43 research outputs found

    Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy

    Get PDF
    To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected

    Making national forest inventory data relevant for local forest management

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2018. Major: Natural Resources Science and Management. Advisor: Joseph Knight. 1 computer file (PDF); vi, 131 pages.The national forest inventory conducted by the United States Forest Service Forest Inventory and Analysis (FIA) program provides information for strategic level decisions regarding national and regional management of forest ecosystem goods and services. However, the sampling intensity typically limits the application of traditional direct estimators to areas the size of a large county, if not larger. This dissertation describes methods for combining FIA data with auxiliary information to enhance its relevance for local forest management. Background information is provided on the way population estimates are currently produced, and how precision can be improved via satellite imagery. A study is described that uses features extracted from dense time series of Landsat imagery with a model-assisted direct estimator. The study examined the relative predictive power of land cover models incorporating extracted spectro-temporal features versus composite imagery alone. Non-parametric models were fitted for multiple attributes measured on FIA plots using all archived Landsat scenes for Minnesota from 2009-2013. The estimated coefficients developed by harmonic regression of the time series imagery were shown to be moderately to highly correlated with tree-level and land cover attributes. When comparing results for spectro-temporal features to monthly image composites, regression models had greater explained variance and classification models had greater overall and individual class accuracies. Finally, a study is presented that tested the performance of a proposed variant of the k-nearest neighbors algorithm for areas too small to use a direct estimator. Spectro-temporal features were extracted for one ecological unit in Minnesota. A simulated population of tree canopy cover was sampled at FIA plot locations. The proposed algorithm was used to fit a non-parametric model to predict tree canopy cover that incorporates the spectro-temporal features. The model was used to construct predictive intervals for spatial domains over a range of domain sizes, and the resultant tests showed the coverage probability approached the theoretical value for areas as small as 1200 hectares. The study suggests that, given good auxiliary data and models, the scale of valid inference using FIA data can approach what is needed for local decision makers

    Spatial Analysis of Post-Hurricane Katrina Thermal Pattern and Intensity in Greater New Orleans: Implications for Urban Heat Island Research

    Get PDF
    In 2005, Hurricane Katrina’s diverse impacts on the Greater New Orleans area included damaged and destroyed trees, and other despoiled vegetation, which also increased the exposure of artificial and bare surfaces, known factors that contribute to the climatic phenomenon known as the urban heat island (UHI). This is an investigation of UHI in the aftermath of Hurricane Katrina, which entails the analysis of pre and post-hurricane Katrina thermal imagery of the study area, including changes to surface heat patterns and vegetative cover. Imagery from Landsat TM was used to show changes to the pattern and intensity of the UHI effect, caused by an extreme weather event. Using remote sensing visualization methods, field data, and local knowledge, the author found there was a measurable change in the pattern and intensity of the New Orleans UHI effect, as well as concomitant changes to vegetative land cover. This finding may be relevant for urban planners and citizens, especially in the context of recovery from a large-scale disaster of a coastal city, regarding future weather events, and other natural and human impacts

    Mapping and Assessing Impacts of Land Use and Land Cover Change by Means of Advanced Remote Sensing Approach:: Mapping and Assessing Impacts of Land Use and Land Cover Change by Means of Advanced Remote Sensing Approach:: A case Study of Gash Agricultural Scheme, Eastern Sudan

    Get PDF
    Risks and uncertainties are unavoidable in agriculture in Sudan, due to its dependence on climatic factors and to the imperfect nature of the agricultural decisions and policies attributed to land cover and land use changes that occur. The current study was conducted in the Gash Agricultural Scheme (GAS) - Kassala State, as a semi-arid land in eastern Sudan. The scheme has been established to contribute to the rural development, to help stability of the nomadic population in eastern Sudan, particularly the local population around the Gash river areas, and to facilitate utilizing the river flood in growing cotton and other cash crops. In the last decade, the scheme production has declined, because of drought periods, which hit the region, sand invasion and the spread of invasive mesquite trees, in addition to administrative negligence. These have resulted also in poor agricultural productivity and the displacement of farmers away from the scheme area. Recently, the scheme is heavily disturbed by human intervention in many aspects. Consequently, resources of cultivated land have shrunk and declined during the period of the study, which in turn have led to dissatisfaction and increasing failure of satisfying increasing farmer’s income and demand for local consumption. Remote sensing applications and geospatial techniques have played a key role in studying different types of hazards whether they are natural or manmade. Multi-temporal satellite data combined with ancillary data were used to monitor, analyze and to assess land use and land cover (LULC) changes and the impact of land degradation on the scheme production, which provides the managers and decision makers with current and improved data for the purposes of proper administration of natural resources in the GAS. Information about patterns of LULC changes through time in the GAS is not only important for the management and planning, but also for a better understanding of human dimensions of environmental changes at regional scale. This study attempts to map and assess the impacts of LULC change and land degradation in GAS during a period of 38 years from 1972-2010. Dry season multi-temporal satellite imagery collected by different sensor systems was selected such as three cloud-free Landsat (MSS 1972, TM 1987 and ETM+ 1999) and ASTER (2010) satellite imagery. This imagery was geo-referenced and radiometrically and atmospherically calibrated using dark object subtraction (DOS). Two approaches of classification (object-oriented and pixel-based) were applied for classification and comparison of LULC. In addition, the study compares between the two approaches to determine which one is more compatible for classification of LULC of the GAS. The pixel-based approach performed slightly better than the object-oriented approach in the classification of LULC in the study area. Application of multi-temporal remote sensing data proved to be successful for the identification and mapping of LULC into five main classes as follows: woodland dominated by dense mesquite trees, grass and shrubs dominated by less dense mesquite trees, bare and cultivated land, stabilized fine sand and mobile sand. After image enhancement successful classification of imagery was achieved using pixel and object based approaches as well as subsequent change detection (image differencing and change matrix), supported by classification accuracy assessments and post-classification. Comparison of LULC changes shows that the land cover of GAS has changed dramatically during the investigated period. It has been discovered that more significant of LULC change processes occurred during the second studied period (1987 to 1999) than during the first period (1972-1987). In the second period nearly half of bare and cultivated lands was changed from 41372.74 ha (20.22 %) in 1987 to 28020.80 ha (13.60 %) in 1999, which was mainly due to the drought that hit the region during the mentioned period. However, the results revealed a drastic loss of bare and cultivated land, equivalent to more than 40% during the entire period (1972-2010). Throughout the whole period of study, drought and invasion of both mesquite trees and sand were responsible for the loss of more than 40% of the total productive lands. Change vector analysis (CVA) as a useful approach was applied for estimating change detection in both magnitude and direction of change. The promising approach of multivariate alteration detection (MAD) and subsequent maximum autocorrelation factor (MAD/MAF) transformation was used to support change detection via assessment of maximum correlation between the transformed variates and the specific original image bands related to specific land cover classes. However, both CVA and MAD/MAD strongly prove the fact that bare and cultivated land have dramatically changed and decreased continuously during the studied period. Both CVA and MAD/MAD demonstrate adequate potentials for monitoring, detecting, identifying and mapping the changes. Moreover, this research demonstrated that CVA and MAD/MAF are superior in providing qualitative details about the nature of all kinds of change. Vegetation indices (VI) such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), modified adjusted vegetation index (MSAVI) and grain soil index (GSI) were applied to measure the quantitative characterization of temporal and spatial vegetation cover patterns and change. All indices remain very sensitive to structure variation of LULC. The results reveal that the NDVI is more effective for detecting the amount and status of the vegetation cover in the study area than SAVI, MSAVI and GSI. Therefore, it can be stated that NDVI can be used as a response variable to identify drought disturbance and land degradation in semi-arid land such as the GAS area. Results of detecting vegetation cover observed by using SAVI were found to be more reasonable than using MSAVI, although MSAVI reduces the background of bare soil better than SAVI. GSI proves high efficiency in determining the different types of surface soils, and producing a change map of top soil grain size, which is useful in assessment of land degradation in the study area. The linkage between socio-economic data and remotely sensed data was applied to determine the relationships between the different factors derived and to analyze the reasons for change in LULC and land degradation and its effects in the study area. The results indicate a strong relationship between LULC derived from remotely sensed data and the influencing socioeconomic variables. The results obtained from analyzing socioeconomic data confirm the findings of remote sensing data analysis, which assure that the decline and degradation of agricultural land is a result of further spread of mesquite trees and of increased invasion of sand during the study period. High livestock density and overgrazing, drought, invasion of sand, spread of invasive mesquite trees, overexploitation of land, improper management, and population growth were considered as the main direct factors responsible for degradation in the study area

    Earth Resources, A Continuing Bibliography with Indexes

    Get PDF
    This bibliography lists 460 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Mapping And Monitoring Wetland Environment By Analysis Different Satellite Images And Field Spectroscopy

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2010Bu çalışmada farklı spektral ve mekansal çözünürlükte uydu görüntülerinin “Terkos Havzası Sulak Alanı” örneğinde; arazi örtüsünde meydana gelen değişimleri ve sulak alan bitki türlerinin belirlenmesinde kullanılabilirlikleri için uygulanabilecek uzaktan algılama yöntemleri ele alınmıştır. Kullanılan yöntemler ile elde edilen yeni işlenmiş görüntülerin performanslarının yersel yansıtım değerleri kullanılarak desteklenmesi ile doğal alanların sürdürülebilir korunma ve yönetimi için uzaktan algılama verilerine dayalı bir altlık rehberin oluşturulması imkanı araştırılmıştır. Elde edilen sonuçlara göre heterojen arazi örtüsü yapısına sahip olan çalışma bölgesinde değişim tespiti için Ana Bileşen Dönüşümüne dayalı değişim tespit yöntemi en iyi sonucu vermiştir. Ayrıca bu çalışmada, hiperspektral Hyperion EO-1 görüntüsü ile sulak alan bitki örtüsünün diğer bitki türlerinden doğru olarak ayırt edilebildiği ortaya konmuştur. Sulak alan bitki türlerinin kendi içinde ayırt edilebilmesi ancak yersel spektroskopi ile mümkün olduğu sonucuna ulaşılmıştır.In this study, different satellite data that has different spectral and spatial resolution and in-situ spectroradiometer measurements were used to analyze hydrophytic vegetation and surrounded land cover for sustainable development and conservation of Terkos wetlands. By supporting performances of processed images with field collected reflectance values, the feasibility of structuring a basic guide based on remote sensing data for sustainable preservation and management of natural lands was searched. According to result, land cover changes in the complex natural area were determined more accurately by using PCA based change detection method Therefore, the performance of spaceborne Hyperion EO-1 hyperspectral data was analyzed to determine the capability of the data for wetland vegetation discrimination than the other vegetated areas. At the last stage of the study, field collected reflectance values that have different wetland flora types were compared by statistical ANOVA method and reflectance differences between vegetation types were put forward through calculations.DoktoraPh

    Land-Cover and Land-Use Study Using Genetic Algorithms, Petri Nets, and Cellular Automata

    Get PDF
    Recent research techniques, such as genetic algorithm (GA), Petri net (PN), and cellular automata (CA) have been applied in a number of studies. However, their capability and performance in land-cover land-use (LCLU) classification, change detection, and predictive modeling have not been well understood. This study seeks to address the following questions: 1) How do genetic parameters impact the accuracy of GA-based LCLU classification; 2) How do image parameters impact the accuracy of GA-based LCLU classification; 3) Is GA-based LCLU classification more accurate than the maximum likelihood classifier (MLC), iterative self-organizing data analysis technique (ISODATA), and the hybrid approach; 4) How do genetic parameters impact Petri Net-based LCLU change detection; and 5) How do cellular automata components impact the accuracy of LCLU predictive modeling. The study area, namely the Tickfaw River watershed (711mi²), is located in southeast Louisiana and southwest Mississippi. The major datasets include time-series Landsat TM / ETM images and Digital Orthophoto Quarter Quadrangles (DOQQ’s). LCLU classification was conducted by using the GA, MLC, ISODATA, and Hybrid approach. The LCLU change was modeled by using genetic PN-based process mining technique. The process models were interpreted and input to a CA for predicting future LCLU. The major findings include: 1) GA-based LCLU classification is more accurate than the traditional approaches; 2) When genetic parameters, image parameters, or CA components are configured improperly, the accuracy of LCLU classification, the coverage of LCLU change process model, and/or the accuracy of LCLU predictive modeling will be low; 3) For GA-based LCLU classification, the recommended configuration of genetic / image parameters is generation 2000-5000, population 1000, crossover rate 69%-99%, mutation rate 0.1%-0.5%, generation gap 25%-50%, data layers 16-20, training / testing data size 10000-20000 / 5000-10000, and spatial resolution 30m-60m; 4) For genetic Petri nets-based LCLU change detection, the recommended configuration of genetic parameters is generation 500, population 300, crossover rate 59%, mutation rate 5%, and elitism rate 4%; and 5) For CA-based LCLU predictive modeling, the recommended configuration of CA components is space 6025 * 12993, state 2, von Neumann neighborhood 3 * 3, time step 2-3 years, and optimized transition rules

    Earth Resources: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 475 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    An Image fusion algorithm for spatially enhancing spectral mixture maps

    Get PDF
    An image fusion algorithm, based upon spectral mixture analysis, is presented. The algorithm combines low spatial resolution multi/hyperspectral data with high spatial resolution sharpening image(s) to create high resolution material maps. Spectral (un)mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. The outputs of unmixing are endmember fraction images (material maps) at the spatial resolution of the multispectral system. This research includes developing an improved unmixing algorithm based upon stepwise regression. In the second stage of the process, the unmixing solution is sharpened with data from another sensor to generate high resolution material maps. Sharpening is implemented as a nonlinear optimization using the same type of model as unmixing. Quantifiable results are obtained through the use of synthetically generated imagery. Without synthetic images, a large amount of ground truth would be required in order to measure the accuracy of the material maps. Multiple band sharpening is easily accommodated by the algorithm, and the results are demonstrated at multiple scales. The analysis includes an examination of the effects of constraints and texture variation on the material maps. The results show stepwise unmixing is an improvement over traditional unmixing algorithms. The results also indicate sharpening improves the material maps. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map

    Earth Resources. A continuing bibliography with indexes, issue 34, July 1982

    Get PDF
    This bibliography lists 567 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between April 1, and June 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    corecore