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Abstract Concept-based indexing, based on identify-
ing various semantic concepts appearing in multime-
dia, is an attractive option for multimedia retrieval and

much research tries to bridge the semantic gap between
the media’s low-level features and high-level seman-
tics. Research into concept-based multimedia retrieval

has generally focussed on detecting concepts from high
quality media such as broadcast TV or movies, but it
is not well addressed in other domains like lifelogging

where the original data is captured with poorer quality.
We argue that in noisy domains such as lifelogging, the
management of data needs to include semantic reason-

ing in order to deduce a set of concepts to represent
lifelog content for applications like searching, browsing
or summarisation. Using semantic concepts to man-

age lifelog data relies on the fusion of automatically-
detected concepts to provide a better understanding of
the lifelog data. In this paper, we investigate the selec-

tion of semantic concepts for lifelogging which includes
reasoning on semantic networks using a density-based
approach. In a series of experiments we compare dif-

ferent semantic reasoning approaches and the experi-
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mental evaluations we report on lifelog data show the
efficacy of our approach.
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1 Introduction

The idea of digitally recording our everyday lives for our
own personal and private use is not a new phenomenon.
The writing diary has been used to record the expe-

riences of everyday happenings and has been handed
down from generation to generation. With the near-
pervasive application of computing technology, the form

we can use to record our daily experiences is chang-
ing. The earliest motivation for automatic generation
of personal digital archives can be traced back to 1945

when Vannevar Bush expressed his vision [7] that our
lives could be recorded with the help of technology and
that access could be made easier to these ‘digital mem-

ories’ via the principle of what became known as hy-
pertext/hypermedia. Automatically generating autobi-
ographies has become more realistic recently with ad-

vances in lightweight computing devices and sensors
though it is recognised that being able to digitally record
everything about our lives doesn’t then imply we have

perfect recall of everything from our past or that that is
even a good idea [36]. Mobile devices have low cost and
small and lightweight embedded sensors including cam-

eras, GPS, Bluetooth, accelerometers and gyroscopes,
etc. which make computing devices portable thus en-
abling life recording to be done unobtrusively. Lifel-

ogging is the term describing the notion of digitally
recording aspects of our daily lives, where the recorded
content in multiple media is a reflection of activities

which we subsequently use to obtain an insight into our
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daily lives by browsing, searching, or querying. In some

cases the motivation for this is work-related, sometimes
it is to record special events, and sometimes it is to
record for purposes as yet unknown.

Conventional content-based methodologies for re-
trieval of images or video try to map low-level features

to high-level semantics without bridging the semantic
gap. This approach has limitations because of the lack
of coincidence between low-level features and query se-

mantics. This makes concept-based high-level semantic
reasoning an attractive option, where concepts are first
detected via a mapping from low-level features using

generic methods from training data, then fused together
to reason or to infer a final set of concepts which may
be used as a representation for whatever the applica-

tion. Progress in the development of semantic concept
detection for video can be seen in the annual TRECVid
benchmark [37]. As reported in [22], automatically de-

tected concepts in the TV news broadcasting domain
can already be scaled to 1000+, for which 101 concepts
are defined in [41] and 834 in [27]; 491 concepts are

detected in [39], 374 in [9] and 311 in [22].

However, the large effort in building concept de-

tectors in the TV news broadcast domain cannot be
applied directly to the domain of retrieval from every-
day lifelog activities. Among the above-mentioned se-

mantic concept sets, the Large-Scale Concept Ontology
for Multimedia (LSCOM) is the most comprehensive
taxonomy developed for standardizing multimedia se-

mantics in the broadcast TV news domain [27]. As a
framework, the LSCOM effort also produced a set of
use cases and queries along with a large annotated data

set of broadcast news video. However, in the lifelogging
domain, many of the LSCOM concepts, for example
weapon, government leader, etc., are never normally

encountered. In this paper, we investigate the defini-
tion of everyday concepts and their automatic detection
from visual lifelogs in order to satisfy the requirements

for indexing everyday multimedia lifelogs. We also in-
vestigate comprehensive ontological similarities for the
lifelogging domain.

The rest of the paper is organized as follows: In Sec-
tion 2, related work on lifelogging research and auto-

matic concept selection in multimedia retrieval is dis-
cussed. In Section 3, we select everyday activities in or-
der to construct a semantic concept space for a passive-

capture visual lifelogging domain. In Section 4, various
semantic similarity measures are investigated on two
mainstream semantic networks – WordNet and Con-

ceptNet. Our algorithm for semantic density-based con-
cept selection and ranking is discussed in Section 5,
followed by an evaluation in Section 7 in a user experi-

ment. Finally, we close the paper with conclusions.

2 Related Work

Many digital devices and sensors are now lightweight
and computationally efficient, and can be used to cap-

ture the heterogenous contexts of wearers as part of
automatic lifelogging. In wearable lifelogging, we can
capture visual data using head-mounted cameras [17]

or cameras mounted in front of the chest [35]. Using
visual information we can infer contextual information
like ‘who’, ‘what’, ‘where’ and ‘when’, and using digi-

tal cameras or camera-enabled mobile devices is a very
attractive form of lifelogging. Visual lifelogging is the
term used to describe both image-based and video-based

lifelogging. Within the lifelogging community, cameras
are often used as wearable devices to record still im-
ages [35] or videos [17,25]. Example visual lifelogging
projects are Steve Mann’s WearCam [24], the Diet-

Sense project at UCLA [31], the WayMarkr project at
New York University [6], the inSense system at MIT
[5] and the SenseCam [16] developed at Microsoft Re-

search, Cambridge. Though these projects use various
mobile devices for digital logging, they have the com-
mon feature of using cameras to capture still images or

videos, taken from the first person view of the wearers.
Camera-embedded mobile phones are employed in both
the DietSense and WayMarkr projects for diet moni-

toring and experience recall whereas the SenseCam is
a sensor-augmented wearable camera designed to cap-
ture a digital record of the wearer’s day by recording a

series of images and other sensor data. Viewing Sense-
Cam images has been shown recently to be effective in
supporting recall of memory from the past for memory-

impaired individuals [35]. Due to its advantages of mul-
timodal context-awareness, light weight and unobtru-
sive logging with long battery life, we employ Sense-

Cam shown in Figure 1, as the visual recording device
in our work.

Fig. 1 The Microsoft SenseCam (right as worn by a user).
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The management of visual lifelogging data such as

the SenseCam image streams, should involve seman-
tic indexing and retrieval for which much preliminary
work has already been done in other domains such as

TV news broadcasting. Concept-based information re-
trieval has received much interest in the community
due to its potential in filling the semantic gap and

its semantic reasoning capabilities. In concept-based
video retrieval, for example, there are known methods
to expand query terms into a range of concepts and

user judgments and feedback can be used to reveal cor-
relations between concepts. Subjects can be asked to
choose the concepts they think are appropriate for their

queries. This kind of approach to searching, however,
may be difficult for a user when the semantic “space” of
concepts becomes large. Previous work has only tested

how users use concepts in retrieval based on a small
number of concepts and queries as in work by Christel
et al. [11] for which two collections included 23 queries
and 10 concepts together with 24 queries and 17 top-

ics. We also tend to get low inter-annotator agreement,
as described by [11].Previous work on using semantic
concepts explicitly from lifelog data has used the dis-

tribution of the occurrence of these semantic concepts
to profile an individual’s activities and behaviour from a
broad, generic viewpoint [12] and this has used a static

and pre-defined set of concepts on which to base this.

Automatic approaches to selecting appropriate con-
cepts for semantic querying fall into two categories:
lexical and statistical [28]. Lexical approaches leverage

the linguistic relationships among semantic concepts in
deciding the most related and most useful concepts
whereas statistical approaches apply occurrence pat-

terns from a corpus to reveal concept correlations. Sta-
tistical approaches also make use of collection-specific
associations driven by the corpus set while lexical ap-

proaches depend on global linguistic knowledge.

Semantic similarity can be used as a measure to
rank the relevance of concepts to a given query text and
WordNet [26] is a popular source of the lexical knowl-

edge needed for this. One approach involves selecting
concepts based on minimizing the semantic distance
between concepts and query terms. WordNet-based se-

mantic similarity between query terms and concepts
can be calculated as the weight of concepts using se-
mantic similarity scores and some of the work in the

area goes back many years, e.g. [34] and [32]. In more
recent work, the Lesk-based similarity measure [4] is
demonstrated as one of the best measures for lexical

relatedness and is employed in [13] for lexical query ex-
pansion. WordNet-based concept extraction is also in-
vestigated in [14] to evaluate the effectiveness of high-

level concepts used in video retrieval where it achieved

results comparable to user-selected query concepts. The

issue with concept selection when using a lexicon ontol-
ogy such as WordNet is that the local similarities across
branches are not uniform which could lead to incom-

parable similarity values obtained from local ontology
branches, as argued in [42]. In work by Snoek [40], In-
formation Content is used to calculate similarity in or-

der to deal with the problem of similarity inconsistency
caused by non-uniform distances within the WordNet
hierarchy.

A large manual annotation effort in the TRECVid
benchmarking activity for video retrieval [29], and in

the LSCOM concept ontology for broadcast TV news
[1], has enabled the analysis of static patterns for video
retrieval. The groundtruth of hundreds of individual

concepts and dozens of query annotations is used in
comparing retrieval systems as well as selecting and
analyzing the relevant concepts associated with partic-

ular queries. More recent work by Wei and Ngo [42]
proposed an ontology-enriched semantic space model
to cope with concept selection in a linear space. The

ontological space is constructed with a minimal set of
concepts and plays the role of a computable platform to
define the necessary concept sets used in video search.

This linear space guarantees the uniform and consis-
tent comparison of concept scores for query-to-concept
mapping [42].

3 Constructing an Event Semantic Space (EES)

One of the limitations in building automatic classifiers
or concept detectors for images or videos is for them to
reveal higher level semantics when they detect multiple

concepts with high correlations. Since the concepts in-
volved in lifelogging cover aspects of our daily lives and
thus the range of concepts is very broad, interpreting

lifelogging events thus demands a strategy which helps
to select the most appropriate combination of concepts
for event representation rather than just all possible

concepts. We now elaborate the construction of a se-
mantic space reflecting everyday event semantics.

3.1 Everyday Activities: Exploring and Selecting

Patterns of everyday activities are investigated in areas
such as occupational therapy and diet monitoring to
improve physical and mental health by understanding

how we use our time in various activities. Several inves-
tigations and surveys have shown that most of our time
is spent on activities such as sleeping and resting (34%),

domestic activities (13%), TV/radio/music/computers
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(11%), eating and drinking (9%), which collectively count

for nearly 70% of the time in a typical day.
In [19], the most frequently-occurring everyday ac-

tivities are explored to rate their level of enjoyment

when people experience these activities. 16 activities
are investigated and ordered decreasingly by their en-
joyment rating. The impact of everyday activities on

our feelings of enjoyment also affect our health, which
makes these activities important in an analysis of well-
being and lifelogging. Similar patterns of activity are

also shown in [2], [3] and [10] with sleep being the most
dominant activity followed by housework, watching TV,
employment/study, etc. [2] and [3] also show that the

distribution of activities varies with age group. How-
ever, some activities achieve high agreement in partic-
ipation among all subjects investigated for activities

such as sleeping, eating and drinking, personal care,
travel, etc.

In constructing an event semantic space for mod-
elling activities, we select our target activities from those

with the following criteria:

– Time dominance: A small number of activities
occupy a large amount of our time and analysis of

these activities could maximize the analysis of the
relationship between time spent and our well-being.

– Generality: Even though the time spent on ac-

tivities varies from age group to age group, there
are some activities that are engaged in by all age
groups. The selection of activities with high group

agreement will increase the generality of our activity
analysis.

– High frequency: It is important to select the ac-

tivities which have enough sample data so we can
build automatic classifiers.

With these criteria in mind, we selected the activities

listed in Table 1 as targets:

3.2 Topic-Related Concepts

How to decide the set of concepts related to the event
topics above is the focus of our work. In state-of-the-art
everyday concept detection and validation [8], concepts

are suggested by several SenseCam users after they have
gone through and studied several days’ of their own
lifelogged events. Then, being more familiar with their

own lifestyles through reviewing their own lifelogs, con-
cepts are discussed and filtered with the added criterion
that the concept can be detected with satisfactory accu-

racy. During this procedure, concepts are not selected in
a way that considers the related event topics so concepts
may be selected that might not be helpful in interpret-

ing specific event semantics. In addition, some concepts

Table 1 Target activities for our lifelogging work

1 2 3
Eating Drinking Cooking

4 5 6
Clean/Tidy/Wash Washing clothes Using computer

7 8 9
Watching TV Child care Food shopping

10 11 12
General Shopping Bar/Pub Using phone

13 14 15
Reading Cycling Pet care

16 17 18
Going to cinema Driving Taking bus

19 20 21
Walking Meeting Presentation give

22 23
Presentation listen Talking

which might be helpful in recognizing and interpreting a
specific event type may be ignored in the selection pro-

cedure. This limits the performance of event detection
and semantic interpretation especially when particular
concepts relevant to the event are missed. Given the fact

that concept detection is always noisy, the situation is
compounded when a non-relevant concept is selected to
be used in a query, which will reduce the performance

by incurring high noise in the query step.

To find a set of candidate concepts related to each

of the activities described in Section 3.1, we carried out
user experiments on concept selection where candidate
concepts related to each of the activities above were

pooled based on user investigation. Although individ-
uals may have different contexts and personal charac-
teristics, there is a common understanding of concepts

that is already socially agreed and allows people to com-
municate about these according to [20] and [18]. This
makes it reliable for users to choose suitable concepts

relevant to activities. User experiments were carried out
to discover candidate concepts which potentially have
high correlation with activity semantics and details of

the experimental methodology will be described in Sec-
tion 7.1.

The user experiments gave us a set of candidate
concepts with regard to the activities we explored in
Section 3.1. These concepts were used to construct an

event-based semantic space for every activity and the
concept space was expanded by each concept as one di-
mension. Events are represented by groups of images

which have their own concepts. We propose a novel
semantic density-based concept selection algorithm to
find the most useful concepts in the following sections

because we believe that existing algorithms are not a
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good match for the particular problems of detecting the

most appropriate semantic concepts for lifelog events.

4 Investigating ESS Concept Relationships

An ontology is used to represent the concepts and con-
cept relations within a domain. Usually ontologies are

considered as graphs, where nodes represent concepts
and edges represent relations between concepts and in
this way the ontology structure captures the seman-

tics for the domain. Ontology-based similarity or relat-
edness measures can exploit the ontology structure or
additional information to quantify the likeness or cor-

relation between two concepts.

4.1 Lexical Similarity Based on Taxonomy

Concepts are clustered according to their distribution

in the semantic space. With a lack of features or co-
ordinates in this semantic space, concepts can only be
clustered in terms of their ontology relationships be-

tween each other. As a popular English lexical ontology,
WordNet [26] is widely used as a semantic knowledge
base. Synsets are the basic elements in WordNet repre-

senting the senses of words. The current version (3.0) of
WordNet contains 155,327 words grouped into 117,597
synsets. The is-a relationship is modeled as hypernymy

in WordNet where one concept is more general than an-
other. Hyponymy represents the characteristic that one
concept is more specific than another. The meronym

or holonymy connection is the semantics representing a
part-of relationship. This comprehensive coverage and
explicit representation of concept relationships make

WordNet useful in analyzing the concept relationships
within the semantic spaces in our work.

Semantic similarity has been explored in previous
research to define a matrix for concept relationship anal-
ysis. Rada [30] was first to develop the basis for edge-

based measures for concept similarity by defining the
distance in a semantic network as the length of the
shortest path between the two concept nodes. Richard-

son and Smeaton [34] further refined the similarity mea-
sures. The Hirst and St-Onge [15] similarity measure,
takes path direction into account and the idea is that

the concepts are semantically close if their WordNet
synsets are connected by a short path which does not
change direction too often. Another similarity definition

is proposed in [43] by Wu and Palmer for verb simi-
larity calculation since most work is built upon noun
concepts, and applied in machine translation. This was

extended by Leacock and Chodorow [21] also as a path-

based similarity measure which determines similarity

with regard to the maximum depth of the taxonomy.

Semantic similarity based on information content
is also an important component of lexical relationship

analysis. This approach relies on the hypothesis that
the more information two concepts share, the more sim-
ilarity they have. The informativeness of a concept is

quantified by the notion of its Information Content
(IC), which is calculated based on the occurrence prob-
ability of concepts in a given corpus. IC is obtained by

negative likelihood of encountering a concept in a given
corpus [32]. The basic intuition of using negative like-
lihood assumes that the more likely a concept appears

in a corpus the less information it conveys.

Based on the IC formula, a concept will contain less

information if the probability of its occurrence in a cor-
pus is high. The advantage of using information content
is that once given a properly constructed corpus, in-

formation content can be adapted in different domains
because information content is included in a statistical
way according to occurrences of the concept, its sub-

concepts and subsumers.

In [33], Resnik applied information content to calcu-

lating semantic similarity using Most Specific Common
Abstract (msca(c1, c2)) as the amount of information
that concepts c1 and c2 have in common. In this ap-

proach, only the is-a relationship is used because only
the information of the subsuming concept of the two
concepts being compared, is used. In [38], this similarity

measurement is also employed by Quigley and Smeaton
to compute word-word similarity in image caption re-
trieval.

4.2 Contextual Ontological Similarity and Relatedness

WordNet is a small ontology of primarily taxonomic

semantic relations. ConceptNet extended WordNet to
include a richer set of relations appropriate to concept-
level nodes [23]. In the version of ConceptNet we use,

the relational ontology consists of 20 relation types falling
into categories like K-lines, Things, Agents, Event, Spa-
tial, Causal, Functional and Affective.

In ConceptNet, all concepts are linked with the above-
mentioned relations which can reflect the correlations

between concepts. We apply a link-based relatedness
measure to maximize the concept relations in measuring
concept correlation. This differs from WordNet which

uses mainly taxonomic relationships, while Concept-
Net employs more context relationships. While Word-
Net similarities only consider subsumption relations to

assess how two objects are alike lexically, relatedness
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takes into account a broader range of relations which

can be measured using ConceptNet.

The relations between concepts reflect the seman-

tic correlation between two concepts. We assume that
semantic relations are transitive so the more related
two concepts are, the shorter paths they will have. The

relatedness between two concepts varies inversely with
the length of the shortest path between the two con-
cepts. Conceptual relatedness is a monotonically de-

creasing function of path distance. Our approach takes
into account the length of paths between two concepts.
In ConceptNet, because the edges between concepts are

directional, we combine the length of the path between
concept c1 and c2 as well as path between c2 and c1.
The similarity between two concepts is defined as:

SCN (c1, c2) = max(AS(c1, c2), AS(c2, c1)) (1)

where AS(c1, c2) represents the activation score of c2
starting from c1, and vice versa. Activation score is
computed by spreading activation in ConceptNet to
find the most similar concepts with regard to a starting

concept. The starting concept is initialized with activa-
tion score 1.0 and then the nodes connected with the
starting concept with one link path, two link paths, etc.

are activated. The activation score of connected node b
with original node a is defined as:

AS(a, b) =
∑

c∈Neighbor(b)

AS(a, c)× d× w(c, b) (2)

where d is a distance discount (d < 1) to give the con-

cepts far from the original concept a lower weight and
w(c, b) is the relation weight of the link from c to b.
In this paper, we apply the same relation weight for

activation scores. For any given concept b, the activa-
tion score related to a is the sum of scores of all nodes
connected to it.

5 Concept Selection Based on Semantic Density

Our measure of semantic density relies directly on the
semantic distance between concepts. If the distance mea-
sured between concepts is small, then the concepts have

high density. The semantic distance is used as a mea-
sure by which concepts are clustered to represent event
semantics. In our semantic topic-related concept selec-

tion, we deal with the research question by means of
identifying the similarity between concepts as a linguis-
tic problem. Processing consists of text pre-processing

which consists of tokenization, POS tagging and stop-
word removal, and this is followed by word similarity
and phrase similarity calculations which we now de-

scribe.

5.1 Conjunctive Concept Similarity

In traditional text-based retrieval, a document or query
is represented as a vector of term weights which are used

in similarity comparison. The term “vector” can be re-
garded as a new and distinct compound concept and
the concept reflected by a document is best described

by ANDing the concepts represented by its index terms
[30], which facilitates documents being treated as con-
junctive concepts.

When concepts have several disjunctive meanings
in WordNet synsets, we apply ‘disjunctive minimum’
[30] to obtain the similarity between the two concepts.
That is, when a concept has alternative synsets because

it is polysemous, we calculate the minimum conceptual
distance between the synsets and the other concept as
the final distance between the two concepts. Assume

that we have two concepts c1 and c2 and c1 has three
disjunctive synsets syn1, syn2, syn3. In terms of ‘dis-
junctive minimum’, the conceptual distance between c1
and c2 will be given by:

d(c1, c2) = min [d(syn1, c2), d(syn2, c2), d(syn3, c2)] (3)

In calculating conjunctive concept similarity, we take

into account all elementary concepts in the conjunctive
concept. We regard the comparison of the similarity
of two conjunctive concepts as finding the best assign-

ment for a bipartite graph. On both sides of the bipar-
tite graph, the nodes represent elementary concepts. As
with solving the best matching problem, we apply the

Hungarian algorithm to decide the maximum similarity
matching between the two conjunctive concepts. An al-
ternative to the computationally expensive Hungarian

algorithm is to perform conjunctive concept similarity,
defined as [38]:

sim(c1, c2) =
1

M ·N

M∑
i=1

N∑
j=1

sim(ei, fj) (4)

where c1 and c2 are the compound concepts being com-

pared and ei and fj are elementary concepts for c1 and
c2 respectively. In this formula, the sum of pairwise ele-
mentary concept similarities is normalized by the prod-

uct of the length of conjunctive concepts to reduce the
bias of the number of elementary concepts [30]. Some
other approaches to conjunctive concept similarity cal-
culation can also be found in [38].

5.2 Density-based Concept Selection

In the concept set, each concept represents a semantic
entity in the semantic space and the pairwise relation-

ship between 2 concepts can be determined by their
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semantic similarity, represented as an n× n symmetric

matrix, M . The most similar concept group can repre-
sent a subspace in the semantic space within which the
concepts have high co-occurrence correlations.

Principle Component Analysis (PCA) is a useful
tool in pattern recognition in high-dimensional spaces

to reduce the number of dimensions without losing much
of the information represented by the data. Although
PCA can ensure the orthogonality of the bases, the rep-

resentation of original data in terms of feature vectors
is difficult to interpret and embed with semantics, a
point made by Wei and Ngo in [42]. However, subsets

of concepts which are clusters in semantic space repre-
sent specific domain semantics which should be as dis-
joint as possible to be selected as the bases in semantic

space. Therefore, the number of clusters, that is also
the number of bases selected by clustering, should be
consistent with the number of feature vectors selected
by PCA.

We apply PCA to help find the most appropriate
number of clusters in density-based concept selection.

The total number of clusters is decided by considering
the inconsistency coefficient and PCA. In hierarchical
clustering, the inconsistency coefficient was used to de-

cide the appropriate number of clusters in the dendro-
gram. The inconsistency coefficient is defined to com-
pare the height of a link in a cluster hierarchy with

the average height of links below it and can be used to
identify groups of concepts which are densely packed in
certain areas of the cluster dendrogram.

To demonstrate how our approach works, we take
ConceptNet contextual similarity as an example, as de-

scribed in Section 4.2. Figures 2 and 3 are both demon-
strated using the typical concept set (85 concepts) which
we investigate in Section 7.3. In Figure 2 (in green), the

number of clusters formed when inconsistent values are
less than a specified inconsistency coefficient is shown.
According to PCA, the cumulative energy content for

the top k Eigenvectors is shown in Figure 2 (in blue).
As described above, the number of orthogonal vectors
represent disjoint semantics in the semantic space and

we strive to group as many similar concepts as possible.
The trade-off between PCA inconsistency coefficient is
used to find a proper number of clusters for agglomera-

tive algorithm. As shown in Figure 2, the intersection of
PCA (blue) and inconsistency coefficient (green) curves
is selected to decide the number of clusters. The number

of clusters at the trade-off point can still keep the cu-
mulative energy higher than 90% while the inconsistent
coefficient is at a relatively low level.

A dendrogram generated by hierarchical clustering
is illustrated in Figure 3. In the dendrogram, semanti-

cally related concepts are linked together within a clus-
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6 Leveraging Similarity for Concept Ranking

In the previous section we described a method for se-

lecting candidate concepts in similarity matching based
on clustering concepts in a semantic space. Although
the selected concepts have high correlation with the

given activity topic, there may still be other concepts
missing which might be related to the topic. This is
because the clustering algorithm only considers the lo-

cal distance in the semantic space. Since the selected
concepts have high semantic correlation with the given
topic, they can be used as seeds in finding other related

concepts. To leverage concept similarity in a global view,
we employed the random walk model.

6.1 Concept Similarity Model

Random walk is a widely-used algorithm which uses
links in a network to calculate global importance scores
for objects which are connected in the network. It allows

us to compute the probability of a random walker being
located in each vertex performed as a discrete Markov
chain characterized by a transition probability matrix.

We model concept similarity as a graph G = (C,E),
where V is the concept set and E is a set of edges that
link concepts. Each edge is assigned a given similarity

value describing the probability that a random walker
jumps among the concepts. As shown in Figure 4, con-
cept sets and given topics can both be viewed as vertices

in the graph, connected by similarity links. In last sec-
tion, the concepts very similar to the given topic are
selected as candidates, shown as the shaded concepts

in Figure 4. However, the concepts which are similar
to candidate concepts but have no direct similarity link
with the given topic, are ignored. The random walk

model ranks the concepts with candidate concepts as
seeds from a global similarity view.

c

T

c

c

c

c

c

Concepts TopicsSimilarity

Fig. 4 Concept similarity link.

6.2 Similarity Rank

Here we consider the process as a Markov chain where

the states are concepts and transitions are similarity
links between them. A random walker will start with a
prior probability and surf on the graph, following sim-

ilarity links. The similarity random walk is based on
mutual reinforcement of concepts, that is, the score for
a concept relative to a given topic influences, and is in-

fluenced by, the score of other concepts. We formulate
the calculation of the score for ci as:

x(ci) =
n∑

j=1

Simijx(cj) (5)

where Simij is a normalized similarity value between ci
and cj . Following the PageRank algorithm, we update

the score of concepts by: x1

...

xn

 = α

 Sim11 . . . Sim1n

...
. . .

...

Simn1 . . . Simnn


 x1

...

xn

+(1−α)

 d1
...

dn

(6)

where (d1 . . . dn)
T is a prior score vector, and α is a de-

cay factor. The equation can be formalized in a compact
matrix form as:

x = αTx+ (1− α)d (7)

In this formula, x stands for the score vector and T
is the similarity matrix with the sum of each column
normalized to 1. For each concept ci, there is xi =∑n

j=1 α · Simijxj + (1 − α) · di for the score. To solve
Equation 7, we convert it to:

x = α(T+ (1− α)/α · d · 1)x (8)

If we assume A = α(T + (1 − α)/α · d · 1), then x
will be the Eigenvector of A. Although this leads to a
direct solution for the formula, the iterative calculation

converges fast enough and is usually employed. In our
work, the iteration starts with x initialized as 0.

7 Experiments and Evaluation

7.1 User Experiment

Our experiments start with a user investigation to de-

termine a set of possible concepts for interpreting lifelog
events. Respondents are chosen from among the re-
searchers in our own lab, most of whom work in com-

puter science and some also log their everyday lives
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with the SenseCam so the group are sympathetic to,

and familiar with, the idea of indexing visual content
by semantic concepts. In total, 13 of our respondents
then took part in our initial user experiment, 9 male

and 4 female, whose ages are all in the range 20 – 40
years old. About half of the participants (7 in 13) are
in the age group of 26 – 30 while 3 are in 21 – 25 and

another 3 are over 30. There are 8 participants who
are familiar with SenseCam and have worn it for vari-
ous periods. Five participants carry out research using

SenseCam and are engaged in different tasks like visu-
alization, concept detection, medical therapy, etc. The
demographic information for our participants is shown

in Table 2.

Table 2 Demographic information of participants

User Gender Age Ever Used Working on
SenseCam ? SenseCam

1 Male 26-30 Yes Yes
2 Female 21-25 No No
3 Male 36-40 Yes Yes
4 Male 26-30 Yes Yes
5 Male 26-30 No No
6 Male 26-30 No No
7 Female 26-30 Yes Yes
8 Male 26-30 Yes No
9 Male 31-35 Yes Yes
10 Male 21-25 Yes No
11 Female 21-25 Yes No
12 Female 26-30 No No
13 Male 31-35 No No

Participants were shown SenseCam images for sam-

ples of activities and were then surveyed on their under-
standing of images of SenseCam activity as well as the
concepts occurring in those SenseCam images. The ex-

periment was organized into three phases namely study,
phrase and rating. In the study phase, target activities
were first described to respondents to make them famil-

iar with the activity concepts. Exemplar image streams
for each activity were shown to the group and they
were then asked to inspect the SenseCam images. In the

pooling stage, participants were asked to go through im-
ages collected individually to list the possible concepts
they thought might be helpful in order to retrieve the

activities. The aim of the second phase is to determine
a large concept set that might be helpful in analyzing
SenseCam images in order to detect activities. In the

final rating phase, the number of subjects who thought
a concept was relevant to the given activity is calcu-
lated, for all target activities. The higher the number

of “votes” each concept gets and the greatest agreement

among all subjects, the more importance we give to the

concept for that activity.

In the pooling stage, subjects were asked to list as

many concepts associated with each event topic while
inspecting SenseCam images through controlled brows-
ing. Note that the pooled event topics are all from the
everyday activities we investigated in Section 3.1, as

shown in Table 1. To provide cues for participants to
find appropriate concepts, SenseCam images depicting
different activities were shown. In our later experiment

on evaluating concept selection in Section 7.4, we use
the concept set obtained from this user experiment. The
concepts investigated include 171 concepts in total.

7.2 Experimental Evaluation – Methodology

To evaluate our concept selection algorithm, the user
experiment acts as the “oracle” result. In the user ex-

periment, the ranked concepts are analyzed to deter-
mine the set of agreed ones, decided unanimously for
the evaluation. Benchmarks are introduced to evalu-

ate the algorithms from different performance points
of views. These viewpoints are group consistency, set
agreement and rank correlation [18].

In order to assess the generated clustering, we define
group consistency to measure the degree of semantically

related concepts to be clustered. When two related con-
cepts are grouped in the same cluster by our algorithm,
this should give a positive contribution to the overall
consistency value, otherwise, a negative contribution

should be given to overall consistency. To determine
whether two concepts should be grouped together is a
subjective decision hence the results of human exper-

iments are used as an oracle evaluation. We formalize
the notion of human judgement on concept group con-
sistency as a binary function O:

O(ci, cj) =

{
1 if ci and cj are under the same topic
0 if ci and cj not under the same topic

(9)

Similarly, we define another binary function G to reflect

the grouping result of two concepts by clustering as:

G(ci, cj) =

{
1 if ci and cj are in the same cluster

0 if ci and cj not in the same cluster
(10)

Note that these two binary functions are both symmet-
ric which means O(ci, cj) = O(cj , ci) and G(ci, cj) =

G(cj , ci). Generating a set C of ordered pairs C = {(ci, cj),
1 ≤ i, j ≤ |C|, i ̸= j} from concept set C, the overall
group consistency for C is defined based on these two

functions and is formalized as:
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GC =
|C| −

∑
(ci,cj)∈C IC(O,G, ci, cj)

|C|
(11)

where

IC(O,G, ci, cj) =

{
1 if O(ci, cj) ̸= G(ci, cj)
0 if O(ci, cj) = G(ci, cj)

(12)

Group consistency reflects the performance of similarity-
based clustering in the form of a pairwise grouping re-

sult. The ratio is computed as the fraction of the pairs
for which the semantic clustering algorithm gives the
same output as the user experiment. If there are no
cases in which semantic clustering mis-groups a con-

cept pair, GC is equal to 1. Conversely, GC is equal to
0 when no concept pairs are correctly grouped.

Set agreement is used to compare two concept sets

without considering the ranking measurement. It defines
the positive proportion of specific agreement between
two sets [18]. The score of set agreement is equal to

1 when the two sets C1 = C2, and 0 when C1

∩
C2 = ϕ.

Rank correlation is used to study the relationships
between different rankings on the same concept set. We

employ Spearman’s ranking correlation coefficient to
measure the final output. According to the definition,
the score is equal to 1 when agreement between the two

rankings are the same, and -1 when one ranking is the
reverse of the other.

7.3 Evaluation Setup

We recruited 13 persons in our user experiment for con-
cept recommendation. Diverse concepts were suggested

by our subjects as shown in Figure 5 showing that the
number of concepts increases significantly when less
agreement is achieved, from 13 votes to 2 votes. We

ignore concepts with only 1 vote because one subject’s
suggestion means very little in terms of a common un-
derstanding of concept selection.

We initially concentrate on a smaller concept set in
which concepts are selected with agreeement ≥ 50%.
When too few concepts are selected for a topic, more

concepts with a smaller agreement will also selected in
order to make each topic have at least 5 concepts. In
this concept set, there are a total of 85 concepts.

To test the robustness of different similarity mea-
sures used in our density-based concept selection, we
also carried out experiments on a larger concept set

with less agreement among users (vote ≥ 2), forming a
broader set of 171 concepts. The distribution of all 171
concepts across activities is depicted in Figure 6 with

most activities having between 10 and 20 concepts, the

Fig. 5 Concept number vs. agreement.

overall average being 15. Among all activities, ‘Cook-
ing’ has more relevant concepts selected as more visual

concepts are involved and are helpful to identify the ac-
tivity, such as various kitchen items and food which are
very specific. Activities like ‘Using phone’, ‘Reading’,

‘Pet care’ and ‘Going to cinema’ tend to have relatively
similar images within one single event sample, therefore
have less concepts recommended.

Fig. 6 Distribution of concepts.

To measure semantic similarity, we employed both
taxonomic similarity and contextual similarity as dis-
cussed in Section 4 using the ontologies of WordNet and

ConceptNet, respectively. For taxonomic similarity, we
also compared 5 mainstream similarity measures, those
of Wu and Palmer, Leacock and Chodorow, Resnik,

Jiang and Conrath, Lin all of which were introduced
and described earlier. Contextual similarity is obtained
by spreading activation through ConceptNet links. Af-

ter normalising by textual processing, the word-word
semantic similarity is first calculated and then com-
bined to get phrase-level similarity for conjunctive con-

cepts composed of multi-words.



Semantics-Based Selection of Everyday Concepts in Visual Lifelogging 11

Fig. 7 Concept number per topic.

Concept-concept similarity and topic-concept similar-
ity are both used in our density-based concept selec-

tion algorithm to cluster the most similar concepts in
the same clusters with corresponding event topics. The
output concepts from hierarchical clustering are first

analyzed to show the diversity of result concepts by dif-
ferent semantic similarity measures. The average num-
ber of concepts selected per event topic is depicted in

Figure 7. Though there is not much difference in the av-
erage number of concepts per topic, Lin selected more
concepts (5.0) compared to Jiang and Conrath and

ConceptNet which both select 2.6 and 2.5 concepts per
topic respectively.

7.4 Result of Evaluation

Our results are assessed to compare the performance of
applications of the two ontologies, WordNet and Con-

ceptNet, for semantic density-based concept selection in
the lifelogging domain. Our density-based concept se-
lection and re-ranking algorithm involves several steps

including similarity calculation, agglomerative cluster-
ing, similarity ranking and so on, therefore we evaluate
our results in manifolded ways.

7.4.1 Evaluating the Clustering Algorithm

We first apply clustering to group semantically related

concepts based on similarity measurement. Group con-
sistency is calculated for each ontology to assess the
clustering performance of our agglomerative algorithm

in capturing the semantic relationships in everyday life
events. The comparison of all above referred ontological
measures are shown in Figure 8.

The assessment is first carried out on a small concept
set (85 concepts) as shown by blue bars in Figure 8 and

as we can see, ConceptNet-based similarity shows more
consistency compared to the other similarity measures.
Using the same concept set and agglomerative cluster-

ing algorithm, this indicates that the similarity values

Fig. 8 Group Consistency comparison.

returned by our spreading activation from ConceptNet

do reflect the semantics of everyday activities. We in-
creased the testing concept set by using the larger con-
cept set (171 concepts) shown by red bars and found

that ConceptNet still outperforms the other similarity
sources.

In the larger concept set, the semantic similarity cal-

culation is also performed first for these 171 concepts
and topics followed by an hierarchical clustering algo-
rithm. Output concepts are compared on a topic ba-

sis against the groundtruth from the user experiment.
Comparison is done on Set Agreement and Rank Cor-
relation to evaluate the performance of different simi-

larity measures. Because topics are not uniform in as-
sessing performance, we do not average results over all
topics. The results of our density-based everyday con-

cept selection are presented in Figures 9 and 10. The
performance of similarity measures is compared in Fig-
ure 9 using Set Agreement where we find ConceptNet-

based concept selection has the highest median value
and better quartile scores than WordNet-based mea-
sures. Among WordNet-based similarities, Leacock per-

forms best on Set Agreement but does not show advan-
tages on Rank Correlation as shown in Figure 10.

ConceptNet-based concept selection results in the

highest median and quartile scores on Rank Correlation
while Jiang has the best performance among WordNet-
based similarities, but is outperformed by ConceptNet.

We conclude that ConceptNet-based similarity performs
best not only on the concepts selected (as implied by
Set Agreement), but also on the ranking of these con-

cepts (as implied by Rank Correlation). The contextual
ontology is thus more suitable in everyday concept se-
lection for the lifelogging domain.

7.4.2 Similarity Ranking Assessment

Similar to group consistency, we define pairwise or-
deredness to evaluate ranking performance of our al-

gorithm, as the following formula:
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Fig. 9 Comparison based on Set Agreement.
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Fig. 10 Comparison of Rank Correlation.

PO =
|C| −

∑
(ci,cj)∈C IC(O,R, ci, cj)

|C|
(13)

where

IC(O,R, ci, cj) =


1 if R(ci) ≥ R(cj)&O(ci) < O(cj)
1 if R(ci) ≤ R(cj)&O(ci) > O(cj)

0 otherwise

(14)

O(c) = 1 if concept c is selected as a groundtruth con-
cept in the user experiment, otherwise, O(c) = 0. R(c)

is the final score for concept c returned by the similarity
ranking.

A comparison of ontology similarities using pairwise
orderedness is shown in Figure 11 on the small concept

set (85 concepts). ConceptNet similarity outperforms
the other measures in most cases for which the curve of
ConceptNet (CN) is above all the other curves (activ-

ities before ‘cook’). There are only four cases in which

ConceptNet shows worse performance than WordNet-

based similarity measures, namely ‘cook’, ‘listen to pre-
sentation’, ‘general shopping’ and ‘presentation’. We
also analyzed the poor performance of ConceptNet on

these activity types. For ‘listen to presentation’ and
‘presentation’, ConceptNet did not perform well due
to the lack of context information for the concept ‘pre-

sentation’. By looking up the ontology structure of Con-
ceptNet, we find only two concepts that are contextu-
ally connected to ‘presentation’ with high correlation,

‘fail to get information across’ and ‘at conference’ and
connected with ‘presentation’ by relationships ‘Capa-
bleOf’ and ‘LocationOf’ respectively. Thus it is hard to

quantify related concepts in our concept set with a high
similarity weight. In our experiment, ‘general shopping’
is introduced as a very general concept for which even

humans find hard to decide the most related concepts.

Fig. 11 Comparison of Pairwise Orderedness (small set).

An evaluation on pairwise orderedness is also carried
out on the larger 171 concept. The comparison shows a
similar result to Figure 11. ConceptNet-based seman-

tic similarity still performs better than other similarity
measures in most cases. In only three cases, ConceptNet
does not perform as well as WordNet-based similarities,

those three cases being ‘cook’, ‘presentation’ and ‘gen-
eral shopping’. The reason for poor performance can be
explained in the same way as when we were using the

small concept set. Note that in the ‘cook’ topic, more
procedures such as ‘washing’, ‘peeling potatoes’, ‘stir
frying’, to name a few, are involved. The contextual di-

versity also makes it difficult for ConceptNet to return
the contextual similarity correctly.

Ranked concepts based on semantic similarity are
also compared using metrics of Set Agreement and Rank

Correlation. To simplify the comparison, we perform an
evaluation on the smaller concept set with the selection
on the Top-5 and Top-10 concepts returned by the sim-

ilarity rank algorithm. The performance of different se-



Semantics-Based Selection of Everyday Concepts in Visual Lifelogging 13

mantic similarity measurements are shown respectively

in Figure 12 and Figure 13.
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Fig. 12 Comparison for Top-5 ranked concepts (smaller con-
cept set).

As we can see from Figure 12, the advantage of

using ConceptNet is more obvious as we select more
concepts after similarity rank compared to very few
concept seeds selected by clustering. In Figure 12, the

ConceptNet-based algorithm outperforms the others not
only in Set Agreement but also in Rank Correlation.
The advantages of ConceptNet when Top-10 concepts

are selected as depicted in Figure 13 show the robust-
ness of our similarity rank algorithm which propagates
the similarity network and gives higher weights to more

relevant concepts based on the seeds selected by the
clustering algorithm.

8 Conclusions

This paper investigates digital recording of everyday ac-
tivities, known as visual lifelogging, and elaborates the

selection of target activities for semantic analysis. A
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Fig. 13 Comparison for Top-10 ranked concepts (smaller
concept set).

density-based approach to selecting semantic concepts
is introduced to exploit and leverage concept similar-

ity as reasoned from underlying ontologies. Suggested
concepts are then re-ranked with candidate concepts
selected by agglomerative clustering, used as seeds. In

this paper, semantic reasoning on prevalent lexical and
contextual ontologies are also discussed.

The efficacy of our concept selection algorithm is

shown in the way we select and rank concepts used to
represent everyday lifelogging activities, from a global
view. We conclude that candidate concepts selected by

clustering depend on grouping consistency. Usually, the
similarity measures which correctly reflect semantic re-
lationships between concepts can obtain better group

consistency, as demonstrated by the good performance
of ConceptNet similarity in lifelogging. The best perfor-
mance of contextual similarity obtained from spreading

activation on ConceptNet shows that contextual sim-
ilarity is more suitable in reflecting semantics of ev-
eryday concepts in the lifelogging domain. ConceptNet

similarity better reflects the relationship of everyday
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activities and concepts because they are more contex-

tually relevant in the lifelogging domain.
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