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Humans and other biological agents are able to autonomously learn and cache different
skills in the absence of any biological pressure or any assigned task. In this respect,
Intrinsic Motivations (i.e., motivations not connected to reward-related stimuli) play a
cardinal role in animal learning, and can be considered as a fundamental tool for developing
more autonomous and more adaptive artificial agents. In this work, we provide an
exhaustive analysis of a scarcely investigated problem: which kind of IM reinforcement
signal is the most suitable for driving the acquisition of multiple skills in the shortest
time? To this purpose we implemented an artificial agent with a hierarchical architecture
that allows to learn and cache different skills. We tested the system in a setup with
continuous states and actions, in particular, with a kinematic robotic arm that has to
learn different reaching tasks. We compare the results of different versions of the system
driven by several different intrinsic motivation signals. The results show (a) that intrinsic
reinforcements purely based on the knowledge of the system are not appropriate to guide
the acquisition of multiple skills, and (b) that the stronger the link between the IM signal
and the competence of the system, the better the performance.
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1. INTRODUCTION
The ability to learn and cache multiple skills in order to use
them when required is one of the main characteristics of bio-
logical agents: forming ample repertoires of actions is important
to widen the possibility for an agent to better adapt to differ-
ent environments and to improve its chance of survival and
reproduction.

Moreover, humans and other mammals (e.g., rats and mon-
keys) explore the environment and learn new skills not only on
the basis of reward-related stimuli but also on the basis of novel
or unexpected neutral stimuli. The mechanisms related to this
kind of learning processes have been studied since the 1950s, first
in animal psychology (e.g., Harlow, 1950; White, 1959) then in
human psychology (e.g., Berlyne, 1960; Ryan and Deci, 2000),
under the heading of “Intrinsic Motivations” (IMs). Recently,
researchers have also started to investigate the neural basis of
those mechanisms, both through experiments (e.g., Wittmann
et al., 2008; Duzel et al., 2010) and computational models (e.g.,
Kakade and Dayan, 2002; Mirolli et al., 2013), and IMs are nowa-
days an important field of research (Baldassarre and Mirolli,
2013a).

From a computational point of view, IMs can be considered a
useful tool to improve the implementation of more autonomous
and more adaptive artificial agents and robots. In particular, IM
learning signals can drive the acquisition of different skills with-
out any assigned reward or task. Most of the IM computational
models are implemented within the framework of reinforcement
learning (Sutton and Barto, 1998) and, following the seminal

works of Schmidhuber (1991a,b), most of them implement IMs
as intrinsic reinforcements based on the prediction error (PE), or
on the improvement in the prediction error (PEI), of a predictor
of future states of the world.

Despite the increasing number of computational researches
based on IMs (e.g., Barto et al., 2004; Schembri et al., 2007b;
Oudeyer et al., 2007a; Santucci et al., 2010; Baranes and Oudeyer,
2013), it is not yet clear which kind of IM reinforcement sig-
nal is the most suitable for driving a system to learn the largest
number of skills in the shortest time. To our knowledge, there
are only few studies dedicated to this important issue (Lopes and
Oudeyer, 2012; Santucci et al., 2012a, 2013b). In our previous
works (Santucci et al., 2012a, 2013b), we have shown the impor-
tance of coupling the activity of the mechanism generating the
IM signal to the competence of the system in performing the dif-
ferent tasks. However, in Santucci et al. (2012a) we limited our
analysis to the learning of a single skill in a simple grid-world
environment, while in Santucci et al. (2013b), although imple-
menting a hierarchical architecture able to learn multiple tasks
within continuous states and actions spaces, we focused only on
signals based on PE. Lopes and Oudeyer (2012) deal with a sim-
ilar problem, i.e., learning n tasks in the best possible way within
a limited amount of time. The solution they propose is to allocate
each unit of learning time to the task that guarantees the maxi-
mum improvement. However, their work tackles the problem in
an abstract and disembodied setup and, moreover, they assume
that the system has the information on the learning curves of each
task.
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In this work, we provide an exhaustive analysis of this scarcely
investigated problem: which kind of IM reinforcement signal is
the most suitable for driving the learning of skills in the short-
est time. With this work we also aim to validate our hypothesis
on the importance of a close coupling between the IM learn-
ing signal and the actual competence of the system in learning
the different tasks. To this purpose, we implemented an artificial
agent with a hierarchical architecture that allows the acquisition
of several skills and we tested its performance in a setup with
continuous states and actions, comparing both PE-based and
PEI-based IM signals generated by different mechanisms. Some
of the tested systems are taken from the computational litera-
ture related to IMs, including both the works of other researchers
and our own; others derive from existing mechanisms but have
not been tested before. The origin of each mechanism is indi-
cated in section 2.3 where the different algorithms are explained
in detail.

2. MATERIALS AND METHODS
2.1. THE EXPERIMENTAL SETUP AND THE SIMULATED ROBOT
The experimental task (Figure 1) consists in learning to reach for
different circular objects positioned within the work space of a
simulated kinematic robotic arm. The system has to learn in the
best way and possibly shortest time a certain number of different
skills, solely on the basis of IM reinforcement signals.

There are 8 different objects, corresponding to 8 different
tasks: 2 are easy to be learnt, 2 are difficult and 4 are impossi-
ble to reach. The difficulty of the tasks is estimated on the basis of
preliminary experiments where we tested the average time needed
by a non-modular system to learn each of the different tasks with
a performance of 95% (which is the average target performance
in our experiments): easy tasks only need less than 2000 trials to
be learnt while difficult tasks need more than 20,000 trials. Note
that what we needed was not the precise measure of the difficulty
of each task, but two classes of tasks differing substantially in the
amount of trials needed to be learnt.

The choice of presenting tasks with different degrees of com-
plexity derives from the evidence that an agent (be it an animal, a
human, or a robot) can try to learn a great number of different

FIGURE 1 | The two dimensional work space of the simulated

kinematic robotic arm with the target objects. Small light-gray objects
are unreachable by the arm.

abilities that typically vary considerably with respect to their
learning difficulty, including many (probably the majority) that
are not learnable at all (consider, for example, an infant trying to
learn to reach for the ceiling). For this reasons, it is very impor-
tant for a system to avoid trying to acquire unlearnable skills and
to focus on those that can be learnt for the necessary amount
of time (enough for a satisfying learning but no more than
required).

The system is implemented as a simulated kinematic robot
composed by a two degree-of-freedom arm with a “hand” that
can reach for objects. The sensory system of the robot encodes
the proprioception of the arm, i.e., the angles of the two joints.
The output of the controller determines the displacement of the
two joints in the next time step.

2.2. ARM CONTROLLER AND CODING
Since we are looking for a system able to learn different skills and
cache them in its own repertoire of actions, we need an architec-
ture where different abilities are stored in different components of
the system (Baldassarre and Mirolli, 2013c). For this reason, the
controller of the arm consists in a modular architecture (Figure 2)
composed by n experts (8 in this implementation, one for each
possible task) and a selector that determines which expert/task
will be trained. For simplicity, we coupled each expert to a specific
task so that the expert is reinforced only for reaching the associ-
ated object, but this assumption does not affect the generality of
the results presented here.

Note that the values of the parameters in these experiments
were chosen in different ways. The parameters of the experts are
not directly connected to the goals of this work: here we are
interested in which is the best IM signal for driving the acqui-
sition of multiple skills regardless of the specific ability of the
experts. For this reason, the parameters related to the experts
are simply taken from our previous works (Santucci et al., 2010,
2013a; Mirolli et al., 2013). The parameters related to the selec-
tor and the selection procedure, as well as those connected to
the reinforcement signal provided to the selector, derive from a
hand search where we identified the values that guaranteed the
best results. In particular, we isolated the crucial parameters (the

FIGURE 2 | The modular architecture of the system with the controller

based on actor-critic experts, the selector and the predictor that

generates the IM reinforcement signal driving the selector. n is the
number of the tasks; Act A is the output of the actor of the expert,
controlling the displacement of the joints of the arm in the next step; Crt A
is the evaluation made by the critic of the expert.
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learning rate of the predictors, the temperature of the softmax
selection rule, and the temporal parameter α in the Q-learning
rule that determines the activity of the unit of the selector: see
below) and systematically (within limited ranges) changed their
values in order to find a valid setup. Those that guarantee the best
performance are the ones presented in the paper. Note that dif-
ferent values determine worse performances from a quantitative
point of view (all the systems need more time to accomplish the
tasks), but the differences between the experimental conditions
are qualitatively stable.

Each expert is a neural network implementation of the actor-
critic architecture (Barto et al., 1983) adapted to work with
continuous state and action spaces (Doya, 2000). The input to
the experts are the actual angles of the two joints of the arm, α

and β (ranging in [0, 180]), coded through Gaussian radial basis
functions (RBF) (Pouget and Snyder, 2000) in a two dimensional
grid (10 × 10 units).

The evaluation of the critic (V) of each expert is a linear com-
bination of the weighted sum of its input units. The actor of
each expert has two output units, fully connected with the input,
having a logistic transfer function:

oj = �

(
bj +

N∑
i

wjiai

)
�(x) = 1

1 + e−x
(1)

where bj is the bias of output unit j, N is the number of input
units, ai is the activation of unit i and wji is the weight of the con-
nection linking the input unit i to the output unit j. Each motor
command om

j is determined by adding noise to the activation of
the relative output unit:

om
j = oj + q (2)

where q is a random value uniformly drawn in [−0.1; 0.1]. The
resulting commands are limited in [0, 1] and then remapped in
[−25, 25] and control the displacement of the related arm joint
angles.

In each trial, the expert that controls the arm is trained
through a TD reinforcement learning algorithm. The TD-error
δ is computed as:

δ = (
Rt

e + γkVt)− Vt − 1 (3)

where Rt
e is the reinforcement for the expert e at time step t, Vt is

the evaluation of the critic of the expert at time step t, and γ is a
discount factor set to 0.9. The reinforcement is 1 when the hand
touches the object associated with the selected expert, 0 otherwise.

The connection weight wi of critic input unit i is updated in
the standard way (Sutton and Barto, 1998):

�wi = ηcδai (4)

where ηc is a learning rate, set to 0.08.
The weights of each actor are updated as follows (see Schembri

et al., 2007a):

�wji = ηaδ
(

om
j − oj

) (
oj
(
1 − oj

))
ai (5)

where ηa is the learning rate, set to 0.8, om
j − oj is the discrepancy

between the action executed by the system (determined by adding
noise) and that produced by the controller, and oj(1 − oj) is the
derivative of the logistic function.

The selector of the experts is composed by n units, one for each
expert/task to be selected/learnt. At the beginning of every trial
the selector determines the expert controlling the arm during that
trial through a softmax selection rule (Sutton and Barto, 1998).
The probability of unit k to be selected (Pk) is thus:

Pk = exp Qk
τ∑n

i = 0 exp Qi
τ

(6)

where Qk is the Q-value of unit k and τ is the temperature value
that rescales the input values (here the Q-values) and so regulate
the noise of the selection.

The activity of each unit is determined by a Q-learning rule
used to cope with n-armed bandit problems with non-stationary
rewards Sutton and Barto (1998):

Qt + 1
k = Qt

k + α[Rt
s − Qt

k] (7)

where Qt
k is the Q-value of the unit corresponding to the selected

expert during trial t, α is a temporal parameter set to 0.35 and Rt
s

is the reinforcement signal obtained by the selector.
The reinforcement signal (Rt

s) driving the selection of the
experts is the intrinsic reinforcement that we want to analyse in
order to find the one that is the most suitable for autonomously
learning multiple skills. Such signal is based on the error, or the
improvement in the error, of a predictor of future states of the
world. We now consider the different signals compared in this
work.

2.3. IM SIGNALS AND PREDICTORS
2.3.1. Prediction error signals
As mentioned in section 1, we tested the IM signals and the mech-
anisms (predictors) implemented to generate such signals that are
most used in the literature on IMs (see Figure 3 for a scheme of
the different experimental conditions).

FIGURE 3 | Scheme of the different experimental conditions, divided

by typology of signal, typology of intrinsic motivations, input, and

training algorithm. Note that the random (RND) condition is not
mentioned in this table because it does not use any reinforcement signal to
determine the selection of the experts. See Section 2.3.1 and 2.3.2 for a
detailed description of all the different conditions.
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• Knowledge-Based Predictor (KB-PE): The first IM reinforce-
ment signal was the prediction error (PE) of a predictor of
future states of the world (Schmidhuber, 1991a): in this model,
the IM signal is represented by the absolute value of the error
in predicting future states. The proposed mechanism was based
on a forward model receiving the actual state and the planned
action as input and predicting the next state. The idea is that
the system, driven by the intrinsic PE signal, would explore the
environment looking for new states that are not predictable by
the forward model, acquiring at the same time the competence
in new skills related to those states.

However, such predictors generate a signal which is coupled to the
knowledge of the mechanism (learning the model of the world)
and not to the competence of the system (learning skills). This
signal can be considered as a purely knowledge-based prediction
error (KB-PE) IM signal which may turn out to be inadequate
for driving the acquisition of a repertoire of skills (see Santucci
et al., 2012a; Mirolli and Baldassarre, 2013). In order to pro-
vide a stronger link between the predictor and the competence
of the system, an effective solution is to change the target of the
predictions. Instead of trying to anticipate every possible future
configuration, the predictor has to anticipate only one particular
state, the one connected to the trained skill, i.e., the goal state. In
this way the PE signal is generated on the basis of the error in
predicting the achievement of the goal, i.e., the generation of the
final result of the skill that the agent is learning. Unlike KB-IM,
this kind of signals can be considered competence-based (CB) IM
signals and the predictors that generate them can be identified
as CB-IM mechanisms (for the distinction between KB-IM and
CB-IM, see also Oudeyer and Kaplan, 2007b).

Here we tested different CB-IM mechanisms. While all these
mechanisms learn to predict the achievement of the goal state,
they differ in the information received as input. Note that all the
predictors also receive the information on which expert/task is
currently trained by the system.

• State-Action Predictor (SAP-PE): This predictor has the same
input as KB-PE mechanism, that is the actual state (the two
joints of the arm, α and β) and the planned action (�α and
�β), coded through RBFs. Training follows a standard delta
rule. Examples of SAP-PE can be found in Santucci et al. (2010,
2013b).

• State Predictor (SP-PE): The SP-PE is not widespread in the lit-
erature. A similar predictor can be found in Barto et al. (2004),
although this work proposed a system implemented within
the option theory framework (Sutton et al., 1999), where the
focus is more on the learning of the deployment of previously
acquired skills rather than on the learning of the skills them-
selves. In our previous works (Santucci et al., 2012a, 2013b)
we found that because its input is composed only by the actual
state of the agent this kind of predictors are more closely cou-
pled to the competence of the system than the SAP-PE: SP-PE
mechanism is able to anticipate the achievement of the goal
only when the agent has learnt the correct actions from the
different states. Input is coded through RBFs. SP-PE is trained
through a standard delta rule.

• Temporal Difference SAP (SAP-TD-PE): This predictor has
the same input as SAP-PE but it is trained through a TD-
learning algorithm with a discount factor set to 0.99. The
implementation of this mechanism derives from the knowledge
acquired in previous works (Mirolli et al., 2013; Santucci et al.,
2013a) where we found that standard SAP-PE predictors do not
work well with continuous states and actions. Providing the
predictors with a TD algorithm solves some of these problems
(for a generalization of TD-learning to general predictions, see
Sutton and Tanner, 2005).

• SP-TD-PE: As for the SAP-TD-PE mechanisms, this predictor
is the TD-learning version of SP-PE.

• Task Predictor (TP-PE): This predictor is inspired by our work
in a simple grid-world scenario (Santucci et al., 2012a). A
similar mechanism is implemented also in Hart and Grupen
(2013). Differently from all the previous predictors, TP-PE
does not make step-by-step predictions but a single prediction,
at the beginning of the trial, on the achievement of the selected
task. The input of this predictor consists only of the task/expert
that has been selected, encoded in a n-long binary vector, with
n equal to the number of tasks. The predictor is trained through
a standard delta rule. These characteristics should provide a
complete coupling between the signal generated by the predic-
tor and the competence of the system in achieving each task:
the predictor has no further information and can learn to antic-
ipate the achievement of the target state only when the agent
has really acquired a high competence in the related skill. In this
way the selector should give the control to an expert only when
it is effectively learning, shifting to a different expert when the
competence to perform the related task has been completely
acquired.

All CB-PE mechanisms generate a prediction (P) in the range [0,
1] related to the expectation that the system will accomplish the
goal state within the time out of the trial. The error in predicting
the goal state provides the intrinsic reinforcement signal to the
selector of the system, whose activity determines which expert
controls the system during the next trial and, at the same time,
determines the expert that is trained by the system. This PE rein-
forcement signal is always positive: with the KB mechanism it is
equal to the absolute value of the error; with CB mechanisms it is
1-P when the system reach the goal state and 0 otherwise.

For all the systems implemented with the different PE mecha-
nisms, the temperature τ value of Equation 6 is set to 0.01.

2.3.2. Prediction error improvement signals
As pointed out by Schmidhuber (1991b), PE signals may
encounter problems in stochastic environments: if the achieve-
ment of a target state is probabilistic, the predictor will continue
to make errors indefinitely. This means that the reinforcement
will be never completely canceled and the system may keep on try-
ing to train a skill even when it cannot improve any more. In order
to solve this problem several systems (e.g., Schmidhuber, 1991b;
Oudeyer et al., 2007a) use the improvement of the prediction
error (PEI) rather than the PE as the IM signal.

For this reason, we also tested all the mechanisms described
in section 2.3.1 using their PEI (instead of the PE) as the
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reinforcement signal for the selector. Examples of KB-PEI can
be found in Schmidhuber (1991b); Huang and Weng (2002);
Baranes and Oudeyer (2009); an example of a SAP-PEI mech-
anism can be found in Oudeyer et al. (2007a). All the other
mechanisms (SP-PEI, SAP-TD-PEI, SP-TD-PEI and TP-PEI), are
tested here for the first time.

The PEI at time t was calculated as the difference between the
average absolute PEs calculated over a period T of 40 time steps:

PEIt =
∑t − T

i = t − (2T − 1) |PE|i
T

−
∑t

i = t − (T − 1) |PE|i
T

(8)

In addition to the other mechanisms, in the PEI condition
we also tested another CB-IM signal (Schembri et al., 2007a,b;
Baldassarre and Mirolli, 2013b):

• Temporal-Difference Predictor (TD): This mechanism uses
the TD-error (see Equation 3) of the selected expert as the
intrinsic reinforcement signal that drives the selector. More
precisely, here we use the average TD-error within the trial as
the IM signal. Indeed, the TD-error can be considered a mea-
sure of the expert improvement in achieving its reinforcement
and for this reason a measure of the competence improvement.

For all the systems implemented with the different PEI mecha-
nisms the temperature τ value of the Equation 6 is set to 0.008.
For the TD mechanism, the temperature τ is 0.01, while the α of
Equation 7 is 0.25.

In order to better evaluate the performance of the simulated
robot in the experimental setup when driven by the IM signals
generated by the different mechanisms, we also tested a system
that selects experts randomly (RND). Sometimes random strate-
gies can indeed turn out to be surprisingly good: however, the
best IM signal to drive the selection and acquisition of different
skills in the shortest time, should guide the system better than a
random selection.

2.4. HYPOTHESES AND COMPARATIVE CRITERIA
The main purpose of this work is to investigate which is the
most suitable IM learning signal for driving the acquisition of a
repertoire of different skills in the shortest time. In our previous
works (Santucci et al., 2012a, 2013b), we proposed that the most
important feature of such a signal should be its coupling with
the competence in the skill that the system is trying to learn. For
this reason our first hypothesis is that competence based signals
should perform better then knowledge based ones.

With respect to the various CB mechanisms implemented, we
expect that the TD versions of SAP and SP conditions should
perform better than their normal versions since we know from
previous works (Mirolli et al., 2013; Santucci et al., 2013a) that the
latter ones do not work well with continuous states and actions.
Furthermore, we also expect TP to perform better than both SAP
and SP. With respect to PE vs. PEI, we predict that PE signals may
behave a bit better than PEI signals, as the latter are probably more
noisy and less strong than the former. Finally, we do not know
how the TD error signal may perform with respect to the other
PEI signals.

We compare the different IM signals by measuring their veloc-
ity in learning multiple tasks. In particular, we run different
experiments (see section 3) and count the number of trials (aver-
aged over several repetitions of the experiment) needed by each
condition to achieve an average performance of 95% in the 4
learnable tasks. We chose the average of 95% as the target per-
formance since we want a value that is able to identify a satisfying
capability of a system to learn different skills. If we used a different
target performance (e.g., 90 or 99%) they would be qualitatively
the same.

3. RESULTS
Each condition was tested for 400,000 trials. At the beginning of
every trial the selector determines which expert will control the
activity of the arm in that trial. Each trial ends if the selected
expert reaches its target object or after a time out of 20 time steps.

For every mechanism, we ran different simulations varying the
learning rate (LR) of the predictor (9 different values) because
we wanted to be sure that the results were not dependent on the
use of a specific set of LRs. For each LR we ran 20 repetitions
of the experiment. In the TD and RND condition, where there
is not a separate predictor (in RND there is no IM signal, in TD
we use the TD-error of the experts), we ran 180 repetitions of
the experiment to balance the total number of replications in the
other conditions.

3.1. PE SIGNALS
Figure 4 shows the number of trials (averaged over the 180 repli-
cations) needed by the different PE conditions to achieve an
average performance of 95% in the 4 learnable tasks. The results
clearly underline, confirming one of our hypotheses, how the TP-
PE mechanisms is the one that generates the best signal to drive
the system in achieving a high average performance in the learn-
able tasks in the shortest time (average of about 130,000 trials).
As expected (see Section 2.3.1 and 2.4), the SAP-PE and the SP-
PE are not able, working within continuous states and actions,

FIGURE 4 | Average number of trials needed by the different conditions

to achieve an average performance of 95% in the 4 learnable tasks

(average results of 180 replications: 20 replication by 9 learning rates

for the systems with predictors, 180 replications for the random

system) in the different experimental conditions. If a system has not
reached 95% at the end of the 400,000 trials we report on the
corresponding bar the average performance at the end of the simulation.
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to generate a good signal to guide the selection and the learning
of skills. SAP-TD-PE and SP-TD-PE are able to drive the system
in achieving the average target performance within the 400,000
trials but they are slower than the TP-PE system. Both KB-PE and
RND conditions can reach high performance within the end of
the experiment (more than 90%), but they are not able to achieve
the target value of 95%. An interesting result is that the system
driven by the random selection reaches an average performance
(93%) higher than the one driven by KB-PE mechanism (91%).

In Figure 5 we show a detailed analysis of the average per-
formance of the system in the different conditions with different
values of the learning rate for the predictors. SAP-PE and SP-PE
are not able, regardless from the learning rate of the predictor, to
achieve the target performance, while SAP-TD-PE and SP-TD-PE
seems to be sensitive to the value of the learning rate of the pre-
dictor (SP-TD-PE more than SAP-TD-PE). Differently, TP-PE is
very robust with respect to the value of the learning rate of the
predictor: regardless of this value this condition is always the best
performer, being able to achieve a high performance in a short
time.

ThesegeneralresultsareevenmoreevidentifwelookatFigure 6,
where the performance of the best and worst replications of every
condition are shown: the overall best performance is achieved
by a replication of the TP-PE condition that is able to reach the
target performance in about 50,000 trials. As in the case of average

performances, the best replications of SAP-PE and SP-PE are not
able to reach the target performance while KB-PE and RND have
comparable performance. Even more impressive are the results of
the worst replications: the TP-PE mechanism is the only one that
is able to drive the system in achieving the target performance
within the given time also in its worst replication. The other
conditions reflect the average results, with the KB-PE condition
performing worse than random selection in its worst replication.

To understand the causes of these results, for each condition
we analyzed the average selections of the experts connected to
the 4 learnable tasks during time and the average level of per-
formance achieved on those tasks. Data are related to the best
learning rate value of the predictor of each different condition.
In this way we can check if the signal generated by the predictors
is able to drive the selector in a proper way, following the actual
competence acquired by the experts. Data of RND system are not
shown: in this case experts are always selected (on average) uni-
formly, and hence the system wastes time in selecting experts that
cannot learn anything or that have already learnt their tasks (e.g.,
the two easy tasks).

Figure 7 (left) shows the results of the KB-PE mechanisms. In
this condition the system is not driven by an IM signal connected
to the competence of the system in learning the skills, but to the
knowledge acquired by the predictor in anticipating every pos-
sible future state. For this reason the system is not selecting the

FIGURE 5 | Average number of trials needed by the system to

achieve a performance in the 4 learnable tasks of 95% with

different values of the learning rates of the predictors (average on

20 replications per learning rate). If a system has not reached 95%
we report above the corresponding bar the average performance at the
end of the simulation.
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FIGURE 6 | Left: Number of trials needed by the best replication
of each condition to achieve the target performance. When the
target value is not achieved within the time limit, the final

performance is reported inside the bar. Right: Average
performance achieved by the system in the worst replication of
each experimental condition.

FIGURE 7 | Top: Average performance on the 4 learnable tasks in the best condition (with respect to the learning rate of the predictor) of KB-PE, SAP-PE,
SP-PE. Bottom: Average selection probability for the experts associated to the 4 learnable tasks, in the same condition.

experts connected to the tasks that are still to be learnt, but rather
the experts that are surprising the predictor reaching whatever
unpredicted state. These experts include also those related to the
4 non-learnable tasks. This process leads to a random selection
(random-selection value is 0.125 because it is calculated on all the
8 tasks). While this is not a problem for the two easiest tasks (task
1 and task 3) that are learnt after few trials, the canceling of the IM
signal and the consequent absence of a focused learning severely
impairs the learning of the difficult tasks (task 2 and task 4).

The result of the KB-PE condition confirm one of our main
hypotheses, clearly underlining how a KB-IM signal is inadequate
to properly drive an agent in learning different skills: it either
continues to select already learnt tasks, or it does not properly
select those that are still to be learnt. This is the reason why, if we
are looking at improving the competence of a system, we should
use CB-IM mechanisms.

If we look at data related to SAP-PE and SP-PE (Figure 7, cen-
ter and right) it is clear that these mechanisms are not able to
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cancel in a proper way the PE signal provided by the achievement
of the goal states. For this reason SAP-PE, on average, focuses on
one of the easiest tasks (whose target states, on average, are rapidly
discovered by the system) although the robot has completely
acquired the related competence. SP-PE is able to anticipate the
achievement of the easy tasks, but it learns too slowly these pre-
dictions: for this reason, although task 1 and task 2 have both been
learned at about 70,000 trials the system still focuses on them for
further trials, wasting precious time for learning the more difficult
skills.

SAP-TD-PE and SP-TD-PE (Figure 8, left and center) present
the opposite problem: these mechanisms learn very fast to predict
the reaching of the objects, even faster than the actual competence
of the system in those tasks. Although these are CB mechanisms,
the learning process of these predictors is not strictly coupled with
the ability of the system to reach for the objects. This is evident
comparing the progress in the performance with the selections:
the predictors cancel the signals before the system has acquired
the competence related to the different tasks determining a selec-
tion which is not optimally coupled to the actual performance of
the system. However, in spite of this problem, these mechanisms
are able to guide the system in reaching the target performance
within a reasonable time. This is because, differently from KB-PE
and RND, although turning too fast to a random selection, they
perform selections only on the 4 learnable tasks (that are the only
ones that can generate a PE) and not on all the 8 tasks. SAP-TD-
PE and SP-TD-PE do not provide a perfect IM signal, but they are
a good example of how even a sub-optimal CB-IM signal is able
to drive the learning of skills better than a KB signal.

Differently from all the other conditions, the TP-PE mecha-
nism (Figure 8, right) is able to drive the complete learning of
the skills in relatively few trials. The reason of this performance is
connected to the signal generated by the TP-PE mechanism: this
signal is strictly coupled with the competence of the system in the

task that it is learning. Looking at the average development of the
experiment, it is clear how the selector, driven by this CB-IM sig-
nal, assigns the control of the robot only to an expert connected
to a task that has still to be learnt, shifting to another one when
a skill has been fully achieved. Easy skills need just few trials to
be learnt and for this reason the system focuses on their training
(and selection) only for a very short time at the beginning of
the experiment. As soon as the predictor has learnt to anticipate
the achievement of those target states, it cancels their respective
signals and drives the agent to search for other skills to acquire.
Difficult tasks require a longer time to be learnt so the system
focuses on selecting the related experts longer, until a high perfor-
mance has been achieved. When all the tasks have been learnt the
predictor has learnt to anticipate the achievement of all the target
states, so the selector receives no more intrinsic reinforcements
and generates an (almost) random selection.

3.2. PEI SIGNALS
Figure 9 shows the average number of trials needed by the sys-
tem to achieve the target performance of 95% within the different
conditions. As with the PE signal, also with the PEI signal the
TP-PEI condition is the one that is able to guide the system in
achieving the target performance in the shortest time. However,
the average number of trials needed by those conditions that best
perform with PE signals (TP, SAP-TD, SP-TD) is raised. At the
same time, those conditions that with PE signal were not able
to achieve the target average performance (95%) in the learnable
tasks, with PEI significantly improve their results, with SAP-PEI
and SP-PEI reaching a performance similar to SAP-TD-PEI and
SP-TD-PEI. This is due to the properties of PEI signal: if a predic-
tor is not able to improve its ability to anticipate the achievement
of a target state, there is no improvement in the prediction error
and the signal is canceled. So, despite the predictor is not able to
correctly anticipate the achievement of the easy tasks even when

FIGURE 8 | Top: Average performance on the 4 learnable tasks in the best condition (with respect to the learning rate of the predictor) of SAP-TD-PE,
SP-TD-PE, TP-PE. Bottom: Average selection probability for the experts associated to the 4 learnable tasks, in the same conditions.
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FIGURE 9 | Average number of trials needed by the system to achieve

an average performance of 95% in the 4 learnable tasks (average

results of 180 replications: 20 replications by 9 learning rates for the

systems with predictors, and 180 replications for the RND ad TD

conditions) in the different experimental conditions. If a system has not
reached 95% we report on the corresponding bar the average performance
at the end of the simulation.

their competence is fully acquired (as in SAP-PEI and SP-PEI
conditions), the constant error generates no PEI signal and allows
the system to shift to the selection of different experts possibly
discovering new learnable skills. The TD condition guarantees a
performance that is similar to those of the other CB signal (except
for TP-PEI, which is the best performer), while when the system
is driven by the KB-IM signal it is not able to achieve satisfying
results: KB-PEI turns out to be the worst PEI condition.

As anticipated in our hypotheses, PEI signals are much noisier
and weaker than PE signals. This is clear from Figure 10, showing
how all the conditions (including TP) present a high sensitivity
to the variation in the learning rate of the predictors. However,
TP-PEI is the one that is able to drive the system in achieving the
target performance in the shortest number of trials (only 150,000,
on average, with learning rate 0.05).

Data on the average performances are confirmed by Figure 11,
where we show the best (Figure 11, left) and worst (Figure 11,
right) replications of all the different conditions. As for PE signal,
also with PEI the best replication of the TP-PEI condition is
the absolute best among all the replications of all the condi-
tions and even its worst replication is the one that reaches the
highest performance compared to the worst replications of the
other conditions. KB-PEI confirms to be the worst PEI con-
dition: even its best replication (Figure 11, left) is performing
as the RND selector. TD condition shows a great variance in
its different replications: its best replication (Figure 11, left) is
only the 5th performer, while its worst replication is the second
best (among the worst replications of all the conditions) after
the TP.

As with PE experiments (section 3.1), to better understand
the results we analyzed data showing the average selections of the
experts connected to the 4 learnable tasks during time and the
average level of performance achieved on those tasks. Data are
related to the best learning rate value of each different condition,
while for TD condition we look at the average performance and

selections on 20 replications (consecutive and including the best
replication of the condition).

The poor performance of KB-PEI (Figure 12, left) is related
to the bad selection determined by the KB-IM signal: the
experts related to the 4 learnable tasks are clearly selected ran-
domly.

When driven by CB-IM signals the system reaches a better per-
formance, with differences between the conditions implemented
with different mechanisms. In SAP-PEI and SP-PEI conditions
the selection is very noisy (Figure 12, center and right). Although
learnable tasks are selected more than in RND and KB conditions,
the already weak signal is flattened by the activity of the predic-
tors that are not able to significantly improve in their ability to
anticipate the target states.

SAP-TD-PEI and SP-TD-PEI (Figure 13, left and center) are
able to cancel the signal deriving from the rapidly learnt easier
tasks, but at the same time they present the problem we found
with the PE: these mechanisms can be too fast in canceling the IM
signal, determining a decrease in the probability of selecting the
complex tasks even if the system has still competence to acquire.
This is confirmed by looking at data of SAP-TD-PEI condition,
where the PEI signal for task 4 is drastically decreased around
200,000 trials, when the system has reach an average performance
on that task of only about 80%.

As in the experiment with the PE signal, the TP-PEI mecha-
nisms is the one that is able to drive the system in selecting and
learning the different skills in the shortest time. The reason is the
same as with PE results: even in its PEI version, the CB-IM signal
generated by the TP mechanism is the only one that is closely con-
nected to the competence acquired by the system in the different
learnable tasks (Figure 13, right). Easy tasks, which are learnt very
fast, are selected only during the short time needed to raise their
performance. Thanks to the canceling of the intrinsic reinforce-
ment signal provided to the selector, the system is able to shift to
the complex tasks. At about 150,000 trials, on average, the system
has reached a high performance on task 4: due to the connection
of the TP mechanism to the competence of the agent, the PEI-IM
signal related to that task fades away and the system focuses only
on the skill that at that time of the experiment is the least efficient
(task 2).

As mentioned in section 2.3.2, together with the different PEI
signals we also tested another CB-IM signal provided by TD-
error of the selected expert. As previously described, the average
performance of TD condition is similar to those of other CB-
IM conditions with PEI signal (except for TP, which is the best
performer). However, if we look at the average performance on
20 replications (consecutive and including the best replication
of this condition) we can see that when driven by the TD sig-
nal the system reaches a performance that is similar or even
better than those of the other conditions (except for TP) in
their best learning rate condition (confront Figure 14, left, with
Figures 12, 13, top). Indeed, if we look at the average selections
(Figure 14, right), we can see that TD signal is able to generate
a sequence of selections that are connected to the competence
progress of the system, although less than the one provided by
the TP mechanism.
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FIGURE 10 | Average number of trials needed by the system to

achieve a performance in the 4 learnable tasks of 95% with different

values of the learning rates of the predictors (average on 20

replications per learning rate). If a system has not reached 95% we
report above the corresponding bar the average performance at the end
of the simulation.

FIGURE 11 | Left: Number of trials needed by the best replication of each condition to achieve the target performance. Right: Average performance achieved
by the system in the worst replication of each experimental condition.
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FIGURE 12 | Average performance on the 4 learnable tasks (top) and average selection probability for the associated expert (bottom) in the best

condition (with respect to the learning rate) of KB, SAP, SP.

FIGURE 13 | Average performance on the 4 learnable tasks (top) and average selection probability for the associated expert (bottom) in the best

condition (with respect to the learning rate) of SAP-TD-PEI, SP-TD-PEI, TP-PEI.

FIGURE 14 | Average performance and selections in TD condition.
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4. DISCUSSION
In this paper we analyzed different kinds of IM signals in order to
find the most suitable to drive a system in selecting and learning
different skills in the shortest time. To tackle this important issue,
we implemented a simulated two-dimensional kinematic robotic
arm with a hierarchical architecture able to train and cache dif-
ferent skills and we tested it within continuous spaces and actions
in an experimental scenario where the agent had to learn to reach
different objects.

The first important result validate one of our main hypotheses:
a purely KB-IM signal (as those implemented in Schmidhuber,
1991a,b; Huang and Weng, 2002) is not able to satisfactorily drive
the acquisition of multiple skills. This signal is coupled to the
knowledge of the KB predictor that tries to anticipate every pos-
sible future state of the world. The PE or PEI signal deriving from
this kind of mechanism drives the system in exploring the envi-
ronment without any specific target: this is why the performance
of the KB condition is similar to RND condition, where the sys-
tem is guided by a random selection of its experts. Note that the
implementation provided in this work helps the KB mechanisms.
Indeed, here we used the intrinsic reinforcement signal to drive
the selection of the experts. In a previous work (Santucci et al.,
2012a), we showed that if the KB-IM signal is provided directly
to an actor-critic expert the system continues to explore the envi-
ronment to train the predictor without learning any skill. With
our results we are not saying that KB-IM are useless or wrong:
simply they are involved in different processes, which are related
to knowledge acquisition more than competence acquisition.

In order to optimize the IM-based acquisition of skills, learn-
ing signals have to be strictly connected to the actual competence
in those skills, i.e., to the actual competence in achieving target
goals. CB-IM signals provide such a coupling and the results of
our experiments underlie how the stronger that coupling, the bet-
ter the performance of the system (see Figure 15 for the ranking
of the results of all the experimental conditions). Indeed, not
all the CB-IM mechanisms guarantee the same close connec-
tion between the correctness of the predictor and the competence
acquired by the system. Some mechanisms like SAP and SP (espe-
cially when generating a PE signal) are not good predictors in
continuous spaces and actions as they are too slow: they are
not able to properly cancel the IM signal even if the agent has
fully acquired the related competence, thus leading the system to
focus on already trained experts. Other CB mechanisms (SAP-
TD, SP-TD) turned out to provide a useful learning signal for the
acquisition of skills, although they present the problem of being
too fast in canceling the intrinsic reinforcement signal that fades
away before the robot has completely learnt the related skills.

As expected, the condition that was able to learn all the skills
in the shortest time, both in PE and PEI conditions, was the one
where the IM reinforcement signal for the selector was generated
by what we called TP mechanism: a predictor of the goal states
(the target states connected to the different skills) that receives
as input only the information on which expert has been selected
to be trained. The mechanism that we proposed provides a close
connection between the ability of the predictor in anticipating
future target state and the actual competence acquired by the
agent in the related skill. This coupling guarantees an IM signal

FIGURE 15 | Ranking of the different experimental conditions

summarizing the result of both PE and PEI signals with respect to the

ability to reach the target average performance of 95% in the four

learnable tasks. For every condition the performance of the best
replication is also shown. Performances are measured in thousands of
trials. If a condition has not reached 95% at the end of the 400,000 trials of
the experiment we report the average performance at the end of the
simulation.

which is particularly appropriate for the selection and acquisi-
tion of different skills: the intrinsic reinforcement is present when
the system is learning a new task, it is canceled when the com-
petence on that task has been learnt and reappears when a new,
still-to-be-learnt task is encountered by the system.

Moreover, we also tested the TD condition where the TD-error
signal of the active expert is used as the intrinsic reinforcement for
the selector. This solution (Schembri et al., 2007a,b; Baldassarre
and Mirolli, 2013b) is able to cope with the same problems con-
nected to stochastic environments that may lead to use PEI signals
instead of PE signals. The TD condition performs comparably to
the other sub-optimal CB-IM driven conditions in PEI experi-
ments. However, in its best replications, it is able to reach very
high performance and, moreover, it presents important compu-
tational advantages: the absence of a separate component for the
predictions reduces computational time and avoids the setting of
its specific learning rate.

Despite the growing theoretical understanding of the differ-
ences between functions and mechanisms of IM (e.g., Oudeyer
and Kaplan, 2007b; Stout and Barto, 2010; Santucci et al., 2012a;
Mirolli and Baldassarre, 2013), their implications have not been
fully exploited in specific models. In particular, there is still a
confusion between KB mechanisms and CB mechanisms. Some
still use KB-IM signals to drive the acquisition of competence,
leading to inappropriate learning signals as underlined by the
results of our present work. Others shifted, without realizing, to
CB mechanisms probably because they encountered the problems
connected to KB signals and competence acquisition. However,
due to the lack of understanding of the differences between
KB-IM and CB-IM, they turn out to implement sub-optimal
CB mechanisms. An example is Oudeyer et al. (2007a) where,
although they describe the implemented intrinsic signal as the
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PEI of the knowledge of the system, they use the predictor to
anticipate few (three) high-level abstract important states (visual
detection of an object; activation of a biting sensor; perception of
an oscillating object). These high-level states represent few rele-
vant states among a huge number of non-interesting states, and
each of them can be achieved only with sequences of actions. This
predictor is very similar to the SAP we tested in our experiment,
which in fact is a CB mechanism, even if its results are not the best
possible.

Looking at the implementation of our system, a strong limit is
the fact that the possible tasks to be learnt are given at the begin-
ning of the experiment. A further step toward more autonomous
and versatile agents would be to built systems that self-determine
their goals. Recently, some effort has been made in the field of
hierarchical reinforcement learning to find good solutions to the
problem of setting useful goals. Most of these techniques (e.g.,
McGovern and Barto, 2001; Mehta et al., 2008; Konidaris and
Barto, 2009) focus on searching adequate sub-goals on the basis
of externally given tasks (reward functions). Only few works (e.g.,
Mugan and Kuipers, 2009; Vigorito and Barto, 2010) tried to
implement systems able to set their own goals independently
from any specific task, which is a fundamental condition for real
open-ended autonomous development.

Another important point concerns the generality of our
results. In future works it will be interesting to test the different
IM learning signals in different experimental setups (e.g., adding
more dimensions and degrees of freedom; using a dynamic arm)
where different and possibly more difficult tasks have to be learnt:
this would be a further confirmation of our results and conclu-
sions. However, we believe that the main findings of this work are
quite general. Indeed, the differences between KB-IM and CB-IM
lie in the typology of information used to determine such signals
and not on the specific setups they are implemented in. Similarly,
the conclusion that a proper CB-IM mechanism has to generate a
signal which is closely connected to the actual competence of the
system is a general finding that can be exploited regardless of the
particular architecture used to implement the agent.

Our expectation is that testing the different IM signals studied
here in more realistic conditions will strengthen the advantages
of using the TP signal with respect to the other implementations
of IMs. In a real environment the number of skills that can be
acquired is much larger then the one considered here, and the dif-
ficulty to learn the skills is much more heterogeneous. Moreover,
in the real world there are strong dependencies between different
competences, so that some skills can be learnt only after learning
others. All these characteristics of real environments emphasize
the importance for an IM signal to be strongly connected to the
competence of the system, thus avoiding to waste time in easy
(or previously learnt) tasks or in too difficult (or not possible)
tasks, and focussing on the skills that can be learnt at the moment,
which may be later exploited to learn other skills. Our results show
that only a signal that is closely linked to the competence of the
system is able to provide these general features.

Looking at the different typologies of IMs, our intuition is
that they may play complementary roles, with KB-IM being able
to inform the system of novel or unexpected states of the envi-
ronment, driving the agent to generate new target states, and

CB-IM being able to guide the acquisition of the skills related
to those targets. This further model, that tries to integrate the
different typologies of IMs, will probably require a more com-
plex architecture able to manage both the control of the effectors,
the generation and selection of the different motivations and the
combination of different IM learning signals.
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