17,393 research outputs found

    Learning the Structure of Continuous Markov Decision Processes

    Get PDF
    There is growing interest in artificial, intelligent agents which can operate autonomously for an extended period of time in complex environments and fulfill a variety of different tasks. Such agents will face different problems during their lifetime which may not be foreseeable at the time of their deployment. Thus, the capacity for lifelong learning of new behaviors is an essential prerequisite for this kind of agents as it enables them to deal with unforeseen situations. However, learning every complex behavior anew from scratch would be cumbersome for the agent. It is more plausible to consider behavior to be modular and let the agent acquire a set of reusable building blocks for behavior, the so-called skills. These skills might, once acquired, facilitate fast learning and adaptation of behavior to new situations. This work focuses on computational approaches for skill acquisition, namely which kind of skills shall be acquired and how to acquire them. The former is commonly denoted as skill discovery and the latter as skill learning . The main contribution of this thesis is a novel incremental skill acquisition approach which is suited for lifelong learning. In this approach, the agent learns incrementally a graph-based representation of a domain and exploits certain properties of this graph such as its bottlenecks for skill discovery. This thesis proposes a novel approach for learning a graph-based representation of continuous domains based on formalizing the problem as a probabilistic generative model. Furthermore, a new incremental agglomerative clustering approach for identifying bottlenecks of such graphs is presented. Thereupon, the thesis proposes a novel intrinsic motivation system which enables an agent to intelligently allocate time between skill discovery and skill learning in developmental settings, where the agent is not constrained by external tasks. The results of this thesis show that the resulting skill acquisition approach is suited for continuous domains and can deal with domain stochasticity and different explorative behavior of the agent. The acquired skills are reusable and versatile and can be used in multi-task and lifelong learning settings in high-dimensional problems

    Creating Multi-Level Skill Hierarchies in Reinforcement Learning

    Get PDF
    What is a useful skill hierarchy for an autonomous agent? We propose an answer based on the graphical structure of an agent's interaction with its environment. Our approach uses hierarchical graph partitioning to expose the structure of the graph at varying timescales, producing a skill hierarchy with multiple levels of abstraction. At each level of the hierarchy, skills move the agent between regions of the state space that are well connected within themselves but weakly connected to each other. We illustrate the utility of the proposed skill hierarchy in a wide variety of domains in the context of reinforcement learning

    Which is the best intrinsic motivation signal for learning multiple skills?

    Get PDF
    Humans and other biological agents are able to autonomously learn and cache different skills in the absence of any biological pressure or any assigned task. In this respect, Intrinsic Motivations (i.e., motivations not connected to reward-related stimuli) play a cardinal role in animal learning, and can be considered as a fundamental tool for developing more autonomous and more adaptive artificial agents. In this work, we provide an exhaustive analysis of a scarcely investigated problem: which kind of IM reinforcement signal is the most suitable for driving the acquisition of multiple skills in the shortest time? To this purpose we implemented an artificial agent with a hierarchical architecture that allows to learn and cache different skills. We tested the system in a setup with continuous states and actions, in particular, with a kinematic robotic arm that has to learn different reaching tasks. We compare the results of different versions of the system driven by several different intrinsic motivation signals. The results show (a) that intrinsic reinforcements purely based on the knowledge of the system are not appropriate to guide the acquisition of multiple skills, and (b) that the stronger the link between the IM signal and the competence of the system, the better the performance

    Learning where to look with movement-based intrinsic motivations: a bio-inspired model

    Get PDF
    Most sophisticated mammals, in particular primates, interact with the world to acquire knowledge and skills later exploitable to obtain biologically relevant resources. These interactions are driven by intrinsic motivations. Recent research on brain is revealing the system of neural structures, pivoting on superior colliculus, underlying trial-and-error learning processes guided by movement-detection, one important element of one speci?c type of intrinsic motivation mechanism. Here we present a preliminary computational model of such system guiding the acquisition of overt attentional skills. The model is formed by bottom-up attentional components, exploiting the intrinsic properties of the scene, and top-down attentional components, learning under the guidance of movement-based intrinsic motivation. The model is tested with a simple task, inspired by the \u27gaze- contingency paradigm\u27 proposed in cognitive psychology, where looking some portions of the environment can directly change it. The tests of the model show how its integrated components can learn skills causing relevant changes in the environment while ignoring changes non-contingent to own action. The model also allows the presentation of a wider research agenda directed to build biologically plausible models of the interaction between overt attention control and intrinsic motivations
    corecore