3,601 research outputs found

    Detection of false command and response injection attacks for cyber physical systems security and resilience.

    Get PDF
    The operational cyber-physical system (CPS) state, safety and resource availability is impacted by the safety and security measures in place. This paper focused on i) command injection (CI) attack that alters the system behaviour through injection of false control and configuration commands into a control system and ii) response injection (RI) attacks that modifies the response from server to client, thereby providing false information about system state. In this project, we implemented deep learning (DL) multi-layered security model approach for securing industrial control system (ICS) against malicious CI and RI attacks. We validated this approach with two case studies: i) network transactions between a Remote Terminal Unit (RTU) and a Master Control Unit (MTU) in-house SCADA gas pipeline control system and ii) a case study of command and response injection attacks. Based on this project result, we show that the proposed approach achieved a significant attacks detection capability of 96.50%. Also, demonstrated that performance of attack detection techniques applied can be influences by the nature of network transactions with respect to the domain of application. Hence, robustness and resilience of operational CPS state and performance are influenced by the safety and security measures in place which is specific to the CPS device in question

    Machine Learning based Anomaly Detection for Cybersecurity Monitoring of Critical Infrastructures

    Get PDF
    openManaging critical infrastructures requires to increasingly rely on Information and Communi- cation Technologies. The last past years showed an incredible increase in the sophistication of attacks. For this reason, it is necessary to develop new algorithms for monitoring these infrastructures. In this scenario, Machine Learning can represent a very useful ally. After a brief introduction on the issue of cybersecurity in Industrial Control Systems and an overview of the state of the art regarding Machine Learning based cybersecurity monitoring, the present work proposes three approaches that target different layers of the control network architecture. The first one focuses on covert channels based on the DNS protocol, which can be used to establish a command and control channel, allowing attackers to send malicious commands. The second one focuses on the field layer of electrical power systems, proposing a physics-based anomaly detection algorithm for Distributed Energy Resources. The third one proposed a first attempt to integrate physical and cyber security systems, in order to face complex threats. All these three approaches are supported by promising results, which gives hope to practical applications in the next future.openXXXIV CICLO - SCIENZE E TECNOLOGIE PER L'INGEGNERIA ELETTRONICA E DELLE TELECOMUNICAZIONI - Elettromagnetismo, elettronica, telecomunicazioniGaggero, GIOVANNI BATTIST

    Codifying Information Assurance Controls for Department of Defense (DoD) Supervisory Control and Data Acquisition (SCADA) Systems (U)

    Get PDF
    Protecting DoD critical infrastructure resources and Supervisory Control and Data Acquisition (SCADA) systems from cyber attacks is becoming an increasingly challenging task. DoD Information Assurance controls provide a sound framework to achieve an appropriate level of confidentiality, integrity, and availability. However, these controls have not been updated since 2003 and currently do not adequately address the security of DoD SCADA systems. This research sampled U.S. Air Force Civil Engineering subject matter experts representing eight Major Commands that manage and operate SCADA systems. They ranked 30 IA controls in three categories, and evaluated eight SCADA specific IA controls for inclusion into the DoD IA control framework. Spearman’s Rho ranking results (ρ = .972414) indicate a high preference for encryption, and system and information integrity as key IA Controls to mitigate cyber risk. Equally interesting was the strong agreement among raters on ranking certification and accreditation dead last as an effective IA control. The respondents strongly favored including four new IA controls of the eight considered

    An Integrated Cyber-Physical Risk Assessment Framework for Worst-Case Attacks in Industrial Control Systems

    Full text link
    Industrial Control Systems (ICSs) are widely used in critical infrastructures that face various cyberattacks causing physical damage. With the increasing integration of the ICSs and information technology (IT), ensuring the security of ICSs is of paramount importance. In an ICS, cyberattacks exploit vulnerabilities to compromise sensors and controllers, aiming to cause physical damage. Maliciously accessing different components poses varying risks, highlighting the importance of identifying high-risk cyberattacks. This aids in designing effective detection schemes and mitigation strategies. This paper proposes an optimization-based cyber-risk assessment framework that integrates cyber and physical systems of ICSs. The framework models cyberattacks with varying expertise and knowledge by 1) maximizing physical impact in terms of failure time of the physical system, 2) quickly accessing the sensors and controllers in the cyber system while exploiting limited vulnerabilities, 3) avoiding detection in the physical system, and 4) complying with the cyber and physical restrictions. These objectives enable us to jointly model the interactions between the cyber and physical systems and study the critical cyberattacks that cause the highest impact on the physical system under certain resource constraints. Our framework serves as a tool to understand the vulnerabilities of an ICS with a holistic consideration of cyber and physical systems and their interactions and assess the risk of existing detection schemes by generating the worst-case attack strategies. We illustrate and verify the effectiveness of our proposed method in a numerical and a case study. The results show that a worst-case strategic attacker causes almost 19% further acceleration in the failure time of the physical system while remaining undetected compared to a random attacker

    Multi-aspect rule-based AI: Methods, taxonomy, challenges and directions towards automation, intelligence and transparent cybersecurity modeling for critical infrastructures

    Get PDF
    Critical infrastructure (CI) typically refers to the essential physical and virtual systems, assets, and services that are vital for the functioning and well-being of a society, economy, or nation. However, the rapid proliferation and dynamism of today\u27s cyber threats in digital environments may disrupt CI functionalities, which would have a debilitating impact on public safety, economic stability, and national security. This has led to much interest in effective cybersecurity solutions regarding automation and intelligent decision-making, where AI-based modeling is potentially significant. In this paper, we take into account “Rule-based AI” rather than other black-box solutions since model transparency, i.e., human interpretation, explainability, and trustworthiness in decision-making, is an essential factor, particularly in cybersecurity application areas. This article provides an in-depth study on multi-aspect rule based AI modeling considering human interpretable decisions as well as security automation and intelligence for CI. We also provide a taxonomy of rule generation methods by taking into account not only knowledge-driven approaches based on human expertise but also data-driven approaches, i.e., extracting insights or useful knowledge from data, and their hybridization. This understanding can help security analysts and professionals comprehend how systems work, identify potential threats and anomalies, and make better decisions in various real-world application areas. We also cover how these techniques can address diverse cybersecurity concerns such as threat detection, mitigation, prediction, diagnosis for root cause findings, and so on in different CI sectors, such as energy, defence, transport, health, water, agriculture, etc. We conclude this paper with a list of identified issues and opportunities for future research, as well as their potential solution directions for how researchers and professionals might tackle future generation cybersecurity modeling in this emerging area of study

    A Novel Ensemble Model Using Learning Classifiers to Enhance Malware Detection for Cyber Security Systems

    Get PDF
    In the Internet of Things arena, smart gadgets are employed to offer quick and dependable access to services. IoT technology has the ability to recognize extensive information, provide information reliably, and process that information intelligently. Data networks, controllers, and sensors are increasingly used in industrial systems nowadays. Attacks have increased as a result of the growth in connected systems and the technologies they employ. These attacks may interrupt international business and result in significant financial losses. Utilizing a variety of methods, including deep learning (DL) and machine learning (ML), cyber assaults have been discovered. In this research, we provide an ensemble staking approach to efficiently and quickly detect cyber-attacks in the IoT. The NSL, credit card, and UNSW information bases were the three separate datasets used for the experiments. The suggested novel combinations of ensemble classifiers are done better than the other individual classifiers from the base model. Additionally, based on the test outcomes, it could be concluded that all tree and bagging-based combinations performed admirably and that, especially when their corresponding hyperparameters are set properly, differences in performance across methods are not significant statistically. Additionally, compared to other comparable PE (Portable Executable) malware detectors that were published recently, the suggested tree-based ensemble approaches outperformed them

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade’s Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets
    corecore