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Abstract 

In the last decade, there are serious outbreaks appeared in the human populations such 

as SARS in 2003, avian flu (H5N1) in 2006, and swine flu (H1N1) in 2009. Among 

these, only the H1N1 outbreak was officially declared as pandemic since the virus 

spread worldwide in a few short weeks. Although the H1N1 virus is far less deadly 

than the H5N1, it is capable of being transmitted easily from person to person. In 

addition, because viruses are easily mutated, the next pandemic is unpredictable and 

can be a tragedy. Therefore, the vaccine development is very important to prevent 

human populations from future outbreaks. 

Epitope identification is a non-trivial step in the vaccine development, since 

epitopes play an important role in the activation of the immune response. Epitopes are 

conventionally identified by synthesizing a large number of peptides and then con-

ducting immunological experiments. However, these processes are time-consuming 

and laborious. The computational methods can be used to accelerate the process of the 

vaccine development by performing epitope prediction. The most successful approach 

for epitope prediction is the applications of machine learning techniques. Many 

methods were proposed but most of them tend to overlook the interpretability which 

respects to the binding potential. Consequently, they do not provide much insight into 

the binding of epitopes to major histocompatibility complex molecules (MHCs). 

Thus, the goal of this dissertation is to develop a novel epitope prediction method for 

the vaccine development without losing the interpretability. 

In this study, a novel epitope prediction method named EpicCapo and its variants, 

EpicCapo
+
 and EpicCapo

+REF
 were developed. Nonapeptides, peptides with nine 

amino acids, were encoded numerically using a novel peptide-encoding scheme and 

then input to the support vector machine (SVM). This scheme utilizing the infor-

mation of amino acid pairwise contact potentials (referred to as AAPPs throughout 

this dissertation) and peptide-MHC (pMHC) contact sites. We found that the predic-

tive performance of EpicCapo
+
 and EpicCapo

+REF
 outperformed other state-of-the-art 

methods in many datasets. Interestingly, the most informative AAPPs estimated by 

our study were those developed by Micheletti and Simons while previous studies 

utilized two AAPPs developed by Miyazawa & Jernigan and Betancourt & Thiruma-
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lai. Additionally, we found that all amino acid positions in nonapeptides could effect 

on the performances of the predictive models including non-anchor positions such as 

the positions 5 and 8. Furthermore, EpicCapo
+REF

 was applied to identify candidates 

of promiscuous epitopes from four influenza strains: H1N1 (A/PR/8/34), H3N2 

(A/Aichi/2/68), H1N1 (A/New York/4290/2009), and H5N1 (A/Hong Kong/483/97). 

As a result, 67.1% of the predicted nonapeptides epitopes were consistent with 

preceding studies based on immunological experiments. Some predicted promiscuous 

epitopes have not been tested in any experiment yet. These epitopes can be considered 

as potential candidates for the novel vaccine development. 

Recent studies have demonstrated that predicted high affinity epitopes by epitope 

prediction methods not always successfully activate T-cell responses. Additionally, 

predicted low affinity epitopes not always result in low T-cell responses. Thus, 

immunogenicity of peptides cannot be accurately inferred from the result of epitope 

prediction. By these reasons, we developed novel T-cell reactivity predictor which we 

call PAAQD. Nonapeptides were encoded numerically, using combining information 

of AAPPs and quantum topological molecular similarity (QTMS) descriptors and then 

input to the random forest (RF). Our numerical experiments suggested that the 

predictive performance of PAAQD is at least comparable with POPISK, one of the 

pioneering methods for T-cell reactivity prediction. In addition, we found that the 

positions 1 and 8 of nonapeptides were the most important ones for T-cell responses. 

Interestingly, the anchor positions identified by other previous studies, the positions 2, 

3, and 7, were not important in T-cell reactivity prediction. These findings support 

that epitope prediction and T-cell reactivity prediction are different and should not be 

used interchangeably. Moreover, we found that PAAQD provided more predictive 

stability than POPISK when using the test dataset that amino acids preference of 

sequences differs from the training dataset. 

From the results of our researches, we speculate that our techniques may be useful 

in the development of new vaccines. The R implementation of EpicCapo
+REF

 is 

available at http://pirun.ku.ac.th/~fsciiok/EpicCapoREF.zip. Datasets are available at 

http://pirun.ku.ac.th/~fsciiok/Datasets.zip. The R implementation of PAAQD is 

available at http://pirun.ku.ac.th/~fsciiok/PAAQD.rar. 
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Chapter 1  Introduction 

 

 

 

In this chapter, we first review the basic knowledge of the human immune system and 

elucidate the need of the new vaccine development for human populations. Next, the 

problems of the conventional vaccine developments and the way to apply machine 

learning to solve these problems are described. Generally, machine learning was 

used in epitope prediction which attempts to search for candidate peptides that are 

potential for the novel vaccine development. However, recent works have found that 

results of epitope prediction were not always reliable. Therefore, we introduced the T-

cell reactivity prediction which is another way to apply machine learning in the novel 

vaccine development. Afterwards, we proposed the research objectives to accomplish 

this dissertation. Finally, the main contributions of this thesis are clearly described 

and the thesis organization is also presented. 
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1.1 Human immune system 

The immune system is mechanisms of biological components that work together to 

defend an organism from “foreign” invaders. All living organisms possess such 

mechanisms and the human immune system is the most sophisticate one. The human 

immune system is able to detect various pathogens such as bacteria, fungi, viruses, 

and other infectious agents. This system consists of numerous types of cells and 

proteins, each of which has a specific function in the defense system. 

There are two major subdivisions of the immune system: the innate immune sys-

tem and the adaptive immune system. In humans, the immune system is layered lines 

of defense. The first line of defense is the innate immune system which includes 

physical barriers such as skin, various types of white blood cells, and proteins. If 

pathogens successfully breach the innate immune system, they will engage with the 

second line of defense, the adaptive immune system. Responses of the innate immune 

system are immediate whereas responses of the adaptive immune system are slower. 

However, responses of the adaptive immune system are more specific and superior. 

This system also provides the immunological memory. This memory allows the 

adaptive immune system to act faster and more effective when the memorized patho-

gen is encountered [1]. Although these two lines of defense function differently, there 

are interactions between these systems. For examples, some components of the innate 

immune system can activate or support the adaptive immune system and vice versa. 

The ability of the immune system to distinguish between self and non-self is nec-

essary to protect our body from invading pathogens. In addition, the ability to detect 

malfunction cells is also important since cells infected by the virus and cancer cells 

can harm our body. In some cases, the immune system loses the ability to distinguish 

between self and non-self. This causes the immune system to destroy normal cells 

resulting in autoimmune diseases [2]. 

1.1.1 Innate immune system 

Besides human, the innate immune system is found in all classes of plant and animal 

life. The innate immune system is the first line of defense against invading pathogens 

[1]. It recognizes and responds to pathogens in a generic way or non-specific manner. 

This means responses are even in each time of engagement with pathogens. The 

innate immune system immediately acts against infection. However, this immune 
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system differs from the adaptive immune system since there is no improvement or 

long-term protection contributed by the innate immune system [3]. 

The innate immune system comprises of anatomical barriers, humoral compo-

nents, and cellular components. 

 

Anatomical barriers 

Anatomical barriers in the innate immune response include defense mechanisms in 

the skin, gastrointestinal tracts, respiratory tracts, and eyes. Table 1-1 shows example 

anatomical barriers in the human body. There are three protective factors in anatomi-

cal barriers. First, mechanical factor such as the desquamation of skin epithelium 

which helps removing bacteria and other infectious agents attached to the epithelial 

surfaces. In addition, movement of cilia or peristalsis helps clearing respiratory and 

gastrointestinal tracts from pathogens. The flushing process by tears and saliva helps 

protect eyes and mouth from infection, respectively. Moreover, mucus in respiratory 

and gastrointestinal tracts is able to trap and immobilize microorganisms. Second, 

chemical factors such as fatty acids in the sweat are able to inhibit the growth of 

bacteria because of low pH. Lysozyme and phospholipase in tears, saliva, and nasal 

secretions deteriorate bacterial cell walls and membranes. In addition, small cysteine-

rich cationic proteins called defensins found in lung and gastrointestinal tracts can 

destroy pathogens. Moreover, the surfactants in lung promote the activity of white 

blood cells to eliminate pathogen more effectively. Third, biological factors such as 

the normal flora resides on the skin and gastrointestinal tract can prevent the coloniza-

tion of pathogenic bacteria by secreting toxin and competing for nutrients [4]. 

Table 1-1 Anatomical barriers in the innate immune system. 

Anatomical barrier Active cellular/biochemical component Protective mechanisms 

Skin sweat, organic acids desquamation, flushing 

Gastrointestinal tract gastric acid, bile acids, digestive enzyme, 

thiocyanate, defensins, gut flora, colum-

nar cells  

peristalsis, flushing, low 

pH 

Respiratory tracts and 

lung 

tracheal cilia, surfactant, defensins mucociliary elevator 

Nasopharynx and eyes mucus, saliva, lysozyme, tears flushing 
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Humoral components 

If pathogens can penetrate anatomical barriers, they will encounter with another 

innate immune mechanism named acute inflammation. There are humoral compo-

nents that work together in inflammation. These components are found in serum or 

formed at the place where the infection occurs. 

The major humoral component of the innate immune system is the complement 

system. The complement system is series of chemical reactions that promote the 

ability of antibodies and phagocytic cells to eliminate pathogens. The complement 

system consists of a number of small proteins which reside in blood circulation. 

Generally, these proteins are inactive. Immediately after the infection, they will be 

stimulated by one of several triggers [5]. Table 1-2 shows the basic functions of the 

complement in overall immune system. 

Besides the complement system, there are other humoral components such as lac-

toferrin, transferrin, interferon, lysozyme, and Interleukin-1 which play roles in the 

innate immune system [5]. 

Table 1-2 Basic functions of the complement. 

Function Description 

Opsonization enhancing phagocytosis  

Chemotaxis attracting macrophages and neutrophils 

Cell lysis destroy membranes of pathogens 

 

Cellular components 

Leukocytes, certain type of white blood cells, are cellular components in the innate 

immune system. Leukocytes are not strictly related to a specific organ or tissue and 

are different from other cells in the body. Similar to single-cell organism, leukocytes 

are independent and are able to move freely in our body. They can eliminate patho-

gens and capture foreign particles that they found throughout the body including the 

blood and lymphatic system [6]. 

Leukocytes in the innate immune system include natural killer (NK) cells, mast 

cells, eosinophils, basophils, and phagocytic cells. The phagocytic cells are macro-

phages, neutrophils, and dendritic cells. These cells kill pathogens by phagocytosis 

which is the process of engulfing pathogens by the cell membrane to form an internal 

phagosome. Afterwards, phagosome merges with either a lysosome or a granule and 
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then pathogens will be degraded [7]. Figure 1.1 and 1.2 shows different types of 

leukocytes and phagocytosis process, respectively.  

 

Figure 1.1 Leukocytes in the innate immune system.  

 

 

Figure 1.2 Phagocytosis process.  

 

1.1.2  Adaptive immune system 

The adaptive or acquired immune system can learn to recognize specific types of 

pathogens and maintain immunogenic memory for accelerating future responses. This 

implies that the adaptive immune system is not able to work effectively in the first 

encounter or primary response to a peculiar type of pathogen. The primary response is 
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slow and takes time up to three weeks to treat the infection. The learning from this 

primary response constructs the memory to a specific type of pathogen. When the 

memorized pathogen invades our body again, the secondary response will be faster 

and more efficient. This secondary response is rapid enough to eliminate pathogens 

before they can seriously harm our body. The immunogenic memory can confer long 

time protection up to our lifetime. 

The adaptive immune system comprises of lymphocytes which are a specific type 

of white blood cells. Similar to leukocytes, lymphocytes can freely move around our 

body via the blood and lymph system. The major lymphocytes in the adaptive im-

mune system are T and B cells which are produced by stem cells in the bone marrow 

[5]. There are two subtypes of T cells: cytotoxic T-lymphocyte (CTL) and helper T-

lymphocyte (Th). CTL, Th, and B cells recognize pathogens via antigen recognition.  

 

Antigen Recognition 

The term “antigen” refers to the part of a pathogen recognizable by the adaptive 

immune system. Generally, antigens are structural proteins such as part of bacterium 

cell membranes and spike proteins of viruses. Antigenic molecules are large biologi-

cal polymers. These polymers introduce several surface and molecular features that 

are the sites of interactions with CTLs, Th cells, B cells, and antibodies. Each feature 

defines as an epitope. Since a single antigen usually presents several epitopes, it can 

be recognized by several distinct antibodies. 

Typically, T cell receptors (TCRs) of CTLs and Th cells recognize epitopes on the 

surface of antigen-presenting cells (APCs) whereas B cell receptors (BCRs) recognize 

epitopes of antigen in the extracellular fluid [1, 8]. APCs such as macrophages and 

dendritic cells consume pathogen by phagocytosis and digest antigen into small 

peptides. Some of these peptides are epitopes. These epitopes are transported to the 

membrane of APCs and presented to T cells via major histocompatibility complex 

molecules (MHCs). MHCs are classified into three main subclasses: class I, II, and 

III. MHC genes are highly polymorphic and have many variants. MHC class I (MHC-

I) found on all nucleated cells. MHC-I presents epitopes to CTLs. MHC class II 

(MHC-II) presents epitopes to Th cells and normally found on professional APCs that 

are macrophages, B cells, and dendritic cells. In humans, MHC is referred to as 

human leukocyte antigen (HLA) [9]. 

 



7 

 

Cytotoxic T-lymphocyte (CTL) 

CTLs have a responsibility to eliminate cells infected with viruses or pathogens to 

stop infection processes. In addition, CTLs also detect and destroy dysfunctional and 

cancer cells. When CTLs are activated via antigen presentation on MHC-I, cytotoxins 

are released to form pores on the membrane of target cells. These pores permit ions 

and water to flow into the infected cells and lead to cell lysis. Moreover, CTLs also 

release granzymes which are serine proteases to enter cells via pores and induce 

programmed cell death (apoptosis) [5].  

After the infection is cleared, most of CTLs are deceased. However, few will be 

retained as memory cells. In the future encounters with the memorized antigen, the 

response will be dramatically faster because of these memory cells. 

 

Helper T-lymphocyte (Th) 

Th cells are very important coordinators in the adaptive immune system. Although 

these cells do not possess cytotoxic or phagocytic ability, they are the center media-

tors which manage other immune responses. Th cells recognized epitopes via MHC-II 

of professional APCs. After their activation, Th cells send signals in the form of 

cytokines to stimulate activities of other cells such as CTLs, macrophages, and B cells 

[5]. 

There are two types of Th cells: Th1 and Th2. Th1 cells release Interferon- to 

activate the bactericidal activities of macrophages and the opsonizing of complement-

fixing antibodies on B cells. Th2 cells release interleukin 4, 5, 6, 10, and 13 to acti-

vate antibody production of B cells. Antibodies are the most essential components in 

humoral immunity. Regularly, Th1 responses are effective against intracellular 

pathogens whereas Th2 responses are effective against extracellular pathogens 

including helminths and toxins [5]. 

Similar to CTLs, most of Th cells will be deceased after clearing the infection. 

However, few will be retained as memory cells. 

 

B cell 

B cells play the main role in antibody production. Antibodies are the major compo-

nents of the humoral immunity. The term “antibody” and “immunoglobulin” (Ig) can 

be used interchangeably. Antibodies are characterized as a Y-shaped protein (Figure 
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1.3). In humans, there are five types of antibodies: IgA, IgD, IgE, IgG, and IgM. Each 

type of antibody has distinct biological properties and can deal with different types of 

antigens [10]. Antibodies function in the immune system in three ways. First, antibod-

ies bind to pathogens to block them from entering or damaging cells. Second, 

pathogens coated with antibodies promote the phagocytosis activities of macrophages. 

Since an antibody possesses two paratopes (see Figure 1.3), two pathogens can be 

linked together. A number of antibodies can group many cells or particles of patho-

gens and cause them to be agglutinated. This helps macrophages in eliminating many 

cells or particles of pathogens at the same time. Third, antibodies also trigger the 

complement systems and other immune responses, leading to the ultimate destruction 

of pathogens [11]. 

Before antibodies production, B cells must be activated and become plasma B 

cells. There are two ways of B cells activation: T cell-dependent and -independent 

activation. For T cell-dependent activation, Th2 cells release interleukin 4, 5, 6, 10, 

and 13 to activate B-cells after antigen representation by professional APCs via 

MHC-II. For T cell-independent activation, BCR will directly bind with antigens and 

B-cells are then activated. Generated plasma B-cells stay for 2-3 days in our body. 

About 10% of these plasma cells are retained to serve as long-term antigen specific 

memory B cells. In the future encounters with memorized antigens, memory B cells 

will rapidly differentiate to plasma B-cells and then produce antibodies [5]. 

It is fascinating about the cooperation between components in our immune sys-

tems. The innate immune system can stimulate the adaptive immune system and vice 

versa. In addition, products of each immune system can promote other activities. For 

example, Th1 and Th2 cells send signal to activate macrophages and B cells, respec-

tively. 
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Figure 1.3 Basic structure of immunoglobulin.  

The structure consists of two large heavy chains and two small light chains. Five types of antibod-

ies are determined by difference of heavy chain. Antibodies possess two paratopes to interact with 

epitopes. 

1.2 Vaccines and immune system 

The adaptive or acquired immune system is the main target for the vaccine develop-

ment since long-term protection can be established. Vaccines are agents that stimulate 

the protective immunity against pathogens and the diseases they cause. This protec-

tive immunity is an established immunogenic memory ready for the future encounter 

with the infectious pathogen. The term vaccine derives from Edward Jenner in 1796 

when cowpox was inoculated into humans resulting in protection against smallpox. 

The word “vacca” means cow in Latin [12]. 

Currently, several types of vaccines have been developed. The basic vaccine tech-

nology is to use killed pathogens. Pathogens are killed by chemicals, heat, 

radioactivity, or antibiotics. The remains of pathogens such as cell membranes or 

polymers can activate immune responses. This type of vaccine has been used to 

prevent polio, hepatitis A, cholera, and rabies. Live attenuated-pathogens also have 

been used as vaccines, but they are inactivated by cultivating under conditions that 

disable their virulent properties. Examples of attenuated vaccines include yellow 

fever, measles, rubella, mumps, and typhoid vaccines. Attenuated vaccines have some 
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advantages over killed vaccines that the stronger protection can be induced. This is 

because the transient growth of inactivated pathogens causes more intense immune 

responses. However, killed vaccines are safer since attenuated viruses may change to 

a virulent form and cause disease [13]. 

According to T and B cells, only antigen is important in the activation. Therefore, 

antigens should be used instead of the entire cell of pathogens. This usage is called 

subunit vaccines. Subunit vaccines can contain more than one antigen, and antigen 

can be manufactured using recombinant DNA technology. Vaccines produced by this 

approach are named “recombinant subunit vaccines” which was already developed for 

the hepatitis B virus. Subunit vaccines are safer than attenuated vaccines since only 

some parts of the pathogen are used [14, 15]. 

In addition, there are also other types of vaccines such as toxoid vaccines which 

used inactive bacterial toxins to stimulate immune responses. Dangerous bacterial 

toxins can be treated with formalin and become inactive. Inactive toxins are called 

toxoids. Besides, conjugate vaccines were developed for some bacteria species that 

have polysaccharides coat on their membranes. These polysaccharides make bacte-

rium cells difficult to be detected by the immune system. Therefore, polysaccharides 

were conjugated with antigens or toxoids and cause them to be recognizable by the 

immune system [16, 17]. Some other types of vaccines are currently in experimental 

phase such as DNA vaccines, dendritic cell vaccines, recombinant vector vaccines, 

and T-cell receptor peptide vaccines [18, 19]. 

The vaccine development is very essential for mankind. From many past decades 

until now, vaccination saves countless life around the world and prevents suffering 

from diseases and permanent disabilities. Therefore, researches of vaccines are 

necessary and should be concerned by the governments as the top priority in the 

public health plans. 

1.3 T-cell vaccine development 

T-cells are considered as a center mediators in the human immune response. T-cell 

vaccines aim to stimulate immune responses of CTLs and Th cells via antigen presen-

tation on MHC-I and -II, respectively. The activation of CTLs helps in terminating the 

infection by destroying infected cells, and also helps in the elimination of cancer cells. 
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The activation of Th cells is then further activate production of antibodies by B cells, 

and also stimulates other potential immune responses. 

Generally, epitope is a small peptide consists of 8-12 amino acids for MHC-I and 

15-24 amino acids for MHC-II. The complexes of peptide-MHC (pMHC) are shown 

in Figure 1.4. Binding clefts of MHC-I and II consist of two -helices and one β-

sheet, but both terminals of the MHC-I cleft are closed whereas those of the MHC-II 

are open. Since the groove is closed, the length of epitopes is rather fixed for MHC-I. 

In contrast, the length of epitopes bond with MHC-II is varying because of the opened 

groove [20]. 

To develop T-cell vaccines, known epitopes are required. The identification of 

epitope is a non-trivial task since it is possible that a large number of surface and 

molecular features are presented on an antigen. The intensive physicochemical 

experiments are required to identify epitopes. However, such approach is time-

consuming and laborious. Therefore, machine learning techniques have been applied 

to search for epitopes [21]. Although epitopes identified by using machine learning 

are not guaranteed to be 100% correct, these predicted epitopes are promising candi-

dates for immunological experiments. 

 

 

Figure 1.4 Visualization of pMHC complexes.  

(A) MHC-I (PDB entry 1DUZ [22]). (B) MHC-II (PDB entry 1DLH [23]). 
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1.4 Applications of machine learning in CTL epitope prediction 

In this study, we focus on MHC-I on humans that is HLA-I. The presentation of 

epitopes on HLA-I mainly targets to stimulate CTLs responses. There are three 

subdivisions of HLA-I: HLA-A, HLA-B, and HLA-C. Most of early epitope binding 

prediction methods concentrated on the HLA-A*02:01 allele because it is the most 

frequent allele of the A2 supertype in the Northeast Asian and Caucasian populations 

[24]. In addition, peptides of length 9 known as nonapeptides have been popularly 

studied. 

The pioneering epitope prediction methods were based on allele-specific motifs 

[25, 26]. The important positions of the motif were analyzed. For instance, positions 2 

and 9 were the most important positions in the case of HLA-A*02:01 allele. The 

residues at both positions were assigned as the classical anchor residues [27]. In 

addition, positions 1, 3, and 7 also assigned as the secondary anchor residues [28–30]. 

In each anchor residue, an amino acid which frequently occurs from known epitopes 

was defined. New or untested peptides which comprised of matched amino acids with 

assigned anchor residues were identified as epitopes. 

When more data of experimented epitopes are available, the matrix-based methods 

have been introduced. Matrices were calculated using statistical techniques. These 

matrices were used to estimate binding energy between HLA and peptides. The 

examples of matrix-based methods are BIMAS [31], RANKPEP [32], Gibbs sampler 

[33], ARB [34], SMM [35], and SMM
PMBEC

 [36]. 

Recently, using machine learning algorithms in epitope prediction shows great 

achievements. Examples of epitope prediction methods that based on machine learn-

ing techniques are NetMHC [20], NetMHCpan [37], NetCTL [38], NetCTLpan [39], 

and SVRMHC [40]. The use of machine learning techniques usually requires a large 

number of training data. In case of epitope prediction, a large number of training 

peptides is recommended. Therefore, specific databases are needed. The most im-

portant database is the Immune Epitope Database (IEDB) [41] which is the largest 

one. In addition, there are also other available databases such as SYFPEITHI [42], 

FIMM [43], MHCPEP [44], MHCBN [45], and AntiJen [46]. 

The allele-specific motif methods, the matrix-based methods, and machine learn-

ing-based methods generally concern only sequence information. Detailed binding 

mechanisms cannot be provided by these methods. Therefore, three-dimensional (3D) 
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structure-based methods have been developed [47–49] to unveil MHC-epitope 

binding mechanisms. Unfortunately, 3D structure-based methods require a number of 

crystal structures of MHC-peptide complexes, which are still not available in a large 

number. Besides, the performance of structure-based methods is currently lower than 

machine learning-based methods [21]. 

Machine learning-based epitope prediction techniques significantly accelerate the 

process of the vaccine development. However, the effectiveness of these techniques 

depends on the amount of experimental data used for training. In some rare HLA 

alleles, there are only small numbers of experimented epitopes available. Therefore, 

the increase in experimental data will improve the accuracy of epitope prediction [50]. 

1.5 Epitope prediction versus T-cell reactivity prediction 

Epitope prediction methods have been used to search for candidate peptides in the 

vaccine development. Predicted peptides with high binding affinity to the MHC were 

presumed to successfully activate T-cell responses. However, recent experiments 

show that those peptides with high predicted binding affinity to the MHC did not 

always activate T-cell responses [51]. In addition, other biological factors were more 

strongly correlated to T-cell responses than MHC binding affinities [52]. Therefore, 

immunogenicity of peptides cannot be accurately inferred from the result of epitope 

prediction. 

T-cell reactivity prediction is more sophisticate than epitope prediction since 

many biological factors are needed to be concerned. This complication is difficult to 

be learned by machine learning approaches [53–55]. Previous studies based on protein 

crystal structures reveal that residues at positions 4, 6, and 8 of nonapeptides were 

important in the binding of TCR to pMHC (TCR-pMHC) complex [56, 57]. These 

important positions are different from those defined by epitope prediction. In fact, the 

pMHC binding should directly contribute to TCR-pMHC binding. However, the 

results of important positions are in conflict. Therefore, the prediction and characteri-

zation of T-cell reactivity are very essential for more understanding in the immune 

system [55]. 

The first published method for T-cell reactivity prediction is POPI [58]. POPI 

used physicochemical properties from the AAindex database [59] to encode peptides 

to numerical vectors. These vectors are then input to the support vector machine 
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(SVM). Afterwards, POPISK [55] was developed. POPISK simply used the SVM 

with the string kernels. 

1.6 Objectives 

The vaccine development is very essential for mankind in order to establish an 

effective protection against infectious pathogens. In the last decade, serious outbreaks 

emerged and caused high mortality. The examples are the epidemics of severe acute 

respiratory syndrome (SARS) in 2003 and influenza A viruses, H1N1 and H5N1, in 

2005–2009. Therefore, the development of new vaccines is necessary to prevent 

future outbreaks. 

The conventional vaccine developments are laborious and time-consuming [21]. 

Epitope prediction can accelerate the process of the vaccine development by provid-

ing promising candidate peptides for further immunological experiments. The uses of 

machine learning techniques in epitope prediction have been actively studied and 

many methods were proposed [20, 31–40]. However, most of existing methods tend 

to overlook the interpretability which respects to the binding potential and thereby not 

provide much insight into pMHC binding mechanisms. Thus, this study is aimed at 

developing a novel epitope prediction method for the vaccine development. Substan-

tially, importance of peptide positions for the pMHC binding was also analyzed to 

provide more understanding in pMHC binding mechanisms. The objectives of this 

dissertation are described as follows. 

To develop a novel epitope prediction method. First, nonapeptides sequences 

were encoded to numerical data in order to input to machine learning algorithms. To 

perform this task, we established the new peptide encoding scheme. This peptide 

encoding scheme was created by combining information about the pMHC contact 

sites [60] with amino acid pairwise contact potentials (AAPPs) [59]. After peptides 

encoding, the support vector machine (SVM) was used for training and testing. 

Benchmark datasets [61] were used for evaluation of our method performance and 

then compared with other state of the art methods.  

To analyze for important AAPPs in the pMHC binding mechanisms. For each 

allele dataset, only AAPPs that led to the highest performance were used in the further 

steps. Afterwards, we identified important positions of nonapeptide in pMHC binding. 

In each encoded peptide data, each feature corresponding to one position of nonapep-
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tide. We employed the feature selection algorithm to rank the importance of features. 

From the rank, we could identify important positions from significant features. From 

these results, we selected only important AAPPs and positions of nonapeptide to 

estimate the final predictive models. 

To identify promiscuous epitopes from influenza A viruses. We used the pre-

dictive models that were created in the previous step to identify ‘promiscuous 

epitopes’ from protein sequences of influenza A viral strains. The promiscuous 

epitope is an epitope that binds to many HLA alleles. The use of promiscuous 

epitopes in vaccine development will provide a high level of population coverage. 

The identified epitopes by our predictive models were validated by cross-checking 

with the publications of immunological experiments [62].  

To develop a new T-cell reactivity prediction method. Recent studies showed 

that predicted high affinity epitopes did not always result in activation of T-cell 

responses. Therefore, we developed a novel T-cell reactivity prediction method by 

combining information of AAPPs, pMHC contact sites, and quantum topological 

molecular similarity (QTMS) descriptors [63]. The new peptide encoding scheme was 

proposed by combining AAPPs and QTMS descriptors. Peptides were encoded and 

then input to the random forest for training and testing. We compared the performance 

of our method with previous T-cell reactivity predictors [55, 58].  

To analyze for important AAPPs, QTMS descriptors, and positions of pep-

tide in TCR-pMHC binding mechanisms. We used our new T-cell reactivity 

prediction method to identify for important AAPPs, QTMS descriptors, and positions 

of peptide in TCR-pMHC binding mechanisms. The result of important positions in 

T-cell reactivity prediction was compared with those in epitope prediction. 

1.7 Contributions 

The purpose of this research is to apply machine learning techniques in epitope and T-

cell reactivity prediction which are essential steps toward the vaccine development. 

The ultimate goals are to develop the novel epitope and T-cell reactivity prediction 

methods which are able to provide more insights in pMHC and TCR-pMHC binding 

mechanisms, respectively. The main contributions of this thesis are summarized as 

follows. 
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Novel epitope prediction method. We developed a new epitope prediction meth-

od which we called EpicCapo and its variants, EpicCapo
+
 and EpicCapo

+REF
. Peptides 

were numerically encoded by using our proposed peptide encoding scheme. This 

scheme is the combination of pMHC contact sites with AAPPs. Our method achieved 

high performance and outperformed other methods in many datasets of HLA alleles. 

In some datasets, although there are small numbers of training peptides, our method 

still provided the high performance. Therefore, our method is a promising tool for the 

development of new vaccines. 

Identification of important AAPPs and peptide positions in pMHC binding 

mechanisms. Based on our proposed method, we identified important AAPPs and 

peptide positions in pMHC binding mechanisms. We found that two AAPPs were 

very important in pMHC binding. In addition, we found that ten top-ranked features 

correspond to positions 9 and 2 in most datasets, followed by positions 3, 1, or 7. This 

finding is consistent with other studies which demonstrate that positions 9 and 2 are 

primary anchor residues, and positions 1, 3, and 7 are secondary anchor residues in 

the pMHC binding. However, when we identified for the optimal sets of features that 

led to the highest performance, features from all nine positions were included. Hence, 

we presumed that all nine positions are important in the pMHC binding and their 

effects to the binding affinity are not independent. 

New promiscuous epitopes for the development of influenza A vaccines. Our 

proposed method was applied to identify promiscuous epitopes from four influenza A 

viral strains: H1N1 (A/PR/8/34), H3N2 (A/Aichi/2/68), H1N1 (A/New 

York/4290/2009), and H5N1 (A/Hong Kong/483/97). We found that many predicted 

promiscuous epitopes were in agreement with previous immunological experiments. 

This consistency indicates that our method has high accuracy in epitope prediction. 

Some predicted promiscuous epitopes have not been tested in any experiment yet. 

These epitopes can be considered as potential candidates for the novel vaccine devel-

opment. 

Novel T-cell reactivity prediction method. We developed a new T-cell reactivity 

prediction method which we called PAAQD. Peptides were numerically encoded by 

using our proposed peptide encoding scheme which is similar to that in EpicCapo. 

The performance of PAAQD is at least comparable with the previous high perfor-

mance T-cell reactivity prediction method. In addition, our method shows high 

predictive stability when tested with the blinded dataset. Recent studies show that 
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predicted binding affinities by epitope prediction methods were not strongly correlat-

ed to T-cell responses. This means that predicted epitopes are not guaranteed to 

activate immune responses. Therefore, T-cell reactivity prediction should be used 

rather than epitope prediction. 

Identification of important AAPPs, QTMS descriptors, and peptide positions 

in TCR-pMHC binding mechanisms. Based on our new T-cell reactivity prediction 

method, we identified important AAPPs, QTMS descriptors, and peptide positions in 

TCR-pMHC binding mechanisms. We found six important AAPPs. One of these is 

also important in the pMHC binding. For QTMS descriptors, we found that all 

descriptors were important. By using our method, peptide positions 1 and 8 were the 

most important ones. This result is concordant with the previous study of T-cell 

reactivity prediction. Interestingly, we found that positions 2, 3, and 7 were less 

important than the others. These positions have been identified as anchor residues for 

epitope prediction in other studies. Therefore, these findings support that epitope 

prediction and T-cell reactivity prediction are considerably different.  

1.8 Thesis organization 

The thesis is divided into 5 chapters, including the current one. The first chapter 

covers introductory materials, motivations, and contributions of researches presented 

in this dissertation.  The remaining chapters are organized as follows: 

Chapter 2 reviews the uses of machine learning in immunoinformatics which is a 

new field that focused on in silico analysis and modeling of immunological data and 

problems. The major usages of machine learning algorithms in immunoinformatics 

that are artificial neural network, support vector machine, and hidden Markov models 

were described. Additionally, important immunoinformatics databases are also 

addressed in this chapter. 

Chapter 3 describes a novel epitope prediction method which named EpicCapo. 

This method used our proposed peptide encoding scheme which is the combination of 

structural and physicochemical information. The SVM was used to conduct classifica-

tion tasks after the data processing. The performance of our epitope prediction method 

also evaluated and compared with other state of the art methods. Moreover, the 

insights in pMHC binding are also shown in this chapter. 
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Chapter 4 Introduces new T-cell reactivity prediction method which named 

PAAQD. The peptide encoding scheme used in this method is the combination of 

structural, physicochemical, and quantum topological information. The random forest 

was used to conduct classification tasks after the data processing. The performance of 

our epitope prediction method also evaluated and compared with other high perfor-

mance T-cell reactivity prediction methods. Furthermore, the insights in TCR-pMHC 

binding are also shown in this chapter.  

Chapter 5 summarizes the principal tasks of this dissertation, including the 

achievements and contributions. Some limitations are also presented. In addition, 

future works and directions also discussed in this chapter. 
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Chapter 2  Review of machine learning in 

immunoinformatics 

 

 

 

In this chapter, we describe the uses of machine learning algorithms in immunoinfor-

matics. Immunoinformatics is a new branch of bioinformatics that focused on 

computational analysis and modeling of immunological data and problems. We 

introduce and give examples of commonly used algorithms in immunoinformatics that 

are artificial neural network, support vector machine, and hidden Markov models. In 

addition, remarkable immunoinformatics databases are also shown. 
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2.1 The major usages of machine learning algorithms in im-

munoinformatics 

The immune system is composed of many networks of interacting molecules. To 

understand complicated mechanisms in the immune system, immunologists have been 

using high throughput experimental techniques. By the use of these techniques, large 

amount of data was generated. The development of new computational techniques is 

required for collecting and analyzing these data. To date, many immunology-focused 

resources and tools are available to help in uncovering the properties of the whole 

immune system. This has given rise to a new field called immunoinformatics. Im-

munoinformatics is one branch of bioinformatics that focused on in silico analysis and 

modeling of immunological data and problems [64, 65]. Figure 2.1 shows an over-

view of immunoinformatics research area. 

Most immunoinformatics researches are related to prediction of potential B- and 

T-cell epitopes. The outcomes help speeding up the new vaccine development. The 

most successful B- and T-cell epitope prediction methods applied machine learning 

algorithms. Hereby, the main streams of these researches are categorized as follows. 

2.1.1 Artificial neural network 

The artificial neural networks (ANNs) are mathematical models inspired by biological 

neural networks. ANNs are capable of finding relationships and describing nonlinear 

data [66]. Bioinformaticians frequently used ANN to solve many biological and 

physiochemical problems. In case of epitope prediction, some methods used ANN to 

learn input sequences of known epitopes and then generate the predictive models. The 

improved model of neural network for T-cell epitope prediction was described in [33]. 

The high performance methods, NetMHC [20] and NetMHCpan [37], are based on 

ANN and used position-specific scoring matrices. NetCTL [38] and NetCTLpan [39] 

integrated the prediction of pMHC-I binding, proteasomal cleavage, and transporter 

associated with antigen processing (TAP) together.  

Most methods achieved high performance when predicting MHC-I epitopes. 

However, medium to low performance was acquired when predicting MHC-II 

epitopes. The prediction of MHC-II epitopes is more difficult because the lengths of 

input peptide are highly variable. 
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2.1.2 Support vector machine 

The support vector machine (SVM) is a supervised learning method that has been 

used for data analysis and pattern recognition. The SVM was first developed by 

Vapnik [67]. The SVM is described as a non-probabilistic binary classifier and 

belongs to the group of the kernel-based approaches [68]. A hyperplane or set of 

hyperplanes in a high- or infinite-dimensional space was generated by the SVM for 

using in classification or regression tasks. The hyperplane that cause the largest 

distance from the nearest point belonging to another class is the favorable one. 

Deriving such hyperplane should lead to optimal separation and the reliable predictive 

model [69].  

The SVM has been widely used in immunoinformatics. Most of published meth-

ods focused on epitope prediction. SVRMHC [40], the epitope predictor based on 

support vector regression (SVR) used data from AntiJen and used LIBSVM [70] for 

SVR-related implementation. This method can perform prediction on both MHC-I 

and –II. Nanni [71] used feature extraction based on BLOSUM50 and then conducted 

classification tasks using the SVM. TAPPred [72], the MHC-I epitope predictor is 

based on the cascade SVM. Two layers of SVMs were used in this method and it 

achieved remarkable performance. In case of proteasomes cleavage prediction, 

Pcleavage [73] was developed to predict cleavage sites in antigenic proteins by using 

the SVM.  

For B-cell epitope prediction, COBEpro [74] was developed to predict continuous 

B-cell epitopes. COBEpro consists of two-step. First, a fragment epitopic propensity 

score was assigned to protein sequence fragments using the SVM. Second, the score 

for each residue was calculated based on the previous score. By using the second 

score, B-cell epitopes were determined. COBEpro has been incorporated into the 

SCARTCH prediction suite [75]. 

2.1.3 Hidden Markov models 

The hidden Markov models (HMMs) were described by Baum et al. [76]. HMMs 

were used in speech recognition [77, 78]. In 1980, HMMs were firstly applied in the 

analysis of biological sequences, especially DNA sequences [79]. To date, HMMs are 

widely used in the bioinformatics field such as the prediction of protein secondary 

structure [80], prediction of transmembrane regions [81], and protein homology 
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analysis [82]. In addition, HMMs have been popularly used in sequence alignment 

[83], phylogenetic tree analysis [84], and gene identification [85]. 

For immunoinformatics field, PredTAP [86], the method based on HMM was de-

veloped to predict peptide binding to TAP molecules. This method used second-order 

HMM back propagation neural network. Mamitsuka [87] developed HMM based 

models for prediction of pMHC binding affinity. However, the models were restricted 

to HLA-A*02:01 and DR1 alleles. Afterwards, Udaka et al. [88] used Mamitsuka’s 

approach to estimate predictive models for other MHC-I alleles. Moreover, Brusic et 

al. [89] developed HMM models to predict pMHC binding affinity of HLA-A2 

alleles. In this method, only amino acids that interact with HLA molecules were used 

to derive the predictive models. 

 

 

 

Figure 2.1 Overview of immunoinformatics research [64].  
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2.2 Immunoinformatics databases 

Recently, because of advancement in high throughput technology, immunological 

data have increased rapidly. There are many databases that store these data. Most of 

them are related to T- or B-cell epitopes. Each database has specific features and 

purposes. Some databases include 3D structures of MHC molecules or peptides and 

also provide epitope prediction tools. Table 2-1 describes available immunoinformat-

ics databases. 

In our researches, we mainly used data from IEDB [41]. This database provides 

vast datasets including both T- and B-cell epitopes. In addition, analysis tools are 

available in this database including state of the art epitope prediction methods. 

Table 2-1 Available immunoinformatics databases [64]. 

Type Name URL Ref. 

T-cell 

epitopes 

JenPep http://www.darrenflower.info/jenpep/ [90] 

SYFPEITHI http://www.syfpeithi.de [42] 

FRED http://www-bs.informatik.uni-

tuebingen.de/Software/FRED 
[91] 

MHCBN http://www.imtech.res.in/raghava/mhcbn/ [45] 

B-cell 

epitopes 

CED http://immunet.cn/ced/ [92] 

Bcipep http://www.imtech.res.in/raghava/bcipep [93] 

Epitome http://cubic.bioc.columbia.edu/services/epitome/ [94] 

Both T- and 

B- cell 

epitopes 

IEDB http://www.iedb.org/ [41] 

IMGT http://www.imgt.org/ [60] 

MHCPEP http://wehih.wehi.edu.au/mhcpep/ [44] 

AntiJen http://www.ddg-

pharmfac.net/antijen/AntiJen/antijenhomepage.htm 
[46] 

Allergen Database of IUIS http://www.allergen.org [95] 

Allergen Pro http://www.niab.go.kr/nabic/ [96] 

SDAP http://fermi.utmb.edu/SDAP/ [97] 

Information 

related to 

molecular 

evolution of 

immune 

system 

components  

ImmTree http://bioinf.uta.fi/ImmTree [98] 

Immunome 

database 

http://bioinf.uta.fi/Immunome/ [99] 

ImmunomeBase http://bioinf.uta.fi/ImmunomeBase [100] 

Immunome 

Knowledge Base 

http://bioinf.uta.fi/IKB/ [101] 
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Chapter 3  EpicCapo: epitope prediction using 

combined information of amino acid pairwise 

contact potentials and HLA-peptide contact 

site information 

 

Epitope identification is an essential step toward synthetic vaccine development since 

epitopes play an important role in activating immune responses. Classical experi-

mental approaches are laborious and time consuming, and therefore computational 

methods for generating epitope candidates have been actively studied. Most of these 

methods, however, are based on sophisticated nonlinear techniques for achieving 

higher predictive performance. The use of these techniques tends to diminish their 

interpretability with respect to binding potential: that is, they do not provide much 

insight into binding mechanisms. We have developed a novel epitope prediction 

method named EpicCapo and its variants, EpicCapo
+
 and EpicCapo

+REF
. Nonapep-

tides were encoded numerically using a novel peptide-encoding scheme for machine 

learning algorithms by utilizing 40 amino acid pairwise contact potentials. The 

predictive performances of EpicCapo
+
 and EpicCapo

+REF
 outperformed other state-

of-the-art methods without losing interpretability. In addition, we found that all amino 

acid positions in nonapeptides could effect on the performances of the predictive 

models including non-anchor positions. Finally, EpicCapo
+REF

 was applied to identify 

candidates of promiscuous epitopes. As a result, 67.1% of the predicted nonapeptides 

epitopes were consistent with preceding studies based on immunological experiments.  

We speculate that our techniques may be useful in the development of new vaccines.  
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3.1 Introduction 

CTLs play an important role in the vertebrate immune system. They recognize 

pathogens via peptide presentation on MHC. If the source of peptides is an infectious 

virus, the CTL response could be stimulated, thus leading to the elimination of virus 

infected cells [102]. As mentioned in the chapter 1, MHC-bound peptides are called 

epitopes. Epitope identification is an essential step toward synthetic vaccine develop-

ment, since epitopes play an important role in the activation of the immune responses 

[21]. Epitopes are traditionally identified by synthesizing a large number of nonapep-

tides and subsequently performing affinity assays. Those peptides with high binding 

affinity to MHC proteins are considered as potential epitopes. However, the process 

of developing a new vaccine is time-consuming and laborious when performed with 

traditional methods. To avoid the problems of such bottlenecks, instead computational 

methods can be effectively applied to search for candidate peptides and identify new 

promising epitopes. 

In human, MHC is referred to as HLA. There are three classes of HLAs: I, II, and 

III. Epitopes presented on HLA class I molecules are recognized by CTLs. HLA class 

I proteins can be categorized into three types according to their genes: HLA-A, HLA-

B, and HLA-C. A majority of previous studies have focused on the HLA-A*02:01 

allele because it is the most frequent allele of the A2 supertype in the Northeast Asian 

and Caucasian populations [24]. Typically, the HLA-A*02:01 epitope consists of 8–

10 amino acids, and many studies have focused on nonapeptides in particular: that is, 

epitopes that are 9 residues long [103–105]. Figure 3.1 (A) shows the nonapeptide 

epitope LLFGYPVYV fitted inside the HLA-A*02:01 binding cleft, which consists of 

two α-helices and one β-sheet (from PDB entry 1DUZ [22]). Figure 3.1 (B) shows the 

conformation of the nonapeptide epitope LLFGYPVYV. 

Early epitope binding prediction algorithms were based on allele-specific motifs 

[25, 26]. For example, for the HLA-A*02:01 allele, positions 2 and 9 of nonapeptides 

were the most important ones for binding. The residues at both positions were defined 

as classical anchor residues typically occupied by leucine, valine, and isoleucine since 

the MHC molecule forms hydrophobic sites for amino acids at these two positions 

[27]. Additionally, the residues at positions 1, 3, and 7 were identified as secondary 

anchor residues. Positions 1 and 3 were mainly preferred by tyrosine and phenylala-

nine [28, 29]. The residue at position 7 was suggested to be an amphipathic residue 
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suitable for amino acids with small hydrophobic side-chains such as valine and 

alanine [30]. In this manner, unknown peptides that matched with such allele-specific 

motifs were determined to be epitopes. 

As more data became available, statistical methods could be applied to calculate a 

positional scoring matrix. In the matrix, an element was defined individually for each 

position and a specific amino acid, resulting in an L × 20 coefficient matrix where L is 

the length of the peptide. In general, the matrix is used under the assumption that each 

amino acid in a peptide sequence independently contributes a certain binding energy 

according to an element included in the positional scoring matrix. Overall binding 

energy is estimated from the summation of binding energies from all positions. There 

are several methods based on such a positional scoring matrix: for example, BIMAS 

[31], RANKPEP [32], Gibbs sampler [33], ARB [34], SMM [35], and SMM
PMBEC

 

[36]. 

Currently, the most successful approach for epitope prediction utilizes machine 

learning algorithms. These algorithms require large enough datasets for training in 

order to obtain reliable results. Fortunately, the Immune Epitope Database (IEDB) 

[41] provides more than 100,000 MHC binding data related to T-cell epitopes from 

infectious pathogens, experimental pathogens, and self-antigens (autoantigens). IEDB 

encompasses patent data from biotechnological and pharmaceutical companies, as 

well as direct submissions from research programs and partners. As reliable experi-

mental data are provided, the volume promises a sufficient grounding for developing 

good predictive models. Although IEDB is not the only database that provides such 

information, it has more entries than other existing databases. Examples of other 

databases are SYFPEITHI [42], FIMM [43], MHCPEP [44], MHCBN [45], and 

AntiJen [46]. NetMHC [20], a predictor based on artificial neural networks, used data 

from both IEDB and SYFPEITHI and performed very well. SVRMHC [40], a predic-

tor based on support vector regression (SVR) used data from AntiJen and used 

LIBSVM [70] for SVR-related implementation. Moreover, there also exists an epitope 

predictor based on a hidden Markov model [88]. 
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Figure 3.1 Visualization of the HLA-nonapeptide complex.  

(A) Crystal structure of the LLFGYPVYV-HLA-A*02:01 complex resolved by X-ray crystal dif-

fraction (PDB entry 1DUZ [22]). (B) Conformation of the nonapeptide extracted from the complex. 

 

The allele-specific motif method, the positional scoring matrix method, and ma-

chine learning-based methods use only sequence information in general. Almost none 

of these methods can provide a clear explanation about the effects of the physico-

chemical properties of amino acids on binding affinity. In some cases, there are not 

enough peptides for training: e.g., when using data from rare alleles. Therefore, three-

dimensional (3D) structure-based methods have been developed [47–49] to uncover 

binding mechanisms and address all forces related to binding affinity. However, such 

methods are currently less reliable than data-driven methods [106]. The reason is that 

3D structure-based methods usually require a number of crystal structures of MHC-

peptide complexes, which are still not available in large numbers. 

Recently, more than 2,000 HLA alleles have been identified. Searching for 

epitopes that bind to a large number of those alleles would be computationally ex-

haustive and time-consuming. Therefore, the concept of allele supertypes was 

developed by clustering alleles into groups based on overlapping epitopes [107–111]. 

Within each supertype, most of the alleles should share the same epitopes. These 

epitopes are called ‘promiscuous epitopes’, which show great promise for vaccine 

development due to their potential for a high level of population coverage. 

In this chapter, we would like to introduce our novel epitope prediction method 

named EpicCapo. Peptides were encoded numerically by combining information on 

the pMHC contact sites with AAPPs, accompanied by the SVM [112]. Our method’s 
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performance was evaluated by using benchmark datasets and then compared with 

other high performance methods. In addition, identification of candidates of promis-

cuous CTL epitopes for influenza A viruses was demonstrated using the proposed 

method. 

The H1N1 or H5N1 strain of influenza A virus caused a lethal flu in humans, as 

seen during the epidemics of 2005–2009. Although inactivated influenza vaccination 

is beneficial, the development of more effective vaccines is still needed, particularly 

in elderly adults who are more susceptible to viral infections [113]. Identification of 

promiscuous CTL epitopes might aid this issue by providing candidate peptides from 

viral proteins for vaccine development. 

3.2 Methods 

3.2.1 Peptide data encoding 

We propose a novel peptide-encoding scheme for machine learning algorithms. This 

scheme utilized the information of pMHC contact sites retrieved from the internation-

al ImMunoGeneTics information system, IMGT [60], the allele-specific positional 

scoring matrices developed by SMM
PMBEC

 [36], and the AAPPs from AAindex [59]. 

The reference pMHC contact sites retrieved from IMGT were modified by adding 

more MHC positions. The added MHC positions were determined by observing the 

pMHC contact sites of the selected 189 crystal structures of the HLA-nonapeptide 

complex collected from IMGT entries specific to the MHC-I receptor type. If there 

were new contact positions, the reference pMHC contact sites were modified by 

adding those new positions. Therefore, more HLA-nonapeptide contact positions were 

included in the modified pMHC contact site because the reference pMHC contact 

sites resulted from the use of only 74 crystal structures of the HLA-nonapeptide 

complex [60]. Utilizing the modified pMHC contact sites should provide more 

reliable results during the prediction. Table 3-1 shows the references and added 

pMHC contact sites positions. This information served as a binding template between 

the peptide and MHC. In NetMHCpan [37], the reference pMHC contact sites were 

used to extract a pseudo sequence representing the given MHC molecule. When 

performing prediction, sequence information from both peptide and MHC was taken 

into account. However, the pairs of amino acids between the MHC molecule and 

peptide were not of concern. Therefore, to generate a more informative predictive 
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model, we used information about the pairs of amino acids at the interface between an 

MHC molecule and a nonapeptide, represented by AAPPs. In addition, the allele-

specific positional scoring matrices developed by SMM
PMBEC

 were used in our study. 

These matrices provide information of how likely a given amino acid would be 

preferred or avoided in a specific residue. Like NetMHCpan, SMM
PMBEC

 did not use 

AAPPs. Consequently, we proved that a proper selection of AAPPs could lead to 

higher performance in the prediction. The encoded data could be further used in tasks 

of classification or regression using machine learning algorithms. In this study, we 

demonstrated the feasibility of the classification task by using the SVM implemented 

in the R package kernlab [112]. 

Here, we propose a novel scheme for encoding nonapeptides into input vectors of 

the SVM. Suppose E(  ,   ) is an AAPP for the amino acids    and   . If two or 

more types of AAPPs are available, we denote k
th

 type of the AAPP by Ek(  ,   ). 

Also, we denote the i
th

 amino acid of the nonapeptide n and the j
th

 amino acid of HLA 

by ui
(n)

 and vj, respectively. In order to combine information of position-specific 

amino acid scores of the nonapeptides with AAPPs, we define a score Sk,i
(n)

 for the i
th

 

amino acid of the nonapeptide n under a k
th

 type of AAPP as follows: 
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where L is the length of the HLA protein, Ti(a) is the i
th

 position score of the amino 

acid a for the nonapeptides described by SMM
PMBEC

, and δij is an indicator variable 

that takes the value of 1 if the i
th

 amino acid of a nonapeptide and the j
th

 amino acid of 

HLA contact each other, and 0 otherwise. Here, the positional scoring matrix Ti(a) is 

trained based on training data and multiplied by −1 to reverse the order of values (a 

high positive value denotes high preference between an amino acid and the position) 

and scaled into the range of 1 to 10 since we need to avoid loss of information when 

Ti(a) equals zero. In fact, any range that does not include zero can be used; in this 

study, it is the range of 1 to 10. The scaling of positional scoring matrices is shown in 

Table 3-2. Note that ∑    
 
    is the number of contact sites for the i

th
 amino acid of a 

nonapeptide (see Table 3-1). Intuitively, this score represents average pair-potential of 

contact sites, weighted by position-specific amino acid score for nonapeptides. Let K 

be the number of AAPPs available, and M be the length of the peptide, set to 9 

throughout this study. Using this scoring scheme, we transform a nonapeptide n into a 
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M × K-dimensional numerical vector, whose (M(k–1) + i)
th

 element is Sk,i
(n)

. For 

example, the encoded nonapeptides consist of 9 features if one AAPP is used and 360 

features if 40 AAPPs are used. Figure 3.2 illustrates an example of the data-encoding 

scheme for the first position of the nonapeptide. 

Table 3-1 Reference and added pMHC contact sites for the HLA. 

 Reference HLA positions Added HLA positions 

N
o

n
a

p
ep

ti
d

e 
p

o
si

ti
o

n
 1 5 59 62 63 66 163 167 171 7 9 45 58 67 164 

2 7 9 22 24 34 45 63 66 67 70 99 159 

3 97 99 152 155 156 159 9 66 67 70 160 

4 65 66 155 62 158 

5 70 73 74 97 116 155 156 65 69 72 114 147 150 151 152 

6 66 69 70 73 74 97 114 151 155 65 99 147 152 156 

7 97 114 147 150 152 155 59 63 116 133 146 

8 72 73 76 80 146 77 147 

9 77 80 81 84 95 116 123 124 143 147 26 33 55 58 97 142 146 

 

Table 3-2 The positional scoring matrix of EpicCapo used in the experiment 

that peptide-encoding schemes were compared. 

Amino acid Nonapeptide position 

1 2 3 4 5 6 7 8 9 

A 6.053 4.651 5.843 5.812 5.220 4.497 5.295 5.243 7.083 

C 4.474 1.000 4.359 4.272 6.514 6.112 4.928 5.263 5.066 

D 2.093 5.074 5.887 6.432 5.417 5.575 4.861 3.889 5.322 

E 2.030 5.322 2.958 6.692 4.146 4.726 4.936 5.784 5.322 

F 8.630 5.220 6.617 5.082 6.286 6.680 7.071 5.993 3.289 

G 5.468 3.333 4.632 5.658 5.579 3.862 3.349 6.088 4.841 

H 4.189 5.646 4.217 4.636 6.329 4.900 4.896 4.411 4.841 

I 5.650 7.336 5.883 5.425 6.021 7.158 6.550 4.612 8.295 

K 6.704 6.676 2.950 5.437 4.213 3.388 2.303 5.263 5.236 

L 5.705 9.443 6.664 4.647 5.457 6.558 6.416 6.088 8.157 

M 6.436 10.000 7.478 4.861 5.670 6.242 6.124 4.008 5.204 

N 4.604 1.754 5.086 5.492 4.458 5.678 4.892 5.488 5.322 

P 2.457 5.982 4.525 5.247 3.668 5.034 6.266 6.116 4.474 

Q 5.437 6.254 5.405 4.793 5.271 6.439 5.157 4.943 4.904 

R 5.239 2.891 4.418 4.813 4.261 3.451 3.211 5.200 3.436 

S 5.611 4.095 5.729 5.863 4.529 5.149 5.397 6.428 5.764 

T 5.425 5.611 4.486 5.492 4.193 6.155 5.101 4.861 5.512 

V 6.017 6.345 5.382 5.622 5.575 6.218 5.997 3.858 9.980 

W 5.871 4.497 7.020 5.168 6.621 3.487 7.351 6.246 2.271 

Y 8.358 5.322 6.909 5.011 7.016 5.137 6.345 6.672 2.121 
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Figure 3.2 Our peptide data-encoding scheme, using the first position of a nonapep-

tide as an example.  

Our peptide-encoding scheme was compared with binary peptide-encoding and 

with four amino acid descriptors, as shown in Table 3-3 using the dataset reported by 

Bi and colleagues (supplementary information for Table S2 in [114]). This dataset 

consists of 1,998 quantitative affinity-known HLA-A*02:01-restricted nonapeptides. 

The dataset was randomly partitioned into a training set containing 1,500 nonapep-

tides for estimating predictive models using the SVM, and a test set containing 498 

nonapeptides for validating the models. For our peptide-encoding scheme, the posi-

tional scoring matrix (Table 3-2) was trained based on the external dataset 

downloaded from IEDB, consisting of 500 nonapeptides restricted to the HLA-

A*02:01 allele. These nonapeptides were included in neither training nor test sets. For 

the binary peptide-encoding, each amino acid was encoded as a binary vector of 

length 20, resulting in a vector of length 180 for a nonapeptide. In case of using amino 

acid descriptors, the length of an encoded vector would be equal to M times larger 

than the length of descriptor vectors. The performances of the data-encoding schemes 
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were evaluated in classification tasks, using a 10-fold cross validation. Throughout 

our experiments, the parameter C (cost of constraint violation) and the type of kernel 

used for the SVM were 1 and the radial basis kernel, respectively. The class for each 

nonapeptide was determined by using an IC50 affinity cutoff at 500 nM. Nonapeptides 

with an affinity less than 500 nM were considered to be binders and non-binders 

otherwise. The study by Moutaftsi et al. [115] showed that 90% of epitopes that could 

stimulate CTL responses bound to MHC with affinities lower than 500 nM. The 

predictive performance is evaluated using five measures: overall accuracy (ACC), 

sensitivity (sens), specificity (spec), F-score (F1), and area under receiver operating 

characteristic curve (AUC). ACC, sens, spec, and F1 are defined as 

     
     

           
   

      
  

     
   

      
  

     
   

   
    

((    )      )
   

where TP, FP, TN, and FN are the numbers of overall true positives, false positives, 

true negatives, and false negatives, respectively. 

3.2.2 Validation of predictive models using benchmark datasets 

The performance of EpicCapo was validated by using benchmark datasets of 34 

MHC-I alleles provided by Peters et al. [61]. In this experiment, the positional scoring 

matrices were trained based on training data according to the cross validation tech-

nique. 20 iterations of 5-fold cross validation were conducted to evaluate AUCs for 

EpicCapo. We compared the results of our method with those of ARB, NetMHC, 

SMM, and SMM
PMBEC

. 

 EpicCapo was further developed as EpicCapo
+
 by selecting AAPPs. Each en-

coded allele dataset was initially separated into 40 datasets according to the 40 

AAPPs. The classification task was performed for each dataset to calculate AUC 

using the SVM and the same parameters as EpicCapo. Then, 40 datasets were ranked 

by AUC from highest to lowest. Next, the classification task was performed again by 

adding the datasets of AAPPs one by one based on their rank. Finally, the optimal 

subset of AAPPs that led to the highest AUC was identified for each allele. The 
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average AUCs of all alleles as calculated from EpicCapo
+
 were compared with those 

from EpicCapo and other methods using paired t-tests (two-tailed). For each allele, 

the AUCs from 20 iterations of 5-fold cross validation of EpicCapo and EpicCapo
+
 

were compared with the maximum AUC among other methods by using t-tests (one-

tailed, significance level = 0.01). 

3.2.3 Improving the performance of HLA-A-nonapeptide binding predictive 

models 

To increase the performance of our predictive models, the positional scoring matrices 

used in this experiment were trained based on datasets containing larger number of 

nonapeptides. These matrices are available at [116]. After encoding 14 HLA-A allele 

datasets using the downloaded matrices, EpicCapo
+
 was performed again to identify 

optimal subsets of AAPPs therein. We used the Relief-F algorithm [117] implemented 

in the machine learning software Weka [118] to perform the feature selection task, 

ranking the features according to their importance in discriminating the MHC binder 

peptides from the non-binder ones. The default parameters provided by Weka were 

used, and a 5-fold cross validation was conducted for evaluating feature importance. 

The best feature subsets were constructed by adding the features, one by one, from the 

top-ranked feature to the last one in the classification task using the SVM. The AUC 

gradually increased with the addition of features, until it reached the highest value. 

Features after this point were considered irrelevant and ignored. We named this 

method, accompanied with the Relief-F algorithm, EpicCapo
+REF

. 

3.2.4 Identification of candidates of promiscuous epitopes 

EpicCapo
+REF

 was further tested to identify candidates of promiscuous epitopes—i.e., 

nonapeptides that were predicted to be MHC binders for various HLA alleles—from 

the protein sequences of four influenza A viral subtypes: H1N1 (A/PR/8/34), H3N2 

(A/Aichi/2/68), H1N1 (A/New York/4290/2009), and H5N1 (A/Hong Kong/483/97). 

These protein sequences were downloaded from the NCBI website 

(http://www.ncbi.nlm.nih.gov/). The nonapeptides were generated from these se-

quences by using a nonamer sliding window. Next, all of the generated nonapeptides 

were used as inputs in EpicCapo
+REF

 predictive models. These models were estimated 

by using 14 HLA-A allele datasets, and each model was specific for each allele type. 
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The identified epitopes were validated by cross-checking with the results of immuno-

logical experiments. 

3.3 Results and discussion 

3.3.1 Comparison of peptide-encoding schemes 

We compared our peptide-encoding scheme with binary peptide-encoding and with 

four amino acid descriptors (Table 3-3). The results of the comparison of the peptide-

encoding schemes (Table 3-4) showed that EpicCapo performed better than others in 

the classification tasks. It achieved the highest average area under the curve (AUC; 

0.882), followed by binary encoding (0.879), DPPS (0.878), FASGAI (0.874), z-scale 

(0.858), and ISA/ECI (0.796) schemes. All of standard deviations were less than 0.01. 

A comparison of receiver operating characteristic (ROC) curves is shown in Figure 

3.3. 

Although EpicCapo used the largest number of features (M × K = 360)—higher 

than binary encoding (180), DPPS (90), FASGAI (54), z-scale (45), and ISA/ECI 

(18)—we confirmed that its high performance was not due to a larger number of 

features. In our study, the training dataset was separated into 40 datasets correspond-

ing to 40 AAPPs. Each dataset consisted of 9 features. The classification functions 

were fitted to these datasets, and after that the AAPPs were ranked by AUC. The 

results, as shown in Table 3-4, suggested that even by using only three top-ranked 

AAPPs (27 features in total), the classification performance values are comparable to 

those obtained by using all AAPPs. These three top-ranked AAPPs were 

MICC010101, SIMK990101, and SIMK990105 (see Appendix B). They have been 

previously used in identifying native-like protein structures [119, 120], and were also 

identified as important AAPPs in our accompanying experiments. 

Table 3-3 Amino acid descriptors acknowledged in this study. 

Descriptor Type Technique used # of vector Ref. 

DPPS physicochemical principal component 

analysis (PCA) 

10 [103] 

FASGAI physicochemical factor analysis (FA) 6 [121] 

z-scale physicochemical PCA and partial least 

square (PLS) 

5 [122] 

ISA/ECI quantum-chemical - 2 [123] 
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Table 3-4 Classification result of peptide-encoding schemes. 

Method # of 

features 

10-fold cross validation on training dataset only Holdout method using training dataset 

and testing dataset 

sens spec F1 ACC AUC sens spec F1 ACC AUC 

EpicCapo 360 0.883 ± 

0.005 

0.792 ± 

0.006 

0.886 ± 

0.003 

0.841 ± 

0.004 

0.915 ± 

0.001 

0.883 0.744 0.831 0.815 0.882 

EpicCapo 
(3 AAPPs*) 

27 0.876 ± 

0.005 

0.821 ± 

0.005 

0.862 ± 

0.003 

0.848 ± 

0.003 

0.916 ± 

0.001 

0.855 0.777 0.828 0.817 0.878 

DPPS 90 0.865 ± 

0.005 

0.760 ± 

0.007 

0.834 ± 

0.004 

0.816 ± 

0.004 

0.888 ± 

0.001 

0.868 0.697 0.807 0.785 0.878 

FASGAI 54 0.847 ± 

0.004 

0.761 ± 

0.004 

0.825 ± 

0.003 

0.801 ± 

0.003 

0.882 ± 

0.001 

0.840 0.730 0.803 0.787 0.874 

z-scale 45 0.847 ± 

0.005 

0.732 ± 

0.005 

0.815 ± 

0.004 

0.793 ± 

0.004 

0.873 ± 

0.002 

0.848 0.676 0.788 0.765 0.858 

ISA/ECI 18 0.799 ± 

0.005 

0.652 ± 

0.005 

0.760 ± 

0.003 

0.731 ± 

0.003 

0.797 ± 

0.001 

0.829 0.643 0.766 0.739 0.796 

Binary 

encoding 

180 0.883 ± 

0.005 

0.721 ± 

0.006 

0.831 ± 

0.003 

0.807 ± 

0.003 

0.883 ± 

0.002 
0.887 0.705 0.820 0.799 0.879 

Means and standard deviations were calculated by 20 iterations of 10-fold cross validation. 

Underlined values represent the highest performance. 

sens = sensitivity; spec = specificity; F1 = F-score; ACC = accuracy; AUC = area under the curve. 

*These three top-ranked AAPPs were MICC010101, SIMK990101, and SIMK990105 (see Appendix B) 
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Figure 3.3 ROC curves of peptide-encoding schemes evaluated on a test set.  

 

3.3.2 Classification results of benchmark datasets 

We applied EpicCapo to benchmark datasets of 34 MHC-I alleles [61]. As shown in 

Table 3-5, NetMHC performed the best, ahead of ARB, SMM, and SMM
PMBEC

. For 

EpicCapo, average AUCs were lower than in NetMHC (0.1%–3.4%) in 13 allele 

datasets and were higher than those in NetMHC (0.1%–9.3%) in 21 allele datasets 

when using all of the 40 AAPPs (360 features). Almost all of standard deviations 

were low except several alleles with results of standard deviation larger than 0.01. 

However, if more data are available, these standard deviations can be decreased. To 

improve the performance of our method, we developed EpicCapo
+
 by selecting an 

appropriate subset of AAPPs. As seen in Table 3-5, the performance of EpicCapo
+
 

was higher than EpicCapo and comparable with NetMHC. The overall performance of 

EpicCapo
+
 is significantly higher than that of other methods according to a paired t-
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test (two-tailed) comparison of average AUCs from all alleles. The IDs of AAPPs 

used for estimating the predictive models of EpicCapo
+
 are shown in Table 3-6. 

Table 3-5 Classification results of 34 allele datasets. 

MHC # of peptides AUC 

ARB SMM SMMPMBEC NetMHC EpicCapo EpicCapo+ 

HLA-A*01:01 1157 0.964 0.980 0.977 0.982 0.972 ± 0.004 0.977 ± 0.003 

HLA-A*02:01 3089 0.934 0.952 0.946 0.957 0.950 ± 0.004 0.951 ± 0.004 

HLA-A*02:02 1447 0.875 0.899 0.899 0.900 0.901 ± 0.004 0.909 ± 0.004 

HLA-A*02:03 1443 0.884 0.916 0.916 0.921 0.920 ± 0.003 0.923 ± 0.003 

HLA-A*02:06 1437 0.872 0.914 0.916 0.927 0.925 ± 0.004 0.927 ± 0.004 

HLA-A*03:01 2094 0.908 0.940 0.928 0.937 0.934 ± 0.004 0.938 ± 0.003 

HLA-A*11:01 1985 0.918 0.948 0.939 0.951 0.945 ± 0.004 0.951 ± 0.002 

HLA-A*24:02 197 0.718 0.780 0.801 0.825 0.853 ± 0.012 0.865 ± 0.011 

HLA-A*26:01 672 0.907 0.931 0.924 0.956 0.941 ± 0.005 0.957 ± 0.007 

HLA-A*29:02 160 0.755 0.911 0.916 0.935 0.944 ± 0.008 0.945 ± 0.010 

HLA-A*31:01 1869 0.909 0.930 0.925 0.928 0.930 ± 0.002 0.935 ± 0.003 

HLA-A*33:01 1140 0.892 0.925 0.925 0.915 0.926 ± 0.004 0.934 ± 0.004 

HLA-A*68:01 1141 0.840 0.885 0.885 0.883 0.891 ± 0.003 0.899 ± 0.003 

HLA-A*68:02 1434 0.865 0.898 0.889 0.899 0.901 ± 0.005 0.907 ± 0.003 

HLA-B*07:02 1262 0.952 0.964 0.960 0.965 0.960 ± 0.004 0.964 ± 0.002 

HLA-B*08:01 708 0.936 0.943 0.956 0.955 0.942 ± 0.005 0.951 ± 0.004 

HLA-B*15:01 978 0.900 0.952 0.940 0.941 0.940 ± 0.006 0.950 ± 0.005 

HLA-B*18:01 118 0.573 0.853 0.880 0.838 0.886 ± 0.013 0.911 ± 0.009 

HLA-B*27:05 969 0.915 0.940 0.941 0.938 0.949 ± 0.005 0.958 ± 0.003 

HLA-B*35:01 736 0.851 0.889 0.889 0.875 0.900 ± 0.004 0.907 ± 0.007 

HLA-B*40:02 118 0.541 0.842 0.843 0.754 0.811 ± 0.007 0.912 ± 0.011 

HLA-B*44:02 119 0.533 0.740 0.739 0.778 0.798 ± 0.009 0.861 ± 0.013 

HLA-B*44:03 119 0.461 0.770 0.753 0.763 0.813 ± 0.010 0.871 ± 0.008 

HLA-B*51:01 244 0.822 0.868 0.895 0.886 0.930 ± 0.012 0.948 ± 0.015 

HLA-B*53:01 254 0.871 0.882 0.885 0.899 0.916 ± 0.008 0.940 ± 0.008 

HLA-B*54:01 255 0.847 0.921 0.935 0.903 0.927 ± 0.008 0.938 ± 0.006 

HLA-B*57:01 59 0.428 0.871 0.843 0.826 0.792 ± 0.009 0.854 ± 0.010 

HLA-B*58:01 988 0.889 0.964 0.945 0.961 0.959 ± 0.005 0.964 ± 0.004 

H-2 Db 303 0.865 0.912 0.901 0.933 0.940 ± 0.014 0.968 ± 0.006 

H-2 Dd 85 0.696 0.853 0.837 0.925 0.956 ± 0.016 0.985 ± 0.017 

H-2 Kb 223 0.792 0.810 0.833 0.850 0.844 ± 0.021 0.880 ± 0.017 

H-2 Kd 176 0.798 0.936 0.931 0.939 0.950 ± 0.015 0.966 ± 0.009 

H-2 Kk 164 0.758 0.770 0.793 0.790 0.883 ± 0.009 0.926 ± 0.008 

H-2 Ld 102 0.551 0.924 0.942 0.977 0.984 ± 0.012 0.992 ± 0.013 

Average  0.801 0.895 0.895 0.900 0.912 0.931 

t-test|ARB  NA 4.37E-5 3.69E-5 1.25E-5 5.21E-6 2.64E-6 

t-test|SMM   NA 8.61E-1 2.30E-1 8.28E-3 2.87E-5 

t-test|SMMPMBEC    NA 2.61E-1 3.50E-3 8.49E-6 

t-test|NetMHC     NA 8.57E-3 7.74E-5 

t-test|EpicCapo      NA 1.95E-5 

For each dataset, AUCs were evaluated based on 5-fold cross validation. In the lower part, p-values of average AUCs were 

calculated using paired t-tests (two-tailed). 

Means and standard deviations were calculated by 20 iterations of 5-fold cross validation for EpicCapo and EpicCapo+. 

Underlined values represent the highest performance among ARB, SMM, SMMPMBEC, and NetMHC.  

Values in bold represent significant improvements of EpicCapo or EpicCapo+ AUCs from 20 iterations of 5-fold cross validation 

over the underlined values according to t-tests (one-tailed, significance level = 0.01). 
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Table 3-6 Optimal subsets of AAPPs identified by EpicCapo
+
 using 34 

benchmark datasets. 

MHC IDs of AAPP used 

HLA-A*01:01 11,14,20,24,28,33 

HLA-A*02:01 9,11,14,24,26,28,31 

HLA-A*02:02 14,24,28 

HLA-A*02:03 3,9,11,14,19,24,25,26,28,29,31 

HLA-A*02:06 9,11,13,14,19,21,22,24,25,26,28,31 

HLA-A*03:01 9,11,14,20,24,26,28,33 

HLA-A*11:01 11,14,26,28 

HLA-A*24:02 11,14,20,24,28,31,33 

HLA-A*26:01 14,28 

HLA-A*29:02 5,9,11,14,19,20,22,24,26,28,33 

HLA-A*31:01 1,9,11,14,20,24,26,28,31,33,38 

HLA-A*33:01 1,11,14,20,24,26,28,33 

HLA-A*68:01 11,14,20,26,28 

HLA-A*68:02 1,2,9,11,14,19,20,22,24,26,28,33,34,39 

HLA-B*07:02 1,9,11,14,20,24,26,28,33 

HLA-B*08:01 4,14,18,20,40 

HLA-B*15:01 14,24,26,28 

HLA-B*18:01 3,14,20,24,26,28 

HLA-B*27:05 9,14,20 

HLA-B*35:01 14,28 

HLA-B*40:02 11,14,24,28 

HLA-B*44:02 9,14,20,28,32 

HLA-B*44:03 13,14,20,28,33,38,39 

HLA-B*51:01 6,11,14,20,24,26,33,36,38,39 

HLA-B*53:01 11,14,20,24,28,33 

HLA-B*54:01 1,9,11,14,20,24,26,28,33 

HLA-B*57:01 5,6,8,12,22,23,24,25,27,31,37 

HLA-B*58:01 14,28 

H-2 Db 1,11,14,24,28 

H-2 Dd 11,14,28 

H-2 Kb 11,14,28 

H-2 Kd 1,11,12,14,19,24,26,28,33 

H-2 Kk 14,28 

H-2 Ld 10,11,14,16,18,20,21,23,24,26,28,33 
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3.3.3 Improved HLA-A-nonapeptide binding predictive models 

In this experiment, EpicCapo
+
 was further developed as EpicCapo

+REF
 to improve the 

predictive performance and identify important positions of nonapeptides in pMHC 

binding (Section 3.2.3). The IDs of AAPPs used in EpicCapo
+REF

 are shown in Table 

3-7 (for more details on AAPPs, see Appendix B). The most important AAPPs 

identified by EpicCapo
+
 were IDs 14 (MICC010101) and 28 (SIMK990105), which 

were selected in 13 out of 14 alleles. IDs 11 (KESO980102) and 26 (SIMK990103) 

were also considered to be important, because they were selected in 9 out of 14 

alleles. From previous studies that used AAPPs in MHC-I epitope prediction, AAPP 

IDs 19 (MIYS960102) and 2 (BETM990101) proved to be important in peptide-MHC 

binding prediction [104, 124, 125]. In our study, however, BETM990101 was not 

selected for any allele dataset, and MIYS960102 was chosen for only two alleles 

(A*02:03 and A*02:06). In a report by Schueler-Furman et al. [124], KESO980102 

was also tested and compared with MIYS960102; however, there was no significant 

improvement in the predictive performance. Therefore, it is interesting that 

MICC010101, SIMK990105, KESO980102, and SIMK990103 were important for 

generating better predictive models in our study. 

Table 3-7 Optimal subsets of AAPPs and numbers of selected features identi-

fied by EpicCapo
+REF

 using 14 HLA-A allele datasets. 

Allele AUC of EpicCapo
+REF

 IDs of AAPP used # of features 

selected 

A*01:01 0.980 1,11,14,20,24,26,28,33 72 

A*02:01 0.958 9,11,14,24,26,28,31 62 

A*02:02 0.913 14,28 18 

A*02:03 0.925 3,9,11,14,19,24,25,26,28,29,31,33 104 

A*02:06 0.926 1,3,9,11,13,14,18,19,21,22,24,25,26,27 

,28,31,34,38,39 

141 

A*03:01 0.946 11,14,20,24,26,28,33 58 

A*11:01 0.956 11,14,26,28 35 

A*24:02 0.877 5,6,14,24,28,31 31 

A*26:01 0.960 14,28 18 

A*29:02 0.955 5,8,9,20,33 23 

A*31:01 0.940 11,14,20,26,28,33 46 

A*33:01 0.940 14,28 17 

A*68:01 0.904 11,14,20,26,28,33 40 

A*68:02 0.913 1,9,11,14,20,22,24,26,28,33,39 79 

Average 0.935   
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We further investigated the generated features according to the selected subset of 

AAPPs. In our peptide-encoding scheme, nine features were generated from one 

AAPP, corresponding to the nine amino acid positions in the nonapeptide. Previous 

studies have indicated that not all positions were important in pMHC binding [27–29, 

103]. Therefore, some features corresponding to specific positions could be removed 

to improve the predictive performance. 

The Relief algorithm [117] was employed in our study to rank the features accord-

ing to their importance in separating the nonbinding peptides from the binding ones. 

The ranking results showed that the ten top-ranked features correspond to positions 9 

and 2 in most of the alleles, followed by positions 3, 1, or 7 (see Appendix C). As 

indicated in Tables 3-5 and 3-7, the overall AUC value of EpicCapo
+REF

 was higher 

than that of EpicCapo
+
; however, it was still slightly lower than that of NetMHC in 

the A*01:01 and A*02:06 alleles. In summary, EpicCapo
+REF

 performed better than 

other methods, with an average AUC of 0.935. Table 3-7 also shows the number of 

selected features after employing the Relief-F algorithm. These numbers were differ-

ent for specific alleles. For the A*01:01, A*02:02, and A*06:01 alleles, no features 

were removed. However, for the A*02:06, A*24:02, A*29:02, and A*68:02 alleles, 

20 or more features were removed. Interestingly, features corresponding to positions 5 

and 8, which have previously been considered to not significantly contribute to HLA 

binding potentials, were still included in some of the selected feature subsets. There-

fore, we assumed that features corresponding to different positions are not 

independent, and that all features from all positions should be required input to 

estimate the model with the highest-performance (see Appendix C). 

3.3.4 Candidates of promiscuous epitopes for a development of influenza A viral 

vaccines 

Since EpicCapo
+REF

 performed better than the other existing methods when testing 

with 14 HLA-A allele datasets, it was further used to find candidates of promiscuous 

epitopes from influenza A viral sequences. Epitopes from protein sequences of H1N1 

(A/PR/8/34), H3N2 (A/Aichi/2/68), H1N1 (A/New York/4290/2009), and H5N1 

(A/Hong Kong/483/97) were identified using EpicCapo
+REF

. The prediction results of 

all influenza A strains categorized into specific alleles are shown in Table 3-8. All 14 

alleles were assigned to supertype groups using the supertype classification defined 

by previous studies [107–110]. The A*01:01 and A*26:01 alleles were assigned to the 
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A1 group. The A*29:02 allele was assigned to an unidentified group. As shown in 

Table 3-8, there are a small number of predicted positive peptides in the A1 super-

type. For example, in case of H1N1 (A/PR/8/34), only one peptide was identified as 

positive for the allele A*26:01. In contrast, there were quite high numbers of predict-

ed positive peptides in the A2, A24, and A3 supertypes. Even the A*29:02 allele, 

which was assigned to an unidentified group, had a higher number of predicted 

positive peptides than those in the A1 group. Based on our findings, when promiscu-

ous epitopes were identified from the overlapping epitopes of four Influenza A viral 

strains (Appendix D), the A1 group rarely shared peptides with other groups. As 

shown in Appendix D, the A*01:01 allele shared only one peptide (YSHGTGTGY) 

with A*29:02, and the A*26:01 allele shared the peptide DTVNRTHQY with 

A*29:02 and A*68:01. Moreover, the A*29:02 allele also shared peptides with the A2 

and A3 groups: e.g., SMELPSFGV and QTYDWTLNR, respectively (Appendix D). 

Therefore, A*29:02 can be considered as a special allele that links A1, A2, and A3 

together. Furthermore, Doytchinova et al. [111] assigned A*29:02 to the A3 group. 

However, we did not find overlapping epitopes from the four Influenza A viral strains 

in the A*24:02 allele assigned to the A24 group. This suggested that A*24:02 itself is 

different from other alleles considered here, and this might be the reason why most of 

the previous studies assigned it separately to the A24 group [107–110]. As shown in 

Appendix D, 51 peptides (67.1%) of the total 76 epitopes were immunologically 

validated as positive, whereas 9 peptides (11.8%) were validated as negative. No 

evidence of immunological validation could be obtained for 16 peptides (21.1%). 

These results indicate that our newly developed method provides a markedly high 

accuracy in epitope identification, given the fact that most of the identified epitopes 

could be correlated with immunological evidence. However, even without such 

evidence, those epitopes identified by our computational approach might be consid-

ered as candidates for new vaccine development. 

Our results are in agreement with the study by Uchida [62], which identified pro-

miscuous epitopes from influenza A H1N1 (A/PR/8/34), H3N2 (A/Aichi/2/68), H1N1 

(A/New York/4290/2009), and H5N1 (A/Hong Kong/483/97). Uchida found experi-

mentally confirmed CTL epitopes in the A2 group. In our results, the epitopes 

identified by EpicCapo
+REF

 in the A2 group were consistent with them (Table 3-9). In 

addition, we found promising candidates of promiscuous epitopes also for the A1 and 

A3 groups as shown in Appendix D. 
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Table 3-8 Prediction results of EpicCapo
+REF

 using four influenza A strains 

categorized by specific alleles. 

Allele # of predicted positive peptides Super type 

H1N1 

New York/4290/2009 

H5N1 

Hong Kong/483/97 

H1N1 

PR/8/34 

H3N2  

Aichi/2/68 

A*01:01 14 13 6 5 A1 

A*26:01 6 9 1 5 A1 

A*29:02 103 134 61 161 ? 

A*02:01 122 160 71 168 A2 

A*02:02 302 370 162 391 A2 

A*02:03 268 326 144 307 A2 

A*02:06 200 250 105 264 A2 

A*68:02 198 220 109 277 A2 

A*24:02 90 108 50 150 A24 

A*03:01 85 94 50 136 A3 

A*11:01 162 176 91 229 A3 

A*31:01 183 227 110 245 A3 

A*33:01 96 117 62 110 A3 

A*68:01 263 346 151 325 A3 

Total 2092 2550 1173 2773  

 

Although the overall performance of EpicCapo
+REF

 was high, there are two limita-

tions in the use of this method. The first limitation is the length of input peptides must 

be equal to 9. In the further study, we will improve EpicCapo
+REF

 to be applicable to 

peptides with the length of 8–11. The second limitation is that input amino acids must 

not be special or ambiguous ones. Examples of special amino acids are U (Selenocys-

teine) and O (Pyrrolysine). Also, examples of ambiguous amino acids are B 

(Asparagine or aspartic acid), Z (Glutamine or glutamic acid), and J (Leucine or 

Isoleucine). EpicCapo
+REF

 are not applicable with these amino acids since they are not 

included in AAPPs. 
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Table 3-9 Comparison of epitopes identified by EpicCapo
+REF

 with the broad-

ly protective influenza A viral epitopes identified by Uchida [62]. 

Viral strain CTL epitopes identified by 

[62] 
Shared alleles identified by EpicCapo

+REF
 

H1N1 

(A/PR/8/34) 

GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06 

IILKANFSV A*02:01, A*02:02, A*02:03, A*02:06, 

A*68:02 GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06 

H3N2 

(A/Aichi/2/68) 

GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06 

VMLKANFSV A*02:01, A*02:02, A*02:03, A*02:06 

GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06 

H1N1 

(A/NewYork/4290/2009) 

GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06 

IVLKANFSV A*02:01, A*02:02, A*02:06, A*68:02 

GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06 

H5N1 

(A/Hong Kong/483/97) 

GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06 

IILKANFSV A*02:01, A*02:02, A*02:03, A*02:06, 

A*68:02 GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06 

 

3.4 Conclusions 

In this study, we have developed a novel method for epitope prediction. Peptides were 

encoded numerically, combining information of pMHC contact sites and amino acid 

pairwise contact potentials, accompanied by an SVM for estimating the predictive 

model. Our method achieved high performance in testing with benchmark datasets. In 

addition, our study identified a number of candidates of promiscuous CTL epitopes 

from four influenza A viral strains, consistent with previously reported immunologi-

cal experiments. This consistency in results strongly supports the accuracy of our 

method. We speculate that our techniques may be useful in identifying promising 

candidates of promiscuous epitopes for the development of new vaccines. 
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Chapter 4  PAAQD: Predicting immunogenicity of 

MHC class I binding peptides using amino acid 

pairwise contact potentials and quantum 

topological molecular similarity descriptors 

 

 

 

Prediction of peptide immunogenicity is a promising approach for novel vaccine 

discovery. Conventionally, epitope prediction methods have been developed to 

accelerate the process of vaccine production by searching for candidate peptides 

from pathogenic proteins. However, recent studies revealed that peptides with high 

binding affinity to major histocompatibility complex molecules (MHCs) do not always 

result in high immunogenicity. Therefore, it is promising to predict the peptide 

immunogenicity rather than epitopes in order to discover new vaccines effectively. To 

this end, we developed a novel T-cell reactivity predictor which we call PAAQD. 

Nonapeptides were encoded numerically, using combining information of amino acid 

pairwise contact potentials (AAPPs) and quantum topological molecular similarity 

(QTMS) descriptors. Encoded data were used in the construction of our classification 

model. Our numerical experiments suggested that the predictive performance of 

PAAQD is at least comparable with POPISK, one of the pioneering techniques for T-

cell reactivity prediction. Also, our experiment suggested that the first and eighth 

positions of nonapeptides are the most important for immunogenicity and most of the 

anchor residues in epitope prediction were not important in T-cell reactivity predic-

tion. The R implementation of PAAQD is available at 

http://pirun.ku.ac.th/~fsciiok/PAAQD.rar. 

 

http://pirun.ku.ac.th/~fsciiok/PAAQD.rar
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4.1 Introduction 

The immune system is one of the most complex mechanisms that defend an organism 

from infections. After antigen presenting cells (APCs) have phagocytosed pathogens, 

endogenous proteins from pathogens are cleaved into small peptides by a proteasome. 

Cleaved peptides are then transported into the endoplasmic reticulum by transporter 

associated with antigen processing (TAP) and selectively bound to MHCs which are 

HLAs in humans. At this step, pMHC complexes are translocated to the cell surface 

and recognized by CTLs via TCRs. Peptides are considered to be immunogenic if an 

immune response is successfully activated [126]. 

As mentioned in the chapters 1, 2, and 3, epitope prediction is extensively studied 

in immunoinformatics for decades [21]. Recently, most of the successful methods for 

the epitope prediction are applications of machine learning techniques. However, the 

problem of peptide immunogenicity prediction for T-cell reactivity is still not widely 

researched. 

Prediction of peptide immunogenicity is a promising approach for the design of 

novel vaccines [12, 127, 128]. Traditionally, the process of developing a new vaccine 

is time-consuming and laborious. Computational methods for immunogenicity 

prediction can be effectively applied to scanning for candidate peptides; thus they 

have a potential to identify new promising vaccines. Conventionally, epitope predic-

tion methods have been used to search for candidate peptides from pathogenic 

proteins. Predicted peptides with high binding affinity to the MHC-I were supposed to 

be immunogenic peptides. However, recent studies revealed that predicted peptides 

with high binding affinity to the MHC-I molecules did not always result in high T-cell 

reactivity [51, 129]. Conversely, predicted peptides with low binding affinity to the 

MHC-I do not necessarily result in low immunogenicity [130]. In addition, other 

factors such as the trimming mediated by the endoplasmic reticulum aminopeptidase 

(ERAAP) were more strongly correlated to T-cell immune responses than MHC 

binding affinities [52]. Therefore, immunogenicity could not be accurately determined 

by existing epitope prediction methods. 

Constructing a model for predicting peptide immunogenicity is more difficult than 

predicting epitope. The immunogenicity does not only depend on the particular allele 

of HLA and the type of TCR in host immune system but is also governed by negative 

T-cell selection (central tolerance). The central tolerance is defined as the property of 



46 

 

the whole proteome and cannot casually be learned by machine learning approaches 

[53–55]. 

The studies of complex protein crystal structures have been conducted to uncover 

TCR–pMHC binding mechanisms [56, 131, 132]. Positions 4, 6, and 8 of nonapep-

tides were reported to have an impact on TCR–pMHC binding. The substitution of 

lysine to arginine at the position 4 led to a better fit of TCR–pMHC, whereas the 

mutation at the position 6 increased dissociation rate of TCR–pMHC [56]. Additional-

ly, the side chain interaction at the position 8 was crucial in TCR-peptide binding and 

a hydrogen bond was formed by the complementarity determining region (CDR) at 

this position [57]. However, precise explanations of TCR–pMHC binding mecha-

nisms for all HLA alleles are still not concrete. This because a large number of 

resolved crystal structures are currently not available. Figure 4.1 shows the resolved 

TCR–pMHC complex crystal structure (PDB ID: 2AK4). 

The first predictor for T-cell reactivity is POPI [58]. POPI used 23 informative 

physicochemical properties collected from the AAindex database [59] for encoding 

peptides and applied the SVM as a classifier. The second predictor is POPISK [55]. 

POPISK used the SVM with string kernels. POPISK outperformed POPI. Besides, the 

importance of amino acid positions of the peptides with length 9 was evaluated by 

removing features corresponding to each position. The positions whose deletion 

significantly decreased predictive performance were considered as important posi-

tions. POPISK identified six important positions (1, 4, 5, 6, 8, and 9) for T-cell 

reactivity. 

In this chapter, we introduced our novel T-cell reactivity predictor named 

PAAQD. Peptides were encoded numerically, using combining information of AAPPs 

[59] and QTMS descriptors [63]. Previous studies have used AAPPs in the MHC-I 

epitope prediction [104, 124, 125]. Those studies focused on using the AAPPs of 

Miyazawa and Jernigan (1996) [133] and Betancourt and Thirumalai (1999) [134]. In 

our study, 40 AAPPs were applied, including the information from two AAPPs in 

their reports. The QTMS descriptors were used in constructing the quantitative 

structure-activity relationship (QSAR) model for predicting pMHC binding affinities. 

The performance of using the QTMS descriptors was comparable with other methods 

reported at that time [63]. The quantum chemistry methods were applied to study 

variations in the electrostatic field of pMHC complexes. The analyzed data provide 

more insights of the interactions between peptides and the MHC [135]. Therefore, the 
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use of AAPPs and molecular quantum properties such as QTMS descriptors in T-cell 

reactivity prediction is a promising approach to uncover TCR–pMHC binding mecha-

nisms. Simultaneously, new immunogenic peptides could be identified. 

 

Figure 4.1 The structure of TCR–pMHC complex (PDB ID: 2AK4).  

(A) The LPEP peptide is fitted inside the MHC and TCR binding clefts. (B) A closer view of a 

TCR-peptide and pMHC binding complex. 

 

PAAQD's performance was evaluated by using the IMMA2 dataset published by 

Tung et al. (2011) [55] and compared with the two existing T-cell reactivity predic-

tors, POPI and POPISK. We evaluated the importance of positions by removing 

features corresponding to the specific position of nonapeptides. The importance of 

AAPPs and QTMS descriptors was evaluated in the same manner by removing 

features corresponding to specific AAPP or QTMS descriptor. The dataset of HLA-

A2 peptides collected from IEDB was used as the validation dataset to test for the 

predictive stability of PAAQD. This dataset consists of immunogenic and non-

immunogenic peptides that have not been presented in the IMMA2 dataset. PAAQD 

showed comparable performance to POPISK. Positions 1 and 8 were identified as 

important positions in T-cell reactivity by using our method. This result was concord-

ant with a previous study [57] and the POPISK results that the positions 1 and 8 were 
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crucial in the response of T-cell reactivity. We speculate that our method may be 

useful in identifying immunogenic peptides for the development of new vaccines. 

4.2 Materials and methods 

4.2.1 Datasets 

Two datasets were used in this study. The first dataset is called the IMMA2 dataset, 

collected by Tung et al. (2011) [55]. This dataset consists of 558 immunogenic and 

527 non-immunogenic nonapeptides associated with the HLA-A2 supertype (Appen-

dix E). All of nonapeptides were retrieved from three databases: MHCPEP [44], 

SYFPEITHI [42], and IEDB [41]. The second dataset was collected from IEDB 

database by selecting nonapeptides that were specific to the HLA-A2 supertype. The 

second dataset consists of 278 immunogenic and 101 non-immunogenic nonapeptides 

(Appendix F). All of these nonapeptides are not included in the IMMA2 dataset. The 

sequence preference of the dataset we collected is different from the IMMA2 dataset. 

This dataset was used for evaluation of the predictive stability for the difference of 

datasets. We focused on IEDB since this database contains more entries than other 

existing immunogenic peptide databases [136]. IEDB encompasses reliable data from 

biotechnological and pharmaceutical companies, as well as direct submissions from 

research programs and partners. 

4.2.2 Peptide encoding 

Peptides were encoded numerically using our peptide encoding scheme. The encoding 

scheme was defined by utilizing the information of the pMHC contact sites retrieved 

from the international ImMunoGeneTics information system, IMGT [60], AAPPs 

from AAindex [59], and the QTMS descriptors [63]. 

The reference pMHC contact sites defined by Kaas and Lefranc (2005) [60] were 

modified by adding more MHC positions as described in chapter 3.2.1. The references 

and added pMHC contact sites positions were shown in Table 3-1. This information 

served as a binding template between the peptide and MHC. Subsequently, the 

AAPPs were used as a representative value for each amino acid pair, consisting of one 

MHC amino acid and its adjacent nonapeptide amino acid. These amino acid pairs 

were defined in the pMHC contact sites. In this study, 40 AAPPs were applied. The 

Appendix B describes details of all AAPPs used. 
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The used peptide encoding scheme was similar to the one used in chapter 3.2.1. 

However, the positional scoring matrices Ti(a) are not concerned in this study. We 

define a score     
( )

 for the     amino acid of the nonapeptide   under a     type of 

AAPPs as follows:  

    
( )

  ∑     (  
( )

   )

 

   

∑   

 

   

⁄   

where   is the length of the HLA protein and     is an indicator variable that takes the 

value of 1 if the     amino acid of a nonapeptide and the     amino acid of the MHC 

contact each other, and 0 otherwise. Note that ∑    
 
    is the number of contact sites 

for the     amino acid of a nonapeptide (see Table 3-1). Intuitively, this score repre-

sents average pair-potential of contact sites. Let   be the number of pair-potential 

types available, and   be the length of nonapeptides, which is set to 9 throughout this 

study. Using this scoring scheme, we transform a nonapeptide   into a M  K -

dimensional numerical vector, whose ( (   )   )   element is     
( )

. For example, 

the encoded nonapeptides consist of 9 features if the number of pair-potential types is 

1 and 360 features if the number is 40. Figure 4.2 illustrates an example of the data-

encoding scheme for the first position of a nonapeptide. Each encoded peptide was 

then combined with the corresponding feature vector constructed from using QTMS 

descriptors [63]. There are four types of QTMS descriptors used in this study (see 

Table 4-1). When these descriptors were applied, the feature vector of length 189 was 

produced for one nonapeptide. Therefore, the final feature vector for one nonapeptide 

of length 549 was generated when combining feature vectors corresponding to AAPPs 

and QTMS descriptors. 

Table 4-1 QTMS descriptors used in this study. 

Descriptor Description # of vector 

CBFQ Common bonds  factor analysis of QTMS 6 

CDFQ Common bonds descriptor-based factor analysis 

of QTMS 

3 

CUFQ Common bonds unfolded-data-based factor 

analysis of QTMS 

5 

ADFQ All bonds descriptor-based factor analysis of 

QTMS descriptors 

7 
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Figure 4.2 Our peptide data-encoding scheme for the first position of the nonapep-

tide.  

4.2.3 Prediction of peptide immunogenicity using the IMMA 2 dataset 

The proposed peptide-encoding scheme was applied to the IMMA2 dataset and input 

to the random forest implemented in Weka [118]. The number of trees generated and 

the number of features randomly sampled as candidates at each split were set to 200 

and 10, respectively. The predictive performance is evaluated using three measures; 

overall accuracy (ACC), Matthew’s correlation coefficient (MCC), and area under 

receiver operating characteristic curve (AUC). ACC is defined in chapter 3.2.1 and 

MCC are defined as 

     
           

√(     )(     )(     )(     )
’ 

where TP, FP, TN, and FN are the number of overall true positives, false positives, 

true negatives, and false negatives, respectively. The average and standard deviations 

of ACC, MCC, and AUC were evaluated by repeating 10-fold cross validation 20 

times, independently. We compared our method with POPI [58] and POPISK [55]. 

Additionally, the encoded data were separated into two datasets. The first dataset 

includes 360 features corresponding to AAPPs. The second dataset includes 189 
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features corresponding to QTMS descriptors. Each dataset was input to the random 

forest to evaluate the performance using 20 iterations of 10-fold cross validation 

4.2.4 Evaluation of positional importance 

To uncover TCR-pMHC binding mechanisms in T-cell recognition, it is essential to 

identify nonapeptide positions that have a significant impact on the binding force 

field. Previous studies analyzed the importance of positions based on protein crystal 

structures of TCR-pMHC complexes. However, the discovery was specific to a small 

number of  HLA alleles since the number of resolved crystal structures of TCR-

pMHC complexes are currently not enough [56, 57, 131, 132]. 

In this study, we assessed the importance of each position using the method de-

scribed in [55]. The decreases in the predictive performance arisen from removing 

features corresponding to the specific position were evaluated. The position that led to 

a significant decrease in the performance was considered as an important position. To 

evaluate the positional importance of nonapeptides, nine datasets were generated from 

encoded data by removing features corresponding to each position in nonapeptides. 

The PAAQD performance was then evaluated by using 20 independent iterations of 

10-fold cross validation in the same manner as used on original encoded data. We 

compared our PAAQD with POPISK. To avoid the influence of the difference of 

classifiers, we used the SVM, the same classifier as POPISK. The SVM implementa-

tion used in this experiment is the one in the R package kernlab [112]. 

4.2.5 Evaluation of the importance of AAPPs and QTMS descriptors 

In our peptide-encoding scheme, 40 AAPPs were used. Some AAPPs or QTMS 

descriptors might be redundant in TCR-pMHC binding mechanisms. Therefore, 

features corresponding to the specific AAPP or QTMS descriptor were removed from 

the encoded data. This generated 40 and 4 datasets when removing features corre-

sponding to the specific AAPP and QTMS descriptor, respectively. Afterwards, the 

performance of PAAQD was evaluated on these reduced datasets using 20 independ-

ent iterations of 10-fold cross validation. 

4.2.6 Prediction of peptide immunogenicity using the validation dataset 

The final model for peptide immunogenic prediction was constructed based on the 

IMMA 2 dataset. This model was used to predict immunogenicity of peptides in the 

validation dataset. The evaluated performance indicates the predictive stability when 
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peptides with different sequence preferences were input to the model. The PAAQD 

performance was compared with POPISK. 

4.3 Results and discussion 

4.3.1 The predictive performance of PAAQD on the IMMA 2 dataset 

To investigate effects of AAPPs and QTMS descriptors on the performance of 

PAAQD, we conducted five experiments based on the IMMA 2 dataset. The first and 

second experiments were conducted by using POPI-modified and POPISK respective-

ly. In the third experiment, the performance was evaluated on the dataset that contains 

features corresponding to AAPPs only. In the fourth experiment, the performance was 

evaluated on the dataset that contains features corresponding to QTMS descriptors 

only. The fifth experiment was conducted by using PAAQD when the performance 

was evaluated on the dataset that contains features corresponding to both AAPPs and 

QTMS descriptors. Figure 4.3 shows the performance of five experiments based on 

the IMMA 2 dataset. This result indicated the comparable performance of PAAQD 

with POPISK. PAAQD provided 1% higher AUC than POPISK with significance 

level 0.01 when performing one sample t-test of AUCs of PAAQD against the upper 

bound AUCs of POPISK (0.744). Interestingly, using only encoded features from 

AAPPs could lead to the highest AUC of 0.75, whereas MCC was 2% lower than 

PAAQD. Although the performance of using encoded features from QTMS de-

scriptors only was lower than AAPPs in all three measurements, MCC increased by 

2% with significance level 0.01 compared with using the combination of both encod-

ed features. Therefore, cooperation between physicochemical properties represented 

by AAPPs and quantum topological properties represented by QTMS descriptors are 

promising to provide more insights in TCR-pMHC binding mechanisms. 
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Figure 4.3 Comparison of 20 independent iterations of the 10-fold cross validation 

performance of POPI, POPISK, encoded features using AAPPs only, encoded features 

using QTMS descriptors only, and PAAQD.  

The symbol ** indicates significance level 0.01 of one sample t-test of PAAQD AUCs with upper 

bound AUCs of POPISK (0.744). The symbol †† indicates significance level 0.01 of two-sample t-test 

between MCCs of PAAQD and using only AAPPs. 

4.3.2 The positional importance in peptide immunogenicity 

The result of important positions of nonapeptides in T-cell reactivity prediction was 

shown in Figure 4.4. Removing features corresponding to one of the nine positions for 

nonapeptides except the position 7 decreased the performance of PAAQD when 

compared with the use of all positions. Removing features corresponding to the 

position 7 reduced AUC, though this was not statistically significant. Obviously, 

deletions of positions 1 and 8 led to more decrease in MCC and ACC than the other 

seven positions. Previous studies based on the analysis of TCR-pMHC complex 

crystal structures identified positions 4, 6, and 8 as significant positions in TCR-

pMHC binding mechanisms [56, 57]. For the position 1, there was no evidence of its 

importance in peptide immunogenicity. However, the position 1 was identified as an 

important position by POPISK [55]. For PAAQD, positions 2, 3, and 7 were less 

important since small decreases in the performance were observed. These findings are 

concordant with the result of POPISK. 
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The positional importance suggested by PAAQD was partially inconsistent with 

the result of POPISK, especially in positions 4 and 6. Therefore, we speculated that 

the result could be affected by the type of classifier that we used. The repeated 

experiments on encoded data using the SVM classifier were conducted to identify 

important positions. The result is consistent with the positional importance result of 

POPISK when positions 1, 4, 5, 6, 8, and 9 were strongly decreased the performance 

(Figure 4.5). Therefore, there was a high possibility that the result of feature im-

portance was affected by the difference of the classifiers. In Figure 4.5, the 

performance of PPAQD with the SVM when all positions were included was 0.67, 

0.73, and 0.35 for ACC, AUC, and MCC, respectively. Standard deviations of ACC, 

AUC, and MCC were less than 0.007. The cost parameter C used in the SVM was set 

to 1 and the RBF kernel was used in the training and predicting processes. 

Interestingly, both results from PAAQD and POPISK indicated that the position 2, 

a primary anchor residue in pMHC binding [27], was the least importance in peptide 

immunogenicity. Similarly, positions 3 and 7, secondary anchor residues in pMHC 

binding [28, 29] did not strongly decrease the performance of the classification when 

either position was removed from the dataset. Additionally, recent studies showed that 

high binding affinity to MHC-I molecules does not always result in high T-cell 

reactivity [51, 129].  

The principle of epitope prediction is based on pMHC binding mechanisms 

whereas T-cell reactivity prediction is based on TCR-pMHC binding mechanisms. 

The binding of peptide to MHC and TCR are definitely different. Therefore, both 

techniques cannot be used interchangeably. 
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Figure 4.4 The decrease in the performance of PAAQD evaluated on datasets with-

out features corresponding to specific positions of nonapeptides.  

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by 

comparing the performance between reduced datasets with the dataset including all positions. 

 

 

Figure 4.5 The decrease in the performance of PAAQD with the SVM evaluated on 

datasets without features corresponding to specific positions of nonapeptides. 

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by 

comparing the performance between reduced datasets with the dataset including all positions. 
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4.3.3 The importance of AAPP and QTMS descriptors in peptide immunogenicity 

The importance of each AAPP was evaluated by removing features corresponding to 

the specific AAPP and was observed for the decrease in the performance. Figure 4.6 

shows the result of each AAPP importance. The horizontal axis represents AAPP IDs 

(see Appendix B for more information) and the vertical axis represents the decrease in 

performance. The most important AAPP IDs were 6, 21, 26, 27, 28, and 33 with 

significance level 0.0001. In contrast, the least important AAPP IDs were 9, 11, 16, 

24, 29, and 36. Table 4-2 shows more detail of the important AAPPs identified by 

PAAQD. Surprisingly, four out of the six important AAPPs were related to distance 

between amino acids (ID 6, 26, 27, and 28). Therefore, the distance between contact-

ing side chains of amino acids may be an essential factor that determines the binding 

affinity of pMHC for TCR. This binding is a crucial step for T-cell responses.  

The importance of QTMS descriptors is shown in Figure 4.7. Removing features 

corresponding to any QTMS descriptor decreased ACC and MCC. Removing features 

corresponding to the ADFQ descriptor was the least important one when compared to 

the other three descriptors. However, the previous study found that the ADFQ de-

scriptor was the most important one in the HLA-peptide binding prediction [63]. 

Again, these findings indicate the difference between epitope prediction and T-cell 

reactivity prediction in influence of features to the performance of the predictive 

model. The QTMS descriptors were suggested to be essential in T-cell reactivity 

prediction since their presences improved the performance from using AAPPs alone 

(see Figure 4.3). 

Table 4-2 Important AAPPs in T-cell reactivity prediction identified by using 

our method. 

ID Description Reference 

6 Distances between centers of interacting side chains in the antipar-

allel orientation 

[137] 

21 Quasichemical energy of transfer of amino acids from water to the 

protein environment 

[138] 

26 Distance-dependent statistical potential (contacts within 7.5–10 

Angstroms) 

[120] 

27 Distance-dependent statistical potential (contacts within 10–12 

Angstroms) 

[120] 

28 Distance-dependent statistical potential (contacts longer than 12 

Angstroms) 

[120] 

33 Number of contacts between side chains derived from 25 X-ray 

protein structures 

[139] 
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Figure 4.6 The decrease in the performance of PAAQD evaluated on datasets with-

out features corresponding to the specific AAPP. 

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by 

comparing the performance between reduced datasets with the dataset including all positions. 
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Figure 4.7 The decrease in the performance of PAAQD evaluated on datasets with-

out features corresponding to the specific QTMS descriptor. 

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by 

comparing the performance between reduced datasets with the dataset including all positions. 

4.3.4 Result of peptide immunogenicity prediction using the validation dataset 

The result of peptide immunogenicity prediction using validation dataset is shown in 

Figure 4.8. ACC and MCC of PAAQD were 0.72 and 0.37, respectively. ACC and 

MCC of POPISK were 0.68 and 0.28, respectively. PAAQD significantly outper-

formed POPISK 4% and 9% in ACC and MCC, respectively. This result indicated 

that PAAQD outperformed POPISK when peptides with different sequence prefer-

ences were input to the generated predictive model. We further examined the over- 

and underrepresented amino acids in corresponding positions of the IMMA 2 dataset 

and the validation dataset using the two-sample logos [140]. In the two-sample logos, 

differences among amino acids were statistically significant with level 0.01 when 

using the two-sample t-test. The two-sample logo of the IMMA 2 dataset (Figure 4.9) 

showed many over- and underrepresented amino acids. However, the two-sample logo 

of the validation dataset (Figure 4.10) showed underrepresentation of valine at the 

position 2, isoleucine at the position 6, and aspartic acid at the position 8. From these 

two-sample logos, both datasets are clearly different in preferences of amino acid 
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sequences. This indicated that PAAQD provided more predictive stability than 

POPISK when using the test dataset with sequence preferences different from the 

training set. 

 

 

Figure 4.8 The result of peptide immunogenicity prediction evaluated on the valida-

tion dataset.  

 

 

Figure 4.9 Two-sample logo that represents over- and underrepresented amino acids 

in the IMMA 2 dataset.  
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Figure 4.10 Two-sample logo that represents over- and underrepresented amino ac-

ids in the validation dataset.  

 

4.4 Conclusion 

We developed a novel method for T-cell reactivity prediction which we call PAAQD.  

Nonapeptides were encoded numerically, using combining information of amino acid 

pairwise contact potentials (AAPPs) and quantum topological molecular similarity 

(QTMS) descriptors. Encoded data were used in the construction of our classification 

model. PAAQD achieved the comparable performance with POPISK which is a high-

performance T-cell reactivity predictor when testing with the IMMA 2 dataset. 

Additionally, PAAQD outperformed POPISK when testing with the validation 

dataset. This indicated that PAAQD provided more predictive stability when peptides 

with different sequence preferences were input to the model. In this study, clear 

differences between epitope prediction and peptide immunogenicity prediction were 

demonstrated. The analysis of important positions showed that most of the anchor 

residues in epitope prediction were not important in T-cell reactivity prediction. Both 

of these two techniques are promising in vaccine development and can be used 

complementary. We speculate that PAAQD may be useful in identifying immunogen-

ic peptides for the development of new vaccines. 

 

 

 

 

 

 

  



61 

 

 

 

 

Chapter 5  Conclusions 

 
 

Previous chapters described the development of new epitope and T-cell reactivity 

prediction methods for advancement in the vaccine discovery. This final chapter 

summarizes the contributions of this thesis and presents future research directions. 
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5.1 Dissertation summary 

Epitope is a part of an antigen recognized by the immune systems. Epitopes play the 

important role in activating the immune systems and are the key components in the 

vaccine development. The conventional vaccine development is time-consuming and 

laborious. Computational methods can be applied to help in epitope identification and 

speed up the vaccine production. From the last decade until now, many epitope 

prediction methods were proposed and have been used to search for new epitopes. 

However, recent studies found that some predicted epitopes with high binding affini-

ties not stimulated immune responses. In addition, predicted epitopes with low 

binding affinities actually stimulated immune responses. Therefore, the result of 

epitope prediction is not always correct. Consequently, T-cell reactivity prediction has 

been introduced to search for immunogenic peptides instead of using epitope predic-

tion. Hereby, the objectives of this dissertation are: (1) to develop a new epitope 

prediction method by using information of pMHC contact sites and AAPPs, (2) to 

identify important AAPPs and positions of nonapeptide in the pMHC binding, (3) to 

identify novel promiscuous epitopes from protein sequences of influenza A viral 

strains, (4) to develop a new T-cell reactivity prediction method by using information 

of AAPPs, pMHC contact sites, and QTMS descriptors, (5) to identify important 

AAPPs, QTMS descriptors, and positions of nonapeptide in the TCR-pMHC binding. 

The main contributions of the thesis can be summarized as follows. 

Firstly, a new epitope prediction method named EpicCapo
+REF

 was developed. 

The combination of pMHC contact sites and AAPPs provided the better interpretabil-

ity for the further analysis than other methods. Our method achieved high 

performance and outperformed other state of the art methods in many datasets. We 

speculate that our method can be applied in the development of new vaccines.  

Secondly, by using our method, we are able to identify important AAPPs and po-

sitions of nonapeptides in the pMHC binding.  We found that two AAPPs were very 

important in the pMHC binding. In addition, by ranking features in the dataset, 

positions 9 and 2 were the most important ones follow by positions 3, 1, or 7. Interest-

ingly, when we remove features corresponded to one position, the performance of the 

method was decreased. Therefore, we suggest that all nine positions are important in 

the pMHC binding and their effects to the binding affinity are not independent. 
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Thirdly, we used EpicCapo
+REF

 to identify promiscuous epitopes from four influ-

enza A viral strains: H1N1 (A/PR/8/34), H3N2 (A/Aichi/2/68), H1N1 (A/New 

York/4290/2009), and H5N1 (A/Hong Kong/483/97). 67.1% of predicted epitopes 

were consistent with previous immunological experiments. This consistency indicates 

that our method has high accuracy in epitope prediction. 

Fourthly, a new T-cell reactivity prediction method named PAAQD was devel-

oped. The performance of PAAQD is at least comparable with the previous high 

performance T-cell reactivity prediction method. However, our method shows higher 

predictive stability when tested with the blinded dataset. 

Finally, by using PAAQD, we are able to identify important AAPPs, QTMS de-

scriptor, and positions of nonapeptides in the TCR-pMHC binding. We found that all 

QTMS descriptors and six AAPPs were important. Surprisingly, positions 2, 3, and 7 

were found as less important ones. However, these positions have been identified as 

anchor residues for epitope prediction. We suppose that epitope prediction and T-cell 

reactivity prediction are considerably different and should not be used interchangea-

bly. In addition we found that position 1 and 8 were the most important ones in the 

TCR-pMHC binding. 

5.2 Future works 

As we have shown before, our methods for epitope and T-cell reactivity prediction are 

very promising for the new vaccine development. However, there are limitations 

when using our methods. First, an input peptide must be a nonapeptide which is a 

peptide composed of 9 amino acids. Second, an input peptide must not contain special 

or ambiguous amino acids: amino acids U (Selenocysteine), O (Pyrrolysine), B 

(Asparagine or aspartic acid), Z (Glutamine or glutamic acid), J (Leucine or Isoleu-

cine), and X (unknown). Our methods are not applicable with these amino acids since 

they are not included in AAPPs.  

According to the above limitations, in our future researches, we will develop 

epitope and T-cell reactivity predictors that are able to be used with various lengths of 

peptides. However, there are small numbers of positive peptides or negative peptides 

in some lengths. Therefore, oversampling techniques such as SMOTE [141] can be 

used to generate more samples in the future study. For the problem of special or 

ambiguous amino acids, we still search for the practical solution. Since there are only 
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small numbers of peptides containing these amino acids, removing them may be the 

best solution. In addition, there are several topics which we concerned as the future 

studies: 

The applications of our peptide encoding schemes in other problems. We de-

veloped the peptide encoding schemes for both epitope and T-cell reactivity 

prediction. However, these schemes can be applied in other studies such as protein-

ligand binding, protein-protein interaction (PPI) prediction, and drug discovery.  

The use of data curation. We observed that many records in the databases are not 

reliable. For example, a peptide is reported as epitope in one record but not in another. 

To solve this problem, we need to look into the detail of each record and then make 

the decision to choose the correct one. However, this approach is time-consuming and 

not practical if there are large numbers of peptides. Therefore, automatic data curation 

needs to be developed to ease this problem. 

The development of length independent epitope and T-cell reactivity predic-

tor. Most of existing epitope or T-cell reactivity predictors including our methods are 

length dependent. The core algorithms required the input peptides to have the same 

length. However, we have considered applying other algorithms such as string kernel 

in the SVM and hidden Markov model. These applications will be useful in the new 

vaccine development. 
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Appendix A 

The scaling of positional scoring matrices 

In this study, the original and scaled positional scoring matrices are denoted by T and 

T’. The (i, j)
th

 elements of T and T’ represent preferences of amino acid i at position j 

in nonapeptides, and are denoted by Ti,j and T’i,j, respectively. We simply scale the 

original matrix T into T’ as follows: 

                         
    

(        )

(       )
  , 

   

where MAX and MIN represent the maximum and minimum values in the matrix, 

respectively. The example of matrix scaling is shown below. 
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Appendix B  

Amino acid pairwise contact potentials (AAPPs) used in this study  

(retrieved from http://www.genome.jp/aaindex/ [59]) 

ID Accession # Description 

1 BASU010101 Optimization-based potential derived by the modified 

perceptron criterion 

2 BETM990101 Modified version of the Miyazawa-Jernigan transfer energy 

3 BONM030101 Quasichemical statistical potential for the antiparallel 

orientation of interacting side groups 

4 BONM030102 Quasichemical statistical potential for the intermediate 

orientation of interacting side groups 

5 BONM030103 Quasichemical statistical potential for the parallel orientation 

of interacting side groups 

6 BONM030104 Distances between centers of interacting side chains in the 

antiparallel orientation     

7 BONM030105 Distances between centers of interacting side chains in the 

intermediate orientation 

8 BONM030106 Distances between centers of interacting side chains in the 

parallel orientation 

9 BRYS930101 Distance-dependent statistical potential (only energies of 

contacts within 0–5 Angstroms are included) 

10 KESO980101 Quasichemical transfer energy derived from interfacial 

regions of protein-protein complexes 

11 KESO980102 Quasichemical energy in an average protein environment 

derived from interfacial regions of protein-protein complex-

es 

12 KOLA930101 Statistical potential derived by the quasichemical approxima-

tion 

13 LIWA970101 Modified version of the Miyazawa-Jernigan transfer energy 

14 MICC010101 Optimization-derived potential 

15 MIRL960101 Statistical potential derived by the maximization of the 

harmonic mean of Z scores 

16 MIYS850102 Quasichemical energy of transfer of amino acids from water 

to the protein environment 

17 MIYS850103 Quasichemical energy of interactions in an average buried 

environment 

18 MIYS960101 Quasichemical energy of transfer of amino acids from water 

to the protein environment 

19 MIYS960102 Quasichemical energy of interactions in an average buried 

environment 

20 MIYS960103 Number of contacts between side chains derived from 1168 

X-ray protein structures 

21 MIYS990106 Quasichemical energy of transfer of amino acids from water 

to the protein environment 

 

http://www.genome.jp/aaindex/
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ID Accession # Description 

22 MIYS990107 Quasichemical energy of interactions in an average buried 

environment 

23 MOOG990101 Quasichemical potential derived from interfacial regions of 

protein-protein complexes 

24 SIMK990101 Distance-dependent statistical potential (contacts within 0–5 

Angstroms) 

25 SIMK990102 Distance-dependent statistical potential (contacts within 5–

7.5 Angstroms) 

26 SIMK990103 Distance-dependent statistical potential (contacts within 7.5–

10 Angstroms) 

27 SIMK990104 Distance-dependent statistical potential (contacts within 10–

12 Angstroms) 

28 SIMK990105 Distance-dependent statistical potential (contacts longer than 

12 Angstroms) 

29 SKOJ000101 Statistical quasichemical potential with the partially compo-

sition-corrected pair scale 

30 SKOJ000102 Statistical quasichemical potential with the composition-

corrected pair scale 

31 SKOJ970101 Statistical potential derived by the quasichemical approxima-

tion 

32 TANS760101 Statistical contact potential derived from 25 X-ray protein 

structures 

33 TANS760102 Number of contacts between side chains derived from 25 X-

ray protein structures 

34 THOP960101 Mixed quasichemical and optimization-based protein contact 

potential 

35 TOBD000101 Optimization-derived potential obtained for small set of 

decoys 

36 TOBD000102 Optimization-derived potential obtained for large set of 

decoys 

37 VENM980101 Statistical potential derived by the maximization of the 

perceptron criterion 

38 ZHAC000101 Environment-dependent residue contact energies (rows = 

helix, cols = helix) 

39 ZHAC000104 Environment-dependent residue contact energies (rows = 

strand, cols = strand) 

40 ZHAC000106 Environment-dependent residue contact energies (rows = 

coil, cols = coil) 
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Appendix C  

Features selected by EpicCapo
+REF

 separated in each allele 

HLA-A 

datasets 

# of 

selected 

features 

Selected features ordered by the importance identi-

fied by Relief-F algorithm 

A*01:01 72  Pos9AAPP20 ,Pos9AAPP11 ,Pos9AAPP33 ,Pos9AAPP28 

,Pos9AAPP14 ,Pos9AAPP24 ,Pos9AAPP26 ,Pos9AAPP1 

,Pos2AAPP1   ,Pos2AAPP24 ,Pos2AAPP28 ,Pos3AAPP24 

,Pos2AAPP33 ,Pos2AAPP14 ,Pos2AAPP20 ,Pos3AAPP28 

,Pos2AAPP11 ,Pos3AAPP14 ,Pos2AAPP26 ,Pos3AAPP1 

,Pos3AAPP11 ,Pos3AAPP33 ,Pos3AAPP20 ,Pos1AAPP14 

,Pos1AAPP11 ,Pos1AAPP28 ,Pos8AAPP24 ,Pos7AAPP20 

,Pos4AAPP26 ,Pos7AAPP33 ,Pos8AAPP26 ,Pos5AAPP26 

,Pos1AAPP1   ,Pos8AAPP28 ,Pos7AAPP14 ,Pos5AAPP28 

,Pos1AAPP20 ,Pos8AAPP11 ,Pos6AAPP26 ,Pos1AAPP24 

,Pos7AAPP28 ,Pos6AAPP1   ,Pos7AAPP11 ,Pos8AAPP14 

,Pos1AAPP33 ,Pos7AAPP1   ,Pos7AAPP26 ,Pos5AAPP24 

,Pos4AAPP28 ,Pos5AAPP14 ,Pos5AAPP11 ,Pos5AAPP1 

,Pos1AAPP26 ,Pos6AAPP20 ,Pos4AAPP33 ,Pos4AAPP14 

,Pos8AAPP1   ,Pos4AAPP24 ,Pos6AAPP33 ,Pos4AAPP11 

,Pos7AAPP24 ,Pos8AAPP20 ,Pos6AAPP11 ,Pos5AAPP20 

,Pos8AAPP33 ,Pos6AAPP14 ,Pos5AAPP33 ,Pos6AAPP28 

,Pos4AAPP20 ,Pos6AAPP24 ,Pos3AAPP26 ,Pos4AAPP1 

 

A*02:01 62  Pos9AAPP26 ,Pos9AAPP28 ,Pos9AAPP14 ,Pos9AAPP11 

,Pos9AAPP24 ,Pos2AAPP9   ,Pos2AAPP31 ,Pos2AAPP14 

,Pos2AAPP26 ,Pos2AAPP28 ,Pos9AAPP9   ,Pos2AAPP11 

,Pos9AAPP31 ,Pos2AAPP24 ,Pos1AAPP28 ,Pos1AAPP26 

,Pos1AAPP14 ,Pos1AAPP9   ,Pos1AAPP11 ,Pos1AAPP24 

,Pos1AAPP31 ,Pos3AAPP11 ,Pos7AAPP24 ,Pos7AAPP26 

,Pos3AAPP14 ,Pos3AAPP9   ,Pos3AAPP31 ,Pos3AAPP24 

,Pos3AAPP28 ,Pos7AAPP28 ,Pos6AAPP28 ,Pos3AAPP26 

,Pos7AAPP14 ,Pos7AAPP11 ,Pos7AAPP31 ,Pos6AAPP14 

,Pos4AAPP14 ,Pos6AAPP24 ,Pos5AAPP9   ,Pos4AAPP31 

,Pos7AAPP9   ,Pos6AAPP26 ,Pos6AAPP11 ,Pos5AAPP14 

,Pos5AAPP28 ,Pos4AAPP11 ,Pos4AAPP26 ,Pos6AAPP31 

,Pos5AAPP11 ,Pos8AAPP14 ,Pos5AAPP31 ,Pos4AAPP9 

,Pos8AAPP26 ,Pos4AAPP24 ,Pos6AAPP9   ,Pos5AAPP24 

,Pos8AAPP28 ,Pos8AAPP31 ,Pos8AAPP24 ,Pos5AAPP26 

,Pos8AAPP11 ,Pos4AAPP28 

 

A*02:02 18  Pos9AAPP14 ,Pos9AAPP28 ,Pos2AAPP28 ,Pos2AAPP14 

,Pos1AAPP28 ,Pos1AAPP14 ,Pos5AAPP14 ,Pos3AAPP14 

,Pos5AAPP28 ,Pos3AAPP28 ,Pos8AAPP14 ,Pos4AAPP28 

,Pos6AAPP28 ,Pos8AAPP28 ,Pos6AAPP14 ,Pos4AAPP14 



69 

 

HLA-A 

datasets 

# of 

selected 

features 

Selected features ordered by the importance identi-

fied by Relief-F algorithm 

,Pos7AAPP14 ,Pos7AAPP28 

A*02:03 104  Pos9AAPP25 ,Pos9AAPP26 ,Pos9AAPP19 ,Pos9AAPP31 

,Pos2AAPP9   ,Pos9AAPP14 ,Pos9AAPP9   ,Pos2AAPP31 

,Pos9AAPP28 ,Pos9AAPP24 ,Pos2AAPP29 ,Pos9AAPP11 

,Pos1AAPP33 ,Pos1AAPP28 ,Pos1AAPP24 ,Pos1AAPP26 

,Pos2AAPP3   ,Pos2AAPP14 ,Pos1AAPP14 ,Pos1AAPP11 

,Pos9AAPP3   ,Pos2AAPP28 ,Pos2AAPP26 ,Pos2AAPP11 

,Pos2AAPP25 ,Pos1AAPP19 ,Pos1AAPP9   ,Pos9AAPP29 

,Pos3AAPP14 ,Pos3AAPP28 ,Pos2AAPP33 ,Pos1AAPP31 

,Pos9AAPP33 ,Pos6AAPP28 ,Pos2AAPP24 ,Pos3AAPP11 

,Pos3AAPP24 ,Pos1AAPP25 ,Pos1AAPP3   ,Pos6AAPP11 

,Pos6AAPP3   ,Pos1AAPP29 ,Pos6AAPP14 ,Pos3AAPP33 

,Pos3AAPP19 ,Pos7AAPP14 ,Pos6AAPP24 ,Pos7AAPP3 

,Pos3AAPP26 ,Pos7AAPP28 ,Pos6AAPP31 ,Pos3AAPP9 

,Pos7AAPP29 ,Pos6AAPP26 ,Pos6AAPP33 ,Pos6AAPP19 

,Pos7AAPP31 ,Pos6AAPP25 ,Pos3AAPP29 ,Pos3AAPP3 

,Pos2AAPP19 ,Pos6AAPP29 ,Pos3AAPP31 ,Pos3AAPP25 

,Pos7AAPP24 ,Pos7AAPP33 ,Pos6AAPP9   ,Pos8AAPP19 

,Pos8AAPP28 ,Pos7AAPP25 ,Pos8AAPP14 ,Pos7AAPP11 

,Pos7AAPP26 ,Pos7AAPP19 ,Pos8AAPP29 ,Pos4AAPP29 

,Pos8AAPP25 ,Pos5AAPP33 ,Pos8AAPP33 ,Pos5AAPP3 

,Pos8AAPP31 ,Pos8AAPP9   ,Pos5AAPP25 ,Pos5AAPP31 

,Pos8AAPP24 ,Pos5AAPP14 ,Pos5AAPP24 ,Pos5AAPP28 

,Pos8AAPP26 ,Pos5AAPP19 ,Pos5AAPP29 ,Pos5AAPP26 

,Pos4AAPP31 ,Pos5AAPP9   ,Pos8AAPP11 ,Pos5AAPP11 

,Pos4AAPP25 ,Pos4AAPP24 ,Pos7AAPP9   ,Pos4AAPP26 

,Pos8AAPP3   ,Pos4AAPP19 ,Pos4AAPP14 ,Pos4AAPP11 

 

A*02:06 141  Pos9AAPP22 ,Pos1AAPP26 ,Pos9AAPP19 ,Pos9AAPP26 

,Pos1AAPP28 ,Pos9AAPP11 ,Pos1AAPP11 ,Pos1AAPP14 

,Pos9AAPP39 ,Pos9AAPP14 ,Pos9AAPP24 ,Pos9AAPP25 

,Pos9AAPP28 ,Pos9AAPP27 ,Pos1AAPP9   ,Pos9AAPP38 

,Pos1AAPP1   ,Pos1AAPP24 ,Pos9AAPP34 ,Pos9AAPP1 

,Pos3AAPP24 ,Pos1AAPP19 ,Pos9AAPP18 ,Pos9AAPP13 

,Pos1AAPP22 ,Pos9AAPP21 ,Pos1AAPP31 ,Pos1AAPP38 

,Pos9AAPP31 ,Pos1AAPP25 ,Pos1AAPP39 ,Pos1AAPP27 

,Pos9AAPP9   ,Pos6AAPP39 ,Pos6AAPP18 ,Pos1AAPP18 

,Pos1AAPP13 ,Pos1AAPP21 ,Pos3AAPP39 ,Pos8AAPP1 

,Pos1AAPP3   ,Pos1AAPP34 ,Pos6AAPP24 ,Pos6AAPP38 

,Pos3AAPP14 ,Pos6AAPP13 ,Pos3AAPP11 ,Pos3AAPP28 

,Pos3AAPP13 ,Pos4AAPP1   ,Pos6AAPP28 ,Pos3AAPP38 

,Pos3AAPP26 ,Pos3AAPP9   ,Pos8AAPP27 ,Pos7AAPP26 

,Pos6AAPP21 ,Pos6AAPP11 ,Pos8AAPP39 ,Pos6AAPP34 

,Pos8AAPP26 ,Pos3AAPP34 ,Pos3AAPP22 ,Pos7AAPP22 

,Pos3AAPP19 ,Pos3AAPP18 ,Pos6AAPP3   ,Pos8AAPP14 

,Pos6AAPP14 ,Pos7AAPP24 ,Pos8AAPP24 ,Pos8AAPP38 

,Pos8AAPP11 ,Pos7AAPP19 ,Pos2AAPP9   ,Pos6AAPP26 

,Pos8AAPP28 ,Pos3AAPP3   ,Pos3AAPP27 ,Pos6AAPP31 
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HLA-A 

datasets 

# of 

selected 

features 

Selected features ordered by the importance identi-

fied by Relief-F algorithm 

,Pos3AAPP21 ,Pos3AAPP1   ,Pos8AAPP18 ,Pos7AAPP27 

,Pos7AAPP38 ,Pos8AAPP21 ,Pos7AAPP39 ,Pos5AAPP9 

,Pos3AAPP31 ,Pos7AAPP1   ,Pos8AAPP31 ,Pos6AAPP1 

,Pos8AAPP22 ,Pos8AAPP25 ,Pos5AAPP28 ,Pos8AAPP13 

,Pos8AAPP19 ,Pos4AAPP31 ,Pos7AAPP3   ,Pos7AAPP13 

,Pos7AAPP28 ,Pos8AAPP34 ,Pos6AAPP22 ,Pos5AAPP24 

,Pos5AAPP38 ,Pos7AAPP14 ,Pos9AAPP3   ,Pos5AAPP13 

,Pos6AAPP9   ,Pos6AAPP19 ,Pos2AAPP25 ,Pos7AAPP25 

,Pos4AAPP14 ,Pos7AAPP11 ,Pos7AAPP9   ,Pos5AAPP3 

,Pos8AAPP3   ,Pos2AAPP22 ,Pos6AAPP25 ,Pos5AAPP39 

,Pos7AAPP21 ,Pos7AAPP18 ,Pos2AAPP39 ,Pos7AAPP31 

,Pos2AAPP26 ,Pos5AAPP14 ,Pos2AAPP27 ,Pos6AAPP27 

,Pos7AAPP34 ,Pos8AAPP9   ,Pos5AAPP34 ,Pos5AAPP18 

,Pos5AAPP27 ,Pos4AAPP11 ,Pos4AAPP25 ,Pos2AAPP14 

,Pos2AAPP19 ,Pos2AAPP11 ,Pos3AAPP25 ,Pos2AAPP18 

,Pos2AAPP21 

 

A*03:01 58  Pos9AAPP28 ,Pos9AAPP14 ,Pos9AAPP11 ,Pos9AAPP33 

,Pos9AAPP20 ,Pos9AAPP26 ,Pos9AAPP24 ,Pos2AAPP14 

,Pos2AAPP26 ,Pos2AAPP28 ,Pos2AAPP24 ,Pos2AAPP11 

,Pos7AAPP28 ,Pos1AAPP28 ,Pos7AAPP14 ,Pos7AAPP26 

,Pos1AAPP26 ,Pos1AAPP14 ,Pos2AAPP20 ,Pos2AAPP33 

,Pos7AAPP11 ,Pos1AAPP20 ,Pos3AAPP14 ,Pos1AAPP33 

,Pos3AAPP28 ,Pos3AAPP26 ,Pos1AAPP11 ,Pos6AAPP11 

,Pos6AAPP14 ,Pos6AAPP28 ,Pos3AAPP24 ,Pos6AAPP26 

,Pos1AAPP24 ,Pos3AAPP33 ,Pos3AAPP20 ,Pos7AAPP24 

,Pos6AAPP24 ,Pos8AAPP14 ,Pos3AAPP11 ,Pos8AAPP28 

,Pos7AAPP20 ,Pos4AAPP14 ,Pos6AAPP20 ,Pos4AAPP24 

,Pos7AAPP33 ,Pos8AAPP20 ,Pos6AAPP33 ,Pos4AAPP20 

,Pos4AAPP26 ,Pos8AAPP24 ,Pos4AAPP28 ,Pos5AAPP20 

,Pos4AAPP33 ,Pos8AAPP33 ,Pos5AAPP11 ,Pos5AAPP26 

,Pos5AAPP14 ,Pos5AAPP24 

 

A*11:01 35  Pos9AAPP11 ,Pos9AAPP28 ,Pos9AAPP14 ,Pos9AAPP26 

,Pos2AAPP26 ,Pos2AAPP14 ,Pos2AAPP28 ,Pos2AAPP11 

,Pos1AAPP28 ,Pos3AAPP14 ,Pos1AAPP14 ,Pos3AAPP28 

,Pos1AAPP26 ,Pos3AAPP26 ,Pos1AAPP11 ,Pos3AAPP11 

,Pos7AAPP28 ,Pos7AAPP26 ,Pos8AAPP14 ,Pos7AAPP11 

,Pos7AAPP14 ,Pos8AAPP28 ,Pos4AAPP14 ,Pos6AAPP28 

,Pos8AAPP26 ,Pos8AAPP11 ,Pos6AAPP14 ,Pos6AAPP26 

,Pos6AAPP11 ,Pos5AAPP11 ,Pos5AAPP28 ,Pos5AAPP14 

,Pos4AAPP28 ,Pos4AAPP11 ,Pos5AAPP26 

 

A*24:02 31  Pos2AAPP6   ,Pos2AAPP31 ,Pos2AAPP28 ,Pos2AAPP24 

,Pos2AAPP5   ,Pos2AAPP14 ,Pos8AAPP28 ,Pos9AAPP14 

,Pos9AAPP28 ,Pos8AAPP24 ,Pos4AAPP5   ,Pos8AAPP14 
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HLA-A 

datasets 

# of 

selected 

features 

Selected features ordered by the importance identi-

fied by Relief-F algorithm 

,Pos9AAPP24 ,Pos9AAPP31 ,Pos1AAPP28 ,Pos5AAPP5 

,Pos1AAPP14 ,Pos4AAPP6   ,Pos7AAPP31 ,Pos1AAPP24 

,Pos3AAPP5   ,Pos5AAPP6   ,Pos8AAPP5   ,Pos7AAPP6 

,Pos8AAPP31 ,Pos4AAPP24 ,Pos3AAPP31 ,Pos9AAPP6 

,Pos5AAPP28 ,Pos5AAPP31 ,Pos6AAPP14 

 

A*26:01 18  Pos2AAPP14 ,Pos9AAPP14 ,Pos2AAPP28 ,Pos9AAPP28 

,Pos3AAPP28 ,Pos3AAPP14 ,Pos1AAPP14 ,Pos4AAPP14 

,Pos1AAPP28 ,Pos6AAPP28 ,Pos5AAPP28 ,Pos8AAPP28 

,Pos7AAPP28 ,Pos8AAPP14 ,Pos6AAPP14 ,Pos5AAPP14 

,Pos7AAPP14 ,Pos4AAPP28 

 

A*29:02 23  Pos9AAPP5 ,Pos9AAPP20 ,Pos9AAPP33 ,Pos9AAPP9 

,Pos9AAPP8 ,Pos2AAPP33 ,Pos5AAPP5   ,Pos2AAPP20 

,Pos3AAPP9 ,Pos2AAPP5   ,Pos3AAPP8   ,Pos2AAPP9 

,Pos2AAPP8 ,Pos1AAPP5   ,Pos7AAPP8   ,Pos1AAPP8 

,Pos3AAPP5 ,Pos5AAPP9   ,Pos1AAPP20 ,Pos1AAPP33 

,Pos7AAPP5 ,Pos5AAPP8   ,Pos8AAPP8 

 

A*31:01 46  Pos9AAPP28 ,Pos9AAPP14 ,Pos9AAPP20 ,Pos9AAPP33 

,Pos9AAPP11 ,Pos9AAPP26 ,Pos2AAPP28 ,Pos2AAPP26 

,Pos2AAPP14 ,Pos1AAPP20 ,Pos3AAPP14 ,Pos1AAPP28 

,Pos1AAPP33 ,Pos3AAPP26 ,Pos3AAPP28 ,Pos1AAPP14 

,Pos1AAPP11 ,Pos3AAPP33 ,Pos3AAPP20 ,Pos2AAPP11 

,Pos2AAPP33 ,Pos2AAPP20 ,Pos3AAPP11 ,Pos1AAPP26 

,Pos6AAPP28 ,Pos6AAPP14 ,Pos5AAPP11 ,Pos5AAPP14 

,Pos5AAPP26 ,Pos8AAPP28 ,Pos8AAPP33 ,Pos8AAPP20 

,Pos7AAPP26 ,Pos8AAPP14 ,Pos5AAPP28 ,Pos7AAPP33 

,Pos6AAPP33 ,Pos7AAPP14 ,Pos4AAPP20 ,Pos7AAPP20 

,Pos4AAPP26 ,Pos4AAPP33 ,Pos8AAPP26 ,Pos6AAPP20 

,Pos6AAPP11 ,Pos6AAPP26 

 

A*33:01 17  Pos9AAPP28 ,Pos9AAPP14 ,Pos1AAPP14 ,Pos8AAPP28 

,Pos1AAPP28 ,Pos3AAPP14 ,Pos7AAPP14 ,Pos7AAPP28 

,Pos3AAPP28 ,Pos4AAPP28 ,Pos8AAPP14 ,Pos5AAPP14 

,Pos4AAPP14 ,Pos5AAPP28 ,Pos6AAPP14 ,Pos6AAPP28 

,Pos2AAPP14 

 

A*68:01 40  Pos9AAPP14 ,Pos9AAPP28 ,Pos9AAPP20 ,Pos9AAPP26 

,Pos9AAPP33 ,Pos9AAPP11 ,Pos2AAPP14 ,Pos3AAPP28 

,Pos2AAPP26 ,Pos2AAPP28 ,Pos3AAPP14 ,Pos1AAPP33 

,Pos1AAPP20 ,Pos3AAPP11 ,Pos1AAPP11 ,Pos1AAPP28 
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HLA-A 

datasets 

# of 

selected 

features 

Selected features ordered by the importance identi-

fied by Relief-F algorithm 

,Pos3AAPP26 ,Pos2AAPP11 ,Pos1AAPP14 ,Pos3AAPP33 

,Pos3AAPP20 ,Pos2AAPP20 ,Pos5AAPP33 ,Pos2AAPP33 

,Pos5AAPP28 ,Pos5AAPP14 ,Pos5AAPP20 ,Pos5AAPP11 

,Pos1AAPP26 ,Pos7AAPP33 ,Pos6AAPP11 ,Pos7AAPP20 

,Pos8AAPP33 ,Pos5AAPP26 ,Pos8AAPP28 ,Pos8AAPP20 

,Pos8AAPP14 ,Pos6AAPP33 ,Pos4AAPP33 ,Pos7AAPP14 

 

A*68:02 79  Pos9AAPP26 ,Pos9AAPP22 ,Pos9AAPP39 ,Pos9AAPP24 

,Pos9AAPP11 ,Pos9AAPP14 ,Pos9AAPP28 ,Pos3AAPP14 

,Pos3AAPP28 ,Pos1AAPP33 ,Pos1AAPP14 ,Pos3AAPP24 

,Pos1AAPP11 ,Pos1AAPP20 ,Pos3AAPP1   ,Pos9AAPP9 

,Pos9AAPP1   ,Pos1AAPP24 ,Pos3AAPP39 ,Pos1AAPP28 

,Pos3AAPP22 ,Pos1AAPP1   ,Pos3AAPP11 ,Pos9AAPP33 

,Pos9AAPP20 ,Pos3AAPP9   ,Pos1AAPP9   ,Pos3AAPP26 

,Pos7AAPP1   ,Pos3AAPP20 ,Pos7AAPP14 ,Pos2AAPP22 

,Pos3AAPP33 ,Pos5AAPP24 ,Pos7AAPP20 ,Pos8AAPP24 

,Pos8AAPP1   ,Pos2AAPP20 ,Pos8AAPP26 ,Pos7AAPP28 

,Pos7AAPP33 ,Pos1AAPP22 ,Pos1AAPP39 ,Pos2AAPP33 

,Pos7AAPP9   ,Pos2AAPP26 ,Pos7AAPP24 ,Pos8AAPP28 

,Pos8AAPP39 ,Pos5AAPP14 ,Pos2AAPP39 ,Pos7AAPP11 

,Pos2AAPP24 ,Pos2AAPP14 ,Pos5AAPP33 ,Pos6AAPP14 

,Pos5AAPP28 ,Pos2AAPP9   ,Pos2AAPP28 ,Pos7AAPP39 

,Pos6AAPP11 ,Pos7AAPP26 ,Pos6AAPP28 ,Pos5AAPP39 

,Pos8AAPP11 ,Pos2AAPP11 ,Pos5AAPP26 ,Pos8AAPP14 

,Pos8AAPP22 ,Pos5AAPP1   ,Pos6AAPP39 ,Pos6AAPP24 

,Pos5AAPP22 ,Pos8AAPP33 ,Pos4AAPP14 ,Pos6AAPP20 

,Pos2AAPP1   ,Pos8AAPP20 ,Pos5AAPP20 

* ‘Pos’ referred to ‘at peptide position’ 

 ‘AAPP’ referred to ‘at amino acid pairwise contact potential’ 
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Appendix D 

Candidates of promiscuous epitopes identified from overlapping epitopes of influenza A 

viral strains: H1N1 (A/New York/4290/2009), H5N1 (A/Hong Kong/483/97), H1N1 

(A/PR/8/34), and H3N2 (A/Aichi/2/68). 

Epitope Shared alleles T cell assay 

QTYDWTLNR A*0301, A*1101, A*2902, A*3101, A*3301, A*6801 Positive 

KFFPSSSYR A*0301, A*1101, A*2902, A*3101, A*3301, A*6801 Positive 

MMMGMFNML A*0201, A*0202, A*0203, A*0206, A*6802 Positive 

FVANFSMEL A*0201, A*0202, A*0203, A*0206, A*6802 Positive 

LLTEVETYV A*0201, A*0202, A*0203, A*0206, A*6802 Positive 

ALASCMGLI A*0201, A*0202, A*0203, A*0206, A*6802 Negative 

IMFSNKMAR A*0301, A*1101, A*3101, A*3301, A*6801 Positive 

RLFFKCIYR A*0301, A*1101, A*3101, A*3301, A*6801 Positive 

AQTDCVLEA A*0201, A*0202, A*0203, A*0206 - 

RLIDFLKDV A*0201, A*0202, A*0203, A*0206 Positive 

GMFNMLSTV A*0201, A*0202, A*0203, A*0206 Positive 

NMLSTVLGV A*0201, A*0202, A*0203, A*0206 Positive 

AQMALQLFI A*0201, A*0202, A*0203, A*0206 - 

KICSTIEEL A*0201, A*0202, A*0203, A*0206 Positive 

AIVGEISPL A*0201, A*0202, A*0203, A*0206 Positive 

GILGFVFTL A*0201, A*0202, A*0203, A*0206 Positive 

SMELPSFGV A*0201, A*0202, A*0203, A*2902 Positive 

GMMMGMFNM A*0201, A*0203, A*0206, A*2902 Negative 

CVLEAMAFL A*0201, A*0203, A*0206, A*6802 Negative 

MINNDLGPA A*0202, A*0203, A*0206, A*6802 Positive 

YGFVANFSM A*0202, A*0206, A*2902, A*6802 Positive 

MSIGVTVIK A*0301, A*1101, A*3101, A*6801 Positive 

ATTHSWIPK A*0301, A*1101, A*3101, A*6801 Positive 

MVLASTTAK A*0301, A*1101, A*3101, A*6801 Positive 

FEFTSFFYR A*0301, A*2902, A*3101, A*6801 Positive 

LANTIEVFR A*1101, A*3101, A*3301, A*6801 - 

NTMTKDAER A*1101, A*3101, A*3301, A*6801 Positive 

TTHSWIPKR A*1101, A*3101, A*3301, A*6801 Positive 

KLANVVRKM A*0201, A*0202, A*0203 Positive 

VLGVSILNL A*0201, A*0202, A*0203 Positive 

VLASTTAKA A*0201, A*0202, A*0203 Negative 

LQSSDDFAL A*0201, A*0202, A*0206 - 

TALANTIEV A*0201, A*0206, A*6802 Positive 

ILSPLTKGI A*0202, A*0203, A*0206 Positive 

RMVLASTTA A*0202, A*0203, A*0206 Positive 

KTRPILSPL A*0202, A*0203, A*3101 Negative 

QLNPIDGPL A*0202, A*0203, A*6802 Positive 

SSFQVDCFL A*0202, A*0206, A*6802 - 

LTKGILGFV A*0203, A*0206, A*6802 Negative 
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Epitope Shared alleles T cell assay 

QMALQLFIK A*0301, A*1101, A*6801 Positive 

SGRLIDFLK A*1101, A*3101, A*6801 - 

RSILNTSQR A*1101, A*3101, A*6801 Positive 

DTVNRTHQY A*2601, A*2902, A*6801 Positive 

ITTHFQRKR A*3101, A*3301, A*6801 - 

IATPGMQIR A*3101, A*3301, A*6801 - 

QAGVDRFYR A*3101, A*3301, A*6801 Positive 

HSWIPKRNR A*3101, A*3301, A*6801 - 

YSHGTGTGY A*0101, A*2902 Positive 

GILHLILWI A*0201, A*0206 Positive 

MFSNKMARL A*0202, A*0203 Positive 

NMSKKKSYI A*0202, A*0203 Positive 

NLHIPEVCL A*0202, A*0203 Positive 

ILGFVFTLT A*0202, A*0203 Positive 

QMAGSSEQA A*0202, A*0203 Negative 

QSSDDFALI A*0202, A*6802 Positive 

SFFYRYGFV A*0202, A*6802 Positive 

DMSIGVTVI A*0203, A*2902 Positive 

YTMDTVNRT A*0203, A*6802 Positive 

AVATTHSWI A*0203, A*6802 Positive 

GTFEFTSFF A*0206, A*6801 Positive 

TGAPQLNPI A*0206, A*6802 - 

KMARLGKGY A*0301, A*2902 Positive 

NLYNIRNLH A*0301, A*6801 - 

NAISTTFPY A*1101, A*6801 Negative 

VSILNLGQK A*1101, A*6801 Positive 

TSFFYRYGF A*2902, A*6802 Positive 

GYTMDTVNR A*3101, A*3301 Positive 

HFQRKRRVR A*3101, A*3301 - 

VSRARIDAR A*3101, A*3301 - 

TTHFQRKRR A*3101, A*6801 Positive 

LQLFIKDYR A*3101, A*6801 Positive 

YRYTYRCHR A*3101, A*6801 Positive 

FFPSSSYRR A*3101, A*6801 - 

DAPFLDRLR A*3301, A*6801 - 

NPLIRHENR A*3301, A*6801 Negative 

TTAKAMEQM A*6801, A*6802 Positive 
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Appendix E 

The IMMA2 dataset 

Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

AAAGFVFTA +  AAPTPAAPA - 

AAGIGIIQI +  AIIGLCAYA - 

AAGIGILTV +  AIMEKNIML - 

AALGFVFAA +  AIYHPQQFV - 

AALGFVFTA +  ALAIPQCRL - 

AFHHMAREL +  ALATFTVNI - 

AFHHVAREL +  ALDPYNEVV - 

AIISGDSPV +  ALFFFDIDL - 

AILALLPAL +  ALIIIRSLL - 

AILGFVFTA +  ALKMTMASV - 

AILGFVFTL +  ALLSDWLPA - 

AIMDKNIIL +  ALLSRFFNM - 

ALADAVKVT +  ALMAITKNV - 

ALAYGIDKV +  ALMRRIAVV - 

ALCRWGLLL +  ALSLAAVLV - 

ALGLGLLPV +  ALSPVPPVV - 

ALGRNSFEV +  ALSTGLIHI - 

ALHVVVIGL +  ALVALVITI - 

ALIHHNTHL +  ALVGACITL - 

ALINDQLIM +  ALVLLMLPV - 

ALLKHRFEI +  ALWIPDLFM - 

ALLNIKVKL +  AMFTAALNI - 

ALLVLYSFA +  AMFTTMYNI - 

ALMDKSLHV +  AMKADIQHV - 

ALMEQQHYV +  AMLQDMAIL - 

ALMPLYACI +  AMLQLDPNA - 

ALNTPKDHI +  AMTAFFGEL - 

ALPHIIDEV +  AVLVVMACL - 

ALQDSGLEV +  CLLQSLQQI - 

ALQPGTALL +  DLVPLTVSV - 

ALSDHHIYL +  ETDDYMFFV - 

ALSKFPRQL +  FAAELTIGV - 

ALSSGLYQC +  FAGKDFDTV - 

ALSTGLIHL +  FANSKFTLV - 

ALSVMGVYV +  FAVQTIVFI - 

ALVNAVNKL +  FIADIGIGV - 

ALVNFLRHL +  FIDILLFVI - 

ALVRCIPTL +  FIDSNEYEV - 

ALWGFFPVL +  FIDTVSVYT - 

ALYDVVSTL +  FIHGGILYA - 

AMSTTDLEA +  FIIEVSNCV - 

ATTNILEHV +  FIISVISLV - 

AVAGAAILV +  FILHRLHEI - 
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

AVGIGIAVV +  FILIFNIIV - 

CINGVCWTV +  FISSFLLPL - 

CLAAGITYV +  FIVVATAAV - 

CLFKDWEEL +  FIYLLFASM - 

CLGGLITMV +  FIYSIMETI - 

CLGGLLTMV +  FLARLHAAA - 

CLQNALDIL +  FLAVLSPTI - 

CLTSTVQLV +  FLGAAGSTM - 

CQWGRLWQL +  FLGARSPSL - 

CVNGSCFTV +  FLGGGGAGI - 

CVNGVCWTV +  FLHNYILYA - 

DLIFGLNAL +  FLHYCNSYA - 

DLMGYIPLV +  FLICHNLRA - 

DMWEHAFYL +  FLIDLAFLI - 

EILGFVFTL +  FLIPKGFYA - 

ELVSEFSRM +  FLISVIVLV - 

ELVSEFSRV +  FLKDVMVEI - 

EVKEKHEFL +  FLLLTSIPI - 

FAFRDLCIV +  FLLPDAQSI - 

FANHKFTLV +  FLLPLTSLV - 

FANYKFTLV +  FLLRSIIVA - 

FIAGLIAIV +  FLLSHDAAL - 

FIDSYICQV +  FLPATLTMT - 

FIFDALAEV +  FLRYLLFGI - 

FILGIIITV +  FLSNVGHYV - 

FIYAGSLSA +  FLSRLVLYA - 

FLAEDLNTV +  FLSYISDTV - 

FLAKLNNTV +  FLTGTFVTA - 

FLALIICNA +  FLVIAINAM - 

FLDEFMEGV +  FLWHVRKRV - 

FLDPRPLTV +  FLYNVYPGA - 

FLDQVPFSV +  FMKAVCVEV - 

FLEESHPGI +  FMMVLPGAA - 

FLEPGPVTA +  FMYFCEQKL - 

FLFLRNFSL +  FMYIESIKV - 

FLGGTPVCL +  FQQPQFQYL - 

FLIVSLCPT +  FTGITLFLL - 

FLKDVMESM +  FTLIDIWFL - 

FLKEPVHGV +  FTLNHVLAL - 

FLLIRYITT +  FTLVAPVSI - 

FLLLADARV +  FTNSQIFNI - 

FLLSLGIHL +  FTSAVLLLV - 

FLLTRILTI +  FTSSFYNYV - 

FLMDRHIIV +  FVARVFLGL - 

FLNISWFYI +  FVDFVIHGL - 

FLNQTDETL +  FVDTMSIYI - 

FLPATLTMV +  FVFILTAIL - 

FLQMNSLRV +  FVFRSPFIV - 
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

FLSFASLFL +  FVFSTSFYL - 

FLSLMSLSI +  FVILYLLAV - 

FLTSVINRV +  FVVALIPLV - 

FLVDAIVRV +  GFLTSMFPK - 

FLVSQLFTF +  GIFCFRILL - 

FLWGPRALV +  GIGILTVIL - 

FLWGPRAYA +  GILAFVFTL - 

FLYDDNQRV +  GILGAVFTL - 

FLYGALLLA +  GILGFAFTL - 

FLYRLFSIL +  GILGFKFTL - 

FMPKVNFEV +  GILGFVATL - 

FMVELVEGA +  GILGFVFKL - 

FMVFLQTHI +  GILGFVKTL - 

FMYMSLLGV +  GILTVILGV - 

FMYSDFHFI +  GIRPYEILA - 

FQWDSNTQL +  GLADAFILL - 

FVDYNFTIV +  GLDDLMSGL - 

FVFLRNFSL +  GLFIYIPGT - 

FVFYQLFVV +  GLFLTTEAV - 

FVWLHYYSV +  GLHCDFACL - 

GAGIGVAVL +  GLIACLIFV - 

GAGIGVLTA +  GLIIISIFL - 

GALGFVFTL +  GLILFVLAL - 

GELGFVFTL +  GLLDRLYDL - 

GFLGFVFTL +  GLLGWSPQA - 

GGLGFVFTL +  GLMTAVYLV - 

GIAGFVFTL +  GLPDSLPSL - 

GIAGGLALL +  GLTSAVIDA - 

GIGGFVFTL +  GLVDFVKHI - 

GIGIGVLAA +  GLVRLNAFL - 

GIKGFVFTL +  GLYGAQYDV - 

GILGFVFAL +  GLYLSQIAV - 

GILGFVFTA +  GLYPGLIWL - 

GILGFVFTK +  GLYRQWALA - 

GILGFVFTL +  GLYYLTTEV - 

GILGFVFTM +  GMANTTFHV - 

GILGFVFTV +  GMGWLTIGI - 

GILGKVFTL +  GTDGFPFKL - 

GILKFVFTL +  GTYAVNIHV - 

GIMGFVFTL +  HLIFSYAFL - 

GITFQVWDV +  HLIKIPLLI - 

GIVGFVFTL +  HLMFYTLPI - 

GKLGFVFTL +  HLSLRGLPV - 

GLADTVVAC +  HTICDDYFV - 

GLCTLVAML +  IIAIVFVFI - 

GLDCARLEI +  IILFILFFA - 

GLDSYVRSL +  IILNGSLLT - 

GLDTYVRSL +  IILVAIAVV - 
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

GLDVLTAKV +  IIMAINVFT - 

GLFDFVNFV +  IISCTCPTV - 

GLHCYEQLV +  IISLWDQSL - 

GLIEKNIEL +  IISTFHLSI - 

GLIMVLSFL +  IISYIILFI - 

GLIQLVEGV +  ILAADLEKL - 

GLISLILQI +  ILAIIFLVL - 

GLKAGVIAV +  ILDPKTGLV - 

GLLGFVFTL +  ILDSFDPLR - 

GLLGNVSTV +  ILFDGHDLL - 

GLLGTLVQL +  ILFEPVHGV - 

GLLHHAPSL +  ILFIMFMLI - 

GLMKYIGEV +  ILFTFLHLA - 

GLNDYLHSV +  ILGADPLRV - 

GLPVEYLQV +  ILKEYVHGV - 

GLQDCTMLV +  ILLPWFVDL - 

GLSGGTPSK +  ILLSIARVV - 

GLSRYVARL +  ILMYPTTLL - 

GLSRYVPRL +  ILPVIFLSI - 

GLVGLVTFL +  ILQYDLWNV - 

GLYDGMEHL +  ILSCIFAFI - 

GMFNMLSTV +  ILSDDMLNI - 

GMGPSLIGL +  ILSPFMPLL - 

GMLGFVFTL +  ILSPLTKGI - 

GMSRIGMEV +  ILTAILFFM - 

GQLGFVFTL +  ILTLDIFYL - 

GQTEPIAFV +  ILVCYILYI - 

GTLGFVFTL +  ILVGYMSNL - 

GTLGIVCPI +  ILWEPVHGV - 

GVALQTMKQ +  ILYAAFLWL - 

GVLGFVFTL +  ILYDNVVTL - 

GVPVDPSRV +  ILYEPVHGV - 

HACWPAFTV +  ILYFIAFAL - 

HIFYQLANV +  IMEYHLLFA - 

HILLGVFML +  IMFMLIFNV - 

HLGNVKYLV +  IMFTCMDPL - 

HLSLRGLFV +  IMYTYFSNT - 

HLSTAFARV +  ITNGYLISI - 

HLYQGCQVV +  IVFVFILTA - 

HMTEVVRHC +  IVQENNGAV - 

HMWNFISGI +  KIDSTSFSV - 

HMWNFITGI +  KINIFMAFL - 

HMYFTFFDV +  KLFTDNNFL - 

HVDGKILFV +  KLFTHDIML - 

IAGIGILAI +  KLFYVYYNL - 

IISAVVGIL +  KLGNLLLLI - 

ILAGYGAGV +  KLHLYSHPI - 

ILAKFLHWL +  KLIGITAIM - 
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

ILALVQEKI +  KLITFLFVI - 

ILARNLVPM +  KLLKMVTSV - 

ILDDIGHGV +  KLLLWFNYL - 

ILDDNLYKV +  KLLWFLTGT - 

ILDEERDKV +  KLQAAPYIV - 

ILDQVPFSV +  KLSCAVHLI - 

ILDSFDPLV +  KLSDGVAVL - 

ILGFVFTLT +  KLVSISNFI - 

ILHEPVHGV +  KLWGLVDFV - 

ILHNGAYSL +  KLYCSYEVA - 

ILIEHLYGL +  KLYIALCKV - 

ILKEPVHGV +  KLYLVDYGL - 

ILKSPVHGV +  KLYTIVSTL - 

ILLEPVHGV +  KMHDVIAPA - 

ILLGSLSDL +  KMMLFYMDL - 

ILLNKHIDA +  KMNIQFTAV - 

ILLRDAGLV +  KMSVRETLV - 

ILPDPLKPT +  KTLLSLALV - 

ILPSKSLEV +  KTMAVTYEL - 

ILQDMRNTI +  KVLSIMAFI - 

ILSDENYLL +  KVVSLVILA - 

ILSLELMKL +  KVYDKLFPV - 

ILSPFLPLL +  LAALFMYYA - 

ILTVILGVL +  LAAVLVVMA - 

IMDQVPFSV +  LIAGIILLI - 

IMELATAGI +  LIALSVLAV - 

IMIGHLVGV +  LIGDDVDSV - 

IMIGVLVGV +  LILSLTCSV - 

IMLCLIAAV +  LIMFEQYFI - 

IMMGVLVGV +  LIMIYFFII - 

IMNDMPIYM +  LIMYSVIGV - 

IMSSFEFQV +  LIPETVPYI - 

IMTSYQYLI +  LIQEIVHEV - 

IMVLSFLFL +  LISIFLHLV - 

ITDQVPFSV +  LITGRLAAL - 

ITDQVPGSV +  LIVGIIFTA - 

KASEKIFYV +  LIVRYLIQV - 

KIDYYIPYV +  LLAFTNPTV - 

KIFGSLAFL +  LLAQFTSAI - 

KILGFVFTL +  LLARNSFEV - 

KILSVFFLA +  LLATLTMTV - 

KIMDQVQQA +  LLDLFGPEV - 

KLAGGVAVI +  LLFFLALSI - 

KLAGGVAVL +  LLFILFYFA - 

KLDVGNAEV +  LLFRFMRPL - 

KLEDENPWL +  LLGANSFEV - 

KLEDLERDL +  LLGLWGTAA - 

KLGEFYNQM +  LLGRASFEV - 
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

KLGGYVSFV +  LLGRDSFEV - 

KLIANNTRV +  LLGRNAFEV - 

KLLGQINLV +  LLGRNSAEV - 

KLLMVLMLA +  LLGRNSFAV - 

KLLPEGYWV +  LLGRRSFEV - 

KLLRYYTEI +  LLIHFLLSL - 

KLMLDIHTV +  LLILSCIFA - 

KLMPNITLL +  LLLCGVSLV - 

KLQDCTMLV +  LLLDYMTST - 

KLQELNYNL +  LLLEVEQEI - 

KLQEQQSDL +  LLLFHETGV - 

KLSEQESLL +  LLLGLWGTA - 

KLTEAITAA +  LLLIALWNL - 

KLTPLCVTL +  LLLIVTPVV - 

KLTSCNTSV +  LLLNCLWSV - 

KLTSLCNTV +  LLLWPLYVL - 

KLVANNTRL +  LLMMTLPSI - 

KLWCRHFCV +  LLMTSLQYA - 

KLWESPQEI +  LLNATAIAV - 

KMSSAVGFV +  LLNLLLWPL - 

KMVELVHFL +  LLNPCLINV - 

KTLPLCVTL +  LLPENNVLS - 

KTWGQYWQV +  LLPLGYPFV - 

KVAEIVHFL +  LLQYWSQEL - 

KVAELVHFL +  LLSEFCRVL - 

KVAELVWFL +  LLSEIRFYI - 

KVDDTFYYV +  LLSLALVGA - 

KVINYLVML +  LLSLFSTLV - 

KVLEYVIKV +  LLSLLVIWI - 

KVSPYLFNV +  LLSQYLSRV - 

LAALPHSCL +  LLTEVETYV - 

LAARAIVAI +  LLVAPMPTA - 

LAGIGLIAA +  LLVDLLWLL - 

LALLLLDRL +  LLVEPCARV - 

LIEDFDIYV +  LLVQRVTSV - 

LIFGHLPRV +  LLWFHISCL - 

LITGRLQSL +  LLWQDPVPA - 

LIVIGILIL +  LLYAHINAL - 

LKLSGVVRL +  LLYILRYIV - 

LLCLIFLLV +  LLYPTAVDL - 

LLCPAGHAV +  LMDCIMFDA - 

LLCPSGHVV +  LMDMITLSL - 

LLCPTGHAV +  LMDSIFVST - 

LLDAHIPQL +  LMIEYNLLT - 

LLDDEAGPL +  LMIFISSFL - 

LLDPRVRGL +  LMLPGMNGI - 

LLDRFLATV +  LMNNAFEWI - 

LLDVPTAAV +  LMSTLLIYL - 
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

LLFGYPVYV +  LTLDEQIFV - 

LLFLLLADA +  LTVILGVLL - 

LLGATCMFV +  LTYSQLMTL - 

LLGNCLPTV +  LVITINYFL - 

LLGRNSFEV +  LVYVNGVVV - 

LLGTFTWTL +  MACLVPAAT - 

LLHTDFEQV +  MALIGDSTV - 

LLIDPTSGL +  MALLRLPLV - 

LLLAARAIV +  MAWGGSYIA - 

LLLCLIFLL +  MIANALDAV - 

LLLDRLNQL +  MIFISSFLL - 

LLLGPLGPL +  MIYGLIACL - 

LLLLTVLTV +  MLASTLTDA - 

LLMDCSGSI +  MLDDFSAGA - 

LLMGTLGIV +  MLGNAPSVV - 

LLNATDIAV +  MLLALVALV - 

LLNCAVTKL +  MLLHVGIPL - 

LLNQLQVNL +  MLLNVQTLI - 

LLPRRGPRL +  MLMEVFPQL - 

LLQAEAPRL +  MLMFIFTGI - 

LLSAWILTA +  MLNGIMYRL - 

LLTEVETPI +  MLQDMAILT - 

LLWAARPRL +  MMIDDFGTA - 

LLWKGEGAV +  MMKTYIEFV - 

LLWSYAMGV +  MMSCSSEAT - 

LLWTLVVLL +  MMWYWGPSL - 

LMDALKLSI +  MQLIYDSSL - 

LMIGTAAAV +  MTFGDIPLV - 

LMIIPLINV +  MTSCVSEQL - 

LMNGQQIFL +  MVNTVLITV - 

LMVLMLAAL +  NIAEGLRAL - 

LMWAKIGPV +  NIAEYIAGL - 

LMWDNVGLV +  NILQKIEKI - 

LMWYELSKI +  NISGYNFSL - 

LMYDIINSV +  NISTILYFT - 

LQLPQGTTL +  NLATSIYTI - 

LQTTIHDII +  NLDDVYSYI - 

LTAGFLIFL +  NLDLFMSHV - 

LVCGKDGVK +  NLDTSPFFV - 

LVHFLLLKY +  NLFDIPLLT - 

LVMAQLLRI +  NLFPYLVSA - 

LVQENYLEY +  NLFTFLHEI - 

LVVADLSFI +  NLGKVIDTL - 

LVVLGLLAV +  NLLLWPLYV - 

MIAVFLPIV +  NLNESLIDL - 

MINAYLDKL +  NMISDTIFV - 

MLDLQPETT +  NMQTVKLFV - 

MLGTHTMEV +  NVFKYLTSV - 
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MLLALLYCL +  NVIGLIVIL - 

MLLAVLYCL +  NVLLYNRLL - 

MLNIPSINV +  PLLPIFFCL - 

MLTNSCVKL +  PLSSSVPSQ - 

MLWGWREHV +  QIFEVYWYL - 

MMLVPLITV +  QIITLTAFV - 

MTYAAPLFV +  QLAGYILTV - 

NAHQILPKV +  QLDHGVLLV - 

NLLKVNIHI +  QLDPARDVL - 

NLMEQPIKV +  QLFHLCLII - 

NLNDNAIHL +  QLFKYVPSA - 

NLQSLTNLL +  QLSDVIDRL - 

NLTISDVSV +  QLTPHTKAV - 

NLVPMVATV +  QLVWENFLA - 

NLWNGIVPT +  QLWPEEIGV - 

NMFTPYIGV +  QMLLALARL - 

NMLSTVLGV +  QMWQARLTV - 

PLDGEYFTL +  RALSLAAVL - 

PLEEELPRL +  RIEENLEGV - 

PLKQHFQIV +  RILPYTFKI - 

QAGIGILLA +  RLFDFNKQA - 

QLSLLMWIT +  RLFSYNFTT - 

RIAECILGM +  RLGATIWQL - 

RIFAELEGV +  RLHLWLSDM - 

RILGAVAKV +  RLIQNSLTI - 

RLAEYQAYI +  RLLDDTPEV - 

RLCCQLDPA +  RLLGTFTWT - 

RLDSYVRSL +  RLLSPTTIV - 

RLGRNSFEV +  RLMIGTAAA - 

RLIDFLKDV +  RLNDFLGLL - 

RLIGHISTL +  RLNKRSYLI - 

RLLDRLVRL +  RLRDLNQAV - 

RLLQETELV +  RLVDFFPDI - 

RLLQTGIHV +  RLVSGLVGA - 

RLMKQDFSV +  RLYDLTRYA - 

RLMRTNFLI +  RMAWGGSYI - 

RLNEVAKNL +  RMFAANLGV - 

RLNMFTPYI +  RMILYLESV - 

RLNQLESKV +  RMPAVTDLV - 

RLPLVLPAV +  RMQFSSFTV - 

RLPRIFCSC +  RQIFIHYSV - 

RLQGISPKI +  RVFTSAVLL - 

RLSSCVPVA +  SIFGFQAEV - 

RLTRFLSRV +  SIHVTVSNV - 

RLVDDFLLV +  SIMAFILGI - 

RLVNGSLAL +  SIVCIVAAV - 

RLVTLKDIV +  SIYECITFL - 

RLWHYPCTA +  SLAGFVRML - 
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

RLWHYPCTF +  SLALVGACI - 

RLWHYPCTI +  SLDVINYLI - 

RLWHYPCTL +  SLFSLLLVI - 

RLWHYPCTV +  SLHVGTQCA - 

RLYDYFTRV +  SLIYYQNEV - 

RMFPNAPYL +  SLLEIGEGV - 

RMPEAAPPV +  SLLPATLTV - 

RTLDKVLEV +  SLLYLILFL - 

RVIEVLQRA +  SLSLHPLYV - 

RVYEALYYV +  SLSVVRPMT - 

SILEGIANV +  SLVENNFFT - 

SILLRDAGL +  SLVRLVYIL - 

SITEVECFL +  SLVYVNGVV - 

SLDDYNHLV +  SLYAVSPSV - 

SLDQSVVEL +  SMDTLLFFL - 

SLEENIVIL +  SMIGLCACV - 

SLENFRAYV +  SMLGIWFFT - 

SLFNTIATL +  SMSSYDFST - 

SLFNTVATL +  SQYYFSMLV - 

SLFPGKLEV +  SSVVNNVAR - 

SLGGLLTMV +  STSFYLISI - 

SLGSPVLGL +  SVIFYFISI - 

SLLLELEEV +  TIIALLFAL - 

SLLMWITQA +  TLAPFNFLV - 

SLLMWITQC +  TLARDIVLV - 

SLLMWITQS +  TLFLLFLEI - 

SLLMWITQV +  TLGLSAMST - 

SLLQHLIGL +  TLIDIWFLA - 

SLLSEFCRV +  TLLGLILFV - 

SLMAFTAAV +  TLLVDLLWL - 

SLMAFTASI +  TLLYATVEV - 

SLNQTVHSL +  TLLYPLFNL - 

SLQALKVTV +  TLSNVEVFM - 

SLQPEDFAL +  TLSSPSPSA - 

SLQPEDFAT +  TLTEDFFVV - 

SLRAEDTAV +  TLVIPSWHV - 

SLREWLLRI +  TLYDFDYYI - 

SLSAYIIRV +  TMLSIILVI - 

SLSEKTVLL +  TMWCLTLFV - 

SLSKILDTV +  TTAEEAAGI - 

SLSRFSWGA +  TVILGVLLL - 

SLVIVTTFV +  TVLRFVPPL - 

SLYADSPSV +  TVQEFIFSA - 

SLYFGGICV +  VIDEILFKV - 

SLYITVATL +  VIGDQYVKV - 

SLYITVAVL +  VIHDYICWL - 

SLYKGVYEL +  VISVIFYFI - 

SLYNAVATL +  VIVIYIFTV - 
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SLYNTIATL +  VLADANETL - 

SLYNTIAVL +  VLALYSPPL - 

SLYNTVATL +  VLDTTLYAV - 

SLYNTVAVL +  VLGGCRHKL - 

SMAGSSAMI +  VLGRLDQKL - 

SMHFYGWSL +  VLIAGIILL - 

SMIEAESSV +  VLIALSVLA - 

SMMWMRFFV +  VLKAAGVPV - 

SMNATLVQA +  VLKDAIKDL - 

SMVGNWAKV +  VLLLDVTPL - 

SPEKHHCTV +  VLLLVVVMM - 

SSKALQRPV +  VLLVSLGAI - 

STAPPAHGV +  VLMTETRNL - 

STAPPVHNV +  VLSPLPSQA - 

STPPPGTRV +  VLVVMACLV - 

SVASTITGV +  VLYPVIFIT - 

SVFRENLFL +  VMKLFTISV - 

SVRDRLARL +  VMMSCSSEA - 

SVYDFFVWL +  VMYAFTTPL - 

TILLGIFFL +  WAFSAIGNV - 

TIMAFRWVT +  WIIKNSWTA - 

TINPQVSKT +  WIVQENNGA - 

TLDSQVMSL +  WLGAAITLV - 

TLEEFSAKL +  WLGETFHGL - 

TLFIGSHVV +  WLIGFDFDV - 

TLFLQMNSL +  WLLIDTSNA - 

TLGIVCPIC +  WLLSVLAAV - 

TLHEYMLDL +  WLTSILLSL - 

TLLANVTAV +  WLWYIKIFI - 

TLLNNCTRV +  WMMAMKYPI - 

TLLNVIKSV +  YATVEVPSL - 

TLLVYLFSL +  YAYGWIPET - 

TLNAWVKVV +  YFLEILWRL - 

TLNDLETDV +  YIIDWMVDI - 

TLTSCNTSV +  YIIKNTFNV - 

TLVCGKDGV +  YIIRVTTEL - 

TLWVDPYEV +  YILCNMALL - 

TLYLQMNSL +  YILYIVFCI - 

TMYGGISLL +  YINRALAQI - 

VCTEGKSKL +  YIWIKNLET - 

VDGIGILTI +  YIYYFFIRL - 

VILGVLLLI +  YLAKLTALV - 

VIYQTMDDL +  YLCCQLDPA - 

VIYQYMDDL +  YLCTFMIIT - 

VLAELVKQI +  YLDFLLLLL - 

VLAGLLGNV +  YLDLALMSV - 

VLAGVGFFI +  YLFGGFSTL - 

VLCLRPVGA +  YLFNAIETM - 
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VLDDLSMYL +  YLFRIVSTV - 

VLDGLDVLL +  YLGGCRHKL - 

VLEETSVML +  YLGPRVCWL - 

VLFSSDFRI +  YLILFLLFV - 

VLGPISGHV +  YLIPAVTSL - 

VLHDDLLEA +  YLKEYIPKA - 

VLHKRTLGL +  YLKIGTLLV - 

VLLCESTAV +  YLLALRYLA - 

VLLDYQGML +  YLLAVCGCI - 

VLLPSLFLL +  YLLCCNYKL - 

VLPDVFIRC +  YLLDDVLYT - 

VLPFDIKKL +  YLLFGIKCI - 

VLPHETRLL +  YLLGDSDSV - 

VLQAGFFLL +  YLLPGFVLT - 

VLQELNVTV +  YLMDEEVPA - 

VLQWASLAV +  YLMDELRYV - 

VLSDFKTWL +  YLMDKLNLT - 

VLVGGVLAA +  YLMKDKLNI - 

VLVKSPNHV +  YLMPYSVYI - 

VLYDEFVTI +  YLNMSRLFV - 

VMACLVPAA +  YLRLYIILA - 

VVFLHVTYV +  YLSAKITTL - 

VVLGVVFGI +  YLSEGDMAA - 

VVQELLWFL +  YLSIYGFGV - 

WLDQVPFSV +  YLSKCTLAV - 

WLGNHGFEV +  YLSSWTPVV - 

WLNEVEFKL +  YLTAIQDFI - 

WLQYFPNPV +  YLTVFTVYL - 

WLSDCGEAL +  YLVSFGVWI - 

WLSLLVPFV +  YLVSSLSEI - 

WMNRLIAFA +  YLYALYSPL - 

YAIDLPVSV +  YLYQPCDLL - 

YIGEVLVSV +  YLYVHSPAL - 

YIGSGDSPV +  YMFFVIKNL - 

YIIIGDSPV +  YMMGIEYGL - 

YIILGDSPV +  YMNYYTTYI - 

YIISGDLPV +  YQLAGYILT - 

YIISGDSPL +  YQLFVVFGL - 

YIISGDSWV +  YQSFLFWFL - 

YIISGISPV +  YQYVRLHEM - 

YILEETSVM +  YTALHYYYL - 

YIYGIPLSL +  YTFLYNFWT - 

YLAGAATMV +  YTIERIFNA - 

YLCLRPVGA +  YTINCLLYI - 

YLDKVRATV +  YTQDELINV - 

YLDPAQQNL +  YTYAFTKKV - 

YLDQVPFSV +  YTYKWETFL - 

YLEPGPVTA +  YVHGDTYSL - 
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YLEPGPVTI +  YVLLAVLFV - 

YLEPGPVTL +  YVLLHLLVV - 

YLEPGPVTV +  YVMTMILFL - 

YLFKDWEEL +  YVPGYSITT - 

YLFSLVVLV +    

YLGEVIVSV +    

YLGEVLVSV +    

YLHDPEFNL +    

YLHKRTLGL +    

YLIELIDRV +    

YLIKLIEPV +    

YLISGDSPV +    

YLISIFLHL +    

YLKEPVHGV +    

YLKKIKNSL +    

YLKKIQNSL +    

YLLDGLRAQ +    

YLLDRGADI +    

YLLEMLWRL +    

YLMDTSGKV +    

YLNKIQNSL +    

YLPEVISTI +    

YLQQNWWTL +    

YLSGANLNL +    

YLVAYQATV +    

YLVSIFLHL +    

YLVTRHADV +    

YMDDVVLGA +    

YMDGTMSQV +    

YMLAHVTGL +    

YMLDLQPET +    

YMNGTMSQV +    

YSSPTLQSV +    

YVDPVITSI +    

YVNAILYQI +    
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The validation dataset 

Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

AINGVMWTV +  ALAAYCLST - 

AISANIADI +  ALAHGVRAL - 

AITEVECFL +  ALVVGVVCA - 

ALEGSLQKR +  ALYDVIQKL - 

ALENNYEVL +  ALYGVWPLL - 

ALMLLNNYV +  ARNLVPMVA - 

ALQAIELQL +  ATATELNNA - 

ALQTGITLV +  AVCKVCLRL - 

ALRCASPWL +  CLSTGCVVI - 

ALSSSLGNV +  CLVDYPYRL - 

ALTAVAEEV +  CMSADLEVV - 

ALWALPHAA +  CVSGACWTV - 

ALWDSKFFT +  DIWDWICEV - 

ALYDVVSKL +  EVRTLQQLL - 

ALYDVVTKL +  FISGIQYLA - 

ALYEVVSKL +  FKDGIYFAA - 

AMAQDPHSL +  FLARLIWWL - 

AMARDPHSL +  FLYNFWTNV - 

AVGGAVASV +  FVFADLRIV - 

AVNGVLWTV +  FVSLLAPGA - 

AVNGVMWTV +  GLLGASMDL - 

CINGLCWTV +  GLSPAITKY - 

CINGVCWSI +  GPGLSPGTL - 

CINGVCWSV +  IASPKGPVI - 

CINGVMWTL +  ILIYNGWYA - 

CISGVCWTV +  ILSPGALVV - 

CLGGLLYMV +  IMSGEVPST - 

CLTEYILWV +  IMTCMSADL - 

CMLGDPVPT +  IMVSEHFSL - 

CTNGVCWTV +  ISVVLIFVV - 

CVNGACWTV +  KLFNKVPIV - 

DCLVFLAPA +  KLLKDHFDL - 

DLLEEGNTL +  KLMPQLPGI - 

DLMGYLPLV +  KLYAAIFGV - 

DLPPPPPLL +  KVCGAPPCV - 

DLSPGLPAA +  KVLVLNPSV - 

DRFYKTLRA +  LARGSPPSV - 

EEYLQAFTY +  LDYQGMLPV - 

ELFQDLSQL +  LIHLHQNIV - 

ELSPLLLST +  LLFDSNEPI - 
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ERYLKDQQL +  LLGCAANWI - 

FFDLPLPWL +  LLGCIITSL - 

FFDLPLPWT +  LLIPKSFTL - 

FIDNTDSVV +  LLLFAGVDA - 

FISDKIKFL +  LLLIWFRPV - 

FLAPAKAVV +  LLMMSVYAL - 

FLDLPLPWL +  LLSCLTVPA - 

FLDLPLPWT +  LLSKNTFYL - 

FLGGTRVCL +  LVLQAGFFL - 

FLHCIVFNV +  LVPMVATVQ - 

FLLTRILTL +  MCLRFLSKI - 

FLLVAHYAI +  MLTDPSHIT - 

FLNTEPSQL +  MMNWSPTTA - 

FLPRNIGNA +  MVATVQGQN - 

FLQDVMNIL +  MVGNWAKVL - 

FLTKRGGQV +  NLPGCSFSI - 

FLTKRGRQV +  NLSWLSLDV - 

FLTKRSGQV +  PLIPTTAVI - 

FLTKRSRQV +  PLLCPAGHA - 

FLTRVEAQL +  QLLMGTCTI - 

FLWEDQTLL +  QLLRIPQAI - 

FLYALALLL +  QLRSVIRAL - 

FLYNRPLNS +  QMWKCLIRL - 

FMTSSWWGA +  RAYMNTPGL - 

FMTSSWWRA +  RLCVQSTHV - 

FTSAVLLLL +  RLLLLDEEA - 

FTWAGKAVL +  RNLVPMVAT - 

FTWAGQAVL +  RVGLHEYPV - 

FVANFSMEL +  SAIIGIYLL - 

FVEALARSI +  TLFFFLLAL - 

FVSPSLVSA +  TLHDLCQAL - 

GILGFVFLT +  TLHGPTPLL - 

GIPPAPHGV +  TLKKCLNEI - 

GIPPAPRGV +  TLPGNPAIA - 

GLCEREDLL +  TLQQLLMGT - 

GLCPHCINV +  TLREYILDL - 

GLFPTQIQV +  TSICSLYQL - 

GLGTLGAAI +  TVGDVMWTV - 

GLIYNRMGA +  TVGGVIWTV - 

GLKGGPSTE +  TVGGVTWTV - 

GLLNKLENI +  VLVLNPSVA - 

GLPPPPPLL +  VLVVLLLFA - 

GLPRYVARL +  VPMVATVQG - 

GLPRYVVCL +  VVLLLFAGV - 

GLREREDLL +  VVTSTWVLV - 
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GLTEEIDYV +  WLLRDDWLL - 

GLWRHSPCA +  WLRDIWDWI - 

GMWESNANV +  WLVSNGSYL - 

GTMDCTHPL +  WQASLALSY - 

GTMDCTHSL +  WTVYHGQGT - 

GTWESNANV +  WVLVGGVLA - 

GVFIQVYEV +  YFDDVTAFL - 

HAVGIFRAA +  YIEQGMMLA - 

HLAFQLSSI +  YILDIQPQG - 

HLFYSAVLL +  YIPLVGAPL - 

HLWVKNMFL +  YLALDPDSV - 

HLWVKNVFL +  YLDGQLARL - 

HNFTLVASV +  YLLEMIWRL - 

ILHSRTEFV +  YLLYRMLKT - 

ILKSLGFKV +  YMLGLKPEV - 

ILLMRTTWA +  YMLILHPET - 

ILLNEVPYV +  

ILNPVASSL +  

ILPLHGPEA +  

ILSFLPWLV +  

ILVGRLRAA +  

ILYISFYFI +  

IMAIELAEL +  

IMIHDLCLA +  

IMIHDLCLV +  

KCQEVLAWL +  

KIQRNLRTL +  

KIQRNLWTL +  

KIYSENLKL +  

KIYSENLTL +  

KLAKLIIDL +  

KLCPVQLWV +  

KLEELHENV +  

KLQAPVQEL +  

KLQATVQEL +  

KLWEWLGYL +  

KLYSENLKL +  

KLYSENLTL +  

KMNVFDTNL +  

KTCPVQLWV +  

KTGECCLYM +  

LAGSSLNLV +  

LAGSSLNPV +  

LASEKVYAI +  

LASEKVYTI +  
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LIFDLGGGT +  

LIILPEDCL +  

LIISPLPRV +  

LIQETLLFV +  

LLDEGKQSL +  

LLLTLLATV +  

LLNGWRWRL +  

LLNLPVWVL +  

LLQEYNWEL +  

LLQMMQICL +  

LLQMMQVCL +  

LLQQYCLYL +  

LLSDEDVAL +  

LLSDEDVEL +  

LLSPLHCWA +  

LLVLFIVYV +  

LLWNGPMAV +  

LLYGGVPEV +  

LMDENTYAM +  

LMLLKNGTV +  

LNLPDKMFL +  

LQSRGYSSL +  

LQTHIFAEV +  

LVMAQLLRT +  

LVMLLVHYA +  

LVVSQLLRI +  

MLPSQPTLL +  

MLVALLGAM +  

MLVTLPVYS +  

MMLPSQPTL +  

MMLPSRPTL +  

MMMGMFNML +  

MMQICLHHL +  

MMQVCLHHL +  

MVWESGCTV +  

NCLKLLESL +  

NLLCHIYSL +  

NLLGRFELI +  

NLLKRWQFV +  

NVMLVTLPV +  

PILQERPPL +  

PLDGGVAAA +  

PLHCWAVLL +  

PLHCWVVLL +  

PLPEAPLSL +  
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

QIAILVTTV +  

QLCAKVPLL +  

QLGAFLTNV +  

QLGRISLLL +  

QLPEATFMV +  

QLPPTAPPL +  

RAIEAQQHL +  

RAPPTTPAL +  

RCHELTVSL +  

RIGQRQETV +  

RLAGSSLNL +  

RLEIPAIEL +  

RLGVRATRK +  

RLLPLLALL +  

RLLPLWAAL +  

RLLSPLSPL +  

RLQREWHTL +  

RLQVPVEAV +  

RLRAPEVFL +  

RLRPLCCTA +  

RLSCPSPRA +  

RLSCSSPRA +  

RLTSTNPTM +  

RQAGDFHQV +  

RQVGDFHQV +  

RQVGDFHYV +  

RTGEVKWSV +  

SFTEVECFL +  

SILELLQFV +  

SINGVMWTV +  

SIQNYHPFA +  

SLASLLPHV +  

SLFKNVRLL +  

SLGIMAIEL +  

SLLNLPVWV +  

SLLSLPVWV +  

SLPPPGTRV +  

SLQPLALEG +  

SLQRMVQEL +  

SLQRTVQEL +  

SLQSMVQEL +  

SLQSTVQEL +  

SLTAISTTL +  

SLTTISTTL +  

SLWQLGAAV +  
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

SLWQLRAAV +  

SMPQGTFPV +  

SMSKEAVAI +  

SMVGNMAKV +  

STLQGLTSV +  

SVASLLPHV +  

SVNGVMWTV +  

TIADFWQMV +  

TINGVLWTV +  

TIPTPLQPL +  

TLGQHLPTL +  

TLPPRPDHI +  

TLTTGEWAV +  

TLWGSFVDV +  

TMLDIQPED +  

TMLGRRAPI +  

TMLGRRPPI +  

TPQDLNTML +  

TQPGPLAPL +  

TQPGPLVPL +  

TTYQRTRAL +  

TVASRLGPV +  

TVNGVLWTV +  

TYLPTNASL +  

VIFCHPGQL +  

VIFDFLHCI +  

VILAGPCIL +  

VLASIEAEL +  

VLASIEPEL +  

VLATAVREL +  

VLAWTRAFV +  

VLDKVEETV +  

VLDSFKTWL +  

VLFGLLCLL +  

VLNSLASLL +  

VLNSVASLL +  

VLQAGFFIL +  

VLRDDLLEA +  

VLSDFKSWL +  

VLSDFRTWL +  

VLTDFKTWL +  

VLVEGSTRI +  

VLYSPNVSV +  

VVSDFKTWL +  

YIDDVVLGA +  
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Peptide sequence Immunogenicity  Peptide sequence Immunogenicity 

YILDLQPEN +  

YLGSYGFRL +  

YMDNNLFYV +  

YQGSYGFRL +  

YVDDVVLGA +  

YVFDRILKV +  

FLLRHLSSV +  

ILQEAEQMV +  

QLLDEGKEL +  

QLLESLAPL +  

SLYQLENYC +  

YLLEEIYTV +  

YLMQKLQNV +  
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