And antibody epitopes that stimulate B cells by multiple mechanisms. 

1.3.1 Advantage of peptide-based vaccines 

Conventional vaccines that rely on attenuated or inactivated forms of pathogens or components 

that contain mixture of multiple antigens, which stimulate polyclonal and long-lasting immune 

response. However, the conventional vaccines also have disadvantages: the complex component 

may induce allergic or autoimmune reactions, the attenuated or inactivated pathogen may return 

to its virulent state, and it is difficult to culture certain pathogens under laboratory conditions. As 

one of the fast-developing alternative techniques, compared to whole pathogens and proteins, 

peptide vaccines could elicit epitope-specific immune response and minimize the risk of allergic 

or autoimmune reactions, since peptide vaccines are designed to be epitope specific, and the 

purification of peptides is easy to perform. Also, because of the easiness of chemical synthesis and 

stability in storage condition, time and resource consumption in both development and production 

phases of peptides are much lower. 

1.3.2 Development of peptide-based vaccines containing MHC class I antigens 

Peptide-based vaccines, both preventive and therapeutic, could elicit immune response via the 

activation of T cells or B cells. Here, we focus on the short peptides, usually 8-10 residues, that 

bind to MHC class I and activate CD8+ T cells. In the context of infectious diseases, cytotoxic 

immune response is elicited by the pathogen specific peptides that generated by degraded pathogen 

proteins inside infected cells. While in immune oncology, cancer cells carry somatic mutations 

producing tumor specific peptides, which are also known as neoantigens, that leads to T cell 

antitumor activity. 

Among all factors that contribute to effective vaccines, the selection of peptide antigen is the most 

important one. Such a peptide must be specific to pathogen or tumor, presented by MHC I in 
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abundance, and recognized by T cells. Correspondingly, experimental and in silico methods were 

developed for peptide selection. Based on whole exome sequencing (WES), the pathogen or tumor 

specific peptides could be identified. Affinity between peptide and MHC is the most widely 

accepted measurement of MHC presentation, thus the assays and predicting tools are actively 

developed. Still, the effective identification of immunogenic and naturally presented peptide 

remains a challenge. 

1.4 Peptide MHC binding affinity prediction 

One MHC allele can only bind a small portion of all possible peptides, which is described as 

peptide binding specificity. The selection of peptides is characterized by different affinity of 

peptides toward a certain MHC allele, and peptides with high affinity are more likely to be 

presented. Thus, determining peptide MHC affinity is extremely important for understanding the 

function of MHCs. 

1.4.1 Experimental methods of measuring peptide MHC interactions 

The competition assays are the most widely used method for determining peptide MHC affinity, 

which employs the competition of binding to MHC molecule between the test peptide and 

radiolabeled indicator peptide that strongly binding to such MHC allele. Purified MHC molecules, 

indicator peptides, and test peptides at different concentrations are first incubated together for at 

least two days, then the level of inhibitory of indicator peptides was measured. According to the 

dose-response curve (level of inhibitory versus test peptide concentration), the concentration of 

test peptide required to inhibit 50% indicator peptide binding (IC50) is calculated, which is used to 

represent the affinity of test peptide. A low IC50 indicates strong binding, and IC50 < 500 nM are 

usually adopted as threshold of strong binders. 

Scintillation proximity assay is used to measure the stability of pMHC I complex that is 

demonstrated to have higher correlate with immunogenicity. By mixing MHC I α chain, 

radiolabeled β chain, and test peptide, pMHC I complexes are formed, and its dissociation was 

monitored by consecutive measurement of the scintillation stimulated by radiation. The 

scintillation frequency and duration of experiment are fitted to one-phase dissociation model, 

where the half-life of complex is calculated and used to represent the stability. A half-life > 1h 

should be used as a threshold for immunogenic peptide. 
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The concept of MHC associated peptides (MAP) describes peptides that are presented by MHC 

molecules, which undergone protein splicing, selective transportation, MHC binding, and editing, 

thus are highly immunogenic. To identify MAPs, presented peptides are eluted from pMHC on 

cell surface, then sequenced using LC-MS. 

1.4.2 Peptide-MHC binding affinity prediction methods 

Measuring peptide MHC affinity via experiments is highly time and resource consuming. The huge 

number of both MHC molecules and peptides determines that it is impossible to measure the 

affinity between all possible combinations of peptides and MHCs via experiments. Therefore, in 

silico methods are developed, which could be roughly divided into approaches that based on 

scoring matrix, deep learning models, and structures. 

Currently, deep learning methods are most widely used, as such methods have better performance 

than scoring matrix-based methods, while the computation is fast enough. Structure based methods 

calculate the binding affinity employing docking and molecular dynamics, which leads to high 

accuracy but consumes high amount of computation, thus is not suitable for high throughput 

prediction. 

Among the deep learning-based methods, two training strategy were applied, allele-specific and 

pan-specific, the resulting predictors address different pros and cons. The allele-specific methods 

treat each MHC allele separately and corresponds to one neural network trained on its own peptide 

binding affinity data. Such methods achieve high accuracy, however, only cover a small number 

of alleles, as peptide binding assays are focused on populated alleles. The pan-specific methods 

train a single model that apply for all alleles, by combining binding data of different alleles, 

sometimes from different experimental methods. Such methods could be applied to theoretically 

all MHC alleles, but the accuracy is limited. In addition, both methods perform poorly on 

understudied alleles. With the accumulation of experimental data and development of deep 

learning algorithms, this issue is likely to be resolved in the future. 

1.5 Multidrug resistance in bacteria 

As one of the most revolutionary discoveries in modern medicine, antimicrobials have become the 

most important treatment against pathogenic bacteria. However, the evident increase in 
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antimicrobial resistance threatens the effective prevention and treatment of infectious diseases. To 

face this challenge, WHO adopted a global action plan on antimicrobial resistance [23]. 

1.5.1 Mechanisms of antimicrobial resistance 

Since most antimicrobial substances are natural product, the resistance mechanisms have existed 

since ancient time as a result of evolution. It is hypothesized that the trade-offs between 

antimicrobial resistance and fitness in the absence of antimicrobials, including competitiveness, 

growth rate, and virulence, has limited the spread of resistance genes [24-27]. However, the 

extensive production and application of antimicrobials have broken the balance, as a result, 

common pathogens that was susceptible acquired resistance due to gene mutations or horizontal 

gene transfer [28]. 

The mechanisms of antimicrobial resistance could be concluded into four categories (Fig. 1-5): (1) 

permeability barrier. Intrinsically, the cell wall of bacteria is a natural barrier to antimicrobials, 

especially hydrophilic molecules such as β-lactams, tetracyclines and some fluoroquinolones since 

they rely on porins to cytoplasm and periplasm [29]. (2) modified drug target. A change in the 

drug target, for example a mutation in the key residue on an enzyme, may decrease even inhibit 

drug binding [30, 31]. (3) inactivating drug molecules. Antimicrobials are inactivated by 

degradation or modification [32-34], a most typical example of which is the β-lactamases [35, 36]. 

(4) efflux pumps. The efflux pumps actively transport a large variety of toxic molecules out of 

bacterial cell, thus enables the ability of resistance [37-39]. According to clinical observations, 

about 80% of the severe bacterial infections are caused by Gram-negative bacteria with multidrug 

resistance (MDR), which is mainly because of their two-membrane barrier and active efflux 

pumps. 

1.5.2 Permeability barrier of Gram-negative bacteria 

The Gram-negative bacteria are protected by two-membrane cell envelope outside the inner 

membrane, which is composed of the cell wall, a thin layer of peptidoglycan, and the outer 

membrane (OM). The OM is asymmetric bilayer, containing lipopolysaccharides (LPS) in the 

outer leaflet and phospholipids in the inner leaflet, with size-exclusion porins and selective 

transporters embedded. By combining the highly hydrophobic bilayer and porins that filter by size, 

the OM functions as a selective barrier that protect the bacteria without interrupting the exchange 
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of required material. Therefore, the permeability properties of this barrier have a strong impact on 

the susceptibility to drug molecules whose targets are located in the cytoplasm and the periplasm. 

1.5.3 Efflux pumps 

The efflux pump is the predominant mechanism of MDR. Efflux pumps are active transporters 

located on bacteria cell membrane that recognize and extrude noxious molecules from cytoplasm 

and periplasm. Currently, six families of efflux pumps have been identified in bacteria, including 

the ATP-binding cassette (ABC) family, the major facilitator superfamily (MFS), the multidrug 

and toxin extrusion (MATE) family, the small multidrug resistance (SMR) family, and the 

resistance-nodulation-cell division (RND) superfamily. The ABC family members are primary 

active transporters that directly consume ATP, and all other five families are secondary active 

transporters that rely on electrochemical energy of transmembrane concentration gradients. 

1.6 Objectives of the thesis 

The purpose of this thesis is to apply ML methods to empower the development of peptide-based 

vaccines and permeable small molecule antimicrobials. The peptide vaccine development mainly 

relies on prediction of peptides that strongly bind to certain MHC alleles carried by the population. 

However, the accuracies of widely used predictors are not satisfying among less studied alleles. In 

order to improve the performance of peptide-based vaccine development pipeline, we applied 

varies methods, knowledge-based and structure-based, to filter the prediction results. In chapter 2 

and 3, we demonstrated the design of peptide-based vaccines targeting cancer and infectious 

disease employing affinity predictions, and several methods to refine the crude prediction result. 

In chapter 4 and 5, we attempted to improve the performance of affinity predictions using structure-

based methods, as well as investigated the relationship of peptide binding specificities of HLA 

alleles. To aid the development of antimicrobials against multidrug resistant Pseudomonas 

aeruginosa strains, in chapter 6 we predicted the permeability of small molecules by using machine 

learning models based on their physicochemical features calculated from structures, which could 

facilitate the drug design and screening. 

1.7 Conclusion 

In conclusion, we developed and applied ML methods to aid drug development based on sequence 

and structure information, which showed improvements in accuracy and throughput of the pipeline. 
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Also, we demonstrated that the performance of ML methods directly relies on the availability of 

high-quality training data. Thus, the experiments, simulations, and ML methods are 

complimentary and should be performed with the same emphasis. With the accumulation of 

experimental data and development of ML algorithms, the ML methods are likely to improve 

further, benefiting human health. 
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Appendix 

 

Figure 1-1. Structure of peptide-MHC I complex (PDB ID: 3to2). (A) The whole complex 

demonstrating the domains and peptide binding groove. The transmembrane domain (TM), 

cytoplasmic tail, and lipid bilayer are shown schematically. (B) The top-down view showing six 

characteristic binding pockets (labeled A-F) along the binding groove. The peptide is shown in 

rainbow color with the N-terminus in purple and the C-terminus in orange. Pockets are colored the 

same with closest peptide residue. 

 

 

Figure 1-2. Structure of peptide-MHC II complex (PDB ID: 1dlh). (A) The whole complex 

demonstrating the domains and peptide binding groove. (B) The top-down view showing nine 

characteristic binding pockets (labeled 1-9) along the binding groove. The notifications are the 

same as Fig 1-1. 
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Figure 1-3. Peptide presentation pathway of (A) MHC I and (B) MHC II. 
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Figure 1-4. The mechanism of MHC I epitope peptide-based vaccines. 

 

 

 

 

Figure 1-5. Mechanisms of antimicrobial resistance. (A) decreased permeability. (B) modified 

drug target. (C) inactivating drug molecules. (D) efflux pumps.  
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Chapter 2  

Neoantigen Prediction Targeting Pancreatic Cancer 
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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United 

States. Pancreatic tumors are minimally infiltrated by T cells and are largely refractory to 

immunotherapy. Understanding how pancreatic tumors respond to immune attack may facilitate 

the development of more effective therapeutic strategies. In this study, we illustrated that T cell 

induced immune response partially regulates tumor growth. The predicted neoantigen epitopes 

were demonstrated to be highly tumor specific, showing the instability of pancreatic tumor genome 

and complexity of vaccine design. These findings provide future directions for treatments that 

specifically disable this mechanism of resistance in PDAC. 

2.1 Introduction 

Worldwide, nearly half a million people are diagnosed with pancreatic cancer every year [40], and 

the mortality of these patients within five years is more than 90% [41]. Therefore, there is an urgent 

need to develop more effective therapeutic strategies. 

The PDAC is thought to arise from ductal epithelium that undergoes neoplasia [42]. In most 

individuals, this process is entirely somatic, while up to 10% of patients with PDAC have a 

germline predisposition to malignancy [43]. The PDAC is considered as an immunologically cold 

neoplasm, as the T cell infiltration is minimal. Even if some T cells successfully infiltrate 

pancreatic tumors, they are likely to skewed toward protumor function [44], got suppressed [45, 

46], or physically trapped within the stroma [47]. As a consequence, vast majority of immune 

therapies targeting pancreatic cancer failed in clinical trials [48]. 

Albeit showing a myelosuppressive microenvironment, previous studies suggested that T cell 

antitumor response is efficacy against pancreatic cancer. Potent T cell cytotoxic immune response 

has been identified in long-term survivors [49]. Also, pancreatic cancer patients that exhibit high 

microsatellite instability are demonstrated to benefit from immune-checkpoint blockade therapy, 

which promotes T cell activity [50]. Thus, peptide-based vaccines that stimulate cytotoxic T cell 

activity are considered as novel potential treatment, and a better understanding of the mechanism 

of immune evasion will surely promote the development of immune therapies. 

In this research, the potential peptide epitopes that are specific to mT3-2D tumor cells were 

predicted. The exomes of mT3-2D mice pancreatic cancer cells in immunocompetent wild-type 
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(WT) and severe combined immunodeficiency (SCID) C57BL/6J mice were compared, then the 

affinity of peptides that containing tumor specific point mutations to MHCs was predicted, finally 

strong binders were further screened using varies approaches. The differences in predicted 

neoantigen T cell epitopes between tumor under these two difference environments demonstrated 

that T cells could incompletely regulate tumor growth. 

2.2 Materials and Methods 

2.2.1 Data used in study 

Whole-exome sequencing (WES) were performed for five WT mT3-2D subcutaneous tumors, five 

SCID mT3-2D subcutaneous tumors, and one mT3-2D cell sample. The experiment was carried 

out by Reham Ajina of Georgetown University Medical Center. 

2.2.2 Variant identification 

WES reads were aligned to the mm10 reference genome using the Burrows-Wheeler Alignment 

tool version 0.7.17 [51]. Genome Analysis Toolkit (GATK) best practices were used for sorting, 

duplicate marking, and variant calling with the HaplotypeCaller [52]. Variants were annotated 

using Ensemble-VEP version 90.9 [53]. 

2.2.3 Neoantigen prediction 

There are three classical MHC class I loci in mice, equivalent to human HLA class I, including H-

2K, H-2D, and H-2L. Laboratory mice are inbred so that each strain is homozygous and has a 

unique MHC haplotype, which is designated by a small letter. All C57BL/6J mice carry two copies 

of H-2Kb and H-2Db genes, and no H-2L genes [54]. 

All possible 9-mer peptides that included a missense variant were identified using pVACtools 

version 1.0.8 [55]. MHCI binding affinities (H-2-Db and H-2-Kb) were then predicted for each 

WT and corresponding mutant peptide with NetMHC 4.0 [56]. The following filtering steps were 

per- formed. Mutant peptides with predicted binding affinity (IC50) >500 nM were removed. 

Peptides from olfactory genes were excluded because they are prone to somatic mutations, are not 

highly expressed, and yield false positives as cancer-associated genes [57]. Mutations that 

corresponded to known polymorphic genes were also excluded. Peptides with low predicted 

agretopic indices [58], i.e., ratio of mutant to WT binding affinity <4, were removed (Fig. 2-2). 
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2.2.4 Peptide vaccine efficacy assay 

The immunogenicity of predicted peptides was tested using IFN- γ ELISPOT assay, then their 

protection against pancreatic cancer in mice was examined. The experiments were carried out by 

Chris Priestly-Milyanta, Hong Zuo, and Sandra Jablonski of Georgetown University Medical 

Center. 

2.3 Results 

Because missense mutations may generate T-cell neoepitopes that can drive antitumor T-cell 

responses, WES and variant calling was performed to identify such mutations (Table 2-1). To 

determine the influence of in vivo tumor growth and antitumor immune responses on the 

generation of tumor neoepitopes, we analyzed the mT3-2D cell line, five WT tumors, and five 

SCID tumors. In total, we identified 1,248 peptides with predicted IC50 <500 nM. After filtering, 

125 of these mutations were predicted to be putative cancer neoantigens (Fig. 2-2). Among the 14 

potential neoepitopes that were shared among the three groups (Table 2-2), 13 belong to unique 

genes and seven were validated by Sanger sequencing. We also observed that many mutations 

were generated during in vivo tumor growth compared with the mT3-2D cell line. However, the 

majority of these mutations were not shared between the tumor samples. These observations 

suggest that antitumor T-cell responses in WT mice were likely tumor neoantigen-specific. In the 

follow-up ELISpot, the neoepitope QNYDYAVYL derived from Mrps35 gene was able to elicit 

activation of tumor infiltrating T cells (Fig. 2-3A), and vaccinated mice was demonstrated to have 

significantly lower tumor growth rate (Fig. 2-3B), demonstrating the accuracy of this neoantigen 

prediction pipeline. 

2.4 Discussion 

In this project, we have established a pipeline to predict neoantigens that have high affinity with 

provided MHC alleles in mice, which represent possible T-cell epitopes. In this mouse model, we 

identified 125 putative cancer neoantigens within 11 samples, with only 14 potential neoepitopes 

predicted to be shared between the three groups, half of which were validated by Sanger 

sequencing. The slow tumor growth rate in immunocompetent mice suggested that at least some 

of these mutations stimulated T-cell responses. However, it is likely that T-cell responses were 

also directed against tumor-associated antigens [59]. Although pancreatic cancers generally have 
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lower mutational load compared with other cancers, such as melanoma, several comprehensive 

genomic analyses have shown that human pancreatic tumors exhibit a considerable number of 

mutations. For example, Waddell and colleagues report that the average number of mutations/Mb 

in 100 human PDAC samples is 2.64, ranging from 0.65 to 28.2 mutations/Mb. More importantly, 

pancreatic cancers are also likely to express immunogenic mutations [60]. Balachandran and 

colleagues reported that the median number of putative neoantigens detected per pancreatic cancer 

patient is 38 in the MSKCC cohort and 32 in the ICGC cohort [61]. Bailey and colleagues 

demonstrate that the number of neoantigen-related mutations in human PDAC ranges from 4 to 

4,000 neoantigens per sample [62, 63]. As a result, the detection of 125 putative cancer neoantigens 

within 11 samples suggested that the mT3-2D mouse model was reminiscent of human disease, 

supporting the notion that pancreatic tumors may use mechanisms to evade antitumor T-cell 

immunity even when PDAC tumors exhibit sufficient immunogenicity. 

One major issue we encountered when performing neoantigen prediction is that the genome 

background of each individual mouse is unique but unknown, as the WES was not performed on 

every test subject. Instead, the normal genome used in variant calling was reference genome 

mm10, which leads to both false-positive and false-negative mutations. As a consequence, a 

number of individual-specific neoantigens were hidden, and extra validation step using Sanger 

sequencing was carried out. Also, to minimize the impact of possible inaccurate mutation 

information, we only collect neoantigens that derived from oncogenes. Neoantigens generated 

from mutation in other genes, also known as passenger mutations [64], were neglected. Such 

epitopes are also important targets for treatment and should be taken into account in future studies 

[65]. 

The mT3-2D cell line may reflect the immunogenicity of human PDAC and is considered a model 

for testing the concept neoantigen vaccines targeting pancreatic cancer. Compared to mice, human 

genome and MHC system are way more complexed. First, the human genome is bigger with more 

unidentified regions. Second, the HLA system possesses much more alleles, a large portion of 

which have no accurate peptide affinity prediction models. In addition, the oncogenesis in real 

patients is much more complicated than well-established animal model. These factors determined 

that the development of neoantigen vaccine still need further efforts. By illustrating the neoantigen 
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prediction pipeline, we demonstrated the general technique and rule of thumb of neoantigen 

vaccine development, which could facilitate future studies.  
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Appendix 

 

Figure 2-1. Pipeline for predicting antitumor neoantigen vaccines. 

 

 

 

 

 

Figure 2-2. Number of predicted neoepitopes of mT3-2D cell line (n=1), tumor in WT (n=5) and 

SCID (n=5) mice. 
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Figure 2-3. Predicted peptide vaccine (QNYDYAVYL) efficacy. (A) IFN-γ ELISPOT Assay on 

Mouse Splenocytes Stimulated with Predicted Vaccine Peptide. (B) Tumor burden following 

vaccination. Figure and data are generated by Chris Priestly-Milyanta, Hong Zuo, and Sandra 

Jablonski of Georgetown University Medical Center. 

 

 

 

Table 2-1. Total number of missense mutations occurred in tumors in WT and SCID mice. 

SCID 
number of missense 

mutations 
average 

AGATCGC-35175-L1 10318  

11237.6  

ATCCTGT-35175-N 14593 

CCGTGAG-35175-R1 8140 

GACTAGT-35175-R2 10289 

GATAGAC-35175-L2 12848 

WT   

AGCCATG-31252-R1 14097 

14086.2    

AGTGGTC-31253-L2 14972 

CATCAAG-31253-R2 13691 

CTAAGGT-31253-L1 15296 

TGGCTTC-31253-R1 12375 
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Table 2-2. Neoantigens predicted and filtered by the pipeline. The analysis was carried out by 

Connor J. Cooper of University of Tennessee, Knoxville. 

MT_Sequence Mutation Position 
MT_Score 

(nM) 

WT_Score 

(nM) 
WT/MT Gene 

Validated by 

sequencing 

YAEKNRPPL E/A 2 53 6166 116 AC168977.1 No 

STFKKKRYL E/K 5 140 680 5 AW822073 Yes 

YNISLSTVI M/V 8 437 1985 5 Ces1c No 

STFKKKRYL E/K 5 140 680 5 Duxf3 No 

VIPWIFARA V/A 7 214 1524 7 Glp2r Yes 

VGLRFTSAT N/T 9 328 6609 20 Mansc4 Yes 

QNYDYAVYL C/Y 3 23 792 34 Mrps35 Yes 

TSYTQSTSV S/Y 3 308 8950 29 Muc4 No 

ASHTCHTFL M/T 7 295 1404 5 Nlrc5 Yes 

TSWQQFARL R/S 2 8 168 22 Rrs1 No 

KQRVYAQNL R/Q 2 296 1689 6 Shank3 Yes 

FTGEHFPRI S/F 6 471 3247 7 Sirpb1a No 

SNLDFSIRI N/S 1 66 578 9 Sirpb1b No 

VFSTLFALL V/F 6 184 810 4 Tm7sf3 Yes 
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Chapter 3  

Prediction of potential peptide vaccines from SARS-COV2 early-stage 

proteins 
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Abstract 

The outbreak of COVID-19 has raised alert to widespread infectious disease, therapies, including 

vaccines, are in urgent need. Due to the high infectivity, virulence, and mutation rates of SARS-

CoV-2, the development of conventional vaccines could no longer satisfy the requirements. 

Peptide-based vaccines are demonstrated to have unique advantages over other vaccination 

strategies, thus are gradually valued and studied. In this research, we developed a method for 

predicting peptide-based vaccines targeting infectious diseases, especially viruses. This in silico 

methods could rapidly design vaccines composed of HLA class I and II epitopes using rival 

genome sequence and deep neural network predictors and will surely facilitates further research 

and development. 

3.1 Introduction 

Started from late 2019 and still ongoing, the pandemic of COVID-19 caused by SARS-CoV-2 has 

already caused over 611 million confirmed infection cases and 6.5 million deaths [3]. Also, the 

direct economic losses and health care burden brought by potential long-term effect led to huge 

impact on global development. In response to the pandemic, treatments are under active 

development, more than 7 thousand clinical trials were launched, yet the therapeutic options are 

still limited. 

As a viable strategy against infectious disease, vaccines can effectively protect a large fraction of 

healthy individuals from infection and slow the spreading. Currently, multiple vaccination 

strategies are applied in the development of COVID-19 vaccines, including inactivated or 

attenuated whole virus, viral nucleic acids (DNA or RNA), recombinant proteins, synthetic 

peptides, and viral vectors [66]. Compared to other strategies, the peptide-based vaccines show 

advantage in safety and productivity, which is owning to the specific immune response, easiness 

of chemical synthesis and purification, stability in storage conditions as well as instability in 

human body [67]. 

SARS-CoV-2 is an enveloped, positive-sense single-stranded RNA virus that belongs to the genus 

of Betacoronavirus [68], which also includes severe acute respiratory syndrome coronavirus 

(SARS-CoV), human coronavirus OC43 (HCoV-OC43), HCoV-HKU1, and Middle East 

respiratory syndrome coronavirus (MERS-CoV). The entry of SARS-CoV-2 into human cells is 
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mediated by angiotensin-converting enzyme 2 (ACE2) [69-72], the same receptor as SARS-CoV 

[73] and alphacoronavirus HCoV-NL63 [74]. 

The SARS-CoV-2 virion is formed by structural proteins including nucleocapsid (N), membrane 

(M), envelope (E) and spike (S) proteins [75]. The lifecycle of viruses starts by entering the host 

cell mediated by the binding between S protein and ACE2 receptor. Next, viral RNAs were 

translated into non-structural proteins (NSPs) in capable of suppressing host mRNAs and 

producing viral RNAs and structural proteins. Finally, the newly synthesized viral molecules 

assembled into new viral particles and were released for further infection (Fig.3-1) [75, 76].[75, 

76]. 

Multiple studies attempted to develop peptide-based vaccines against SARS-CoV-2 by predicting 

T cell and B cell epitopes, and most in-depth studies focus on structural proteins, especially the S 

protein, for their relatively high expression level and vital role in infection. However, the structural 

proteins are not a good target for vaccine for the possible low efficiency in clearing the viruses. 

The structural proteins are expressed in the late phase of viral life cycle [77], and are much more 

stable in human cells than NSPs [78]. On the contrary, the virion release starts shortly (8 hours) 

after infection [79], meaning that T cells that recognize epitopes derived from structural proteins 

can only decrease the virion production rate rather than prevent symptoms. Also, in response to 

immune pressure, the mutations of S protein appears frequent [80], and leads to significant 

functional and epidemiological change, including the D614G mutation associated with higher 

SARS-CoV-2 loads [81, 82], N439R with increased transmissibility [83], N501Y with enhanced 

binding to ACE2 [84], and E484K with antibody escape [85, 86]. The above concerns suggest that 

the NSPs expressed in the early stages of SARS-Cov-2 life cycle might be a better vaccine target. 

In this study, we demonstrated in silico development method of peptide vaccines targeting SARS-

CoV-2 early-stage proteins. The peptides were extracted from annotated viral genome, then the 

affinity to populated HLA I alleles was predicted. By applying multiple filtering methods, we 

suggested 21 peptides that are potential COVID-19 vaccines. The demonstrated method could be 

applied to the development of peptide-based vaccines targeting other pathogens. 
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3.2 Methods and Results 

3.2.1 Structure of SARS-Cov-2 genome 

The SARS-Cov-2 genome is 30 kb positive-sense, single-stranded linear RNA, encoding 14 open 

reading frames (ORFs) (Fig. 3-2). The ORF1a and ORF1b are translated into polypeptide 1a (pp1a, 

440-500 kDa) and 1ab (pp1ab, 740-810 kDa), respectively, which are then cleaved into 16 non-

structural proteins. To note, due to a -1 ribosome frameshift located at the upstream of the ORF1a 

stop codon, the translation of ORF1a would continue till the end of ORF1b, resulting in pp1ab. On 

the 3’ side of the genome, there are 13 ORFs encoding four structural proteins: spike (S), envelope 

(E), membrane (M) and nucleocapsid (N) [87, 88], and nine accessory proteins: ORF3a, ORF3b, 

ORF3c, ORF3d, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10 [89]. 

3.2.2 Viral protein extraction 

Genes were annotated according to the reference genome NC_045512.2. First, the ORFs on each 

unannotated genome, including both forward and backward directions, were captured using Python 

script. Next, the captured ORFs were compared to annotated reference genes using blastn 

command in BLAST+ package, the ORF with highest bitscore was designated as corresponding 

gene. The protein sequences were derived from translated gene sequences. 

3.2.3 Sequence analysis and mutational entropy calculations 

We performed an analysis of available sequences of the SAR-CoV-2 virus to look for numbers of 

mutations and map these locations on the proteins we were using as drug discovery targets. SARS-

CoV-2 genomes were downloaded and aligned using NC_045512.2 (EPI_ISL_402125) as the 

reference genome. Shannon entropy [90] was calculated by Travis J. Lawrence of ORNL for every 

column of each protein alignment using a custom script. For visualization of the mutation entropy 

per residue of the proteins studied in this paper, entropy values were color-coded in protein PDB 

structures (Fig. 3-3). Known SARS-CoV and SARS-CoV-2 structures were downloaded from the 

Protein Data Bank, their sequences were aligned with the SARS-CoV-2 reference genome 

(NC_045512.2), and the calculated entropy of the sequences was embedded in the PDB file in the 

place of the B factor column using a custom Python script. 
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3.2.4 Prediction of candidate peptides 

Peptides of 8, 9, and 10 amino acids were extracted from early-stage proteins, including NSP 1-

16, using sliding window algorithm. Then the binding affinity of these peptides to 12 populated 

HLA alleles suggested by IEDB [91] were predicted using multiple predictors in pVACtools 

(version 1.5) [55]. The applied predictors included MHCflurry [92], MHCnuggets [93], NetMHC 

[56], NetMHCpan [94], PickPocket [95], SMM [96], and SMMPMBEC [97]. The final affinity 

was defined as the lowest score among all predictors. A high affinity threshold was set to < 500 

nM for all alleles. 

3.2.5 Candidate peptides filtering 

Candidate peptides that were predicted to have high binding affinity with populated HLA alleles 

were further filtered using multiple methods, in order to select antigens of high immunogenicity. 

First, according to the mutational entropy, peptides that were located at the highly unstable regions 

were left out, as vaccines targeting region can only cover a subset of viral strains and will gradually 

lose efficacy with the accumulation of mutations. Second, the candidate peptides were searched in 

IEDB for T cell assays. The peptides that have positive experiment results were preferred. Also, 

because the TCR recognize HLA I restricted epitopes by the central region [15], we extracted 

position 4 to -2 (the second from C terminus) as the core region sequences and searched against 

reference human proteome to filter out epitopes that mimics auto antigens. Finally, the stability of 

pHLA complex composed of 9-mer candidate peptide and HLA molecules was validated by 

Michelle Aranha of Center for Molecular Biophysics, ORNL using structure-based method to 

remove false positives of high affinity binders [98]. As a result, 21 candidates that covers 9 HLA 

alleles were selected (Table 3-1). 

3.3 Discussion 

In this research, we demonstrated the method of in silico development of peptide-based vaccine 

targeting viruses, which is required to 1) bind to populated HLA alleles and 2) elicit strong and 

specific immune response. Besides the most widely used peptide-HLA affinity predictors, we also 

included other tests and filter methods to remove false positive candidates and increase true 

positive rate. This is valuable for further experimental assays as a high true positive rate of 

prediction results could significantly lower the time and effort consumption. 
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Apart from peptide vaccines that come into effect by binding to HLA molecules and activating T 

cells, the strategy of blocking pathogen infection or replication process by peptides was applied to 

fight against infectious diseases. One way is to block the function of viral proteins, for example 

the S protein, using competitive binding peptides, so that the viral entrance, replication, or immune 

suppression would be interfered. Also, peptides could be used to target B cell epitopes by binding 

to B cell receptors and elicit antibody response. These strategies could be combined to generate 

stronger immune response and broaden the coverage of therapies. 

Some studies proposed strategies based on HLA class II epitopes that activate helper T cells. 

However, the prediction methods for peptide HLA II affinity are not well developed, thus the 

prediction accuracy is not satisfying. As a result, the development of HLA II epitope-based peptide 

vaccines still heavily relies on developer’s experience and experimental assay, so it is not included 

in our research. 

In real application of peptide-based vaccines, the flanking residues one both ends will be added to 

ensure the synthetic peptides last longer in human body. Apart from turning the identified epitopes 

into peptide-based vaccines directly, the result could improve vaccines employing other strategies, 

for example refining DNA/RNA based vaccines by introducing specific mutations to confront new 

virus strains or removing certain regions to avoid autoimmunity. Beside SARS-CoV-2, the 

demonstrated method could also be applied to other pathogens. 
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Appendix 

 

Figure 3-1 Life cycle of SARS-Cov-2. 
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Figure 3-2. Genome structure of SARS-Cov-2. Genes and products were annotated according to 

NC_045512.2 reference genome. 

 

 

 

 

 

Figure 3-3. Example mutational entropy analysis. Residues are colored by entropy, with redder 

colors corresponding to greater entropy. Figure was generated by Ada A. Sedova of Oak Ridge 

National Laboratory. 
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Table 3-1. Predicted and filtered peptide antigens. Preferred features were marked in green. 

HLA 

allele 
gene Epitope Seq 

conserved (1=in 

nCoV, 2=in all Cov) 

IEDB T cell assay 

(positive/all) 

Structure-based prediction 

(1=bind, NA=not tested) 

A0201 nsp14 YLDAYNMMI 2 2/2 1 

A0301 

nsp3 RMYIFFASFY 2 1/1 NA 

nsp13 VVYRGTTTYK 2 1/1 NA 

nsp12 RLYYDSMSY 2 3/3 1 

nsp4 VLAAECTIFK 2 1/1 NA 

nsp10 TVCTVCGMWK 2 1/1 NA 

A1101 
nsp16 SSYSLFDMSK 2 1/1 NA 

nsp10 TVCTVCGMWK 2 1/1 NA 

B0702 
nsp6 MPASWVMRIM 2 1/1 NA 

nsp10 HPNPKGFCDL 2 1/1 NA 

B0801 

nsp13 FLGTCRRCPA 2 0/0 NA 

nsp3 FLGRYMSAL 2 0/0 NA 

nsp2 MGRIRSVYPV 2 0/0 NA 

nsp5 TPKYKFVRI 2 0/0 NA 

B3501 nsp2 IAFGGCVFSY 1 0/0 NA 

B4001 nsp12 SEMVMCGGSL 2 1/1 NA 

B4402 

nsp14 EEAIRHVRAW 2 1/1 NA 

nsp12 QEYADVFHLY 2 1/1 NA 

nsp9 TELEPPCRF 2 1/1 1 

B4403 
nsp12 QEYADVFHLY 2 1/1 NA 

nsp9 TELEPPCRF 2 1/1 1 
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Chapter 4  

High Throughput HLA Homology Modeling Pipeline 
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Abstract 

High quality HLA structures are necessary for the application of structure-based validation method 

for peptide-HLA binding. Homology modeling is a strategy suitable for building HLA structures 

since all HLA alleles are homologous and there are a number of HLA crystal structures available. 

However, currently available homology modeling pipelines and applications that runs on local 

machine require specifying templates and parameters task by task, while online services usually 

don’t capacity large enough. In addition, modeling of HLA class II molecules requires multichain 

modeling ability, which is rarely supported in available methods. Here, we established a new 

homology modeling pipeline based on RossettaCM protocol that automated the modeling of HLA 

class I and II molecules, with easy-to-use command line user interface. By using parallel 

computing, polished algorithms, and optimized parameters, this pipeline is able to swiftly build 

models with high accuracy. 

4.1 Introduction 

Structure-based methods are demonstrated to be useful in studying protein-protein interactions. In 

the prediction of peptide HLA affinity, structure-based methods that employ docking and 

molecular dynamics are demonstrated to show high accuracy [98]. However, such methods are 

limited by the availability of high-quality HLA structures. 

Due to the extreme polymorphism, not all HLA alleles have crystal structures available. To 

minimize such a gap and provide insights in peptide HLA interactions, in silico structure prediction 

methods provide viable alternatives. Compared to ab initio approaches, homology modeling 

requires much less computational cost, thus is the most widely accepted strategy for modeling 

proteins that have homologous structures available [99]. 

The homology modeling is based on the observations that the protein structure is primarily 

determined by its amino acid sequence, and the structure is more stable than sequence during 

evolution. The higher the sequence similarity, the more confident that the two proteins have similar 

folding. Referring to the HLA molecules, despite the huge number of alleles and multiple loci 

(Table 4-1), they are highly similar in protein sequences (Table 4-2). In addition, most mutations 

among HLA alleles are point mutations, while the insertions and deletions are rare, making the 

protein folding consistent [22]. Thus, homology modeling is a suitable approach for modeling 
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HLA molecules. We choose to build the homology modeling pipeline based on RosettaCM 

protocol [100], which was demonstrated to outperform other methods when the sequence similarity 

between target protein and template is high. 

The RosettaCM could be summarized in the following steps: template selection, target-template 

sequence alignment, model building, optimization, and validation. The model building and 

optimization steps are the most computationally intensive, as Monte Carlo sampling method is 

applied, and multiple candidate models are built to choose from. As the development of high-

performance computing (HPC), large scale parallel computing could perfectly solve this issue 

because of the parallel nature of Monte Carlo methods. 

In conclusion, we developed high throughput HLA homology modeling pipeline. Steps including 

template selection, job management on HPC cluster, and model picking, are automated via python 

scripts. The resulting models were validated to have high accuracy and could be applied in 

structure-based HLA studies. 

4.2 Methods 

4.2.1 Collection of HLA sequences and crystal structures 

HLA protein sequences used as modeling targets were downloaded from the IPD-IMGT/HLA 

database [22], which were extracted from locus-wise MSA files rather than plain sequence files to 

acquire the residue numbering information. The target sequences were trimmed to peptide binding 

domain(s) and membrane proximal domain, since the TM domain and cytoplasmic tail is missing 

in all currently available HLA crystal structures thus cannot be accurately modeled. In total, there 

are 13,970 class I and 5,907 class II alleles collected. 

Crystal structures used as templates were downloaded from the IMGT/3Dstructure-DB [101]. The 

allele name (nomenclature) of each crystal structure was validated by extracting the protein 

sequences and comparing to the record in the IPD-IMGT/HLA database. For alleles that have 

multiple crystal structures available, the one with best resolution was chosen. There were 64 class 

I and 16 class II crystal structures collected. Structure cleaning was performed with PyMOL 

(version 2.5.2) [102], during which water molecules, ions, binding peptides, and the beta chain 

specifically for class I, were removed. 
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4.2.2 General information of the modeling pipeline 

The homology modeling pipeline was built to automatically model HLA class I and II structures, 

based on RosettaCM and HPC cluster. The RosettaCM protocol suggests practicing modeling in 

the following steps: partial_thread, fragment_picker, hybridize_mover, and FastRelax (Fig. 4-1), 

which is not optimized for multichain proteins and large number of proteins. To automate the 

pipeline and accommodate parallel computing on HPC cluster, modifications were made: 1) We 

added a setup step at the beginning of pipeline for template selection and performing pairwise 

sequence alignment between target and template; 2) The fragment_picker was modified for 

multichain modeling; 3) We re-wrote partial_thread in Python for improved speed and easy-to-

use; 4) The unbiased relaxation step using FastRelax was replaced by constraint relaxation 

implemented in the model building step using hybridize_mover. In addition, files and job 

information were maintained using Python scripts, including database_access.py, job_center.py, 

job_launcher.py, and job_pick.py, providing command line user interface for users to view, launch, 

edit, and collect results from modeling. The details of each step are illustrated in the five following 

sections. 

4.2.3 Setup: clean and perform sequence alignment 

The pipeline starts from MSA files downloaded from IMGT/HLA database, which is not included 

in the published package. In the setup step, user should get such sequence files and execute 

IMGT_input.py to generate sequence file containing all non-redundant alleles. Then, execute 

database_access.py initial function to generate job record file and specify the root directory for 

the project. Alleles that have sequence length shorter than a threshold (the default is 100) are 

inactivated. Finally, the job_center.py should be run to create hierarchical tree of directories, each 

allele was assigned to one directory. For class II, since the α chains and β chains are in separated 

files, this step also combines both chains into one file in cross product style, which means that 

each α chain will be combined with each β chain. Template selection is based on the bitscore 

calculated by BLOSUM90 substitution matrix using blastp function from the BLAST+ package. 

For class I, simply the crystal structure that have highest bitscore was selected as template. While 

for class II, the crystal structure that have the highest sum of bitscore of both chains was selected. 
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4.2.4 Threading: thread target sequence onto template backbone 

The py_thread.py script was used for threading, in the place of ROSETTA partial thread module 

that has significant shortcomings. The py_thread function was designed to address the following 

issues of ROSETTA partial thread: 1) Only accept sequence alignment input in unique Grishin 

format. Unlike other alignment file format such as FASTA, CLUSTAL, and PHYLIP, the Grishin 

format is unique, thus there’s no existing parser for this format. Also, the Grishin format has strict 

restriction on name space. The pdb file name corresponds to Grishin file header, strictly 5 letters 

long. Thus, it’s not portable and robust for large number of jobs. 2) Lack multi-chain support. 

Inherited from the Grishin format, the ROSETTA partial thread module doesn’t distinguish 

between multiple chains, which means it’s impossible to operate on a specific chain. The threading 

operation is executed from the start position specified in Grishin file to the end of sequence file. 

Threading on multi-chain template is possible but need to give full sequence of all chains. Also, 

the partial thread seems to have problem when overwrite cysteine that forms disulfide bond. 3) It 

is slow. The partial thread is built with standard ROSETTA API which aims at providing uniform 

flags and options for all modules in ROSETTA. So, several setting files specifying parameters are 

needed. It adds more unnecessary operations. The module itself is slow as well, which needs ~ 30 

seconds to finish. It is also inconvenient for submitting jobs on HPC cluster. If the threading is 

performed interactively on login node, it takes substantial time since the number of HLA alleles is 

huge. If the threading jobs are carried out in compute nodes, the queue management system will 

be flooded by large number of small jobs, causing unnecessary waiting time in queue. 

In comparison, our rebuilt py_thread function shows advantages. It takes sequence alignment input 

in FASTA format, which better supports multichain threading, with significantly less runtime. The 

script was written in Python with simple logic (Fig. 4-2), using functions implemented in 

BioPython. 

4.2.5 Fragment picking: select fragments for sampling folding 

The Rosetta structure prediction algorithm starts from Monte Carlo searches in folding space, 

represented fragments extracted from a database of known structures. The use of fragments 

decreased the size of folding space that needs to search against comparing to whole molecules. 

The ROSETTA fragment_picker function picks the fragments from predefined database based on 

the sequence profile and secondary structure similarity. The sequence profile is generated via PSI-
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BLAST [103], based on which the secondary structure was predicted by PsiPred [104]. However, 

the PSI-BLAST is slow since searching against the general database is redundant for HLA. To 

speed up this process, we bypassed the searching step in PSI-BLAST and generate sequence profile 

via MSA provided by IMGT/HLA database. Also, we designed new front-end scripts for PsiPred 

replacing the original one for better file management. Then the sequence profile and predicted 

secondary structure is provided to ROSETTA fragment_picker, which is executed in multithread 

mode on HPC cluster, generating 3-mers and 9-mers fragment file. 

4.2.6 HybridizeMover: build models 

As the major step, the models were built via HybridizeMover implemented in rosetta_scripts 

function, following the RosettaCM protocol. This process could be concluded in three steps. First, 

the coarse-grained model was built based on the threaded model and fragments. Second, the model 

was upsampled to all-atom model, and undergo further optimization. Finally, the model was 

relaxed with constraint on backbone to minimize potential clashes. 

4.2.7 Model selection: pick final model based on energy score 

The standalone relaxation step was omitted, because the HLA structures were modeled in apo form 

and unbiased relaxation worsen the model with collapsed binding groove. For each allele, multiple 

replicas were built to choose from. Based on total score calculated by ref_2015 energy function 

[105], the replica with lowest score was selected as final model. 

To optimize the number of replicas that achieves the balance that minimizes computational cost 

and also ensures the near-native folding is sampled, homology models of allele HLA-A*02:01, 

one of the most studied alleles, were built with different number of replicas. The distribution of 

total scores for each number of replicas was shown in histogram, visualized using matplotlib. 

4.2.8 Model validation 

To access the model quality, models of alleles that have crystal structures available was predicted 

using second best template (the best template is of course itself) and were compared to 

corresponding crystal structures. The use of second-best template reproduced the situation that 

most target allele and available template have differences. The similarity between models and 

crystal structures was measured by Root Mean Square Deviation (RMSD) using PyMol. 
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4.3 Results 

Here we introduced the pipeline that automates homology modeling based on Rosetta CM, which 

is built on Python scripts, with command line user interface that handles HPC jobs and directory 

structures. Scripts and instructions are available at https://github.com/yshen25/rosetta_CM. 

From the distribution of total score calculated by ref_2015 energy function, the optimized number 

of replicas was selected as 100, as it has similar distribution with that of more replicas (Fig. 4-3). 

The quality of models measure by RMSD between homology models and crystal structures of the 

same allele shows that they are highly similar, though the models were built using second best 

template (Table 4-3). Usually, an RMSD less than 1 Å is considered as very high model quality, 

while this pipeline achieves an average RMSD of 0.74 Å among 28 tested alleles, demonstrating 

high confidence that the models are correct. 

4.4 Discussion 

Structures are closely related to function, and the use of structure-based method should provide 

more insights into studies of protein functions. However, the availability of high-quality structures 

is limited, as determining protein structure via experimental methods requires significant time and 

effort. Quite a number of HLA crystal structures have been released, however, compared to the 

huge number of alleles, the availability of structures is still low. The homology modeling perfectly 

fits this situation to build structures based on closely homologous structures. With the development 

of HPC, the large-scale parallel computing for homology modeling is possible, which enables to 

predict structures for huge number of HLA alleles to decrease the knowledge gap and support 

structure-based HLA studies and tools. 

Rosetta package provides multiple functions for molecular modeling and analysis, including, but 

not limited to, ligand docking, protein design, and structure prediction. To optimize the large-scale 

homology modeling on HPC cluster, we developed this automated pipeline using Python scripts 

implementing publicly available libraries. Different from other homology modeling solutions, for 

example the Robetta server that is also based on RosettaCM protocol, the current pipeline focuses 

on HLA structures using customized sequence and structure databases, as well as modified 

algorithms to achieve better performance. 
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Appendix 

 

Figure 4-1. Homology modeling pipeline suggested by RosettaCM protocol. 

 

 

 

 

Figure 4-2. The flow chart describing the algorithm of py_thread.py script. 
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Figure 4-3. Histogram of total score of HLA-A*02:01 models built with different number of 

replicas. 

 

 

 

Table 4-1. The total number of HLA alleles and unique proteins. Data collected from IPD-

IMGT/HLA database in November 2022. 

Gene 
HLA I HLA II 

A B C DRA DRB DQA1 DQA2 DQB1 DQB2 DPA1 DPA2 DPB1 DPB2 

Alleles 7644 9097 7609 43 4258 508 40 2330 18 491 5 2221 6 

Proteins 4450 5471 4218 5 2823 244 11 1455 8 223 0 1321 0 

 

 

 

Table 4-2. The total number of HLA alleles with crystal structures. Data collected from 

IMGT/3Dstructure-DB in November 2022. 

Gene 
HLA I HLA II 

A B C DRA DRB DQA DQB DPA DPB 

Crystal structures 413 264 40 102 33 6 

Alleles with crystal 20 40 11 1 11 6 3 1 2 
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Table 4-3. Model quality measured be RMSD between models and corresponding crystal 

structures of the same allele. The homology models were build using second best template. 

Target allele Template RMSD vs crystal(Å) 

A*01:01 A*11:01 0.66 

A*02:01 A*92:35 0.77 

A*02:03 A*92:35 0.80 

A*02:06 A*92:35 0.74 

A*02:07 A*92:35 0.70 

A*02:24 A*92:35 0.65 

A*03:01 A*11:01 0.89 

A*11:01 A*03:01 0.79 

A*23:01 A*24:02 0.95 

A*24:02 A*23:01 0.98 

A*68:01 A*02:06 0.67 

DPA1*01:03_DPB1*02:01 DPA1*01:03_DPB1*123:01 0.69 

DPA1*01:03_DPB1*123:01 DPA1*01:03_DPB1*32:01 0.78 

DPA1*01:03_DPB1*32:01 DPA1*01:03_DPB1*123:01 0.53 

DPA1*01:03_DPB1*51:01 DPA1*01:03_DPB1*123:01 0.78 

DPA1*02:02_DPB1*22:01 DPA1*01:03_DPB1*123:01 0.62 

DQA1*01:02_DQB1*06:02 DQA1*03:01_DQB1*03:02 0.89 

DQA1*03:01_DQB1*03:02 DQA1*05:01_DQB1*02:01 0.68 

DQA1*05:01_DQB1*02:01 DQA1*03:01_DQB1*03:02 0.95 

DRA*01:01_DRB1*01:01 DRA*01:01_DRB1*15:01 0.78 

DRA*01:01_DRB1*03:01 DRA*01:01_DRB1*14:02 0.68 

DRA*01:01_DRB1*04:01 DRA_01:01_DRB1*04:05 0.64 

DRA*01:01_DRB1*04:05 DRA_01:01_DRB1*04:01 0.61 

DRA*01:01_DRB1*11:01 DRA_01:01_DRB1*14:02 0.62 

DRA*01:01_DRB1*14:02 DRA_01:01_DRB1*11:01 0.58 

DRA*01:01_DRB1*15:01 DRA_01:01_DRB1*04:01 0.69 

DRA*01:01_DRB3*01:01 DRA_01:01_DRB1*14:02 0.97 

DRA*01:01_DRB5*01:01 DRA_01:01_DRB1*04:01 0.57 
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Chapter 5  

HLA Class I Supertype Classification Based on Structural Similarity 
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Abstract 

Human leukocyte antigen (HLA) class I proteins, a critical component in adaptive immunity, bind 

and present intracellular antigens to CD8+ T cells. The extreme polymorphism of HLA genes and 

associated peptide binding specificities leads to challenges in various endeavors, including 

neoantigen vaccine development, disease association studies and HLA-typing. Supertype 

classification, defined by clustering functionally similar HLA alleles, has proven helpful in 

reducing the complexity of distinguishing alleles. However, determining supertypes via 

experiment is impractical while current in silico classification methods exhibit limitations in 

stability and functional relevance. Here, we have developed a classification approach employing 

structural modeling, a newly defined structure distance metric, and hierarchical clustering that 

improves stability, resolution flexibility, and cluster cohesion relative to previous classifications. 

5.1 Introduction 

The complexity arising from HLA polymorphism, in particular the largely unknown yet dissimilar 

functions, i.e., peptide binding specificities, of alleles, is a challenging problem for researchers. 

For example, in peptide vaccine development, a key step is to find antigenic peptides that bind 

tightly to the specific HLA alleles carried by the patient, but only 150 alleles have experimentally 

characterized binding epitopes [106] and only 112 alleles have accurate allele-specific prediction 

models [92, 107]. Furthermore, the large number of alleles makes it is difficult to identify 

associations between individual HLA phenotypes and disease susceptibility [108, 109]. 

Although HLA alleles do differ in peptide binding specificities, they are not always functionally 

distinct. Since the 1990s, studies have shown that some HLA alleles have largely overlapping 

peptide binding specificity [110-116]. Accordingly, most HLA alleles could be clustered into 

supertypes and thus represented by a few typical alleles [117, 118], which greatly reduces the 

difficulty of discriminating between the huge number of HLA alleles. 

Determining supertypes via experiments is very time and effort consuming, and thus is impractical 

for classifying large number of alleles [119-121]. As viable alternatives, several in silico 

classification methods have been proposed. Among these sequence-based approaches cluster 

alleles based on global (whole sequence) [122, 123] or local (binding groove or contact residues) 

[124-126] sequence similarity using sequence alignment. Prediction-based approaches calculate 
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peptide binding specificity from predicted peptide-HLA affinities, instead of experimental data 

[127, 128]. Structure-based methods use 3D information derived from HLA structures, such as 

spatial similarity and molecular interaction fields [129], the number of hydrogen bonds, interface 

area, and the gap volume between HLA and peptide [130]. 

Current HLA I supertype classifications have proven to be helpful and are widely used but have 

limitations. Some methods cluster alleles based on sequence or structural similarities between the 

molecules. However, the correlation of sequence or structure with functional similarity is not well 

established, and thus the resulting supertypes are not guaranteed to include functionally similar 

alleles. Prediction-based methods are limited by the coverage and accuracy of prediction methods, 

as allele-specific predictors have good performance but cover a very limited number of alleles, 

while the pan-specific predictors are less accurate though have better coverage, and both types of 

predictors perform poorly on rare or uncharacterized alleles [93, 131]. Structure-based methods 

are potentially more informative than sequence-based methods but have been limited by the 

availability of high-quality HLA structures and the overall complexity of structure analysis. In 

addition, due to the existence of inter-locus interactions and coevolution of HLA genes, association 

analysis on the haplotype level has advantages over single-locus genotype approaches [132, 133], 

but most widely used supertype classifications are locus specific, and thus are not capable of 

describing functional relationships between alleles at different loci. These limitations indicate that 

advanced approaches to supertype classification are needed to further facilitate HLA studies. 

In this work, we explore the use of 3D structural similarity to measure peptide binding specificity 

and cluster HLA alleles. By using the revolutionary structural modeling tool, ColabFold [134] and 

an automated analysis pipeline, issues of structure-based methods in structure availability and 

analysis complexity were addressed, enabling the present method to be straightforwardly extended 

over the whole of the HLA class I space and  not be restricted to alleles with sufficient experimental 

data. Also, we establish that structural similarity between allele pairs is highly correlated with 

peptide binding specificity. Finally, based on structural similarity, 449 populated alleles are 

hierarchically clustered into 12 supertypes and 20 subtypes, giving flexibility in the resolution of 

describing epitope similarities between alleles. Compared to previous classifications, the present 

clustering method has better performance (cohesion), meaning that the classification better 

represents similarity in peptide binding specificity. Also, higher stability infers better confidence 
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and extensibility, ensuring that users can add more custom alleles without perturbing the existing 

classification structure. 

5.2 Methods 

5.2.1 HLA-Clus: HLA class I clustering method based on structure distance metric 

HLA-Clus is a pipeline for clustering HLA class I alleles based on structure distance. The HLA I 

structures were modeled and coarse grained as cloud of labeled points, then the pairwise distances 

were calculated using newly defined structure distance metric that taking into account 

physicochemical similarities. Finally, alleles were clustered via hierarchical clustering or nearest 

neighbor clustering approaches. 

Processing structures into labeled point cloud. HLA I structures in PDB format were represented 

by labeled point cloud in csv format, which include information of coordinates, amino acid name, 

and weight factor of each residue. First, structures were trimmed to peptide binding domain 

(residue 2-180). Then, trimmed models were superimposed onto the structure of peptide binding 

domain of allele HLA-A*02:01 (PDB id: 1i4f) by aligning the residues that form α-helixes and β-

strands, as these residues are more conserved and stable across different alleles. In this way, all 

models were aligned, and no pairwise structure alignment is needed. Next, the structures were 

coarse grained, each residue was represented by the center of mass of its sidechain, while the 

backbone atoms were hidden. After that, weight factors were assigned to residues according to the 

importance of the position in determining peptide binding affinity, the details were described in 

the following section. 

Residue weight factor. As residues in the binding groove have different levels of contribution 

towards peptide binding specificity, a weight factor was assigned to each residue (Table 5-1). 

According to a previous study, point mutation in 25 positions leads to altered peptide binding 

specificity compared to the wild type, a higher alteration means that the residue has more influence. 

We calculated the weight factors based on residue 7 that has minimal change in peptide binding 

specificity, 4.5%, which was given weight factor 1. The residue 24 leads to second least change, 

5.2%, and was given weight factor 5.2/4.5 ≈ 1.2, and so on. Other residues that do not have 

significant contact with peptide were given weight factor 0 and ignored in calculating structure 

distance. 
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Coarse grained structure distance metric SD. Structural similarity between alleles were measured 

by newly defined structure distance metric SD, which was adapted from Sup-CK method, a point 

cloud based all-atom structure distance metric. We modified the metric for coarse grained models, 

addressing three major concerns: 1) to obtain improved calculation speed, 2) to incorporate weight 

factors for residues, 3) to implement physicochemical similarity that was usually studied at residue 

level. First, A kernel function is defined: 

 𝐹(𝑋) =
1

cosh𝑘(𝜎 ∙ 𝑋)
 [1] 

Such a kernel function turns distance between two residues X (𝑋 ∈ 𝑅|𝑥 ≥ 0) into value between 

0 and 1. Parameters k and 𝜎 fine tune the shape of the kernel function that determines the sensitivity 

to displacements between the two corresponding residues (Table 5-7). For large 𝜎 and k values, 

distant residues will have small kernel function output, while small 𝜎 and k are more tolerant thus 

distant residues will have higher values. 

Based on this kernel function, the similarity between two alleles P1 and P2 was then defined as: 

 𝐾(𝑃1, 𝑃2) = ∑ ∑ √𝑤𝑖𝑤𝑗 ∙ 𝑆𝑖𝑗 ∙
1

cosh𝑘(𝜎 ∙ ‖𝑥𝑖 − 𝑥𝑗‖)
𝑗∈𝑃2𝑖∈𝑃1

 [2] 

In this equation, xi represents the Cartesian coordinates of coarse-grained residue i, and ‖𝑥𝑖 − 𝑥𝑗‖ 

is Euclidean distance between residues i and j. The residue similarity Sij measures the 

physicochemical similarity between i and j, which will be described in detail in the next section. 

The weight factor wi controls the importance of residue i, as described in previous section. 

Finally, the structure distance SD is defined as follows, giving a metric that fulfills the axioms of 

distance metric including minimality, symmetry, and triangle inequality: 

 𝑆𝐷(𝑃1, 𝑃2) =  √𝐾(𝑃1, 𝑃1) + 𝐾(𝑃2, 𝑃2) − 2𝐾(𝑃1, 𝑃2) [3] 

Residue similarity matrix S. A similarity matrix was used to determine the physicochemical 

similarity between two residues. Three similarity matrices were implemented for users to choose 

from: Grantham, PMBEC, and SM_THREAD_NORM. All three similarity matrices were 

normalized to [0, 1]. The Grantham similarity matrix was calculated as 1 − 𝐺/215, where G is 

Grantham Distance which was based on the physicochemical property similarities between 
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residues (Table 5-8). The PMBEC, peptide-MHC binding covariance matrix, was derived from 

peptide MHC class I binding data. The SM_THREAD_NORM was based on energy potential 

calculated by THREADER force field. We suggest using the Grantham similarity matrix as it 

achieved best clustering cohesion compared to other two matrices, if the shape parameters were 

tuned properly (Table 5-7). 

Calculating pairwise SD matrix. Given alleles that waiting to be clustered, the matrix of pairwise 

SD is first calculated, based on which the hierarchical clustering is then performed. Instead of 

calculating SD for each pair of alleles directly, the calculation procedure was optimized by the 

following method. First, the matrix of structure similarity K between each pair of alleles, including 

similarity to itself, is calculated in a single round-robin manner, to avoid repeated computation of 

𝐾(𝑃1, 𝑃2) and 𝐾(𝑃2, 𝑃1) . Next, when calculating the 𝐾(𝑃1, 𝑃2), calculations are performed 

between every residue in P1 and P2, resulting in 21 × 21  calculations, if weight factors are 

assigned as described in section 1.3. We split the calculation into three parts, including the kernel 

function, the similarity score S, and the geometric average of weight factors. All three parts are 

calculated, resulting in three 21 × 21 NumPy arrays, the product of which are then calculated, 

taking advantage of vectorized computation feature. Finally, the matrix of pairwise structure 

distance SD is calculated by eq.3, the similarity values are looked up in the similarity matrix. 

Hierarchical clustering. Based on pairwise structure distance SD matrix, hierarchical clustering 

was performed using scikit-learn AgglomerativeClustering function with complete linkage 

method, in preference to a coherent and compact clustering result. 

Nearest-neighbor clustering. To simplify calculation and maintain when clustering custom HLA 

alleles, an alternative nearest-neighbor clustering approach is proposed. Anchor alleles for each 

supertype and sub-supertype were used as cluster centers (Table 5-10), which are selected based 

on the standard that such allele has crystal structures or is supported by NetMHC, one of the best 

performing allele specific peptide-HLA affinity predictor, since those alleles are better studied 

with abundant experimental data. Two sub-supertypes, B50 and B57, don’t include such alleles, 

thus their centroid alleles when performing hierarchical clustering are selected as anchors. Then 

for each allele needs to be clustered, the distances to these anchor alleles are calculated, and the 

tested alleles are classified to the supertype represented by the nearest anchor allele. Such an 
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alternative method has 96% consensus in supertype level and 94% consensus in sub-supertype 

level comparing to the hierarchical clustering method, while significantly simplifies calculation. 

5.2.2 HLA allele frequency analysis 

Due to the large number of HLA alleles, protein structural modeling and supertype classification 

were limited to populated alleles. Allele frequency data were derived from the Allele Frequency 

Net Database (AFND) [37]. Alleles with frequency > 0.01 in any population with more than 50 

samples were determined as populated alleles and selected for subsequent structural modeling and 

clustering. There were 128 HLA-A, 235 HLA-B, and 86 HLA-C alleles that meet the above 

criterion (Table 5-4). 

5.2.3 Collecting HLA sequences and crystal structures 

Protein sequences of populated HLA alleles were downloaded from the IPD-IMGT/HLA database 

[38]. Crystal structures were downloaded from the IMGT/3Dstructure-DB [39]. The allele name 

of each crystal structure was validated by extracting the HLA α chain protein sequence and 

comparing to the record in the IPD-IMGT/HLA database. There were 397 crystal structures of 40 

alleles collected (Table 5-5). Structure cleaning was performed with PyMOL (version 2.5.2) [40], 

during which water molecules, ions, binding peptides, and the beta chain were removed, leaving 

the alpha chain only. 

5.2.4 Dataset split for validation purpose 

Alleles were split into several datasets for different purposes. The model quality evaluation set was 

used to assess how closely the structural models reproduce experimentally determined crystal 

structures for the 40 alleles that have crystal structures available. The reference panel was used to 

estimate the performance of present and previous methods, including 31 HLA-A, 57 HLA-B, and 

22 HLA-C alleles that were classified into supertypes with high confidence in previous studies 

(Table 5-6). The HLA-A and HLA-B alleles were taken directly from the reference panel used in 

ref [25], the supertype classification of which were based on experimentally established peptide 

binding motif. The HLA-C alleles were picked from the alleles of the consensus of the two 

supertype classification methods reported in ref [28]. 
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5.2.5 Structural modeling 

A total of 451 HLA structures, including 449 populated alleles plus 2 rare alleles that belongs to 

the reference panel (B*08:02 and B*27:09), were modeled using ColabFold [33], an 

implementation of AlphaFold2 [41], that accelerates predictions by using fast homolog sequence 

searching with MMseqs2 [42, 43]. The transmembrane (TM) domains were trimmed and not 

modeled, as the TM domain is far from the peptide binding groove and is expected to have a 

negligible influence on the folding of the binding domain. Also, because the models were 

evaluated by overall quality, a poorly modeled TM domain may dominate scoring of model 

quality, concealing details in the peptide binding domain. Models were generated with the 

AlphaFold2_batch.ipynb (version 1.3) Google Colaboratory notebook. For each allele, five models 

were built with three rounds of recycles. The model with the highest pLDDT score (predicted 

Local Distance Difference Test-Cα) was then relaxed using the Rosetta FastRelax protocol [44] 

with fixed backbone to minimize steric clashes and optimize side chain positioning, because the 

constraint is not available in current ColabFold Amber implementation. We generated 20 relaxed 

replicas for each model and selected the one with the lowest total score calculated by the ref_2015 

Rosetta energy function. 

5.2.6 Evaluating model quality 

The quality of ColabFold models was measured by the Root Mean Square Deviation (RMSD) 

between models in the model quality evaluation set and crystal structures of the same allele. Some 

alleles have multiple crystal structures available. To represent the average of each of such alleles, 

the centroid structure was selected for comparison: first, the mean structure was generated in the 

way that the coordinates of any atom in the mean structure are the average coordinates of that atom 

in all crystal structures; next, the all-atom RMSDs between crystal structures and the mean 

structure were calculated using PyMOL; and finally, the structure with the lowest RMSD from the 

mean structure was selected as the centroid structure. The use of a centroid structure, rather than 

the mean structure itself, avoids comparisons with an unphysical structure obtained by averaging. 

To estimate natural structural variation, RMSDs between crystal structures and the centroid 

structure were also calculated. 
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Three kinds of RMSD were used to describe structural similarity: all-atom, backbone (Cα), and 

coarse-grained. The all-atom and backbone RMSDs were calculated using PyMOL, and the coarse 

grained RMSD between two structures, P1 and P2, was calculated with Eq. 1: 

 𝑅𝑀𝑆𝐷(𝑃1, 𝑃2) = √
1

𝑁
∑ 𝛿𝑖

2

𝑁

𝑖=1

 [4] 

where 𝛿𝑖 is the distance between residue i of P1 and the equivalent residue of P2, and N is the 

number of matching residues between P1 and P2. 

5.2.7 Peptide binding specificity distance, PD 

The function of an allele as defined in the present study is represented by its peptide binding 

specificity. By this definition, the functional relationships between alleles are measured by peptide 

binding specificity distances, which were calculated using the method adapted from MHCcluster 

[127]. First, the binding affinities of each allele to a set of 50,000 random peptides of length 8-14 

(Table 5-9) were calculated using the NetMHCpan 4.1 server [94]. The random peptides was 

generated by Expasy RandSeq tool [135], and the ratio of different lengths was in accordance with 

natural peptide length preference [136]. Next, the peptide binding specificity distance 𝑃𝐷(𝑃1, 𝑃2) 

between two alleles P1 and P2 was calculated by the correspondence of the top 10% strongest 

binders (including 50,000 × 10% = 5,000 peptides) of each allele, calculated as: 

 𝑃𝐷(𝑃1, 𝑃2) =  1 −
𝑛(𝑏1 ∩ 𝑏2)

5000
 [5] 

where b1 and b2 are the top 10% strongest binding peptides of alleles P1 and P2, respectively, and 

𝑛(𝑏1 ∩ 𝑏2) is the number of peptides that are strong binders to both alleles. If both alleles have 

the same set of strong binders (𝑛(𝑏1 ∩ 𝑏2) = 5,000), the distance is 0, whereas for completely 

different sets of strong binders (𝑛(𝑏1 ∩ 𝑏2) = 0) the distance is 1. 

5.2.8 Tuning shape parameters σ and k 

To select the optimal shape parameters σ and k, grid search technique was performed using scikit-

learn ParameterGrid function. We tested 6 different values for σ and 5 values for k, 30 sets of 

combinations in total. For each set of shape parameters, pairwise SD was calculated and compared 
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to PD. We find that σ=0.3, k=1 achieved highest Pearson correlation coefficient between SD and 

peptide binding specificity distance, thus was chosen for suggested parameters. 

5.2.9 Correlation between SD and PD 

The locus-wise matrices of structure distance SD and peptide binding specificity distance PD of 

reference panel alleles were compared. Two pairwise distance matrices (SD and PD) for each of 

the three loci (HLA-A, HLA-B, and HLA-C) were calculated using Python scripts and were 

visualized as heatmaps by Matplotlib (version 3.4.3) [64] and Seaborn (version 0.11.2) [65]. The 

correlation between the two distances was further investigated via linear regression. Both SD and 

PD matrices of the same locus were normalized to the range in [0,1] using the scikit-learn (version 

1.1.1) [66] MinMaxScaler function, then the PD was linearly fitted on SD using the SciPy (version 

1.8.0) [67] linregress function. The correlation between PD and SD was derived with the Pearson 

correlation coefficient, which ranges in [−1, 1], and a larger absolute value of this coefficient 

indicates stronger correlation. 

5.2.10 Assessing clustering performance 

The performance of the clustering, cluster cohesion, was measured by the sum of squared errors 

(SSE) and silhouette coefficient (SC) using Python scripts with the subsequent procedure. 

The calculation of the SSE requires identification of the cluster centers, which is usually the mean 

of cluster members. As a practical alternative, the centroids of clusters were used here instead, 

given the following equation: 

 𝑆𝑆𝐸 =  ∑ ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2(𝑖, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐶))

𝑖∈𝐶𝐶

 [6] 

In which the distance refers to structure distance metric SD when calculating SD SSE, and peptide 

binding specificity distance PD when calculating PD SSE. Given the same number of clusters, a 

smaller SSE value suggests better clustering because members of each cluster are more 

homogeneous. Usually, as the number of clusters increases, the SSE decreases monotonically. If 

all clusters are homogeneous, or the number of clusters equals to the number of samples, the SSE 

reaches its minimal value of 0. 

SC compares the intra-cluster variation to the distances to the neighboring clusters. For each allele 

i that belongs to cluster C, the average distance to all other alleles in the same cluster is: 
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 𝑎(𝑖) =
1

𝑠𝑖𝑧𝑒(𝐶) − 1
∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)

𝑖,𝑗∈𝐶,𝑖≠𝑗

 [7] 

If cluster C contains only 1 allele, then a(i) is set to zero to avoid a divide-by-zero error. Next, the 

average distance to the closest neighboring cluster for each allele i is defined as: 

 𝑏(𝑖) = min
𝐶≠𝐷

1

𝑠𝑖𝑧𝑒(𝐷)
∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑘)

𝑘∈𝐷

 [8] 

where k is the member of neighboring cluster D. The silhouette coefficient for the clustering result 

regarding all alleles is calculated as: 

 𝑆𝐶 =
1

𝑁
∑

𝑏(𝑖) − 𝑎(𝑎)

𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖))

𝑁

𝑖

 [9] 

where N is number of alleles included in clustering. The range of the silhouette coefficient is [-1, 

1], and a high silhouette coefficient indicates proper clustering. 

5.2.11 Hierarchical clustering of the reference panel 

Alleles in the reference panel were clustered locus-wise by the method described in section 3.1, as 

well as three other methods for comparison. A second method, “direct clustering”, also uses 

complete linkage hierarchical clustering but was based on the peptide binding specificity distance 

(PD). Thirdly, we reproduced the classifications from two previous studies: Ref [25] proposed 6 

HLA-A and 6 HLA-B supertypes, and ref [28] proposed 3 HLA-A, 3 HLA-B, and 2 HLA-C 

supertypes. Finally, the “random even split” method provides the baseline performance, randomly 

clustering alleles into any given number of clusters of equal size. The performance of each method 

was assessed by the PD SSE of its clustering result. Because the SSE is dependent on the number 

of clusters (N), methods including the structure clustering, direct clustering, and random even split 

were performed on a series of N clusters to show the trend. 

5.2.12 Hierarchical clustering of 449 populated HLA alleles 

All 449 populated HLA class I alleles were hierarchically clustered across all alleles 

simultaneously for two purposes. First, possible inter-locus functional overlapping is investigated. 

Also, such an approach ensures that supertypes are clustered with the same degree of functional 

similarity for all alleles rather than vary locus to locus. The SD matrix of populated alleles was 
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calculated, based on which clustering was performed as described in section 3.1. The optimal 

number of clusters was determined by analyzing the elbow plot and silhouette plot, which show 

the SSE and SC based on SD as a function of the number of clusters (N), respectively. With 

stepwise increasing of N, clustering was performed, and the SSE and SC were calculated for the 

resulting clusters. The optimal values of N are indicated by elbow points and SC peaks. The 

corresponding dendrogram was generated with the SciPy dendrogram function and visualized with 

the Interactive Tree Of Life (iTOL) web server [68]. 

5.2.13 Cluster stability estimated by bootstrapping 

One major issue with hierarchical clustering is unsatisfying stability against independent 

resampling, which is a type of robustness measurement [69-71]. The stability of the hierarchical 

clustering result was calculated here using a bootstrapping strategy. The HLA alleles were 

randomly sampled 100 times with replacement, then the SD-clustering was performed on the 100 

bootstrapped samples, with the same setting as the original sample. The correspondence between 

bootstrapped cluster A and corresponding original cluster B was calculated using the Jaccard index 

[72], which is defined as: 

 𝐽(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 [10] 

The stability of each cluster was then calculated as the mean Jaccard index of that cluster among 

100 bootstrapped clustering results. 

5.3 Results 

5.3.1 HLA class I structural modeling 

Models of 451 alleles were built using ColabFold, then relaxed using Rosetta FastRelax. The 

models were of high confidence, as indicated by their average pLDDT score of 96.2, and a 

minimum score of 94.0, with values >90 indicating high accuracy [137]. The quality of the models 

was further tested by comparing to the crystal structures of the same allele. The RMSDs, calculated 

with respect to the corresponding crystal structures or centroid structures, of the models in the 

model quality evaluation set were compared to the natural structural variations measured by 

RMSDs between crystal structures and centroid structures (Fig. 5-1). The all-atom RMSDs of the 

models (mean = 1.26 Å) are slightly larger than those of the crystal structures (mean = 0.85 Å). 
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However, only one model (B*08:01, RMSD = 1.97 Å) exceeds the maximum RMSD of crystal 

structures (PDB id 4QRP, RMSD = 1.74 Å, compared to the centroid structure 4QRS) (Fig. 5-1A). 

The backbone RMSDs of the two groups are smaller than the all-atom RMSDs with the average 

0.62 Å for models and 0.41 Å for the crystal structures (Fig. 5-1B), showing that the highest 

inaccuracy is in the sidechain positioning. The distribution of coarse grained RMSDs differs from 

the all-atom RMSDs (Fig. 5-1C), while the average (1.35 Å for models and 0.81 Å for crystal 

structures) is similar to the all-atom structures, showing that coarse graining has little influence on 

model quality. We also examined the model of B*08:01 that performed poorly in all three RMSD 

tests. Here, the major differences between the model and crystal structure occur in the loop regions 

between the beta strands, which is distant from the binding groove, and thus has only a minor 

impact on the clustering results, in line with the observation that the loop regions show flexibility 

in crystal structures as indicated, for example, by high B-factor values [19]. 

5.3.2 Structure distance metric SD compared to peptide binding specificity distance PD 

The SD between alleles in the reference panel were compared to their PD. Both distances were 

calculated locus-wise and then normalized to [0, 1], resulting in three pairs of intra-locus distance 

matrices (Fig. 5-2). It is evident that the PD and SD heatmaps display similar patterns, suggesting 

that the two distances are in general agreement. This finding was further examined by linear 

regression between SD and PD. Among the three loci, HLA-B shows the highest coefficient 

(R=0.79), followed by HLA-C (R=0.75) and then HLA-A (R=0.73), which confirms the strong 

correlation between the two distances and supports the hypothesis that peptide binding specificity 

of HLA class I molecule is mainly determined by the structural landscape of the binding groove. 

We also calculated the correlation coefficients between PD and the pseudo-sequence (contact 

residues applied in NetMHCpan [94]) distances based on BLOSUM62 substitution matrix [138], 

the results are 0.69, 0.69, and 0.59 in HLA-A, B, and C, respectively, which is significantly inferior 

than the SD (Fig. 5-8). 

5.3.3 Performance of reference panel clustering 

The reference panel alleles were clustered locus-wise by four methods: 1) SD-clustering, as 

described in Methods section 3.1; 2) hierarchical clustering based on pairwise PD (“direct 

clustering”), which should provide the most accurate clustering amongst available binding data; 

3) random even split representing the baseline performance; 4) clustering results from two previous 
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studies [126, 129]. The performance, i.e., the cluster cohesion, was calculated by the PD SSE, 

because the primary aim of supertype classification is to group alleles with similar peptide binding 

specificities (Fig. 5-3). In all three loci, the PD SSEs of the present clustering method are 

significantly lower than the random even split. Compared to the direct clustering curve, the SD-

clustering methods have very close SSE values, which indicates that the clustering based on SD is 

a reasonable approximation to clustering based on PD. The consistency between the two distances 

is also demonstrated by the SD SSE and the PD SSE curves, which show very similar shapes after 

scaling. 

When compared to previous clustering methods, given the same number of clusters the present 

method outperforms ref [129] in all three loci, and outperforms ref [126] in HLA-A but not in 

HLA-B. It is important to note that the HLA-A and HLA-B alleles in the reference panel were 

derived directly from ref [126], with experimentally validated peptide binding motifs. These 

results indicate that the present classification method achieves accuracy comparable to previous 

methods, including classifications based on experimental data. 

5.3.4 Supertype and subtype classification of populated HLA class I alleles 

Because the three classical HLA I loci - A, B and C - are homologous, it is possible that alleles of 

different loci have overlapping peptide binding specificities. Some classification methods 

proposed mixed supertypes that include alleles from different loci [107, 125, 128]. Here, we 

clustered 449 populated alleles (frequency > 0.01) to investigate the possibility of overlapping 

peptide binding specificities, and to ensure the clustering of all HLA I alleles achieves the same 

level of functional similarity among all clusters. 

The optimal number of clusters was determined by the elbow plot and silhouette plot method (Fig. 

5-4). The most significant elbow point and silhouette coefficient peak appears at N = 5. However, 

dividing all HLA class I alleles into only five supertypes may hide useful details and thus is not 

selected. Two optimized numbers of clusters, N=12 and N=20, are suggested by both the elbow 

points and silhouette coefficient peaks. Accordingly, the 449 populated HLA alleles were clustered 

into 12 supertypes and 20 subtypes, representing two levels of resolution (Fig. 5-5 and Table 5-2). 

In this way, the supertypes describe the overall functional similarities, while the subtypes provide 

more details at enhanced resolution, which provides flexibility in application. 
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Subtypes are named after the most abundant allotype group in the cluster, following the naming 

convention, while supertypes were named after the included subtypes. The sizes of the supertypes 

and subtypes are imbalanced: each supertype contains 1 to 3 subtypes and 9 to 72 alleles, while 

each subtype contains 4 to 44 alleles, suggesting that the distribution of sampled 449 alleles is 

uneven in peptide binding specificity space.  

Though the supertypes and subtypes were clustered based on structural similarity, they generally 

agree with allotype groups (the first set of digits of allele nomenclature) that are based on sequence 

similarity, because alleles that belong to the same group are usually clustered together. This 

agreement indicates that the allotype groups are reasonable approximations to supertypes and 

subtypes, as has been done previously [139-141]. As for allotype groups that were separated in 

multiple clusters, single point mutations in the key residues and subsequent change of side chain 

positioning explains their split. For example, allele B*15:09 was clustered in subtype B14 rather 

than B15 where the majority of B*15 allele group is situated. The full protein sequence comparison 

shows that B*15:09 has 8 mismatches with B*15:01, which belongs to B15, and 10 mismatches 

with B*14:01, which belongs to B14. However, among the 21 key residues defined in the Methods 

section 2.2, B*15:09 has 7 mismatches with B*15:01 but 4 mismatches with B*14:01. In addition, 

the major structural difference between the three alleles is located near the F pocket, the orientation 

of residue 97 in B*15:01 is different from B*15:01 but similar to B*14:01 (Fig. 5-6). 

At both the supertype and subtype level, functional overlap between different loci is not 

significant, as most supertypes and subtypes are locus-specific, the only exception is subtype C02 

that includes two HLA-B alleles, B*46:01 and B*56:03 (Table 5-2). The allele B*46:01 is 

validated to have close functional relationship with HLA-C [142], which provides circumstantial 

evidence that supports the present classification. 

5.3.5 Stability of present supertype and subtype classification 

The stability of supertypes and subtypes is an important concern as more alleles will be included 

and clustered in future studies. To investigate whether the present supertype and subtype 

classification is reproducible given different sets of alleles, the stability was evaluated with a 

bootstrapping strategy. The stability of each supertype and subtype was calculated by its average 

Jaccard index among 100 repetitions (Table 5-3). In previous studies, the stability of supertypes 

has rarely been reported, as we found only one study that reported the bootstrap values of 12 
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proposed HLA-A and HLA-B supertypes, the average of which is 0.54 in the range of [0,1] [118]. 

The average stability for our classification approach is 0.61 for supertypes and 0.75 for subtypes, 

respectively. In comparison, then, the present classification shows better stability than previous 

methods and is expected to be more robust. We also simulated a scenario in which new alleles are 

included, by adding the two already modeled rare alleles, B*08:02 and B*27:09, the pairwise 

distance matrix calculation and hierarchical clustering of the 451 alleles were performed the same 

way as the 449 populated alleles. The two alleles, B*08:02 and B*27:09, were clustered into 

subtypes B08 and B27 respectively, while the classification of other alleles remains the same, 

demonstrating the stability of present clustering method and corresponding supertypes and 

subtypes. 

5.4 Discussion 

HLA genes are extremely polymorphic, resulting in numerous alleles with diverse peptide binding 

specificities, thus allowing the human adaptive immune system to respond to a very wide range of 

antigens. However, this polymorphism also poses a significant difficulty in studies including, but 

not limited to, organ and cell transplantation, disease association studies, and peptide vaccine 

development. To reduce the conceptual complexity of the HLA system, the concept of supertypes 

was introduced to cluster alleles that have similar peptide binding specificities. Although, in the 

past, a number of experiments have been carried out for supertype classification, these cover only 

a small portion of binding peptide sequence space. For example, if considering only 8-mer, 9-mer, 

and 10-mer peptides consisting of the 20 canonical amino acids, the binding peptide sequence has 

208 + 209 + 2010 ~ 1.1 × 1013  possibilities, while HLA-A*02:01, one of the most studied 

alleles, has binding assay data for only 71,115 unique peptides in the IEDB [91]. With such a 

massive gap, supertypes can hardly be determined entirely by experiment. 

An alternative to experimental methods is to use predicted peptide-HLA affinities, for example, 

using deep learning models trained by experimental affinities, and this is perhaps the most direct 

in silico approach. However, the coverage and accuracy of peptide-HLA affinity prediction 

methods are limited, the leading issue being the unsatisfying availability of training data, as 

mentioned above. Another issue comes from the peptide binding assays themselves. The most 

widely used measurement of peptide-HLA affinity is the half maximal inhibitory concentration 

(IC50), which is defined as the concentration of a query peptide that blocks 50% of standard peptide 
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binding, but different standard peptides have been used for different HLA alleles [143]. As a result, 

the binding assay data of different alleles are in different bases and thus not, in principle, 

comparable. However, they have been combined in the training sets of pan specific predictors, 

which may lead to inaccuracy. 

Another alternative to time-consuming experiments is to cluster HLA alleles based on sequence 

or structural similarity, which recognizes that the peptide binding specificity is determined by the 

spatial and chemical properties of the peptide binding groove. Sequence/structure-based methods 

have advantages compared to affinity prediction-based methods. First, the sequences and 

structures of HLAs are available with less effort than binding assays; second, the methods may be 

applicable to all HLA alleles and not just those with available binding affinity data (PD), permitting 

reliable clustering performance on understudied alleles.  

Both sequence-based and structure-based approaches have been successfully applied in general 

protein binding pocket comparison [144-149]. Here, we have demonstrated that both the sequence 

and structure distances we use for class I HLA are highly correlated with peptide binding 

specificity distances (PD). Furthermore, as structure-based methods should, in principle, 

incorporate more direct functional detail than simple sequences, and here, indeed our structure-

based method outperforms sequence-based methods in that structure distance has higher 

correlation coefficient with PD than sequence distance. 

One limitation of structure-based methods, including the SD-clustering, is the imperfect quality of 

HLA crystal structures and predicted models [147]. As illustrated above, natural structural 

variations occur in crystal structures of the same HLA allele, which can be caused by peptide 

induced conformational change [150-152], chaperones (for instance, tapasin) [153, 154] or crystal 

packing [155]. To minimize the impact of imperfect HLA models, here relaxation and coarse 

graining were applied. Coarse graining decreases the number of degrees of freedom, thus reducing 

the impact of possible inaccuracies in sidechain orientations and improves its robustness. 

However, coarse graining may also reduce clustering accuracy through the loss of information that 

would be present in a fully atomistic structure. Clearly, the development of all-atom models shows 

promise for improving the present method. 

The reasons for the performance differences between supertype classification methods compared 

in the present study are complex. Apart from the limited data quality available to previous studies, 
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there are differences in the definition of supertypes. All methods agree that supertypes include 

functionally similar alleles, although they focus on different aspects, including the selectivity of 

anchor residues of binding peptides (peptide motif) [117, 118, 126], the interaction profile of the 

binding groove [121, 129, 156], and, as adopted in the present study, peptide binding specificity 

[127]. Therefore, these supertype classifications should not be used interchangeably. 

In conclusion, we have demonstrated that the present SD-clustering has improved clustering 

performance (cohesion) relative to previous methods. This means that the clusters are better 

separated from each other. Also, the flexibility is improved, in that clustering at different 

resolutions is incorporated. Finally, the stability is improved, meaning that users can add more 

user-defined alleles without perturbing the existing classification structure. Currently, because the 

details of the interactions between HLA and the peptides are not completely known, on well-

studied alleles the sequence and structure-based classification methods are less accurate than 

prediction-based methods. However, structure-based methods have unquestionable advantage in 

understudied alleles thus broadening the coverage of reliable supertype classification. With 

advances in understanding of peptide HLA interactions and the further development of structural 

modeling approaches, structure-based methods are destined to improve further. 
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Appendix 

 

Figure 5-1. Distribution of (A) all-atom, (B) backbone, and (C) coarse-grained RMSDs of crystal 

structures and ColabFold models compared to the centroid structure of multiple crystal structures 

(when available) for each allele. 

A B 

C 
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Figure 5-2. Comparison between peptide binding specificity distance PD predicted by 

NetMHCpan and structural distance SD defined in the present work. In the correlation plots, the 

fitted functions between two distances are shown in dotted line. Fitted function and Pearson 

correlation coefficient (R) are printed out. 
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Figure 5-3. Elbow plot showing the sum of squared errors (SSE) of HLA-A, HLA-B and HLA-C 

reference panel alleles clustering. The SSE of the peptide binding specificity distance (PD SSE) is 

in blue, and the SSE of the structural distance (SD SSE) is in green. The PD SSE of supertype 

classifications from Sidney (purple) and Doytchinova (orange) are shown as short horizontal bars. 
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Figure 5-4. Elbow plot and silhouette plot, the sum of squared errors (SSE) and silhouette 

coefficient (SC) based on SD with respect to the number of clusters. Two elbow points and 

silhouette peaks are shown as vertical dotted lines. 
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Figure 5-5. Dendrogram of populated HLA supertype hierarchical clustering. Clades of different 

supertypes are shown in different colors. 
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Figure 5-6. Comparing structures of HLA-B*15 alleles that were clustered in subtype B14 and 

B15. (A) Top-down view of the peptide binding groove. Alleles that were clustered in subtype 

B14 are colored in blue while and B15 alleles are green. The major difference in orientation of key 

residues is located near F pocket. (B) Zoom-in near the F pocket, showing the difference of 

B*15:09, B*15:01, and B*14:01 in residue 97, 116, and 156. Comparing to B*15:09 and B*14:01, 

B*15:01 has Trp in position 156 which is bulk in size and pushed Arg 97 towards Ser 116, resulting 

in the difference in the shape of F pocket. 
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Table 5-1 Contact residue positions in HLA class I proteins and corresponding weight factor. 

Positions are listed in the descending order of weight. 

Positiona 

(i) 

Overlap of binding 

specificityb (%) 

Difference in binding 

specificityc (%) 
Weight (wi) 

63 55.4 44.6 9.9 

67 65.7 34.3 7.6 

116 73.9 26.1 5.8 

9 75.6 24.4 5.4 

97 78.7 21.3 4.7 

152 79.4 20.6 4.6 

167 82.8 17.2 3.8 

156 83.2 16.8 3.7 

74 83.9 16.1 3.6 

70 85.6 14.4 3.2 

80 86.3 13.7 3.0 

171 84.0 13.0 2.9 

45 87.3 12.7 2.8 

66 88.0 12.0 2.7 

77 88.0 12.0 2.7 

76 89.4 10.6 2.4 

114 89.7 10.3 2.3 

99 90.4 9.6 2.1 

163 93.1 6.9 1.5 

95 93.1 6.9 1.5 

59 93.5 6.5 1.4 

158 93.8 6.2 1.4 

69 94.5 5.5 1.2 

24 94.8 5.2 1.2 

7 95.5 4.5 1.0 
a There are no insertions or deletions in the binding domain of most existing HLA I alleles and all 

alleles considered in this study. Thus, residue positions are constant.  

b The overlap of binding specificity between altered HLA with single point mutation and wild 

type.  

c The difference was calculated as (1 - overlap) %.  
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Table 5-2. HLA supertype and subtype assignment. 

A01-A03-A66 

A01 A03 A66 

A*01:01 A*36:01 A*03:01 A*11:04 A*29:03 A*30:03 A*31:04 A*32:04 A*74:02 A*25:01 A*26:14  

A*01:02 A*80:01 A*03:02 A*11:05 A*29:10 A*30:04 A*31:08 A*32:106 A*74:03 A*26:01 A*26:16  

A*01:03  A*03:08 A*11:06 A*29:11 A*30:10 A*31:09 A*33:01  A*26:02 A*34:01  

A*01:06  A*03:27 A*11:12 A*29:25 A*30:15 A*31:12 A*33:03  A*26:03 A*43:01  

A*01:17  A*11:01 A*11:170 A*29:50 A*31:01 A*31:29 A*33:18  A*26:08 A*66:01  

A*01:23  A*11:02 A*29:01 A*30:01 A*31:02 A*32:01 A*34:02  A*26:12 A*66:02  

A*01:36  A*11:03 A*29:02 A*30:02 A*31:03 A*32:02 A*74:01  A*26:13 A*66:03  

A02 

A02 

A*02:01 A*02:05 A*02:09 A*02:13 A*02:19 A*02:24 A*02:44 A*02:52 A*68:03 A*68:30   

A*02:02 A*02:06 A*02:10 A*02:14 A*02:197 A*02:240 A*02:46 A*02:61 A*68:05 A*69:01   

A*02:03 A*02:07 A*02:11 A*02:16 A*02:20 A*02:34 A*02:48 A*68:01 A*68:06    

A*02:04 A*02:08 A*02:12 A*02:17 A*02:22 A*02:36 A*02:50 A*68:02 A*68:16    

A24 

A24 

A*23:01 A*23:17 A*24:03 A*24:05 A*24:07 A*24:10 A*24:14 A*24:17 A*24:23 A*24:242 A*24:28 A*24:51 
A*23:05 A*24:02 A*24:04 A*24:06 A*24:08 A*24:13 A*24:143 A*24:20 A*24:24 A*24:25 A*24:41  

B07-B35 

B07 B35 

B*07:02 B*07:35 B*42:02 B*55:04 B*67:01 B*15:08 B*35:04 B*35:13 B*35:21 B*35:36 B*40:08  

B*07:03 B*07:75 B*42:18 B*55:15 B*78:01 B*15:11 B*35:05 B*35:14 B*35:23 B*35:43 B*53:01  

B*07:05 B*07:91 B*54:01 B*56:01 B*81:01 B*15:29 B*35:06 B*35:15 B*35:24 B*35:44 B*53:03  

B*07:06 B*07:96 B*54:18 B*56:02 B*82:01 B*18:07 B*35:08 B*35:16 B*35:25 B*35:61 B*53:05  

B*07:07 B*39:10 B*55:01 B*56:04 B*82:02 B*35:01 B*35:09 B*35:17 B*35:27 B*35:68   

B*07:08 B*39:20 B*55:02 B*56:05  B*35:02 B*35:10 B*35:18 B*35:29 B*35:77   

B*07:105 B*42:01 B*55:03 B*56:43  B*35:03 B*35:12 B*35:19 B*35:32 B*40:07   

B51-B58 

B51 B58 

B*51:01 B*51:04 B*51:07 B*51:12 B*51:19 B*51:76  B*15:16 B*57:01 B*57:04 B*58:01  

B*51:02 B*51:05 B*51:08 B*51:14 B*51:33 B*52:01  B*15:17 B*57:02 B*57:05 B*58:02  

B*51:03 B*51:06 B*51:10 B*51:15 B*51:61 B*59:01  B*15:67 B*57:03 B*57:25 B*58:06  

B08-B18-B39 

B08 B18 B39 

B*08:01 B*08:04  B*18:01 B*18:03 B*18:06  B*39:01 B*39:04 B*39:09 B*39:24 B*73:01 
B*08:03 B*08:05  B*18:02 B*18:05 B*18:09  B*39:03 B*39:06 B*39:12 B*39:54  

B14 

B14 

B*14:01 B*14:03 B*14:05 B*14:11 B*15:10 B*15:21 B*15:37 B*38:01 B*38:09 B*39:07 B*78:03  

B*14:02 B*14:04 B*14:06 B*15:09 B*15:18 B*15:23 B*15:93 B*38:02 B*39:05 B*39:11   

B15-B40 

B15 B40 

B*13:01 B*15:04 B*15:20 B*15:35 B*40:02 B*47:03 B*15:30 B*40:05 B*40:16 B*41:03 B*49:01  

B*13:02 B*15:05 B*15:24 B*15:36 B*40:03 B*48:01 B*15:58 B*40:10 B*40:23 B*41:23 B*50:01  

B*13:04 B*15:06 B*15:25 B*15:39 B*40:06 B*48:02 B*37:01 B*40:11 B*40:36 B*44:05 B*50:02  

B*13:38 B*15:07 B*15:27 B*15:46 B*40:09 B*48:04 B*39:02 B*40:12 B*40:46 B*44:10 B*50:04  

B*15:01 B*15:12 B*15:31 B*18:04 B*40:268 B*48:07 B*39:08 B*40:121 B*40:49 B*44:15   

B*15:02 B*15:13 B*15:32 B*35:20 B*40:38  B*40:01 B*40:14 B*41:01 B*45:01   

B*15:03 B*15:15 B*15:34 B*35:28 B*47:01  B*40:04 B*40:15 B*41:02 B*48:03   

B27 

B27 

B*27:01 B*27:02 B*27:03 B*27:04 B*27:05 B*27:06 B*27:07 B*27:08 B*27:14    

B44 

B44 

B*44:02 B*44:03 B*44:04 B*44:06 B*44:07 B*44:08 B*44:09 B*44:151 B*44:27 B*44:29   

C01-C02 

C01 C02 

C*01:02 C*03:04 C*03:19 C*04:10 C*08:02 C*15:02 C*15:13 B*46:01 C*02:10 C*06:04 C*12:05 C*15:04 
C*01:03 C*03:05 C*04:01 C*04:15 C*08:03 C*15:03 C*17:01 B*56:03 C*03:02 C*06:06 C*12:07 C*15:09 

C*01:06 C*03:06 C*04:03 C*04:43 C*08:04 C*15:05 C*17:03 C*01:04 C*03:15 C*07:26 C*14:02 C*16:01 

C*01:44 C*03:07 C*04:04 C*05:01 C*08:06 C*15:07 C*18:01 C*02:02 C*03:16 C*12:02 C*14:03 C*16:02 

C*01:57 C*03:09 C*04:06 C*05:09 C*08:13 C*15:08 C*18:02 C*02:03 C*06:02 C*12:03 C*14:04 C*16:04 

C*03:03 C*03:135 C*04:07 C*08:01 C*08:72 C*15:10  C*02:09 C*06:03 C*12:04 C*14:06  

C07 

C07 

C*07:01 C*07:03 C*07:05 C*07:07 C*07:10 C*07:17 C*07:18 C*07:248 C*07:270 

 

 

adadasdsa

dsa 

   

C*07:02 C*07:04 C*07:06 C*07:08 C*07:14 C*07:172 C*07:19 C*07:27 C*07:31    



72 

 

Table 5-3. Supertype and subtype stability measured by average Jaccard index in bootstrapping. 

Supertype 
Avg. Jaccard 

index 
Subtype 

Avg. Jaccard 

index 

A01-A03-A66 0.65 

A01 0.72 

A03 0.70 

A66 0.68 

A02 0.58 A02 0.83 

A24 0.66 A24 0.89 

B07-B35 0.60 
B07 0.70 

B35 0.70 

B51-B58 0.74 
B51 0.91 

B58 0.94 

B08-B18-B39 0.25 

B08 0.66 

B18 0.66 

B39 0.54 

B14 0.68 B14 0.74 

B15-B40 0.62 
B15 0.54 

B40 0.65 

B27 0.68 B27 0.96 

B44 0.38 B44 0.64 

C01-C02 0.87 
C01 0.87 

C02 0.76 

C07 0.66 C07 0.93 

 

 

 

 

 

Figure 5-7. Curve of kernel functions with difference set of shape parameters, showing the bell-

shape and contribution of the two parameters. 
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Figure 5-8. Comparison between peptide binding specificity distance PD predicted by 

NetMHCpan and pseudo sequence distance defined by Reynisson, B., et al. In the correlation plots, 

the fitted functions between two distances are shown in dotted line. Fitted function and Pearson 

correlation coefficient (R) are printed out. 
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Table 5-4. List of populated HLA class I alleles. Alleles that have maximum frequency >0.01 

among populations with sample size larger than 50 were selected. Data collected from the Allele 

Frequency Net Database (AFND) in February 2022. 

Allele 
Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 

A*24:02 0.863 A*02:34 0.039 B*39:06 0.239 B*35:25 0.06 B*14:11 0.0192 C*15:02 0.232 

A*02:01 0.733 A*31:12 0.0385 B*51:01 0.232 B*39:11 0.059 B*35:44 0.0192 C*05:01 0.228 

A*11:01 0.636 A*80:01 0.0382 B*52:01 0.231 B*47:01 0.059 B*40:23 0.019 C*04:04 0.2 

A*02:12 0.6 A*23:05 0.034 B*27:04 0.225 B*27:02 0.0579 B*51:12 0.019 C*01:57 0.1996 

A*01:01 0.48 A*31:02 0.032 B*44:02 0.216 B*56:03 0.057 B*56:05 0.019 C*05:09 0.179 

A*03:01 0.444 A*29:11 0.0317 B*53:01 0.208 B*51:08 0.0558 B*82:01 0.019 C*12:03 0.174 

A*34:01 0.44 A*11:05 0.03 B*27:05 0.2 B*40:14 0.055 B*48:04 0.0188 C*12:02 0.156 

A*68:02 0.372 A*68:05 0.0275 B*40:06 0.19 B*56:43 0.0544 B*35:61 0.0183 C*17:01 0.151 

A*31:01 0.36 A*02:240 0.0272 B*35:08 0.1875 B*55:01 0.052 B*44:151 0.0183 C*07:17 0.147 

A*68:01 0.3538 A*26:12 0.026 B*49:01 0.1867 B*39:54 0.0513 B*35:77 0.018 C*03:02 0.138 

A*02:06 0.349 A*31:09 0.0251 B*48:03 0.181 B*14:04 0.05 B*51:14 0.018 C*08:02 0.132 

A*02:04 0.314 A*02:09 0.025 B*50:01 0.173 B*40:12 0.05 B*67:01 0.018 C*15:03 0.131 

A*23:01 0.228 A*24:25 0.025 B*14:05 0.17 B*07:75 0.0477 B*35:09 0.017 C*14:03 0.122 

A*02:07 0.227 A*02:13 0.024 B*58:01 0.17 B*07:06 0.043 B*44:15 0.017 C*07:06 0.12 

A*26:01 0.218 A*31:04 0.024 B*40:05 0.1674 B*39:12 0.043 B*57:05 0.017 C*08:06 0.114 

A*24:07 0.207 A*68:16 0.0238 B*38:01 0.1672 B*44:07 0.043 B*07:07 0.016 C*07:03 0.112 

A*03:02 0.1931 A*26:02 0.023 B*18:01 0.167 B*15:08 0.0417 B*13:04 0.016 C*07:04 0.112 

A*33:03 0.188 A*29:10 0.023 B*13:02 0.16 B*18:02 0.041 B*15:24 0.016 C*08:03 0.1 

A*02:02 0.1855 A*11:170 0.0215 B*35:14 0.16 B*56:04 0.0406 B*35:13 0.016 C*14:02 0.1 

A*02:03 0.176 A*02:46 0.021 B*40:10 0.158 B*08:04 0.04 B*40:46 0.016 C*15:07 0.098 

A*02:11 0.16 A*24:143 0.0202 B*44:03 0.1574 B*08:05 0.04 B*07:35 0.0158 C*02:10 0.093 

A*30:01 0.16 A*02:10 0.02 B*58:02 0.143 B*15:31 0.04 B*50:04 0.0157 C*04:43 0.0821 

A*02:22 0.15 A*02:14 0.02 B*42:01 0.138 B*27:06 0.04 B*40:49 0.0155 C*03:135 0.0799 

A*30:02 0.1474 A*32:04 0.02 B*15:21 0.135 B*40:03 0.04 B*57:04 0.0153 C*15:04 0.075 

A*68:03 0.1376 A*33:18 0.0192 B*51:02 0.135 B*07:03 0.039 B*07:08 0.015 C*15:05 0.0718 

A*31:08 0.13 A*68:06 0.0192 B*15:13 0.133 B*14:03 0.039 B*14:06 0.015 C*12:04 0.07 

A*11:02 0.127 A*26:08 0.019 B*39:03 0.132 B*35:23 0.039 B*18:06 0.015 C*02:09 0.069 

A*33:01 0.122 A*02:16 0.0183 B*35:06 0.129 B*15:16 0.0377 B*35:29 0.015 C*16:04 0.065 

A*29:01 0.1202 A*24:13 0.018 B*15:11 0.1287 B*40:121 0.0376 B*40:16 0.015 C*17:03 0.063 

A*01:03 0.1185 A*02:48 0.017 B*38:02 0.1272 B*15:15 0.0375 B*44:08 0.015 C*03:06 0.06 

A*24:20 0.116 A*02:61 0.017 B*15:07 0.125 B*39:07 0.0372 B*51:04 0.015 C*06:03 0.06 

A*32:01 0.114 A*11:04 0.017 B*07:05 0.1217 B*42:18 0.0371 B*58:06 0.015 C*15:08 0.06 

A*29:02 0.11 A*30:10 0.017 B*51:10 0.12 B*35:20 0.037 B*35:36 0.0145 C*15:09 0.059 

A*24:03 0.1 A*01:23 0.016 B*54:01 0.12 B*15:30 0.036 B*15:23 0.014 C*16:02 0.0577 

A*24:17 0.0979 A*26:13 0.016 B*15:32 0.118 B*44:05 0.036 B*15:37 0.014 C*02:03 0.055 

A*02:19 0.095 A*24:242 0.0157 B*35:03 0.111 B*18:03 0.035 B*40:15 0.014 C*04:07 0.054 

A*74:01 0.095 A*02:20 0.015 B*18:07 0.11 B*35:21 0.035 B*44:27 0.014 C*07:18 0.051 

A*02:05 0.087 A*32:106 0.0141 B*45:01 0.11 B*18:09 0.033 B*53:05 0.014 C*08:72 0.0506 

A*02:44 0.086 A*02:08 0.013 B*15:03 0.108 B*27:03 0.032 B*55:03 0.0133 C*07:08 0.05 

A*11:12 0.086 A*01:17 0.0126 B*14:02 0.1054 B*51:61 0.0319 B*55:15 0.0133 C*18:01 0.05 

A*26:03 0.086 A*01:36 0.0126 B*44:06 0.105 B*13:38 0.0315 B*15:29 0.0132 C*18:02 0.05 

A*24:04 0.081 A*30:15 0.0126 B*40:04 0.103 B*41:03 0.031 B*38:09 0.0131 C*03:16 0.046 

A*01:06 0.08 A*29:03 0.0124 B*50:02 0.1022 B*47:03 0.031 B*15:20 0.013 C*07:31 0.0313 

A*02:17 0.08 A*02:36 0.012 B*57:01 0.102 B*48:07 0.031 B*07:105 0.0126 C*01:03 0.031 

A*24:05 0.08 A*30:03 0.011 B*44:04 0.1 B*15:09 0.03 B*15:34 0.012 C*07:19 0.031 

A*30:04 0.08 A*74:02 0.011 B*35:17 0.099 B*44:09 0.03 B*27:08 0.012 C*07:27 0.031 

A*25:01 0.078 A*03:08 0.01 B*15:18 0.0919 B*44:29 0.03 B*39:04 0.012 C*03:07 0.03 

A*31:29 0.071 A*24:24 0.01 B*15:10 0.0916 B*48:02 0.03 B*40:07 0.012 C*14:04 0.03 

A*02:50 0.07 A*24:28 0.01 B*14:01 0.09 B*55:04 0.03 B*15:58 0.011 C*14:06 0.03 

A*36:01 0.07 A*26:14 0.01 B*15:17 0.09 B*39:10 0.029 B*39:20 0.011 C*15:13 0.0288 

A*68:30 0.069 A*26:16 0.01 B*37:01 0.09 B*35:68 0.0288 B*57:25 0.0108 C*08:04 0.0282 

A*66:01 0.068 A*32:02 0.01 B*53:03 0.09 B*51:76 0.0281 B*41:23 0.0107 C*07:05 0.023 

A*02:52 0.067 A*66:03 0.01 B*35:02 0.0894 B*15:46 0.028 B*27:14 0.0104 C*03:09 0.02 

A*03:27 0.0608 B*39:01 0.549 B*41:01 0.0863 B*40:268 0.0274 B*15:67 0.01 C*07:14 0.02 

A*24:23 0.056 B*35:05 0.515 B*51:06 0.0862 B*39:08 0.027 B*35:10 0.01 C*01:06 0.0192 

A*24:14 0.055 B*15:01 0.4007 B*35:27 0.083 B*15:39 0.0263 B*35:15 0.01 C*04:15 0.0192 

A*31:03 0.055 B*15:25 0.4 B*39:24 0.082 B*07:91 0.0261 B*35:28 0.01 C*08:13 0.019 

A*34:02 0.055 B*40:02 0.398 B*15:93 0.0785 B*35:18 0.026 B*40:36 0.01 C*03:19 0.018 

A*24:41 0.0548 B*39:02 0.387 B*15:35 0.0783 B*15:05 0.0257 B*40:38 0.01 C*07:172 0.0164 

A*24:10 0.054 B*35:43 0.3846 B*15:04 0.078 B*15:27 0.0257 B*51:03 0.01 C*01:04 0.016 

A*24:51 0.0522 B*39:05 0.361 B*40:09 0.078 B*27:07 0.025 B*51:15 0.01 C*04:10 0.015 

A*02:197 0.0521 B*15:02 0.358 B*54:18 0.0744 B*51:33 0.025 B*51:19 0.01 C*07:10 0.015 

A*11:03 0.051 B*40:01 0.355 B*44:10 0.074 B*82:02 0.025 B*78:03 0.01 C*07:270 0.0145 
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Table 5-4. Continued. 

Allele 
Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 
Allele 

Max 

Frequency 

A*11:06 0.051 B*39:09 0.349 B*15:36 0.073 B*08:03 0.023 C*07:02 0.714 C*06:06 0.014 

A*02:24 0.05 B*56:01 0.346 B*18:04 0.073 B*27:01 0.023 C*03:04 0.52 C*04:06 0.0123 

A*24:08 0.05 B*08:01 0.3 B*35:19 0.073 B*51:07 0.023 C*01:02 0.5096 C*15:10 0.0122 

A*66:02 0.05 B*13:01 0.283 B*41:02 0.0694 B*73:01 0.023 C*04:03 0.459 C*07:07 0.012 

A*74:03 0.05 B*15:06 0.273 B*57:03 0.069 B*42:02 0.022 C*07:01 0.424 C*06:04 0.011 

A*43:01 0.0493 B*48:01 0.26 B*78:01 0.069 B*35:32 0.021 C*04:01 0.378 C*12:05 0.011 

A*29:25 0.0485 B*07:02 0.257 B*40:08 0.0665 B*15:12 0.0207 C*08:01 0.366 C*12:07 0.011 

A*24:06 0.048 B*55:02 0.257 B*57:02 0.0664 B*18:05 0.02 C*03:05 0.361 C*07:248 0.0105 

A*29:50 0.0477 B*46:01 0.254 B*59:01 0.063 B*35:16 0.02 C*16:01 0.283 C*01:44 0.01 

A*01:02 0.047 B*35:01 0.252 B*81:01 0.062 B*35:24 0.02 C*03:03 0.281 C*03:15 0.01 

A*23:17 0.0441 B*35:12 0.24 B*35:04 0.0615 B*40:11 0.02 C*02:02 0.244 C*07:26 0.01 

A*69:01 0.04 B*56:02 0.24 B*51:05 0.061 B*07:96 0.0192 C*06:02 0.24   
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Table 5-5. List of HLA I crystal structures collected from the IMGT/3Dstructure-DB in February 

2022. 

PDB_id Allele 
Resolution 

(Å) 
PDB_id Allele 

Resolution 

(Å) 
PDB_id Allele 

Resolution 

(Å) 
PDB_id Allele 

Resolution 

(Å) 

3bo8 A*01:01 1.80 6apn A*02:01 2.22 3rl1 A*03:01 2.00 5ib2 B*27:05 1.44 

4nqx A*01:01 2.00 1eey A*02:01 2.25 3rl2 A*03:01 2.39 5ib1 B*27:05 1.91 

1w72 A*01:01 2.15 1eez A*02:01 2.30 2xpg A*03:01 2.60 5ib3 B*27:05 1.91 

4nqv A*01:01 2.39 1s9y A*02:01 2.30 6eny A*03:01 5.80 5ib4 B*27:05 1.95 

6at9 A*01:01 2.95 2x4o A*02:01 2.30 1x7q A*11:01 1.45 6pyj B*27:05 1.44 

6j2a A*30:03 1.40 2x4p A*02:01 2.30 2hn7 A*11:01 1.60 4g8i B*27:05 1.60 

6j29 A*30:03 1.60 2x4r A*02:01 2.30 1qvo A*11:01 2.22 4g9d B*27:05 1.60 

6j1v A*30:03 2.00 2x4t A*02:01 2.30 1q94 A*11:01 2.40 3b6s B*27:05 1.80 

6j1w A*30:01 1.50 3mgo A*02:01 2.30 4beo A*11:01 2.43 3bp4 B*27:05 1.85 

3mre A*02:01 1.10 3v5k A*02:01 2.31 4uq2 A*11:01 2.43 3lv3 B*27:05 1.94 

3d25 A*02:01 1.30 2x4n A*02:01 2.34 4n8v A*11:01 2.50 2bst B*27:05 2.10 

6trn A*02:01 1.35 2c7u A*02:01 2.38 1hsb A*68:01 1.90 3dtx B*27:05 2.10 

5n1y A*02:01 1.39 1qr1 A*02:01 2.40 2hla A*68:01 2.60 1w0v B*27:05 2.27 

1i4f A*02:01 1.40 1b0g A*02:01 2.50 5wwj A*23:01 2.29 4g9f B*27:05 1.90 

6o53 A*02:01 1.40 1hhi A*02:01 2.50 5wwu A*23:01 2.79 4g8g B*27:05 2.40 

4u6y A*02:01 1.47 1hhj A*02:01 2.50 5wwi A*23:01 3.19 5deg B*27:06 1.83 

5ddh A*02:01 1.50 1hhk A*02:01 2.50 5xov A*23:01 2.68 1k5n B*27:09 1.09 

6o4z A*02:01 1.50 1s9x A*02:01 2.50 4f7t A*24:02 1.70 3czf B*27:09 1.20 

2gtw A*02:01 1.55 5hhm A*02:01 2.50 4f7p A*24:02 1.90 1uxw B*27:09 1.71 

6o51 A*02:01 1.55 2x4s A*02:01 2.55 3vxn A*24:02 1.95 3d18 B*27:09 1.74 

6o4y A*02:01 1.58 1hhg A*02:01 2.60 5hgd A*24:02 2.07 3bp7 B*27:09 1.80 

2v2w A*02:01 1.60 3hla A*02:01 2.60 5hga A*24:02 2.20 3b3i B*27:09 1.86 

2v2x A*02:01 1.60 3to2 A*02:01 2.60 5wxc A*24:02 2.30 1jgd B*27:09 1.90 

2vll A*02:01 1.60 1akj A*02:01 2.65 3nfn A*24:02 2.39 3hcv B*27:09 1.95 

3bgm A*02:01 1.60 5mep A*02:01 2.71 5hgh A*24:02 2.39 1w0w B*27:09 2.10 

3gso A*02:01 1.60 1i1f A*02:01 2.80 3i6l A*24:02 2.40 1of2 B*27:09 2.20 

3pwn A*02:01 1.60 1i7t A*02:01 2.80 4f7m A*24:02 2.40 4o2c B*39:01 1.80 

3v5h A*02:01 1.63 3i6k A*02:01 2.80 5hgb A*24:02 2.40 4o2f B*39:01 1.90 

3bh8 A*02:01 1.65 1b0r A*02:01 2.90 3vxp A*24:02 2.50 4o2e B*39:01 1.98 

3fqn A*02:01 1.65 3gjg A*02:01 2.90 3vxo A*24:02 2.61 6mt3 B*18:01 1.21 

3kla A*02:01 1.65 3hae A*02:01 2.90 2bck A*24:02 2.80 4xxc B*18:01 1.43 

3pwl A*02:01 1.65 5hho A*02:01 2.95 3qzw A*24:02 2.80 6mt6 B*37:01 1.31 

3utq A*02:01 1.67 1hhh A*02:01 3.00 5wxd A*24:02 3.30 6mt4 B*37:01 1.55 

3qfd A*02:01 1.68 4wuu A*02:01 3.05 3nfj A*24:02 2.68 6mt5 B*37:01 1.55 

4u6x A*02:01 1.68 6nca A*02:01 3.30 3vxm A*24:02 2.50 6mtm B*37:01 3.00 

2git A*02:01 1.70 1p7q A*02:01 3.40 3vxs A*24:02 1.80 6iex B*40:01 2.31 

2gtz A*02:01 1.70 1hla A*02:01 3.50 3vxr A*24:02 2.40 5iek B*40:02 1.80 

3bh9 A*02:01 1.70 3h9h A*02:01 2.00 3w0w A*24:02 2.60 1m6o B*44:02 1.60 

3fqr A*02:01 1.70 3mrg A*02:01 1.30 3vxu A*24:02 2.70 3kpm B*44:02 1.60 

3fqx A*02:01 1.70 3mrb A*02:01 1.40 6at5 B*07:02 1.50 3dx6 B*44:02 1.70 

3o3d A*02:01 1.70 3mrk A*02:01 1.40 6avf B*07:02 2.03 3l3i B*44:02 1.70 

3pwj A*02:01 1.70 3mrr A*02:01 1.60 6avg B*07:02 2.60 3l3d B*44:02 1.80 

2gt9 A*02:01 1.75 3mrd A*02:01 1.70 4u1h B*07:02 1.59 3kpl B*44:02 1.96 

6opd A*02:01 1.79 3mrc A*02:01 1.80 3vcl B*07:02 1.70 3l3g B*44:02 2.10 

1duz A*02:01 1.80 3mrj A*02:01 1.87 5eo0 B*07:02 1.70 3l3j B*44:02 2.40 

1i7u A*02:01 1.80 3mrm A*02:01 1.90 5eo1 B*07:02 1.85 3l3k B*44:02 2.60 

1tvb A*02:01 1.80 3mr9 A*02:01 1.93 4u1k B*07:02 2.09 3dx7 B*44:03 1.60 

1tvh A*02:01 1.80 3mri A*02:01 2.10 1xh3 B*35:01 1.48 1n2r B*44:03 1.70 

3fqt A*02:01 1.80 3mrp A*02:01 2.10 2fyy B*35:01 1.50 3kpn B*44:03 2.00 

3fqu A*02:01 1.80 3mrq A*02:01 2.20 1zhk B*35:01 1.60 3kpo B*44:03 2.30 

3ft2 A*02:01 1.80 3mrf A*02:01 2.30 4prn B*35:01 1.65 1sys B*44:03 2.40 

3gsu A*02:01 1.80 3mrn A*02:01 2.30 1zsd B*35:01 1.70 6d29 B*57:01 1.88 

3o3a A*02:01 1.80 3mro A*02:01 2.35 2cik B*35:01 1.75 6d2t B*57:01 1.90 

3gsw A*02:01 1.81 3mrh A*02:01 2.40 3lko B*35:01 1.80 6bxp B*57:01 1.45 

1jf1 A*02:01 1.85 3mrl A*02:01 2.41 3lkp B*35:01 1.80 6bxq B*57:01 1.58 

3o3e A*02:01 1.85 4jfo A*02:01 2.11 3lkq B*35:01 1.80 5vue B*57:01 1.80 

5enw A*02:01 1.85 4jfp A*02:01 1.91 4pr5 B*35:01 1.80 6d2r B*57:01 1.83 

3h7b A*02:01 1.88 4jfq A*02:01 1.90 4pra B*35:01 1.85 5vuf B*57:01 1.90 

5mer A*02:01 1.88 2j8u A*02:01 2.88 2h6p B*35:01 1.90 5vud B*57:01 2.00 

3myj A*02:01 1.89 2uwe A*02:01 2.40 3lks B*35:01 1.90 3vh8 B*57:01 1.80 

1t1z A*02:01 1.90 2jcc A*02:01 2.50 2axg B*35:01 2.00 3x12 B*57:01 1.80 
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Table 5-5. Continued. 

PDB_id Allele 
Resolution 

(Å) 
PDB_id Allele 

Resolution 

(Å) 
PDB_id Allele 

Resolution 

(Å) 
PDB_id Allele 

Resolution 

(Å) 

2guo A*02:01 1.90 2p5e A*02:01 1.89 3lkn B*35:01 2.00 3upr B*57:01 2.00 

2x4q A*02:01 1.90 2p5w A*02:01 2.20 3lkr B*35:01 2.00 3wuw B*57:01 2.00 

3ft4 A*02:01 1.90 3hg1 A*02:01 3.00 4lnr B*35:01 2.00 6d2b B*57:01 2.04 

3gjf A*02:01 1.90 1lp9 A*02:01 2.00 1a9e B*35:01 2.50 5b38 B*57:01 2.30 

3gsv A*02:01 1.90 3utt A*02:01 2.60 4qrr B*35:01 3.00 2rfx B*57:01 2.50 

3o3b A*02:01 1.90 3uts A*02:01 2.71 1a9b B*35:01 3.20 5b39 B*57:01 2.50 

3rew A*02:01 1.90 2bnq A*02:01 1.70 2nx5 B*35:01 2.70 5t6x B*57:01 1.69 

5hhp A*02:01 1.90 2bnr A*02:01 1.90 3mv7 B*35:01 2.00 5t6y B*57:01 1.76 

6pte A*02:01 1.90 2f54 A*02:01 2.70 3mv8 B*35:01 2.10 5t6w B*57:01 1.90 

3fqw A*02:01 1.93 2f53 A*02:01 2.10 4prp B*35:01 2.50 5t6z B*57:01 2.00 

3ft3 A*02:01 1.95 3qfj A*02:01 2.29 3mv9 B*35:01 2.70 5t70 B*57:01 2.10 

3gsr A*02:01 1.95 2gj6 A*02:01 2.56 4u1m B*42:01 1.18 5v5m B*57:01 2.88 

1t1y A*02:01 2.00 1ao7 A*02:01 2.60 4u1j B*42:01 1.38 5vwh B*58:01 1.65 

2clr A*02:01 2.00 3pwp A*02:01 2.69 1.00E+27 B*51:01 2.20 5vwj B*58:01 2.00 

2x70 A*02:01 2.00 3h9s A*02:01 2.70 4mji B*51:01 2.99 5ind B*58:01 2.13 

3giv A*02:01 2.00 1qrn A*02:01 2.80 3spv B*08:01 1.30 5im7 B*58:01 2.50 

3hpj A*02:01 2.00 1qse A*02:01 2.80 4qrs B*08:01 1.40 5inc B*58:01 2.88 

3v5d A*02:01 2.00 1qsf A*02:01 2.80 4qrt B*08:01 1.40 5txs B*15:01 1.70 

4k7f A*02:01 2.00 3d3v A*02:01 2.80 6p2c B*08:01 1.40 1xr9 B*15:01 1.79 

5swq A*02:01 2.00 3d39 A*02:01 2.81 6p2f B*08:01 1.48 3c9n B*15:01 1.87 

5hhn A*02:01 2.03 6rsy A*02:01 2.95 6p27 B*08:01 1.59 1xr8 B*15:01 2.30 

2x4u A*02:01 2.10 3o4l A*02:01 2.54 4qru B*08:01 1.60 5vz5 B*15:01 2.59 

3gsx A*02:01 2.10 1bd2 A*02:01 2.50 6p23 B*08:01 1.60 4lcy B*46:01 1.60 

3ixa A*02:01 2.10 2pye A*02:01 2.30 6p2s B*08:01 1.65 5w1w C*01:02 3.10 

5hhq A*02:01 2.10 3qeq A*02:01 2.59 4qrq B*08:01 1.70 5w1v C*01:02 3.31 

4uq3 A*02:01 2.10 3qdm A*02:01 2.80 3skm B*08:01 1.80 1efx C*03:04 3.00 

3gsq A*02:01 2.12 3qdj A*02:01 2.30 3x13 B*08:01 1.80 6jtn C*08:02 1.90 

1duy A*02:01 2.15 3qdg A*02:01 2.69 1m05 B*08:01 1.90 6jtp C*08:02 1.90 

1jht A*02:01 2.15 6tro A*02:01 3.00 3x14 B*08:01 2.00 5xos C*16:04 1.70 

6ptb A*02:01 2.15 1oga A*02:01 1.40 1agd B*08:01 2.05 5xot C*16:04 2.79 

1t21 A*02:01 2.19 2vlr A*02:01 2.30 1agc B*08:01 2.10 1qqd C*04:01 2.70 

1i1y A*02:01 2.20 2vlj A*02:01 2.40 1agb B*08:01 2.20 1im9 C*04:01 2.80 

1i7r A*02:01 2.20 2vlk A*02:01 2.50 1agf B*08:01 2.20 6jto C*05:01 1.70 

1im3 A*02:01 2.20 6rpb A*02:01 2.50 1age B*08:01 2.30 5w6a C*06:02 1.74 

1qew A*02:01 2.20 6rpa A*02:01 2.56 3sko B*08:01 1.60 5w69 C*06:02 2.80 

1s8d A*02:01 2.20 6rp9 A*02:01 3.12 3ffc B*08:01 2.80 6joz C*15:10 1.35 

1s9w A*02:01 2.20 3gsn A*02:01 2.80 4qrp B*08:01 2.90 6jp3 C*15:10 1.66 

1t1w A*02:01 2.20 5tez A*02:01 1.70 1mi5 B*08:01 2.50 6pbh C*15:10 1.89 

1t1x A*02:01 2.20 5yxn A*02:01 2.03 3sjv B*08:01 3.10 6id4 C*15:10 2.40 

1t20 A*02:01 2.20 5yxu A*02:01 2.70 3bxn B*14:02 1.86 5wjn C*15:10 2.85 

1t22 A*02:01 2.20 3ox8 A*02:03 2.16 3bvn B*14:02 2.55 5wjl C*15:10 3.15 

3bhb A*02:01 2.20 3oxr A*02:06 1.70 6pyl B*27:03 1.52 5wkf C*15:10 2.95 

3i6g A*02:01 2.20 6p64 A*02:06 3.05 6pz5 B*27:03 1.53 5wkh C*15:10 3.20 

3mgt A*02:01 2.20 3oxs A*02:07 1.75 5def B*27:04 1.60 4nt6 C*08:01 1.84 
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Table 5-6. The reference panel alleles and supertype classifications from previous studies. 

Allele Sidney et al. 
Doytchinova 

et al. 
Allele Sidney et al. 

Doytchinova 

et al. 
Allele Sidney et al. 

Doytchinova 

et al. 

A*01:01 A01 A3 B*42:01 B07 B7 B*44:03 B44 B44 

A*26:01 A01 A2 B*51:01 B07 B44 B*45:01 B44 B27 

A*26:02 A01 A2 B*51:02 B07 B44 B*15:16 B58 B27 

A*26:03 A01 A2 B*51:03 B07 B44 B*15:17 B58 B27 

A*29:02 A01 A24 A3 B*53:01 B07 B44 B*57:01 B58 B44 

A*30:01 A01 A03 A3 B*54:01 B07 B7 B*57:02 B58 B44 

A*30:02 A01 A3 B*55:01 B07 B7 B*58:01 B58 B44 

A*30:03 A01 A3 B*55:02 B07 B7 B*58:02 B58 B44 

A*30:04 A01 A3 B*56:01 B07 B7 B*15:01 B62 B27 

A*32:01 A01 A3 B*67:01 B07 B7 B*15:02 B62 B7 

A*02:01 A02 A2 B*78:01 B07 B7 B*15:12 B62 B27 

A*02:02 A02 A2 B*08:01 B08 B7 B*15:13 B62 B27 

A*02:03 A02 A2 B*08:02 B08 B44 B*46:01 B62 B27 

A*02:04 A02 A2 B*14:02 B27 B7 B*52:01 B62 B44 

A*02:05 A02 A2 B*15:03 B27 B27 C*01:02  C1 

A*02:06 A02 A2 B*15:09 B27 B7 C*03:02  C1 

A*02:07 A02 A2 B*15:10 B27 B7 C*07:02  C1 

A*02:14 A02 A2 B*15:18 B27 B7 C*08:01  C1 

A*02:17 A02 A2 B*27:02 B27 B44 C*12:02  C1 

A*68:02 A02 A2 B*27:03 B27 B27 C*14:02  C1 

A*69:01 A02 A2 B*27:04 B27 B27 C*16:01  C1 

A*03:01 A03 A3 B*27:05 B27 B27 C*16:04  C1 

A*11:01 A03 A3 B*27:06 B27 B27 C*02:02  C2 

A*31:01 A03 A3 B*27:07 B27 B27 C*03:07  C2 

A*33:01 A03 A3 B*27:09 B27 B27 C*03:15  C2 

A*33:03 A03 A3 B*38:01 B27 B44 C*04:01  C2 

A*66:01 A03 A2 B*39:01 B27 B7 C*05:01  C2 

A*68:01 A03 A3 B*39:02 B27 B27 C*06:02  C2 

A*74:01 A03 A3 B*39:09 B27 B7 C*07:07  C2 

A*23:01 A24 A24 B*48:01 B27 B27 C*12:04  C2 

A*24:02 A24 A24 B*73:01 B27 B7 C*12:05  C2 

B*07:02 B07 B7 B*18:01 B44 B7 C*15:02  C2 

B*07:03 B07 B7 B*37:01 B44 B27 C*16:02  C2 

B*07:05 B07 B7 B*40:01 B44 B27 C*17:01  C2 

B*15:08 B07 B7 B*40:02 B44 B27 C*18:01  C2 

B*35:01 B07 B7 B*40:06 B44 B27    

B*35:03 B07 B7 B*44:02 B44 B44    
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Table 5-7. Selecting optimal shape parameters and residue similarity matrix. Sum of SSEs were 

colored green-red while Sum of Pearson's Rs were colored red-green, and green indicates better 

performance. 

Shape parameter grid Sum of SSE a Sum of Pearson's R a 

sigma k Grantham PMBEC SM_THREAD_NORM Grantham PMBEC SM_THREAD_NORM 

0.075 0.8 175.38 151.25 171.13 1.87 2.12 1.92 

0.1 0.8 169.02 150.90 176.28 1.96 2.18 1.99 

0.2 0.8 152.86 165.67 164.05 2.19 2.29 2.18 

0.3 0.8 147.24 167.50 150.00 2.26 2.29 2.23 

0.5 0.8 157.20 158.18 152.76 2.27 2.23 2.22 

0.075 1 177.31 150.99 185.41 1.91 2.15 1.95 

0.1 1 168.73 155.15 168.86 2.00 2.21 2.03 

0.2 1 154.87 174.63 151.07 2.22 2.30 2.21 

0.3 1 142.49 163.41 155.86 2.27 2.27 2.23 

0.5 1 148.14 157.42 150.84 2.26 2.21 2.20 

0.075 2 175.01 159.85 165.56 2.04 2.23 2.06 

0.1 2 159.85 160.48 161.76 2.14 2.28 2.15 

0.2 2 142.77 164.98 157.04 2.27 2.27 2.23 

0.3 2 153.00 158.37 150.00 2.26 2.22 2.21 

0.5 2 140.89 155.34 158.70 2.21 2.17 2.16 

0.075 4 158.22 163.92 162.68 2.17 2.29 2.17 

0.1 4 147.66 174.91 149.53 2.24 2.29 2.22 

0.2 4 152.83 160.78 154.72 2.26 2.21 2.21 

0.3 4 142.05 159.39 151.47 2.23 2.18 2.17 

0.5 4 150.76 149.14 153.26 2.16 2.14 2.11 

0.075 8 147.21 165.17 149.91 2.25 2.29 2.23 

0.1 8 142.77 160.29 153.47 2.26 2.25 2.23 

0.2 8 149.83 158.72 151.47 2.23 2.18 2.17 

0.3 8 164.42 149.24 160.72 2.18 2.15 2.13 

0.5 8 153.09 155.85 150.17 2.12 2.11 2.07 

0.075 16 146.96 162.14 152.01 2.26 2.24 2.23 

0.1 16 150.09 160.78 152.26 2.25 2.21 2.20 

0.2 16 164.42 149.24 162.18 2.19 2.15 2.14 

0.3 16 155.59 151.65 147.71 2.13 2.13 2.09 

0.5 16 151.90 159.87 147.93 2.06 2.08 2.02 
a Sum of values of HLA-A. HLA-B, and HLA-C 
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Table 5-8. Residue similarity matrix S adapted from Grantham distance matrix, derived as 

described in Methods section 2.1. 

Arg Leu Pro Thr Ala Val Gly Ile Phe Tyr Cys His Gln Asn Lys Asp Glu Met Trp  

0.49 0.33 0.66 0.73 0.54 0.42 0.74 0.34 0.28 0.33 0.48 0.59 0.68 0.79 0.44 0.70 0.63 0.37 0.18 Ser 

1.00 0.53 0.52 0.67 0.48 0.55 0.42 0.55 0.55 0.64 0.16 0.87 0.80 0.60 0.88 0.55 0.75 0.58 0.53 Arg 

 1.00 0.54 0.57 0.55 0.85 0.36 0.98 0.90 0.83 0.08 0.54 0.47 0.29 0.50 0.20 0.36 0.93 0.72 Leu 

  1.00 0.82 0.87 0.68 0.80 0.56 0.47 0.49 0.21 0.64 0.65 0.58 0.52 0.50 0.57 0.60 0.32 Pro 

   1.00 0.73 0.68 0.73 0.59 0.52 0.57 0.31 0.78 0.80 0.70 0.64 0.60 0.70 0.62 0.40 Thr 

    1.00 0.70 0.72 0.56 0.47 0.48 0.09 0.60 0.58 0.48 0.51 0.41 0.50 0.61 0.31 Ala 

     1.00 0.49 0.87 0.77 0.74 0.11 0.61 0.55 0.38 0.55 0.29 0.44 0.90 0.59 Val 

      1.00 0.37 0.29 0.32 0.26 0.54 0.60 0.63 0.41 0.56 0.54 0.41 0.14 Gly 

       1.00 0.90 0.85 0.08 0.56 0.49 0.31 0.53 0.22 0.38 0.95 0.72 Ile 

        1.00 0.90 0.05 0.53 0.46 0.27 0.53 0.18 0.35 0.87 0.81 Phe 

         1.00 0.10 0.61 0.54 0.33 0.60 0.26 0.43 0.83 0.83 Tyr 

          1.00 0.19 0.28 0.35 0.06 0.28 0.21 0.09 0.00 Cys 

           1.00 0.89 0.68 0.85 0.62 0.81 0.60 0.47 His 

            1.00 0.79 0.75 0.72 0.87 0.53 0.40 Gln 

             1.00 0.56 0.89 0.80 0.34 0.19 Asn 

              1.00 0.53 0.74 0.56 0.49 Lys 

               1.00 0.79 0.26 0.16 Asp 

                1.00 0.41 0.29 Glu 

                 1.00 0.69 Met 

 

 

 

Table 5-9. Random peptide set for measuring peptide binding specificity distance. 

Peptide 

length 

Natural relative 

abundance a 

Recalculated 

ratio (%) b 

Number of 

peptides 

Random sequence 

length c 

8 0.207 8.2 4120 4127 

9 1 39.8 19904 19912 

10 0.422 16.8 8400 8409 

11 0.366 14.6 7285 7295 

12 0.244 9.7 4857 4868 

13 0.179 7.1 3563 3575 

14 0.094 3.7 1871 1884 

15 0.065 - - - 

a The relative abundance compared to 9-mer as reported in Ref 60. 
b The ratio was recalculated as NetMHCpan only accept residue length from 8 to 14. 
c The input of NetMHCpan is a long protein sequence, then the NetMHCpan server split the 

sequence into peptides of certain length using sliding window algorithm. 
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Table 5-10 Anchor alleles defined for each supertype and subtype for nearest neighbor clustering. 

Clusters that have arbitrary anchor were highlighted in orange. 

Anchor alleles Subtype Supertype 

A*01:01 A01 

A01-A03-A66 

A*03:01 

A03 A*11:01 

A*30:01 

A*66:01 A66 

A*02:01 

A02 A02 

A*02:03 

A*02:06 

A*02:07 

A*68:01 

A*24:02 A24 A24 

B*07:02 
B07 

B07-B35 B*42:01 

B*35:01 B35 

B*08:01 B08 

B08-B18-B39 B*18:01 B18 

B*39:01 B39 

B*14:02 B14 B14 

B*15:01 
B15 

B15-B40 B*40:02 

B*40:01 B40 

B*27:05 B27 B27 

B*44:02 
B44 B44 

B*44:03 

B*51:01 B51 

B51-B58 B*57:01 
B58 

B*58:01 

C*04:01 

C01 

C01-C02 

C*05:01 

C*08:02 

B*46:01 
C02 

C*06:02 

C*07:01 C07 C07 
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Chapter 6  

Prediction of Pseudomonas aeruginosa permeability to small molecules using 

random forest models 
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My contribution to this project is to perform data cleaning, cheminformatics analysis, and Random 

Forest classification. 

A version of this chapter was originally published as: 

Leus, I.V., Weeks, J.W., Bonifay, V., Shen, Y., Yang, L., Cooper, C.J., Nash, D., Duerfeldt, A.S., 

Smith, J.C., Parks, J.M., Rybenkov, V.V., Zgurskaya, H. I. (2022). Property space mapping of 

Pseudomonas aeruginosa permeability to small molecules. Scientific Reports, 12(1), 1-17. 

Author contribution: 

All authors read the manuscript and contributed to its writing. Leus, I.V. and Weeks, J.W. 

measured antibacterial activities and performed accumulation experiments, Bonifay, V. developed 

LC-MS method and carried out compound quantification experiments, Shen, Y. carried out 

cheminformatics analyses and Random Forest classification, Yang, L. performed accumulation 

experiments with radioactive compounds, Cooper, C.J. calculated physicochemical descriptors 

and carried out machine learning analyses, Nash, D. synthesized compounds, Duerfeldt, A.S. 

designed compounds and synthetic routes, Smith, J.C. and Parks, J.M. designed and supervised 

cheminformatics and Random Forest experiments, Rybenkov, V.V. designed and supervised the 

studies, developed Gnomic algorithms, carried out machine learning experiments, Zgurskaya, H. 

I. designed and supervised the studies and performed intracellular accumulation studies and 

antibacterial analyses. 
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Abstract 

Two membrane cell envelopes act as selective permeability barriers in Gram-negative bacteria, 

protecting cells against noxious molecules. Significant efforts are being directed toward 

understanding how small molecules permeate these barriers. In this study, we measured the 

accumulation of a library of structurally diverse compounds in four isogenic strains of 

Pseudomonas aeruginosa, an important human pathogen notorious for multidrug resistance, with 

varied permeability properties using mass spectrometry. Based on the physicochemical properties 

and accumulation of these compounds, we further developed a random forest model to predict 

good permeators. We posit that this approach can be used for more detailed mapping of the 

property space and for rational design of compounds with high Gram-negative permeability. 

6.1 Introduction 

Pseudomonas aeruginosa is a challenging pathogen that causes a variety of infections in humans 

and animals. Only a few therapeutic options are available for P. aeruginosa infections and those 

fail against multidrug-resistant strains [157, 158]. This challenge is exacerbated by a lack of 

success in discovering new small molecules with antibacterial activities against this pathogen 

[159]. 

The major reason why P. aeruginosa presents such a formidable therapeutic challenge is that the 

cells are protected by an effective drug permeability barrier composed of two lipid membranes and 

reinforced by active multidrug efflux pumps [9]. Currently, major efforts are being directed toward 

understanding and overcoming this drug permeation barrier and optimizing drug potencies against 

P. aeruginosa and other Gram-negative pathogens [160-162]. 

Drug permeation studies in bacteria, analyses of intracellular accumulation of a broad range of 

chemical structures have been enabled by liquid chromatography-tandem mass spectrometry (LC-

MS/MS). A recent study conducted a larger analysis of a diversity library of 100 compounds built 

around five major natural product-derived scaffolds and found only 12 positively charged 

compounds that accumulated significantly in E. coli, and, within this subset, no correlation was 

observed with hydrophobicity or molecular weight [163, 164], in contrast to some early studies of 

radioactively labeled fluoroquinolones [165, 166]. However, all 12 compounds contained amines, 

8 of which were primary amines. Calculations of physicochemical descriptors, synthesis of 
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additional analogues, and application of a random forest classification model to 68 compounds 

revealed that rotatable bonds and globularity were negative predictors of accumulation while the 

amphiphilic moment, the distance between hydrophobic and hydrophilic portions of a molecule, 

was a positive predictor. 

A similar study found no correlations between the size and hydrophobicity and the intracellular 

accumulation of these inhibitors [167]. In agreement with early studies of small sets of compounds 

[168, 169], they also found poor correlation between the overall level of bacteria-associated 

compound and antibacterial activity in compounds with matched biochemical activities. 

The varying significance of physicochemical properties such as hydrophobicity and molecular 

weight in the intracellular accumulation of compounds is a consequence of the complex nature of 

the Gram-negative permeability barrier. Active efflux pumps, which transport compounds across 

cell envelope, act synergistically with the membranes, together forming a permeability barrier for 

any given compound [170, 171]. This synergistic relationship manifests as highly non-linear 

changes in intracellular accumulation levels depending on the extracellular concentration of 

compounds and the species-specific compositions of efflux pumps and the OM. An additional 

difficulty is that the above studies analyze small sample sizes with limited diversity compared to 

the entirety of chemical property space. 

Most of the previous drug permeation studies have been limited to E. coli, however, these data are 

not fully applicable to all pathogens. In contrast, the cell envelope of P. aeruginosa is notably less 

permeable to certain compounds than that of E. coli [172]. The general porins located in the E. coli 

OM enable diffusion of amphiphilic molecules up to 600 Da in size [173], while P. aeruginosa 

only have substrate-specific porins that limit natural uptake of amino acids, simple sugars, and 

short peptides [174]. Interestingly, inactivation of all characterized and predicted porin-like 

proteins in P. aeruginosa led to only minor changes in antibiotic susceptibility, suggesting that 

almost all antibiotics and diverse hydrophilic nutrients can bypass porins and instead permeate 

directly through the OM lipid bilayer [174]. In addition, P. aeruginosa cells express several 

multidrug efflux pumps with partially overlapping substrate specificities that pump out compounds 

that do manage to permeate slowly across the OM [175, 176]. 

The contributions of the OM barrier and active efflux in antibacterial activities of compounds can 

be separated by comparing these activities in wild-type, efflux-deficient, hyperporinated, and 
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‘barrierless’ (i.e., both hyperporinated and efflux-deficient) strains [177, 178]. In combination with 

machine learning techniques, such analyses identified physicochemical properties of compounds 

predictive of their interactions with proteins and lipids of the OM and active efflux pumps and 

showed that each pathogen presents its own unique challenges. Both barriers (i.e., OM 

permeability and efflux avoidance) must be considered during antibiotic development efforts, 

because optimizing the properties of compounds to overcome one barrier tends to result in 

detrimental properties against the other barrier [177, 179]. 

In this study, the accumulation of drug-like libraries composed of 83 compounds in P. aeruginosa 

was measured by an LC-MS approach. The “good” permeators were defined as compounds that 

accumulate in wild type cells linearly with increasing concentration but that are not affected by 

compromising permeation barriers and have low non-specific retention on control filters. We 

further calculated the physicochemical properties of 66 molecules, and selected a descriptor set 

with the minimal synonymity between its members. Finally, Random Forest model was trained to 

predict permeability of small molecule from its physicochemical features. This strategy can be 

used for further, more detailed mapping of property space and for the rational design of compounds 

with optimized Gram-negative permeability. 

6.2 Methods 

6.2.1 Data used in study 

The intracellular accumulation level of 83 compounds in four isogenic strains of P. aeruginosa, at 

four concentration and two time points, was measure by Inga V. Leus, Jon W. Weeks of the 

University of Oklahoma. Among the tested molecules, 17 were excluded as they failed the blank 

control, leaving 66 for further analysis. 

6.2.2 Cheminformatics 

The chemical diversity of our compounds was compared to that of five other libraries and 

intracellular accumulation studies, including the Shared Platform for Antibiotic Research and 

Knowledge (SPARK) Public Projects Data [157] (archived by Collaborative Drug Discovery 

Vault), FDA-approved drugs [180], and small molecule permeability in bacteria studies by Rich- 

ter et al. [163], Davis et al. [181], and Iyer et al [167]. In this comparison, nine features were used 

to describe each molecule: the molecular weight, logP, the number of hydrogen bond donors, the 
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number of hydrogen bond acceptors, log D at pH 7.4, the topological polar surface area, Fsp3, the 

heavy atom count and the number of rotatable bonds. Molecular features for molecules from the 

four intracellular accumulation studies were calculated using the Marvin suite from ChemAxon 

[182]. All molecules were filtered to retain only those with molecular weights between 200 and 

1,500 g/mol and to remove ions and peptides. Standardization and principal component analysis 

were then applied to the data points using scikit-learn version 0.24.1 [183]. To illustrate how much 

each feature contributes to a particular principal component, PCA loadings were labeled, which 

was defined as the coefficients of the linear combination of the original variables from which the 

principal components are constructed. Figures were generated by matplotlib (version 3.3.4) [184] 

and seaborn (version 0.11.1) [185].  

6.2.3 Physicochemical property calculation 

Tautomers and protonation states at pH 7.4 for each compound were predicted using Marvin from 

ChemAxon [182]. A total of 217 physicochemical properties, 2D and 3D, were then calculated by 

Connor J. Cooper and Jerry M. Parks of Center for Molecular Biophysics, ORNL.  

6.2.4 Selection of descriptors 

The initial list of 217 descriptors was manually inspected to select only those that represent integral 

physicochemical or topological properties of a molecule or generic molecular fingerprints. The 

selected 47 descriptors were then clustered and analyzed by a modified elbow method. Namely, 

the unexplained variance was calculated as a function of the number of clusters, fit to a three-

segmented straight line, and the larger elbow used as a cutoff. Descriptors closest to the centers of 

the identified 27 clusters were subsequently used in ML analyses. 

6.2.5 Random forest classification 

A procedure consisting of data standardization, oversampling, and random forest (RF) 

classification was developed for this task. All procedures were performed with Python 3.8.8 in a 

Jupyter Notebook environment (Available at https://github.com/yshen25/EPI_ML) with scikit-

learn version 0.24.1 [183] and imbalanced-learn version 0.8.0 [186]. Of the 66 compounds, 25 

were identified as permeators and the remaining 41 were labeled as non-permeators. Because the 

dataset is imbalanced, the use of an oversampling technique was expected to be beneficial. Based 

on the mapping result (Fig. 6-4), the permeators belong to six different clusters in feature space, 
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so common techniques such as SMOTE [187] and ADASYN [188] may produce noise points 

because synthetic data points may be situated in overlapping class regions. To overcome this issue, 

k-means SMOTE [189] was applied. By giving more weight to sparse minority areas and avoiding 

overlapping zones, k-means SMOTE is expected to be better at overcoming skewness. 

Physicochemical properties were standardized to have mean and standard deviation of 0 and 1.  

To obtain increased accuracy in the RF model, three hyperparameters were tuned using an 

exhaustive grid search. Hyperparameters included the number of trees in the random forest 

(n_estimators), the minimum number of samples required at a leaf node (min_samples_leaf), and 

the maximum number of features considered at each split (max_features). The hyperparameter 

combination with the highest accuracy was then selected for model training and testing. The 

performance of the final model was evaluated by leave-one-out cross validation. The 95% 

confidence interval was calculated by performing five-fold stratified cross validation repeated five 

times. Model performance was evaluated by the following scoring metrics. The accuracy describes 

the portion of samples that are correctly classified and is defined as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Precision is the proportion of true positives among all predicted positives, also called positive 

predictive value: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall is the proportion of true positives among all actual positives, also called sensitivity. 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The F1 score assesses the balance between precision and recall: 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The receiver operating characteristic (ROC) curve plots the true positive rate versus the false 

positive rate. The area under the ROC curve, AUROC, quantifies the ability of the model to 
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discriminate between classes, with 1.0 corresponding to a perfect classifier and 0.5 corresponding 

to random split. 

6.3 Results 

6.3.1 Properties of the focused library of compounds for analysis 

Previous studies have shown that the physicochemical space of antibiotics is broader than other 

drugs and includes more hydrophilic compounds, such as beta-lactams, which penetrate the cells 

through water-filled OM porins, as well as some large compounds, such as vancomycin, which act 

on cell surfaces and do not need to penetrate the cell envelope [190]. In addition, the presence of 

primary amines and positive charges are in general associated with increased penetration into some 

bacterial cells [191]. From a focused library of 12,000 commercially available compounds, 220 

compounds with PSA 50 +, MW < 2000 Da, and cLogD7.4 < 5 were selected for further analyses.  

Approximately 10% of the 220 purchased compounds possessed antibacterial activities in at least 

one of the four P. aeruginosa strains, including representatives of fluoroquinolones, sulfonamides, 

cyclines and linezolid (data not shown). After elimination of insoluble compounds and 

optimization of the LC-MS method, 98 compounds were selected for further analyses, out of which 

the intracellular accumulation of 83 compounds was measured and for 66 compounds it was 

quantified. 

We calculated nine physicochemical properties of the analyzed 66 compounds, including the 

molecular weight, logP, the number of hydrogen bond donors and acceptors, clogD7.4, the 

topological polar surface area, the fraction of sp3 hybridized carbon atoms (Fsp3), the heavy atom 

count, and the number of rotatable bonds for the analyzed compounds. These properties were also 

calculated for the SPARK compound library [192], FDA-approved drugs [180], and compounds 

whose accumulation in E. coli was analyzed in previous studies [167, 181, 191]. The dataset of 66 

compounds is relatively small, but it is comparable to previous studies [163, 167]. Principal 

component analysis showed that the chemical space covered in this work is broader than the space 

covered by previous studies [167, 181, 191] (Fig. 6-1). The distribution of properties of this library 

surrounds that of Iyer et al. [167] in every feature and that of Richter et al. [191] in principal 

component 1 (PC1), which is represented by molecular weight, number of hydrogen bond donors 

and acceptors, topological polar surface area, rotatable bounds, and heavy atom count (Fig. 6-2). 
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The distribution of the compounds analyzed by Richter et al. [191] is wider in the Fsp3 property 

space but narrower in logP and logD, resulting in a slightly narrower distribution in principal 

component 2 (PC2). The partial overlap in PC1 between our compounds and the Richter et al. set 

is due to an offset in the range of values for the topological polar surface area and the number of 

hydrogen bond acceptors. For example, the number of hydrogen bond acceptors ranges from 0-8 

in the Richter et al. set and from 2-12 in the present study. 

6.3.2 Classification of compounds 

The measured levels of compound accumulation were analyzed using machine learning to 

determine which features of the compounds are most important for enabling their cellular 

accumulation and to determine their optimal values. For modeling, we used compound 

concentration slopes of the accumulation levels observed after 1 min and 40 min incubations, 

which were approximated as straight lines with y-intercept set to zero. To accentuate the 

permeability aspect, the accumulation slopes in efflux-deficient and hyperporinated strains were 

normalized to those in the parental PAO1 strain. In several cases, the slopes were lower in the 

permeabilized cells than in wild type cells, presumably due to data scatter or low signal. Such 

changes cannot be attributed to the porination state or efflux deficiency of the cell. Therefore, such 

cases were attributed to the lack of an increase in permeability and the ratios were set to 1. 

To curate accumulation data for training binary classification ML models, permeators and non-

permeators were defined based on three criteria. First, the accumulation of permeators should be 

equal to or higher than outside the cell, which was indicated by the slope at 40 min larger than 1. 

Second, permeators should be rarely influenced by porination state or efflux deficiency of the cell, 

and the total barrier ratio (PΔ3-Pore/PAO1) should be less than 1.3. Third, molecules with 

concentration of cell-free filter higher than in-cell accumulation were classified as non-permeators. 

A total of 25 compounds satisfied these criteria and were classified as good permeators. 

6.3.3 Random Forest classification 

We trained a random forest model to distinguish between permeators and non-permeators using 

27 2D and 3D physicochemical descriptors for each compound that were pre-selected from a larger 

descriptor pool by clustering analysis (see Methods). The model achieved only 61% accuracy, 

48% recall and 46% precision when tested on leave-one-out cross-validation (Fig. 6-3A). The area 
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under the receiver-operator characteristic (AUROC) curve was only 0.53. The broad confidence 

interval (Fig. 6-3B) indicates that the performance of the model is largely dictated by which 

compounds were included in the training set for a given cross-validation step. This behavior 

implies that a larger compound set would likely improve the performance of the model. Descriptors 

derived from molecular dynamics (MD) simulations are prevalent among the top ten, suggesting 

that molecular shape, conformational flexibility, and dynamics are important for predicting 

permeability (Fig. 6-3C). Examples include shape-based descriptors such as the Hall-Kier kappa3 

molecular shape descriptor, the average acylindricity and asphericity, i.e., the deviation from 

cylindrical and spherical symmetries, and the radius of gyration (average Rg and average smallest 

principal Rg). Other top descriptors associated with favorable uptake include lipophilicity 

(MolLogP) and properties related to molecule topology (second principal moment of inertia, 

minimum absolute E-state index, and Morgan fingerprint density). 

A Gnomic classifier developed using MATLAB 2019a with the Statistics and Machine Learning 

toolbox was demonstrated to have accuracy between 85% and 97% in predicting the node of 

compound from property (Fig 6-4, detailed data not shown). It employed 7 descriptors that were 

derived from several rounds of selection. By using the 7 descriptors selected by Gnomic classifier 

in RF model instead of all the 27 descriptors mentioned above, the performance improved 

significantly (Fig 6-5). The accuracy increased to 0.80 and the AUROC increased to 0.66. It 

illustrated that the removal of synonymous or noisy descriptors could help classification and 

prediction of molecule property. These 7 descriptors comprise a reference set in the property space 

for inspecting compounds. The top descriptors of good permeators mainly define topological, 

constitutional, and molecular properties of compounds (Table 6-1). Among these, shape 

(avg_asphericity) and number of rotatable bonds (NumRotatableBonds) were highlighted in 

previously developed models based on the studies of either intracellular accumulation or 

antibacterial activities [163, 177, 181]. However, a closer inspection shows that the numerical 

values of these descriptors vary broadly between different permeation nodes and do not clearly 

distinguish them. 

6.4 Discussion 

In this study, the permeation of small molecules into P. aeruginosa was measured and the 

associated physicochemical properties were analyzed. A total of 66 structurally diverse 
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compounds were tested, among which, 25 was identified as good permeators. Also, among the 217 

calculated molecular properties, 7 was finally demonstrated to be the most important. 

The molecular signature of good permeators consisted of a mixture of distinct properties including 

the size and shape of the molecule, polarity, topology, and a handful of molecular fingerprints such 

as the number of aromatic rings or rotatable bonds (Fig. 6-4C). These properties are often found 

in this type of analysis and can be readily traced to the mechanism of small molecule penetration 

into bacteria [163, 177, 181]. The true challenge was to find numeric values of these parameters 

that are conducive to penetration.  

To solve this problem, we performed ML analysis. First, we trained an RF model in order to predict 

good permeators from the properties. However, due to the limited size and broad coverage of 

chemical space in the dataset, the performance metrics for the RF model were unsatisfactory (Fig. 

6-2C). Thus, a Gnomic algorithm was applied to select descriptors with minimal information 

overlap by ranking descriptors according to their unpredictability. This approach would create an 

acceptable compromise between absorbing unique molecular signatures available in diverse 

descriptors and avoiding the synonymity between them. As a result, 7 descriptors were selected. 

By using the stripped set of descriptors instead of all 27 descriptors, the performance of RF model 

improved significantly. Clearly, the use of synonymous descriptors in a model only expands the 

dimensionality of the solution without improving its predictive power.  

Traditionally, ML methods address this issue through the use of curvature tests, which eliminate 

highly correlated descriptors. The descriptor clustering step builds on this idea and sets an adaptive 

threshold for the acceptable correlation. However, these steps capture only pairwise correlations 

between descriptors and often overlook the instances when the information contributed by one 

descriptor is fully contained in a group of others. Gnomic searches for such instances by building 

regression models that predict a given descriptor through the rest. A low misclassification error in 

such models signifies a low informational contribution from said descriptor. This approach can be 

viewed as an ML equivalent of the linear algebra concept of a linear independence between 

vectors. Unlike in linear algebra, the predictability can recapture instances of non-linear interaction 

between descriptors. This feature makes it better suited for the analysis of seemingly stochastic 

distributions such as the one examined here.  
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The inspection of structures of good permeators did not yield a single functional group consistently 

present in all compounds. However, some of the moieties such as trifluoro- or diaminomethyl- 

substitutions are known to improve permeation across bacterial membranes [178, 193]. Our results 

also show that the contribution of such chemical modifications to permeation across P. aeruginosa 

and other Gram-negative cell envelopes will be scaffold dependent. Further analyses of 

intracellular permeation and modeling of larger chemical libraries around several biologically 

active scaffolds using hit expansion techniques will lead to a more detailed mapping of the space 

of good permeators and could potentially reveal scaffold-dependent heuristics. 
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Appendix 

 

Figure 6-1. Properties of the library of 66 compounds analyzed in this study. (A) Principal 

component analysis of diversity in the chemical space of molecules from SPARK library [192], 

Richter et al. [163], Davis et al. [181], Iyer et al., [167], FDA approved drugs (extracted from 

[180]) and this study. The outermost data points from the four studies are linked to show the 

relative size of the sampled space. (B) Zoom-in view of (A) and the loading vectors for this plot. 

Data points for the SPARK library and FDA-approved drugs are hidden for clarity. Molecular 

weight, hydrogen bond donors and acceptors, topological polar surface area, rotatable bounds and 

heavy atom count are the major contributing factors to PC1, whereas LogP, logD and the fraction 

of sp3 hybridized carbon atoms (Fsp3) are major contributors to PC2. Loading vectors were scaled 

by a factor of 7 for clarity. 

A 

B 
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Figure 6-2. Violin plots of compounds from two chemical libraries and four studies showing the 

distribution of molecules among each of nine molecular features used to describe chemical space 

diversity. 
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Figure 6-3. Performance of random forest model using 27 features. (A) Performance metrics. (B) 

ROC curve derived from leave-one-out cross validation with 95% confidence bands. (C) 

Importance bar plot of top ten features. 

 

 

 

Figure 6-4. Distribution of compounds in the property space of 7 features. Clusters were assigned 

according to permeability in four strains (data not shown). Good permeators were filled marks 

while bad permeators were hollow. Figure was generated by Valentin V. Rybenkov. 

 

A B 

C 

Precision Recall F1 Accuracy AUROC 

0.458 0.478 0.44 0.606 0.53 
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Figure 6-5. Performance of random forest model using 7 features. (A) Performance metrics. (B) 

ROC curve derived from leave-one-out cross validation with 95% confidence bands. (C) 

Importance bar plot. 

 

 

Table 6-1. The 7 descriptors selected by Gnomic algorithm and their definitions. 

Name Type Definition a Class 

NumRotatableBonds 1D Number of Rotatable Bonds Constitutional descriptor 

NumAromaticRings 1D Number of Aromatic rings Constitutional descriptor 

PMI2 2D 
Second (largest) principal moment of 

inertia 
Topological descriptor 

FpDensityMorgan2 2D Morgan fingerprint density Topological descriptor 

TPSA 2D Topological polar surface area 
Molecular property 

descriptor 

avg_asphericity 3D 
average asphericity over 100 ns MD 

trajectory 
MD 

avg_smallest_principal_rg 3D 
average smallest principal radius of 

gyration over 100 ns MD trajectory 
MD 

a RDKit descriptor definitions adapted from https://cb.imsc.res.in/deduct/descriptors/eJaFhpBqbWtuZWt9 

 

 

  

A B 

C 

Precision Recall F1 Accuracy AUROC 

0.60 0.45 0.51 0.80 0.66 

 

https://cb.imsc.res.in/deduct/descriptors/eJaFhpBqbWtuZWt9
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Chapter 7 Conclusion and future works 

7.1 Conclusion 

In this project, we explored the application of machine learning methods in the development of 

new therapies, peptide-based MHC I epitope vaccines and small antimicrobial molecules, to fight 

against the emerging threats towards human health, including cancer, pandemic outbreak, and 

antimicrobial resistance. Multiple machine learning methods, sequence-based and structure-based, 

were applied during study and were demonstrated to contribute to the development of new 

therapies. 

The peptide-based vaccines show unique advantages in safety and producibility and were 

considered a promising technique in fighting against cancer and acute infectious diseases. In 

chapter 2 and 3, we developed peptide-based vaccines, including personalized pancreatic cancer 

vaccine and SARS-Cov-2 vaccine for the general public. The general concepts and approaches of 

peptide-based vaccine design, which could be easily applied to the studies about other diseases, 

were illustrated. First, the sequences of disease-related proteins were derived from gene 

sequencing. For pancreatic cancer vaccines, the protein regions that carry tumor specific point 

mutations were used as target sequences. And for SARS-CoV-2 vaccines, the target sequences are 

early-stage viral proteins. Then, peptide candidates that tightly bind to MHC alleles carried by 

target population were selected, the peptide: MHC affinity was predicted using artificial neural 

network models. Two types of affinity predictors were applied: allele-specific predictors that have 

high accuracy but low allele coverage and pan-specific predictors that have good coverage but 

unsatisfying accuracy. Usually, peptide-based cancer vaccines are personalized that require MHC 

mapping to identify patient’s MHC haplotype, while virus vaccines need to consider covering 

populated alleles. Finally, peptide candidates were further filtered either using knowledge-based 

or sequence- and structure-based methods. For example, the cancer neoantigens were selected to 

be derived from oncogenes, and the favored neoantigens have agretopic indices > 4. In another 

example, SARS-CoV-2 vaccines were selected from regions of low mutation entropy, and the 

strong binders were validated using flexible docking methods. 

To improve the accuracy of peptide: MHC binding prediction, we applied structure-based 

methods. In chapter 3, the development of peptide-based COVID-19 vaccine, strong peptide 

binders were validated using method based on flexible docking. Thus, in chapter 4, we developed 
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automated HLA modeling pipeline to provide high quality HLA structures for this method. The 

pipeline was built on the Rosetta CM homology modeling protocol, operations such as template 

selection, HPC job submission, and file management, were automated using Python scripts. In 

chapter 5, we further demonstrated that the peptide binding specificity is mainly determined by 

the landscape of peptide binding groove. Also, based on the structural similarity, populated HLA 

class I alleles were classified into 12 supertypes and 20 subtypes. The use of supertypes would 

facilitate the supertype-specific peptide: MHC affinity predictors that fill in the gap between allele-

specific and pan-specific predictors, also contribute to HLA-disease association studies. 

Small molecule drugs are widely used in the treatment of bacterial infections, however, the rapid 

spread of antimicrobial resistance is blocking available treatment options. Gram-negative bacteria 

have permeability barrier, outer membrane (OM), and efflux pumps that decrease concentration of 

antimicrobials inside the cell, demonstrating multidrug resistance. In order to develop new drugs 

or rejuvenate outdated antimicrobials against resistant gram-negative strains, permeability of 

candidate molecules need to be tested. In section 6, the accumulation of various small molecules 

inside P. aeruginosa were measured, and we developed random forest (RF) models aiming at 

identifying the decisive physicochemical features that govern permeability. Initially, 217 features 

were calculated. After several rounds of dimension reduction, 27 features were used to establish 

the first RF model, which showed poor performance. The successful Gmonic model illustrated that 

the activity group could be predicted from 7 features. By using the same 7 features, we built the 

second RF model and got better performance than the first model. 

The limitation of above-mentioned machine learning methods mainly lies in accuracy. The 14 

predicted neoantigen pancreatic cancer vaccine was tested in mice, and only 1 showed protective 

activity. Also, the RF model that tried to predict small molecule permeability achieved AUROC 

less than 0.7, showing unsatisfying performance. Clearly, the major reason is the lack of 

experimental data to train the model, on the other hand, it is also the major motivation to apply in 

silico methods rather than entirely relying on experiments. Thus, careful data curation and model 

building would be a key factor of successful application of ML methods. The importance of data 

curation was well illustrated by the development of permeability RF model, as the different set of 

features used for building the model results in different performance. Also, an advanced machine 

learning approach could better overcome imperfect data and achieve higher performance, for 
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example the use of structural modeling plus structure distance metric showed higher correlation 

with peptide binding specificity than simple sequence comparison, while both approaches start 

from HLA protein sequences. With the development of machine learning algorithms and 

accumulation of high-quality data, the accuracy would be improved gradually. 

Another limitation is the comprehensiveness of ML models used in specific study. Due to the 

limited available training data and specific purpose of each project, the derived ML models are 

focused on solving a specific question. As a result, the ML model may not be suitable for 

comprehensive purposes. For example, it is obvious that the development of peptide-based 

vaccines targeting cancer and virial infection are largely different, though rely on the same 

mechanism. We used allele-specific affinity predictor NetMHC when predicting neoantigens from 

mice tumor and used pan-specific predictor NetMHCpan when predicting SARS-Cov-2 epitopes 

and peptide binding specificity. The reason is that the allele-specific predictors have better 

performance than pan specific predictors but narrower coverage on supported alleles. The MHC 

system is much simpler than human HLA system, and all studied MHC alleles carried by 

C57BL/6J were included in NetMHC predictor, while the studied HLA alleles are not fully 

covered. Another example is the RF model and Gnomic model in chapter 6. The poor performance 

and instability of RF models were largely due to the diversity of studied molecules. Illustrated by 

the Fig. 6-4 that good permeators are separated in multiple clusters, the physicochemical rule that 

decides the permeability is not unique. Plus, the number of molecules is far from enough, as some 

good permeator clusters only have a few molecules, the decision boundary could not be clearly 

revealed, which further determined that the performance of RF model varied significantly in the 

cross validation. In comparison, the Gnomic method was fitted to predict 5 clusters in the activity 

space, which are also close in the feature space, and resulted in much better performance. It well 

demonstrated that the comprehensiveness of ML methods is closely related to the training data, 

which should be kept in mind when applying pre-developed methods in other projects. In response 

to such considerations, we included the stability test in chapter 5 to show the extensibility of our 

method. 

Explainability is an important concern when applying ML models. As mentioned above, the 

limitations of ML methods used in a study determines that the model itself may have limited added 

value, while understanding the process of model building may provide insights into the question. 
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In chapter 5, we reported both the clustering result and the dendrogram in order to illustrate 

relationship between supertypes and subtypes, which was used to validate the inter-locus 

functional overlap. Also, the clustering result could be explained using structural comparison, 

which directly supported the hypothesis that the peptide binding specificity is mainly determined 

by the landscape of peptide binding groove, also showed the credibility of clustering result. In 

chapter 6, although the RF models failed to accurately predict molecule permeability from its 

physicochemical property, we were still able to acquire the feature importance information that 

guide future studies. The negative example comes from the peptide: MHC affinity predictors that 

used neural networks. The neural networks usually have outstanding performance compared to 

other ML approaches, however, is known for being a black box algorithm that is hard to interpret. 

It leads to the problem that the abstract prediction process provides little information for better 

understanding the given data, nor justifies the prediction result. Thus, explainable machine 

learning methods is a hot topic and would benefit future studies. 

Although advances have been made by applying ML and other in silico methods, the experimental 

assay is still the gold standard that cannot be bypassed. Generally, a treatment development process 

includes discovery, pre-clinical research, clinical trial, and regulatory approval, and takes 14 years 

to complete on average. Among these steps, ML methods focus on accelerating the discovery, 

while other steps must be done by experiments. In addition, within the discovery phase, ML 

methods still need to be supported by experiments. For example, the in silico development of 

peptide-based vaccines could suggest candidates that are more likely to be effective, which 

increases the efficiency significantly compared to random selection, while the efficacy has to be 

further verified by immunogenicity assays. It is because of two reasons: 1) the inaccuracy of 

peptide: MHC affinity predictors. 2) the complexity of peptide presentation and T cell recognition. 

The former issue could be improved by the development of ML methods, the latter one could not 

and need to combine other approaches. 

In conclusion, we demonstrated that the application of machine learning methods could benefit 

treatment development. The advantages of structure-based methods over sequence-based methods 

have been demonstrated throughout the project. With the development of structural modeling 

algorithms, for instance AlphaFold, and increase in capacity of HPCs, this disadvantage will surely 

be overcome, declaring the dawn of post-genomics. Because the sequence determines structure, 
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and structure determines function. In the genomics era, a large number of genome sequence were 

made available, based on which the bioinformatics tools that predict or compare protein functions 

were developed, significantly promotes the studies in treatment development. Nowadays, the 

protein structures could be predicted easily and accurately, so that the structural informatics is 

likely to replicate the impact as of bioinformatics. 

7.2 Future work 

Many simulations and tests were left undone due to the limited time for performing research. Also, 

as an early section in treatment development, predictions made by ML methods need to be further 

validated by experiments, many of which are still ongoing. Meanwhile, there are new insights 

brought by ML methods from both prediction process and result worth further investigation. Thus, 

future works will be focused on three aspects: 

First, to improve the accuracy and explainability of ML methods used in this project, refinement 

will be carried out by enlarging training data set and implementing advanced algorithms. One of 

the future works is to broaden the scope of application of the structure-based docking method that 

applied to validate strong binder peptide prediction. This method is limited to 9 mer peptides and 

certain MHC alleles. We have established pipeline to model HLA alleles supporting such method, 

which solved the issue of limited number of available HLA structures, so that the structure-based 

binder validation method would be applied in more alleles. Also, efforts should be made to study 

the relationship between structural flexibility of peptide-MHC complex and their affinity, in order 

to extend the applicable peptide length. In addition, the RF model for predicting small molecule 

permeability discussed in chapter 6 showed poor performance largely due to the unsatisfying 

dataset. Correspondingly, by incorporating more molecules into study, the performance of RF 

model would improve, and more useful information could be revealed. 

Second, feedback from experimental assays will be incorporated and used to guide the refinement 

of ML methods. Our collaborators have performed immunogenicity assay that tested the 14 

putative pancreatic cancer vaccine discussed in chapter 2, among which 1 epitope has been 

reported to strongly correlate with anti-tumor T cell activity. This valuable feedback facilities 

further investigation of the mechanism behind peptide presentation of MHC molecules, and 

possible methods to improve the true positive rate of peptide-based vaccine prediction. Another 

possibility is to analyze the possible correlation between predicted SARS-CoV-2 peptide epitopes 
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and efficacy of COVID-19 vaccines, which could be considered as clinical review and used to 

validate the prediction result. Also, it would in return provide a potential strategy to improve 

existing vaccines by refining the composition of protein particle or nucleic acid, such as removing 

regions that cause allergic response and modifying mutations that cause immune escape. 

Finally, there are new findings reveled during the studies that worth further investigation. In 

chapter 5, we demonstrated that the defined structure distance metric is highly correlated with 

peptide binding specificity. Such finding supports the hypothesis that the peptide binding pattern 

is mainly determined by the landscape of peptide binding groove. Following this trace, we could 

examine the molecular mechanism of the peptide binding process using molecular dynamics 

simulation, which could reveal the major interactions that contribute to binding affinity and have 

the potential to develop new methods to calculate the peptide: MHC affinity. 
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