6 research outputs found

    Treatment options for wastewater effluents from pharmaceutical companies

    Full text link

    Chemometrics Methods for Specificity, Authenticity and Traceability Analysis of Olive Oils: Principles, Classifications and Applications

    Get PDF
    International audienceBackground. Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends' preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis.Methods. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. Results. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries.Conclusion. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors

    Enhanced electrokinetic process for industrial wastewater treatment containing a high concentration of Total Kjeldahl Nitrogen (TKN)

    Get PDF
    The primary objective of this research was to search for an effective method of industrial wastewater treatment containing a high amount of Total Kjeldahl Nitrogen (TKN). Photographic process wastewater is one of them. Traditional approaches, e.g. biological, filtration, carbon absorption are often ineffective in the degradation of persistent organic nitrogen. Thus, this study included four phases of investigation for an effective simultaneous removal of organic nitrogen and ammonia. In Phase I the electrochemical oxidation was performed under different operating conditions to determine the ability of this process to mineralize organic nitrogen and to determine operating ranges for the further investigation. In Phase II conventional electro-Fenton oxidation was implemented. The most successful results were obtained in Phase III, when enhanced electro-Fenton oxidation (EEFO) by additional of an oxidation agent was applied. The best removal efficiency of TKN, ammonia and organic nitrogen reached 92.4 %, 95.2 % and 81.4 % respectively. Also, it was demonstrated that enhanced electro-Fenton process with pretreatment from the ammonia can remove TKN and organic nitrogen by 95.8% and 97.2% respectively in a shorter residence time of 24 hours. In Phase IV the system was tested with a series of electrodes implemented in parallel. The results showed that the removal of organic nitrogen in a single cell and in series was similar. The developed process demonstrated an acceptable level of TKN removal while an insignificantly low amount of chemicals was added. The developed enhanced electro-Fenton oxidation method can be applied to other industrial wastewaters with a similar composition of pollutants

    Pharmaceuticals in industrial wastewater and their removal using photo-Fenton’s oxidation

    Get PDF
    Active pharmaceutical ingredients are known contaminants of surface and ground water. In some cases these are persistent organic chemicals which are only partially eliminated during conventional wastewater treatment. They have been detected in the effluent of various European wastewater treatment plants. However, there is a growing body of evidence to suggest that discharges from pharmaceutical plants themselves can contribute to the levels of pharmaceuticals in the environment. This project is based on both the detection and removal of pharmaceuticals from industrial sources. A SPE-LC-MS/MS method for the detection of famotidine, tamsulosin hydrochloride and solifenacin succinate in wastewater at a pharmaceutical production facility was developed and validated. The results of a six month sampling programme showed substantial concentrations of the analytes in both influent and effluent. Famotidine was detected at an average concentration of 1.6 mg/L and 2.6mg/L, tamsulosin hydrochloride at 5 μg/L and 4 μg/L and solifenacin succinate at 39 μg/L and 28 μg/L in influent and effluent respectively. Photo-Fenton’s oxidation conditions were optimised for the removal of each of the three APIs from aqueous solutions. Intermediates and final products of the degradation have been identified via LC-MS

    Evaluating efficient market hypothesis with stock clustering

    Get PDF
    This study investigates the validity of Efficient Market Hypothesis (EMH) by taking clusters of firms, generated using Self-Organising Maps (SOMs), and comparing their financial performance. Clusters were generated using 10 different financial variables as inputs to SOMs of different sizes. The effectiveness of the clustering was analysed using Silhouette Width, Davies-Bouldin Index and two Dunn’s Index metrics. The financial performance of the clusters was investigated using equal and value weighted returns and portfolio standard deviation. Market capitalisation was the only variable able to generate statistically significant results – in particular larger firms outperformed their smaller counterparts. It was concluded that this difference could be attributed to the volatile time frame chosen (2007-2012) which resulted in investors favouring larger firms. For future work it is recommended that researchers focus more on pre-processing the inputs, using different clusterin

    Assessment of the flat-pannel membrane photobioreactor technology for wastewater treatment: Outdoor application to treat the effluent of an anaerobic membrane bioreactor

    Full text link
    Tesis por compendio[ES] La combinación de reactores anaerobios de membranas (AnMBRs) con el cultivo de microalgas en un fotobiorreactor de membranas (MPBR) aparece como una opción ideal dentro del marco de tecnologías sostenibles para la depuración de aguas residuales. Con esta combinación de tecnologías, se puede obtener biogás a partir de la materia orgánica presente en el agua residual, mientras que los nutrientes del efluente de AnMBR se recuperan con la biomasa algal. Además, la tecnología de membranas permite obtener un efluente limpio y apto para su reutilización. Estudios previos han demostrado la capacidad de un cultivo de microalgas para recuperar los nutrientes presentes en el efluente de un sistema AnMBR a escala laboratorio. Sin embargo, el traslado de esta tecnología a condiciones controladas de laboratorio a condiciones ambientales variables puede suponer una limitación en su aplicación industrial. Este trabajo consiste en la evaluación del proceso de cultivo de microalgas en una planta piloto MPBR alimentada con el efluente de un sistema AnMBR. Para ello se han evaluado las condiciones óptimas de operación de la planta, teniendo en cuenta tanto el proceso biológico de microalgas como la velocidad de ensuciamiento de las membranas. También se ha estudiado el efecto de otros parámetros que influyen en el proceso, como la intensidad de luz aplicada a los fotobiorreactores (PBRs), temperatura, concentración de materia orgánica, presencia de otros organismos, etc.; así como el peso específico de cada parámetro dentro del proceso. Otro objetivo consiste en la búsqueda de nuevos parámetros de control del proceso que faciliten la operación en continuo del sistema. El sistema MPBR utilizado en este estudio se mostró capaz de tratar un efluente de AnMBR, cumpliendo con los límites legales de vertido. Sin embargo, esta operación se consiguió únicamente cuando se cumplían una serie de condiciones: i) El espesor de los fotobiorreactores era estrecho (10 cm). ii) Las condiciones de operación (BRT y HRT) se mantenían dentro del rango adecuado. iii) Temperatura se mantenía habitualmente debajo del límite máximo de 30 ºC. iv) No existía acumulación de nitrito. v) La fuente principal de nitrógeno era amonio. vi) La materia orgánica presente en el cultivo no era excesiva.[CA] La combinació de reactors anaerobis de membranes (AnMBRs) amb el cultiu de microalgues en un fotobioreactor de membranes (MPBR) apareix com una opció ideal dins el marc de tecnologies sostenibles per a la depuració d'aigües residuals. Amb aquesta combinació de tecnologies, es pot obtenir biogàs a partir de la matèria orgànica present en l'aigua residual, mentre que els nutrients de l'efluent de AnMBR es recuperen amb la biomassa algal. A més, la tecnologia de membranes permet obtenir un efluent net i apte per a la seua reutilització. Estudis previs han demostrat la capacitat d'un cultiu de microalgues per recuperar els nutrients presents en l'efluent d'un sistema AnMBR a escala laboratori. No obstant això, el trasllat d'aquesta tecnologia de condicions controlades de laboratori a condicions ambientals variables pot suposar una limitació en la seua aplicació industrial. Aquest treball consisteix en l'avaluació del procés de cultiu de microalgues en una planta pilot MPBR alimentada amb l'efluent d'un sistema AnMBR. Per a això s'han avaluat les condicions òptimes d'operació de la planta, tenint en compte tant el procés biològic de microalgues com la velocitat d'embrutiment de les membranes. També s'ha estudiat l'efecte d'altres paràmetres que influeixen en el procés, com la intensitat de llum aplicada als fotobioreactors (PBRs), temperatura, concentració de matèria orgànica, presència d'altres organismes, etc .; així com el pes específic de cada paràmetre dins del procés. Un altre objectiu consisteix en la recerca de nous paràmetres de control del procés que facilitin l'operació en continu del sistema. El sistema MPBR utilitzat en aquest estudi es va mostrar capaç de tractar un efluent de AnMBR, complint amb els límits legals d'abocament. No obstant això, aquesta operació es va aconseguir únicament quan es complien una sèrie de condicions: i) El gruix dels fotobioreactors era estret (10 cm). ii) Les condicions d'operació (BRT i HRT) es mantenien dins del rang adequat. iii) La temperatura es mantenia habitualment baix del límit màxim de 30 ºC. iv) No existia acumulació de nitrit. v) La font principal de nitrogen era amoni. vi) La matèria orgànica present en el cultiu no era excessiva.[EN] The combination of anaerobic membrane reactors (AnMBRs) and microalgae membrane photobioreactor (MPBR) appears as an ideal option within the framework of sustainable technologies for wastewater treatment. This combination enables to produce biogas from the organic matter present in wastewater, while the nutrient content of the AnMBR effluent can be recovered from microalgae biomass. In addition, membrane technology allows obtaining a water effluent which can be suitable for reclamation. Previous studies have proved the capability of a microalgae culture to recover the nutrients present in AnMBR effluent at lab scale. However, up-scaling from controlled lab conditions to varying outdoor conditions could limit the industrial applications of this technology. This study consists of the assessment of a microalgae culture in an MPBR pilot plant fed by effluent of an AnMBR system. For this, optimal operating conditions of the MPBR plant were evaluated, considering both the microalgae biological process and the membrane fouling rate. The effect of other parameters that have an influence on the process such as light intensity applied to the photobioreactors (PBRs), temperature, organic matter concentration, presence of other organisms, etc., was also studied; as well as the specific weight of each parameter on the process. Another goal consisted of finding new controlling parameters that ease the continuous operation of the system. The MPBR system used in this study showed appeared to be capable of treating AnMBR effluent, successfully accomplishing legal discharge limits. However, this was only achieved when the following conditions were reached: i) PBR light path was as narrow as 10 cm. ii) Operating conditions (BRT and HRT) were in the appropriate range. iii) Temperature was under the máximum limit of around 30 ºC. iv) Nitrite was not accumulated. v) Ammonium was the main nitrogen source. vi) Organic matter concentration in the culture was not high.González Camejo, J. (2019). Assessment of the flat-pannel membrane photobioreactor technology for wastewater treatment: Outdoor application to treat the effluent of an anaerobic membrane bioreactor [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133056TESISCompendi
    corecore