4 research outputs found

    Adaptive Data Migration in Load-Imbalanced HPC Applications

    Get PDF
    Distributed parallel applications need to maximize and maintain computer resource utilization and be portable across different machines. Balanced execution of some applications requires more effort than others because their data distribution changes over time. Data re-distribution at runtime requires elaborate schemes that are expensive and may benefit particular applications. This dissertation discusses a solution for HPX applications to monitor application execution with APEX and use AGAS migration to adaptively redistribute data and load balance applications at runtime to improve application performance and scaling behavior. This dissertation provides evidence for the practicality of using the Active Global Address Space as is proposed by the ParalleX model and implemented in HPX. It does so by using migration for the transparent moving of objects at runtime and using the Autonomic Performance Environment for eXascale library with experiments that run on homogeneous and heterogeneous machines at Louisiana State University, CSCS Swiss National Supercomputing Centre, and National Energy Research Scientific Computing Center

    Optimizaci贸n del rendimiento y la eficiencia energ茅tica en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterog茅neos son cada vez m谩s relevantes, debido a sus capacidades de rendimiento y eficiencia energ茅tica, estando presentes en todo tipo de plataformas de c贸mputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programaci贸n host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energ茅tico del sistema, adem谩s de dificultar la adaptaci贸n de las aplicaciones. La co-ejecuci贸n permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energ铆a. No obstante, los programadores deben encargarse de toda la gesti贸n de los dispositivos, la distribuci贸n de la carga y la portabilidad del c贸digo entre sistemas, complicando notablemente su programaci贸n. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energ茅tica en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracci贸n y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energ茅tica. Para ello, se proponen dos motores de ejecuci贸n con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la m谩xima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de din谩mica molecular, como el utilizado en un centro de investigaci贸n internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecuci贸n a la tecnolog铆a oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotaci贸n de estrategias din谩micas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union鈥檚 Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    RFaaS: RDMA-Enabled FaaS Platform for Serverless High-Performance Computing

    Full text link
    The rigid MPI programming model and batch scheduling dominate high-performance computing. While clouds brought new levels of elasticity into the world of computing, supercomputers still suffer from low resource utilization rates. To enhance supercomputing clusters with the benefits of serverless computing, a modern cloud programming paradigm for pay-as-you-go execution of stateless functions, we present rFaaS, the first RDMA-aware Function-as-a-Service (FaaS) platform. With hot invocations and decentralized function placement, we overcome the major performance limitations of FaaS systems and provide low-latency remote invocations in multi-tenant environments. We evaluate the new serverless system through a series of microbenchmarks and show that remote functions execute with negligible performance overheads. We demonstrate how serverless computing can bring elastic resource management into MPI-based high-performance applications. Overall, our results show that MPI applications can benefit from modern cloud programming paradigms to guarantee high performance at lower resource costs
    corecore