2,374 research outputs found

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Initiating organizational memories using ontology-based network analysis as a bootstrapping tool

    Get PDF
    An important problem for many kinds of knowledge systems is their initial set-up. It is difficult to choose the right information to include in such systems, and the right information is also a prerequisite for maximizing the uptake and relevance. To tackle this problem, most developers adopt heavyweight solutions and rely on a faithful continuous interaction with users to create and improve content. In this paper, we explore the use of an automatic, lightweight ontology-based solution to the bootstrapping problem, in which domain-describing ontologies are analysed to uncover significant yet implicit relationships between instances. We illustrate the approach by using such an analysis to provide content automatically for the initial set-up of an organizational memory

    Identifying communities of practice: analysing ontologies as networks to support community recognition

    Get PDF
    Communities of practice are seen as increasingly important for creating, sharing and applying organisational knowledge. Yet their informal nature makes them difficult to identify and manage. In this paper we set out ONTOCOPI, a system that applies ontology-based network analysis techniques to target the problem of identifying such communities

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    From the web of data to a world of action

    Full text link
    This is the author’s version of a work that was accepted for publication in Web Semantics: Science, Services and Agents on the World Wide Web. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Web Semantics: Science, Services and Agents on the World Wide Web 8.4 (2010): 10.1016/j.websem.2010.04.007This paper takes as its premise that the web is a place of action, not just information, and that the purpose of global data is to serve human needs. The paper presents several component technologies, which together work towards a vision where many small micro-applications can be threaded together using automated assistance to enable a unified and rich interaction. These technologies include data detector technology to enable any text to become a start point of semantic interaction; annotations for web-based services so that they can link data to potential actions; spreading activation over personal ontologies, to allow modelling of context; algorithms for automatically inferring 'typing' of web-form input data based on previous user inputs; and early work on inferring task structures from action traces. Some of these have already been integrated within an experimental web-based (extended) bookmarking tool, Snip!t, and a prototype desktop application On Time, and the paper discusses how the components could be more fully, yet more openly, linked in terms of both architecture and interaction. As well as contributing to the goal of an action and activity-focused web, the work also exposes a number of broader issues, theoretical, practical, social and economic, for the Semantic Web.Parts of this work were supported by the Information Society Technologies (IST) Program of the European Commission as part of the DELOS Network of Excellence on Digital Libraries (Contract G038- 507618). Thanks also to Emanuele Tracanna, Marco Piva, and Raffaele Giuliano for their work on On Time

    Knowledge Extraction from Natural Language Requirements into a Semantic Relation Graph

    Get PDF
    Knowledge extraction and representation aims to identify information and to transform it into a machine-readable format. Knowledge representations support Information Retrieval tasks such as searching for single statements, documents, or metadata. Requirements specifications of complex systems such as automotive software systems are usually divided into different subsystem specifications. Nevertheless, there are semantic relations between individual documents of the separated subsystems, which have to be considered in further processes (e.g. dependencies). If requirements engineers or other developers are not aware of these relations, this can lead to inconsistencies or malfunctions of the overall system. Therefore, there is a strong need for tool support in order to detects semantic relations in a set of large natural language requirements specifications. In this work we present a knowledge extraction approach based on an explicit knowledge representation of the content of natural language requirements as a semantic relation graph. Our approach is fully automated and includes an NLP pipeline to transform unrestricted natural language requirements into a graph. We split the natural language into different parts and relate them to each other based on their semantic relation. In addition to semantic relations, other relationships can also be included in the graph. We envision to use a semantic search algorithm like spreading activation to allow users to search different semantic relations in the graph

    Cognitively-inspired Agent-based Service Composition for Mobile & Pervasive Computing

    Full text link
    Automatic service composition in mobile and pervasive computing faces many challenges due to the complex and highly dynamic nature of the environment. Common approaches consider service composition as a decision problem whose solution is usually addressed from optimization perspectives which are not feasible in practice due to the intractability of the problem, limited computational resources of smart devices, service host's mobility, and time constraints to tailor composition plans. Thus, our main contribution is the development of a cognitively-inspired agent-based service composition model focused on bounded rationality rather than optimality, which allows the system to compensate for limited resources by selectively filtering out continuous streams of data. Our approach exhibits features such as distributedness, modularity, emergent global functionality, and robustness, which endow it with capabilities to perform decentralized service composition by orchestrating manifold service providers and conflicting goals from multiple users. The evaluation of our approach shows promising results when compared against state-of-the-art service composition models.Comment: This paper will appear on AIMS'19 (International Conference on Artificial Intelligence and Mobile Services) on June 2

    Semantics-based selection of everyday concepts in visual lifelogging

    Get PDF
    Concept-based indexing, based on identifying various semantic concepts appearing in multimedia, is an attractive option for multimedia retrieval and much research tries to bridge the semantic gap between the media’s low-level features and high-level semantics. Research into concept-based multimedia retrieval has generally focused on detecting concepts from high quality media such as broadcast TV or movies, but it is not well addressed in other domains like lifelogging where the original data is captured with poorer quality. We argue that in noisy domains such as lifelogging, the management of data needs to include semantic reasoning in order to deduce a set of concepts to represent lifelog content for applications like searching, browsing or summarisation. Using semantic concepts to manage lifelog data relies on the fusion of automatically-detected concepts to provide a better understanding of the lifelog data. In this paper, we investigate the selection of semantic concepts for lifelogging which includes reasoning on semantic networks using a density-based approach. In a series of experiments we compare different semantic reasoning approaches and the experimental evaluations we report on lifelog data show the efficacy of our approach

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    Features for Killer Apps from a Semantic Web Perspective

    Get PDF
    There are certain features that that distinguish killer apps from other ordinary applications. This chapter examines those features in the context of the semantic web, in the hope that a better understanding of the characteristics of killer apps might encourage their consideration when developing semantic web applications. Killer apps are highly tranformative technologies that create new e-commerce venues and widespread patterns of behaviour. Information technology, generally, and the Web, in particular, have benefited from killer apps to create new networks of users and increase its value. The semantic web community on the other hand is still awaiting a killer app that proves the superiority of its technologies. The authors hope that this chapter will help to highlight some of the common ingredients of killer apps in e-commerce, and discuss how such applications might emerge in the semantic web
    • 

    corecore