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ABSTRACT
We propose a tracking-aware system that removes video components
of low tracking interest and optimizes the quantization during com-
pression of frequency coefficients, particularly those that most influ-
ence trackers, significantly reducing bitrate while maintaining com-
parable tracking accuracy. We utilize tracking accuracy as our com-
pression criterion in lieu of mean squared error metrics. The process
of optimizing quantization tables suitable for automated tracking can
be executed online or offline. The online implementation initializes
the encoding procedure for a specific scene, but introduces delay.
On the other hand, the offline procedure produces globally optimum
quantization tables where the optimization occurs for a collection of
video sequences. Our proposed system is designed with low pro-
cessing power and memory requirements in mind, and as such can
be deployed on remote nodes. Using H.264/AVC video coding and a
commonly used state-of-the-art tracker we show that while maintain-
ing comparable tracking accuracy our system allows for over 50%
bitrate savings on top of existing savings from previous work.

Index Terms— Urban traffic video tracking, transportation,
video compression, quantization, preprocessing, postprocessing

1. INTRODUCTION
Video imaging sensors are commonly used in transportation moni-
toring and surveillance. In order to limit infrastructure costs associ-
ated with their deployment, most transportation video imaging solu-
tions require the transmission of the video to a centralized location
for viewing, (automated) analysis, and/or archiving. This centralized
approach mandates the compression of video before it is transmitted.
There has been an increasing interest in identifying video compres-
sion solutions that can further reduce the required bitrate without
violating standard compliance or increasing encoder complexity.

The subject of standard-compliant video compression optimized
for surveillance applications was explored in [1], which focuses on
concentrating (consolidating) bitrate on a Region of Interest (ROI)
in the context of MPEG. More recently in [2] a more elaborate ap-
proach was proposed that adds higher level elements such as motion
field correction filtering in the context of H.263. In [3] a method of
using ROIs to focus limited processing power on highest gain en-
coder components in the context of H.264/AVC is presented. These
methods are all low in complexity, but rely on information generated
by the encoder (such as motion vectors) to limit computation.

Within the scope of reducing bitrate and increasing video qual-
ity, a number of approaches have been suggested to reduce noise as
much as possible [4] or to take into account the fact that the camera
is stationary. However, the gains are in the domain of fidelity rather
than automated trackability. In [5], automated tracking accuracy is
proposed as a target metric in lieu of PSNR.

In this work we present an algorithm that when combined with
the one in [5] allows for compression resources to be focused on

video elements of tracking interest via the use of quantization tables.
The process of optimizing quantization tables can be executed on-
line or offline. The online implementation initializes the encoding
procedure for a specific scene, thereby aggressively minimizing the
bitrate requirement for that particular scene, but introduces delay.
On the other hand, the offline procedure produces globally optimum
quantization tables where the optimization occurs for a collection
of video sequences. The algorithms presented herein are designed
to be low in complexity and to be readily deployable as a simple
modular add-on to low processing power remote nodes of central-
ized transportation video systems. They make no assumptions about
the operation of the video encoder (such as its motion estimation or
rate control methods) and are thus suitable for use in a variety of
systems. The resulting bitstreams are standard-compliant, thereby
guaranteeing inter-operability with other systems.

In Section 2 we briefly discuss the effects of video compression
on the efficiency of tracking algorithms and present metrics for mea-
suring the magnitude of these effects. In Section 3 we propose our
joint method of tracking-optimized video processing and compres-
sion quantization, for which we show experimental results in Section
4. We present concluding remarks in Section 5.

2. COMPRESSION DISTORTION OF TRACKING
While the field of video object tracking contains a large variety of al-
gorithms, most of these systems share some fundamental concepts.
In a recent review of object tracking algorithms presented in [6] it
is shown that most algorithms operate by modeling and segmenting
foreground and background objects. The segmentation models and
key features for a particular tracking application are chosen based
on the application’s goals and parameters. For example, color his-
tograms can be useful when tracking highway vehicle activity dur-
ing the day, but less useful under low light conditions at night. Most
tracking algorithms, such as the Mean Shift tracker proposed in [7],
account only for the native statistics of video objects, and distortion
of these statistics by operations such as compression may severely
degrade their accuracy. In [8], we discuss the effects of video com-
pression which are especially debilitating for tracking algorithms,
concluding that artifacts caused by higher compression ratios in gen-
eral reduce tracking efficiency to a greater extent.

We refer to the closeness of the match between targets tracked
in the uncompressed and compressed videos as tracking accuracy,
which we measure using the Overlap (OLAP ), Precision (PREC)
and Sensitivity (SENS) metrics presented in [5]. In terms of the
Ground Truth (GT) and Algorithm Result (AR), True Positives (TPs)
are objects present in both the GT and AR, False Positives (FPs) are
objects present in the AR but not in the GT, and False Negatives
(FNs) are objects present in the GT but not in the AR. We define

OLAP = (GTi ∩ARi)/(GTi ∪ARi) (1)
PREC = TP/(TP + FP ) (2)
SENS = TP/(TP + FN), (3)
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where GTi are the segmented objects tracked in uncompressed
video, the ARi those tracked in compressed video, ∩ the intersec-
tion of the two regions, and ∪ their union. An FP is flagged if an
object detected in the AR does not overlap an equivalent object
in the GT, while an FN is flagged if an object detected in the GT
does not overlap an equivalent object in the AR. In order to jointly
optimize for a combination of these metrics we define the aggregate
tracking accuracy A as

A = (α ∗OLAP ) + (β ∗ PREC) + (γ ∗ SENS), (4)
where α, β and γ are weighting coefficients, such that α+β+γ = 1.

3. PROPOSED METHOD
In this section we propose a system combining the algorithm in [5]
with a new algorithm that determines a set of Quantization Table
(QT) and quantization parameter (QP) pairs. Each pair maximizes
tracking accuracy A for a given bitrate R. Below we propose the
core algorithm used in the system, and then present online and offline
initialization variants suitable for different application requirements.

3.1. Core Algorithm
First, we make use of the video processing algorithm presented in
[5]. This temporal filtering algorithm, referred to here as Tempo-
ral Deviation Thresholding (TDT), operates in two parts which we
briefly describe here. The first part models, detects, and removes
temporal events of low tracking interest (considered to be “noise”)
prior to compression, operating via an iterative filter described as

Mt = |Vt −Vt−1| > C ∗ nt (5)

V̂t = Mt ∗Vt + Mt ∗ V̂t−1 ∀ t ≥ B, (6)

where for frame t of video sequence V, Mt is a logical bitmap, Mt

is its logical inverse, C is a constant, nt an estimated noise standard
deviation, B the number of buffered frames being analyzed, and V̂t

the filtered output given to the encoder. The noise standard deviation
is estimated by observing frame statistics over the last B frames. Af-
ter the video is decoded at the receiver, nt (which was transmitted
with the bitstream) is used to synthesize and re-insert noise prior to
tracking. Part (a) aims to minimize the bitrate requirement, while
part (b) aims to improve post-compression tracking results. For fur-
ther details see [5].

Using TDT video, we propose an iterative gradient search al-
gorithm which automatically identifies and concentrates bit alloca-
tion to frequencies useful to tracking, making encoder quantization
decisions based on tracking accuracy as opposed to the traditional
rate-distortion method. During each search iteration, the encoder
quantization scheme for each individual frequency is modified, and
tracking accuracy is measured for a sample video clip. From these
results, only those frequencies which provide the highest tradeoff be-
tween bits and tracking accuracy are kept, and subsequent iterations
proceed cumulatively. Details for the algorithm are presented below.

The quantization scheme is varied by the algorithm via the QT
specified as part of the H.264/AVC Sequence and Picture Parameter
Set structures. Each entry of the QT partially defines quantization of
a coefficient resulting from the 4x4 spatial transform – the goal is to
spend the fewest bits on coefficients containing the least useful in-
formation pertaining to features utilized by the tracker. This allows
us to implicitly affect rate-distortion level decisions without requir-
ing a tracker on the encoder. The end result of this algorithm is a QT
Lookup Table (QT-LUT), which is formed of an array of bitrates and
corresponding optimized QP and QT pairs for each bitrate.

The quantization of the jth transform coefficient in terms of the
QP q and QT is described as

QT = [φ0, φ1, φ2, ..., φ15] (7)
quantj = q ∗ φj/16, (8)

where each 8-bit φj operates on a rasterized 4x4 H.264/AVC residual
transform coefficient (e.g., φ0 operates on position [1,1] and φ15

on position [4,4]). Therefore 28·16 distinct QTs are possible. We
define a simplified binary QT where each φj can only have values
of either 16 or 255, thereby limiting our optimization search space
to 216 values. The two options (16 or 255) lead to respectively using
q directly or quantizing coarsely enough to effectively suppress the
coefficient. We then define τ , a scalar to indicate the “structure” of
the QT, as follows:

τ =
15X

j=0

2j ∗ Pj , where Pj =


1 if φj = 16
0 if φj = 255 (9)

The value of τ ranges from 1 to 216 − 1, and each value uniquely
determines the values of Pj . For example, τ = 216 − 1 (all bit
positions equal to 1) would indicate the use of a “flat” QT, whereas
τ = 1 (all bit positions but the zeroth equal to 0) would indicate a
DC-only QT. We define the mapping operation fenc as:

{R, A} fenc← {V, q, τ}, (10)

where R is the compressed bitrate and A the tracking accuracy for
the video sequence V compressed using q and τ . We define a “data
point” as associated with {R, A, q, τ}, and denote as {R,A,q, τ}
a collection of concatenated data points. We define the function fopt

isolating the iteration-optimal data points {R∗,A∗,q∗, τ ∗} as:

{R∗,A∗,q∗, τ ∗} = fopt(R,A,q, τ ). (11)

fopt operates by starting with the lowest bitrate R data point avail-
able, and adding all other data points of monotonically increasing
tracking accuracy A. We define the function fbranch, which gen-
erates the QT modifications necessary for the search iterations, as

τ n = fbranch(τ ∗n−1), (12)
where for every element τ in the input vector τ ∗n−1 (size L × 1)
an output vector τ n, which is formed of the concatenation of all 32
possible bit permutations (i.e., of size 32 · L× 1), is generated. We
initialize our QT search as

qo = [QP1, QP2, ..., QPM ] (13a)
τflat = 216 − 1 (13b)

τ o = [τflat, τflat, ..., τflat] (13c)

{Ro,Ao}
fenc← {V,qo, τ o} (13d)

{R∗
o,A∗

o,q∗o, τ ∗o} = fopt(Ro,Ao,qo, τ o). (13e)

A range of M QPs, each with a corresponding flat QT τflat (i.e.,
where τo is of size M×1), are evaluated. We define search iterations
n > 0 as follows:

qn = q∗n−1 (14a)
τ n = fbranch(τ ∗n−1) (14b)

{Rn,An}
fenc← {V,qn, τ n} (14c)

{R∗
n,A∗

n,q∗n, τ ∗n} = fopt(Rn,An,qn, τ n). (14d)

The algorithm converges when {R∗
n,A∗

n} = {R∗
n−1,A

∗
n−1}.

Briefly explained, the core QT search algorithm operates as fol-
lows: we initialize by encoding the sample video using a range of
QPs and a flat QT (all entries = 16) as shown in Eq. 13. The
iteration-optimal points are identified as the data point with the low-
est bitrate R and those points with tracking accuracy A monoton-
ically increasing from this point. To generate the data points for
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each iteration, for every QT from the previous iteration-optimal data
points each of the coefficients is in turn set to 16 and 255 as per Eq.
12. We then proceed as per Eq. 14 by evaluating each data point and
afterwards finding those that are iteration-optimal among them.

Observe that given the operation of fopt this algorithm uses a
gradient search – only iterative results showing improvement (i.e.,
higher A for the same or lower R) are evaluated in subsequent iter-
ations. Note that the QT search is performed simultaneously across
a range of q and τ ’s. This is because tracking is a nonlinear process
subject to different sources of distortion at different quantization lev-
els – the cost and benefit of each QT coefficient is dependent on the
QP being used. Note also that a single QT is used to code the entire
video, i.e., the QT is not a macroblock- or frame-level variable.

The above process can be performed online for a specific video
scene for a QT-LUT specifically tailored for this scene, or offline
for a large number of different video scenes for a more generalized
QT-LUT that performs well for any scene. We consider TDT to be a
key component of the system because it reduces noise which affects
tracking accuracy. A QT search performed on unprocessed video
will result in an attempt to remove temporal noise in the frequency
domain, potentially attenuating high frequencies and reducing the
tracking accuracies of the final QT-LUT.

3.2. Online Initialization System
The online method of QT initialization can initially require a long
initialization delay and high bandwidth, but given that it is tailored
to the specific scene for which it is initialized allows for the best
performance. During initialization the online system encodes the
captured sample video at a high bitrate and transmits this bitstream
at the channel rate. At the receiver, TDT processing is applied, after
which the reconstructed video is used as a source video estimate for
automated tracking to generate a “ground truth” tracking baseline.
This ground truth is used to calculate the tracking accuracy A of
each QT search iteration. At the conclusion of the search the final
QT-LUT is sent via the uplink to the remote node, which uses it for
encoding during runtime until the next initialization phase.

3.3. Offline (Global) Initialization System
The less aggressive but easier to deploy and operate method of QT
utilization is possible via the global QT (gQT) system. In the gQT
scenario a “tracker-focused scene-agnostic” QT-LUT is generated
offline using video from many different scenes. This eliminates any
need for a feedback loop between the remote nodes and central pro-
cessing and imposes no system initialization delay. Note that for
the gQT system no additional complexity regarding QT searching
is introduced into the overall system – the gQT is computed offline
and built into the remote nodes during deployment. Here the QT
search mechanism is similar to the central processing section of the
online system. However, instead of a single high bitrate video source
captured from a remote node, raw content previously acquired from
various cameras with different visibility conditions and viewing an-
gles is used. In order to implement gQT we modify the QT search
described above by replacing Eq. 10 by:

{R, A} fenc← {[V1,V2, ...,VK ], q, τ}, (15)

where instead of a single video sequence V a set of K video se-
quences [V1,V2, ...,VK ] are encoded, and the average bitrate R
and tracking accuracy A for all sequences is reported. The rest of
the algorithm as described in Eqs. 13-14 proceeds as normal using
fenc, resulting in a Global QT well suited for the variety of video
sequences being considered.

Table 1. Global QT-LUT found after 3 iterations of training, and the
corresponding sample tracking accuracies.
R (kbps) QP QT

145 32 [◦ • • • ◦ ◦ • • ◦ • • • • • • •]
156 32 [• ◦ ◦ • • ◦ • • ◦ • • • • • • •]
185 32 [• • • • • • • • ◦ • • • • • ◦ •]
308 28 [• ◦ ◦ • ◦ ◦ • • • • • • • • • •]
322 28 [• ◦ ◦ • • ◦ • ◦ • • • • • • • •]
368 28 [• • • ◦ • • ◦ ◦ • • ◦ • • • • •]
702 24 [• • ◦ ◦ • • ◦ • • • ◦ • • • • •]
760 24 [• • • • • ◦ ◦ • • ◦ • • • • • •]

Amean

0.652
0.743
0.757
0.772
0.794
0.810
0.823
0.836

• = 16
◦ = 255

4. EXPERIMENTAL RESULTS
To demonstrate the gains possible with our algorithm a sample im-
plementation of our system was tested using multiple sequences with
different characteristics such as viewing angle, video quality and
type of traffic observed. Details for the implementation and experi-
mental procedure in addition to test results are presented below.

The video compression for the experiments presented herein was
performed using the open-source H.264 encoder x264 [9] and the JM
16.0 H.264 reference decoder [10]. The open-source OpenCV [11]
“blobtrack” module was used as the object tracker, which relies on
the Mean Shift object tracking algorithm [7].

For comparison we chose the LMMSE filtering algorithm pre-
sented in [4]. This algorithm is similar to those presented herein in
that it is a low complexity video processing module aimed at remov-
ing noise from video. For a given bitrate LMMSE aims to maximize
reconstructed video PSNR, while our algorithm specifically aims to
preserve automated tracking accuracy. The LMMSE implementation
used here was based on the JM 8.2 available at [10].

We used the following parameters for our experiments. For
TDT, we generated 10 realizations of Gaussian noise per sequence,
which were used for all experiments performed using that sequence.
As TDT experimental constants we used the threshold C = 2 and
buffer size B = 7. We used fixed QP rate control, with any varia-
tions in bitrate generated via varying the QP for the entire sequence,
or in QT search experiments by varying both the QP and QT (i.e.,
no frame or macroblock level rate control). The training for the gQT
system was done jointly over a database of videos (including the se-
quences used in this work) at various spatial resolutions.

The following videos were used for testing. The “Golf” se-
quence (720x480) was shot on DV tape and is a relatively high fi-
delity source, showing a local road intersection with steady non-rush
traffic. As part of the scene there are trees and parking lots for office
buildings and a strip mall. The “Camera6” sequence (640x480) was
used under the NGSIM license courtesy of the US FHWA. It shows
an intersection with light traffic, with trees swaying in the wind and
buildings casting reflections of passing cars as part of the scene. This
video was MPEG4 intra-only compressed during acquisition and is
thus significantly noisier than the “Golf” sequence.

The global QT-LUT shown in Table 1 was used to generate the
gQT experimental results presented herein. In the table the bitrate
ranges are presented in the first column, the optimized QP and QTs
respectively in the second and third columns, and sample A values
from our experiments in the last column. The QTs in the table are
presented in the format described in Eqs. 7-8. Such a global QT-
LUT can be built into any gQT system, where the remote node would
simply choose the appropriate QP/QT pair for compression based on
the bitrate indicated by the available channel bandwidth.

Experimental results from our test framework are presented in
Fig. 1. Note that the TDT operating points form the seed values for
the QT search, and therefore are the basis from which online and
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Fig. 1. Tracking accuracy for default, TDT (from [5]), gQT and online systems using the (a) “Golf” and (b) “Camera6” sequences.

Table 2. Comparison of algorithms and results.
System Bitrate Gain % Suitable Deployment

LMMSE [4] -11.3 ± 51.6 Only human observation intended
TDT [5] 84.6 ± 3.8 No uplink or no QT capability

gQT 87.6 ± 4.4 No uplink or no init. tolerable
Online 88.1 ± 4.2 Uplink available, long init. tolerable

gQT experiments are performed. A reduction of up to 50% of the
TDT bitrate is possible using QT search. Overall gQT performs as
well as the online system. The performance of gQT depends on the
sequences used offline to train the system. For our experiments we
used various sequences (including the two discussed herein).

Table 2 summarizes the various aspects of the algorithms pre-
sented in this work. In the table, bitrate gain ranges are reported
as the mean ± standard deviation of the interpolated gains between
algorithm and default compression results. As indicated in the ta-
ble, PSNR-optimized algorithms such as the LMMSE filter [4] do
not necessarily allow better automated tracking performance. The
online system involves a potentially lengthy initialization time de-
pending on the available channel rate and the chosen “high” bitrate
for the ground truth estimation video. Where such long initialization
times and initial bandwidth requirements are acceptable, the online
system is ideal since it consolidates much of the system complexity
in the central processing unit and provides the greatest reduction in
required channel bandwidth for run-time operation.

Drastic changes such as the onset of heavy fog or rain require
re-initialization in the online system. If such changes are frequent,
the system downtime required for initialization can be impractical.
On the other hand gQT does not require any such downtime and can
thus be considered as a more practical alternative. To illustrate the
loss of performance suffered by the online system in the absence
of proper re-initilization we used the QT-LUT which was optimized
on the “Golf” sequence to compress the “Camera6” sequence. This
scenario was outperfomed by gQT on average by 63%.

Given that the gQT system does not optimize for specific scenes
but only for a given tracker, it is expected that it may provide less re-
duction in bitrate compared to the online system for any given scene.
It is suitable for applications where no initialization time is accept-
able, or where the link between the remote node and central pro-
cessing required for the online system is not available. Where QT
support is not available (e.g., no H.264/AVC High profile support)
TDT-only systems should be deployed.

5. CONCLUSION
We have proposed a combined video processing and iterative quanti-
zation table search algorithm that removes elements of low tracking

interest as part of the video compression system. We propose online
and offline alternatives for system initialization, each appropriate for
systems with different requirements. Using H.264/AVC video cod-
ing and a commonly used tracker, we show that while maintaining
comparable tracking accuracy our system allows for over 50% bi-
trate savings on top of existing 90% savings from TDT processing.
Acknowledgements: The authors would like to thank Dr. Liwei

Guo and Prof. Oscar C. Au for their LMMSE implementation. This
work was supported in part by the Northwestern Center for the Com-
mercialization of Innovative Transportation Technology (CCITT).

6. REFERENCES
[1] N. Zingirian, P. Baglietto, M. Maresca, and M. Migliardi,

“Video object tracking with feedback of performance mea-
sures,” in Proc. ICIAP, vol. 2, Florence, Italy, 1997, pp. 46–53.

[2] W. K. Ho, W. Cheuk, and D. P. Lun, “Content-based scalable
H.263 video coding for road traffic monitoring,” IEEE Trans.
on Multimedia, vol. 7, no. 4, pp. 324–327, Aug. 2005.

[3] A. K. Kannur and B. Li, “Power-aware content-adaptive H.264
video encoding,” in Proc. ICASSP, Taipei, Taiwan, April 2009,
pp. 925–928.

[4] L. Guo, O. C. Au, M. Ma, and P. H. W. Wong, “Integration of
recursive temporal LMMSE denoising filter into video codec,”
IEEE Trans. On Circ. And Sys. For Video Tech., vol. 20, no. 2,
pp. 236–249, Feb. 2010.

[5] E. Soyak, S. A. Tsaftaris, and A. K. Katsaggelos, “Tracking-
optimal pre- and post-processing for H.264 compression
in traffic video surveillance applications,” in Proc. ICECS,
Athens, Greece, Dec. 2010, pp. 380–383.

[6] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A sur-
vey,” ACM Computing Surveys, vol. 38, pp. 13.1–13.45, 2006.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking
of non-rigid objects using mean shift,” in Proc. CVPR, vol. 2,
Hilton Head, SC, USA, 2000, pp. 142–149.

[8] E. Soyak, S. A. Tsaftaris, and A. K. Katsaggelos, “Content-
aware H.264 encoding for traffic video tracking applications,”
in Proc. ICASSP, Dallas, TX, USA, March 2010, pp. 730–733.

[9] (2010, Dec.) The open-source x264 video codec. [Online].
Available: http://www.videolan.org/developers/x264.html

[10] (2010, Dec.) The open-source H.264/AVC verification model.
[Online]. Available: http://iphome.hhi.de/suehring/tml/

[11] (2010, Dec.) The OpenCV real-time computer vision library.
[Online]. Available: http://opencv.willowgarage.com

2011 18th IEEE International Conference on Image Processing

160


