13,988 research outputs found

    Tracking-Optimized Quantization for H.264 Compression in Transportation Video Surveillance Applications

    Get PDF
    We propose a tracking-aware system that removes video components of low tracking interest and optimizes the quantization during compression of frequency coefficients, particularly those that most influence trackers, significantly reducing bitrate while maintaining comparable tracking accuracy. We utilize tracking accuracy as our compression criterion in lieu of mean squared error metrics. The process of optimizing quantization tables suitable for automated tracking can be executed online or offline. The online implementation initializes the encoding procedure for a specific scene, but introduces delay. On the other hand, the offline procedure produces globally optimum quantization tables where the optimization occurs for a collection of video sequences. Our proposed system is designed with low processing power and memory requirements in mind, and as such can be deployed on remote nodes. Using H.264/AVC video coding and a commonly used state-of-the-art tracker we show that while maintaining comparable tracking accuracy our system allows for over 50% bitrate savings on top of existing savings from previous work

    Cognitive visual tracking and camera control

    Get PDF
    Cognitive visual tracking is the process of observing and understanding the behaviour of a moving person. This paper presents an efficient solution to extract, in real-time, high-level information from an observed scene, and generate the most appropriate commands for a set of pan-tilt-zoom (PTZ) cameras in a surveillance scenario. Such a high-level feedback control loop, which is the main novelty of our work, will serve to reduce uncertainties in the observed scene and to maximize the amount of information extracted from it. It is implemented with a distributed camera system using SQL tables as virtual communication channels, and Situation Graph Trees for knowledge representation, inference and high-level camera control. A set of experiments in a surveillance scenario show the effectiveness of our approach and its potential for real applications of cognitive vision

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link® cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    Vision-based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

    Get PDF
    The paper focuses on the problem of vision-based obstacle detection and tracking for unmanned aerial vehicle navigation. A real-time object localization and tracking strategy from monocular image sequences is developed by effectively integrating the object detection and tracking into a dynamic Kalman model. At the detection stage, the object of interest is automatically detected and localized from a saliency map computed via the image background connectivity cue at each frame; at the tracking stage, a Kalman filter is employed to provide a coarse prediction of the object state, which is further refined via a local detector incorporating the saliency map and the temporal information between two consecutive frames. Compared to existing methods, the proposed approach does not require any manual initialization for tracking, runs much faster than the state-of-the-art trackers of its kind, and achieves competitive tracking performance on a large number of image sequences. Extensive experiments demonstrate the effectiveness and superior performance of the proposed approach.Comment: 8 pages, 7 figure

    Insignificant shadow detection for video segmentation

    Get PDF
    To prevent moving cast shadows from being misunderstood as part of moving objects in change detection based video segmentation, this paper proposes a novel approach to the cast shadow detection based on the edge and region information in multiple frames. First, an initial change detection mask containing moving objects and cast shadows is obtained. Then a Canny edge map is generated. After that, the shadow region is detected and removed through multiframe integration, edge matching, and region growing. Finally, a post processing procedure is used to eliminate noise and tune the boundaries of the objects. Our approach can be used for video segmentation in indoor environment. The experimental results demonstrate its good performance
    corecore